
Feb. 21, 2023 v1

HDF5 Collective I/O Performance Investigation

Jordan Henderson

This document details a short investigation into collective MPI I/O in HDF5 to verify that the behavior and
performance of I/O is reasonable and as expected.

Page 1 of 12

Feb. 21, 2023 v1

Revision History

Version Number Date Comments

v1 Feb. 21, 2023 Version 1 drafted.

Page 2 of 12

Feb. 21, 2023 v1

Contents

1 Introduction and overview 4

2 Investigation Overview 5

3 Observed independent reads 9
3.1 Chunk lookup . 9
3.2 Chunk index read issue . 9
3.3 Object header and B-tree reads . 10

4 Performance of collective metadata writes 11

5 Conclusion 12

Page 3 of 12

Feb. 21, 2023 v1

1 Introduction and overview

When improvements were made to HDF5’s parallel compression feature in the 1.13.1 release, some quick
performance results comparing HDF5 collective MPI I/O read performance before and after were captured
using a slightly modified version of IOR that added support for HDF5 data filters. One of these results showed
poor performance for baseline HDF5 collective MPI I/O reads (represented by the blue dashed line in Figure
1), so an investigation was made to ensure that HDF5’s code for performing collective I/O is reasonable (no
extra unnecessary MPI operations, mistaken calls to independent MPI I/O routines, etc.). This document
details the results of that investigation and describes the issues uncovered.

Figure 1 – IOR HDF5 collective read performance
Command: ior -w -r -c -C -a=HDF5 -b=32m -t=1m -i=10 –hdf5.collectiveMetadata –hdf5.chunkSize=1m
–hdf5.noFill
x-axis: number of MPI ranks, y-axis: Avg. read transfer rate in MiB/s

Page 4 of 12

https://github.com/hpc/ior

Feb. 21, 2023 v1

2 Investigation Overview

This investigation was carried out on the Vortex machine at Sandia National Labs using IOR and the
develop branch of HDF5 at commit 972c883. Experiments were run on the ”/vscratch1” GPFS file system.
Unfortunately, an unknown issue prevented experiments from being run at a scale larger than 2 nodes with 88
total MPI ranks. However, the goal of this investigation was primarily to study the number of I/O operations
performed by HDF5 as compared to direct MPI I/O, so the tiny application scale used here was still useful.
Future investigations should be made at much larger scale when possible.

To begin the investigation, IOR was first run with the MPI I/O API directly by passing the -a MPIIO
command-line parameter in order to get a baseline for write and read performance to compare against. The
backend was run both with and without utilizing MPI file views according to the --mpiio.useFileView
option. Note that HDF5 parallel I/O matches closest to the case of using MPI file views, but the other case
where IOR’s MPI I/O backend uses explicit file pointers is an interesting point of comparison. The IOR
commands used were as follows:

Without MPI file views:

$ ior -a MPIIO -w -r -t 1m -b 32m -i 10 -c -C -e

With MPI file views:

$ ior -a MPIIO -w -r -t 1m -b 32m -i 10 -c -C -e --mpiio.useFileView

The IOR results and Darshan profiles for this are shown in Figures 2, 3, 4 and 5.

Figure 2 – IOR MPI I/O using MPI file views

Figure 3 – Darshan profile for IOR MPI I/O using MPI file views

Page 5 of 12

https://github.com/hpc/ior
https://github.com/HDFGroup/hdf5/commit/972c8833c6658a29f63ea3dc3730ee2dfcc1260b

Feb. 21, 2023 v1

Figure 4 – IOR MPI I/O with explicit file pointers

Figure 5 – Darshan profile for IOR MPI I/O with explicit file pointers

Extracting data from the Darshan profile and matching it to the data shown in Figure 3, it can be seen that the
MPI I/O backend to IOR performed 28160 collective MPI I/O reads and writes, as well as 3520 collective file
opens, totalled across the 88 available MPI ranks. It can also be seen that all of those reads and writes fell in
the 100K-1M range, showing that all the I/O was performed on the specified 1MiB transfer buffer. With a
well-behaved HDF5 library, we’d expect to see similar results, with the exception of some minor additional
metadata operations.

Next, baselines for HDF5 write and read performance with both contiguous and chunked datasets were
obtained by specifying the HDF5 API with the -a HDF5 command-line parameter for IOR. The IOR
commands used were as follows:

Contiguous datasets:

$ ior -a HDF5 -w -r -t 1m -b 32m -i 10 -c -C -e --hdf5.noFill
--hdf5.collectiveMetadata

Chunked datasets:

$ ior -a HDF5 -w -r -t 1m -b 32m -i 10 -c -C -e --hdf5.noFill
--hdf5.collectiveMetadata --hdf5.chunkSize=131072

The IOR results and Darshan profiles for these are shown in Figures 6, 7, 8, 9. Note that the experiments with
HDF5 specify a few additional flags for IOR. The need for these flags is the following:

■ --hdf5.noFill - Since parallel HDF5 currently forces early file space allocation, the Darshan
profiles for these experiments can vary drastically from the MPI I/O profiles due to HDF5 allocating
file space and writing fill values out to the dataset. Disabling writing of fill values results in a more fair
comparison to the IOR MPI I/O backend.

