diff --git a/.github/workflows/build.yml b/.github/workflows/build.yml index 9ed4cb002..2c2b8ed21 100644 --- a/.github/workflows/build.yml +++ b/.github/workflows/build.yml @@ -120,7 +120,7 @@ jobs: # Upload coverage report for python3.8 && pytorch1.12.0 cpu - name: Upload coverage to Codecov if: ${{matrix.torch == '1.13.0' && matrix.python-version == '3.8'}} - uses: codecov/codecov-action@v2 + uses: codecov/codecov-action@v3 with: file: ./coverage.xml flags: unittests diff --git a/mmrazor/models/losses/adaround_loss.py b/mmrazor/models/losses/adaround_loss.py deleted file mode 100644 index 76c97977d..000000000 --- a/mmrazor/models/losses/adaround_loss.py +++ /dev/null @@ -1,87 +0,0 @@ -# Copyright (c) OpenMMLab. All rights reserved. -import torch -import torch.nn as nn -from mmengine.logging import print_log - -from mmrazor.registry import MODELS - -_ADAROUND_SUPPORT_TYPE = (torch.nn.Conv2d, torch.nn.Linear) - - -@MODELS.register_module() -class AdaRoundLoss(nn.Module): - r'''loss function to calculate mse reconstruction loss and relaxation loss - use some tempdecay to balance the two losses. - ''' - - def __init__(self, - weight: float = 1., - iters: int = 10000, - beta_range: tuple = (20, 2), - warm_up: float = 0.0, - p: float = 2.): - self.weight = weight - self.loss_start = iters * warm_up - self.p = p - - self.temp_decay = LinearTempDecay( - iters, - warm_up=warm_up, - start_beta=beta_range[0], - end_beta=beta_range[1]) - self.count = 0 - - def forward(self, subgraph, pred, tgt): - """Compute the total loss for adaptive rounding: rec_loss is the - quadratic output reconstruction loss, round_loss is a regularization - term to optimize the rounding policy. - - :param pred: output from quantized model - :param tgt: output from FP model - :return: total loss function - """ - - def lp_loss(pred, tgt, p=2.0): - """loss function measured in L_p Norm.""" - return (pred - tgt).abs().pow(p).sum(1).mean() - - self.count += 1 - rec_loss = lp_loss(pred, tgt, p=self.p) - - beta = self.temp_decay(self.count) - if self.count < self.loss_start: - round_loss = 0 - else: - round_loss = 0 - for layer in subgraph.modules(): - if isinstance(layer, _ADAROUND_SUPPORT_TYPE): - round_vals = layer.weight_fake_quant.rectified_sigmoid() - round_loss += self.weight * (1 - ( - (round_vals - .5).abs() * 2).pow(beta)).sum() - - total_loss = rec_loss + round_loss - if self.count % 500 == 0: - print_log('Total loss:\t{:.3f} (rec_loss:{:.3f}, ' - 'round_loss:{:.3f})\tbeta={:.2f}\tcount={}'.format( - float(total_loss), float(rec_loss), - float(round_loss), beta, self.count)) - return total_loss - - -class LinearTempDecay: - - def __init__(self, t_max=10000, warm_up=0.2, start_beta=20, end_beta=2): - self.t_max = t_max - self.start_decay = warm_up * t_max - self.start_beta = start_beta - self.end_beta = end_beta - - def __call__(self, t): - if t < self.start_decay: - return self.start_beta - elif t > self.t_max: - return self.end_beta - else: - rel_t = (t - self.start_decay) / (self.t_max - self.start_decay) - return self.end_beta + (self.start_beta - self.end_beta) * \ - max(0.0, (1 - rel_t)) diff --git a/requirements/tests.txt b/requirements/tests.txt index e38249fcd..5980dc303 100644 --- a/requirements/tests.txt +++ b/requirements/tests.txt @@ -1,4 +1,4 @@ -codecov +coverage flake8 interrogate isort==4.3.21