■ --hdf5.collectiveMetadata - There are several metadata operations in HDF5 that occur when
opening a file (reading the superblock, reading the object header of the file’s root group, etc.), opening
a dataset (reading of the dataset’s object header), writing to a file, etc. By enabling HDF5’s collective

Page 6 of 12

Feb. 21, 2023 v1

metadata reads and collective metadata writes features, we cut down on the number of independent MPI
I/O operations performed by all MPI ranks that would otherwise hamper performance and pollute the
Darshan profiles captured.

■ --hdf5.chunkSize - This option simply enables chunking of the HDF5 datasets created by the
IOR HDF5 backend. However, note that the value supplied for this argument is currently specified in
terms of dataset elements, not in terms of bytes.

In the chunked dataset case, IOR was also modified to set the HDF5 library version bounds (both low and
high) to H5F LIBVER LATEST in order to have access to more efficient chunk indexing structures.

Figure 6 – IOR HDF5 contiguous dataset I/O

Figure 7 – Darshan profile for IOR HDF5 contiguous dataset I/O

Figure 8 – IOR HDF5 chunked dataset I/O

Figure 9 – Darshan profile for IOR HDF5 chunked dataset I/O

Page 7 of 12

Feb. 21, 2023 v1

From these figures and the data from the Darshan profiles, we can see that at the MPI I/O level the baseline
HDF5 results exhibit an identical 28160 MPI I/O writes and reads in the raw data 100K-1M range, with the
contiguous dataset case following extremely closely to the MPI I/O with file views profile. In that case, there
are mostly only a few additional calls to collective MPI writes of data in the 0-100 byte range, signalling the
activation of HDF5’s collective metadata write feature. However, the chunked dataset case varies a little bit
in that there are significantly less POSIX reads in the 100K-1M range and slightly more reads in the 0-100
byte and 1K-10K ranges which appear to all be independent reads based on the Darshan graph. Investigation
revealed that the 0-100 byte range reads are related to looking up chunk metadata, while the 1K-10K reads are
accidental independent reads of a dataset’s chunk index, described in section 3.

As a last note, typically one would make sure to set the alignment of objects in the HDF5 file using the
H5Pset alignment API routine on an HDF5 File Access Property List to ensure that objects are well-
aligned with the parallel file system’s data striping. In this case though, neither setting the alignment to be
equal to the chosen chunk size and IOR transfer size of 1MiB nor setting it to the Darshan-detected file
alignment size of 4MiB appeared to have any noticeable affect on performance or the generated Darshan
profiles.

Page 8 of 12

Feb. 21, 2023 v1

3 Observed independent reads

During the investigation of collective I/O performance, several independent MPI I/O reads appeared in the
captured Darshan profiles when performing I/O on chunked datasets, as shown in Figure 9.

Enabling debugging in the MPI I/O VFD and investigating further showed that these independent reads were
primarily occurring in two places: lookup of a dataset’s chunks and reading of a dataset’s chunk index. Other
independent reads occurred in various places, such as during reading of the file’s superblock, reading of object
headers, etc., but these independent reads aren’t generally of interest because they only occurred on MPI rank
0, signalling that the collective metadata reads feature was operating properly in those places.

3.1 Chunk lookup

When HDF5 looks up chunks for a chunked dataset, it is expected that the library will perform those lookups
with independent MPI I/O operations, even when collective metadata reads are enabled. The relevant section
of the library’s code contains the following comment:

/* Disable collective metadata read for chunk indexes as it is

* highly unlikely that users would read the same chunks from all

* processes.

*/

Typically, this shouldn’t be much of an issue for parallel HDF5 applications as different processes should
usually be reading from different (or mostly different) chunks with no or minimal overlap. When combined
with an optimal file striping strategy on a parallel file system, this should generally spread the I/O across
separate data stripes and thus multiple storage targets. If the application actually is reading the same chunks
on all ranks, it could likely be expected that a collective read of those chunks would be more efficient, but, as
the previous comment notes, this isn’t very likely and the argument could be made that this is a deficiency of
the application that should be corrected (perhaps by some rank-0-broadcast strategy at the application level).

It may be the case (especially with modern optimizations in MPI implementations) that a collective read/lookup
of all the processes’ chunks would perform better than the several independent reads, even after factoring in
the collective communication overhead that would be required for coordinating the collective read between
ranks. A future investigation should be made to verify this so that the edge case of turning off collective
metadata reads for chunk lookups can potentially be eliminated and optimized.

3.2 Chunk index read issue

With debugging enabled in the MPI I/O VFD, it was noted that several small independent reads of B-tree
data were occurring during IOR’s dataset read iterations. In a typical H5Dopen → H5Dread operation,
the library’s first interaction with a dataset’s chunk index usually occurs within the chunk lookup operation
mentioned in the previous section. During that lookup operation, the library will determine that the dataset’s
chunk index hasn’t been read in and opened yet, so it will attempt to do so before looking up the dataset’s
chunks. Unfortunately, since the chunk lookup operation will have temporarily disabled collective metadata
reads, the initial reading of the chunk index will become an independent read operation that is performed
by all MPI ranks. This issue doesn’t appear during a H5Dcreate → H5Dwrite operation because the
dataset’s chunk index is created in H5Dcreate and therefore doesn’t need to be read in.

Page 9 of 12

Feb. 21, 2023 v1

As this will entail a small independent read of the same file location across all ranks that were involved in
opening the dataset, it’s possible that this can prove to be a performance issue at large scale by causing a
”metadata storm”. Of course, results may vary depending on the machine and capabilities of the underlying
file system. It’s worth noting that IOR measures the HDF5 dataset open time as part of its read operation
timing and performance measurement, so results could likely become skewed if those small metadata reads
become a problem with increasing MPI rank counts. Anecdotally, adding a workaround to the HDF5 library
code to sidestep this issue and read the dataset’s chunk index collectively appeared to improve the consistency
in measured read performance in IOR, but further investigation at much larger scale will be needed to see
exactly how much of a problem these independent reads are.

The fix for this issue will likely be to add a new chunk index routine to check if the index has been read
and then modify the chunk lookup routine to make use of this new routine to determine if the chunk index
needs to be collectively read in (if collective metadata reads are enabled) before disabling collective metadata
reads. While the chunk lookup routine is called often, adding a check of whether the chunk index has been
read shouldn’t incur any noticeable overhead since it’s a simple check of a pointer for all the current chunk
indexing methods.

3.3 Object header and B-tree reads

In an attempt to see if it was possible to further minimize the metadata read operations being performed during
object header lookups, reads of B-tree information, etc., a small experiment comparing different metadata
block sizes, as set with the H5Pset meta block size API routine, was performed. However, the experiments
performed in this investigation were at small enough scale that the library’s default metadata block size of
2048 bytes already appeared to be optimal.

Page 10 of 12

https://docs.hdfgroup.org/hdf5/develop/group___f_a_p_l.html#ga8822e3dedc8e1414f20871a87d533cb1

Feb. 21, 2023 v1

4 Performance of collective metadata writes

During this investigation, it was noted that performance could trail behind IOR’s MPI I/O backend slightly
when collective metadata writes are enabled (the default in IOR when the --hdf5.collectiveMetadata
option is enabled) and the metadata generated isn’t very large. The description of HDF5’s collective metadata
write API mentions that it’s recommended to use the feature when the size of metadata created is large, but it
also may not be easy for the application/library to predict this case ahead of time. Based on this, it may be an
interesting idea to introduce a new or revised collective metadata write API to HDF5 that accepts a threshold
value below which metadata will be written independently and above (or equal to) which metadata will be
written collectively. In this manner, a parallel HDF5 application may be able to further tune performance in
an adaptive way.

Page 11 of 12

https://docs.hdfgroup.org/hdf5/develop/group___f_a_p_l.html#ga6380f9929cf42c8203813f7e72dde35c
https://docs.hdfgroup.org/hdf5/develop/group___f_a_p_l.html#ga6380f9929cf42c8203813f7e72dde35c

Feb. 21, 2023 v1

5 Conclusion

The investigation described in this document finds that there are, as of the time of writing, no direct issues
with the collective MPI I/O pathways in HDF5 for raw dataset data. However, there exist a few issues with
how HDF5 deals with file metadata that can potentially be optimized for large-scale MPI applications. As the
number of I/O operations and I/O performance of HDF5 parallel I/O match closely to their counterparts for
the MPI I/O backend in IOR, the tentative conclusion is that the original issue prompting this investigation
was likely due to an issue with how performance testing was setup and performed on that particular machine
and its parallel file system. Further investigation on that machine at large scale will be needed to determine
why there existed issues with parallel HDF5 I/O performance.

Page 12 of 12

	Introduction and overview
	Investigation Overview
	Observed independent reads
	Chunk lookup
	Chunk index read issue
	Object header and B-tree reads

	Performance of collective metadata writes
	Conclusion

