From 5e16b3d25125398c1900bc49680bda257d872943 Mon Sep 17 00:00:00 2001 From: Mingkun Huang Date: Tue, 29 May 2018 08:29:24 +0800 Subject: [PATCH] test for both cpu and gpu --- pytorch_binding/test/test.py | 134 +++++++++++++++-------------------- 1 file changed, 56 insertions(+), 78 deletions(-) diff --git a/pytorch_binding/test/test.py b/pytorch_binding/test/test.py index 318bbbe..289467a 100644 --- a/pytorch_binding/test/test.py +++ b/pytorch_binding/test/test.py @@ -18,14 +18,10 @@ from transducer_np import RNNTLoss as rnntloss parser = argparse.ArgumentParser(description='MXNet RNN Transducer Test.') -parser.add_argument('B', type=int, default=1, help='batch size') -parser.add_argument('T', type=int, default=300, help='time step') -parser.add_argument('U', type=int, default=100, help='prediction step') -parser.add_argument('V', type=int, default=60, help='vocab size') parser.add_argument('--np', default=False, action='store_true', help='numpy loss') args = parser.parse_args() -fn = rnntloss() if args.np else RNNTLoss() +fn = rnntloss() if args.np else RNNTLoss(size_average=False) def wrap_and_call(acts, labels): acts = torch.FloatTensor(acts) @@ -38,48 +34,47 @@ def wrap_and_call(acts, labels): labels = autograd.Variable(torch.IntTensor(labels)) lengths = autograd.Variable(torch.IntTensor(lengths)) label_lengths = autograd.Variable(torch.IntTensor(label_lengths)) + if use_cuda: + labels = labels.cuda() + lengths = lengths.cuda() + label_lengths = label_lengths.cuda() log_probs = nn.functional.log_softmax(acts, dim=3) - def grad_hook(grad): - log_probs.saved_grad = grad.clone() - log_probs.register_hook(grad_hook) costs = fn(log_probs, labels, lengths, label_lengths) cost = torch.sum(costs) cost.backward() - grads = log_probs.saved_grad - if use_cuda: - costs = costs.cpu() - grads = grads.cpu() - for i, a in enumerate(acts.grad.data.numpy().reshape(-1)): - if i % 6 == 0: print(end='\n') - print('{:.6f}, '.format(a), end='') - print() - # print(acts.grad.data.numpy()) - return costs.data.numpy(), grads.data.numpy() + print(repr(acts.grad.data.cpu().numpy())) + return costs.data.cpu().numpy(), acts.grad.data.cpu().numpy() def small_test(): - acts = np.array([[[0.1, 0.6, 0.1, 0.1, 0.1], + acts = np.array([[[[0.1, 0.6, 0.1, 0.1, 0.1], [0.1, 0.1, 0.6, 0.1, 0.1], [0.1, 0.1, 0.2, 0.8, 0.1]], [[0.1, 0.6, 0.1, 0.1, 0.1], [0.1, 0.1, 0.2, 0.1, 0.1], - [0.7, 0.1, 0.2, 0.1, 0.1]]]) + [0.7, 0.1, 0.2, 0.1, 0.1]]]]) labels = [[1, 2]] - acts = acts[None, ...] - cost, grads = wrap_and_call(acts, labels) expected_cost = 4.495666 - expected_grads = np.array([[[-0.308198071906, -0.6918019280939998, 0.0, 0.0, 0.0], - [-0.308198071906, 0.0, -0.3836038561880001, 0.0, 0.0], - [-0.3836038561880001, 0.0, 0.0, 0.0, 0.0]], - [[0.0, -0.308198071906, 0.0, 0.0, 0.0], - [0.0, 0.0, -0.6163961438119995, 0.0, 0.0], - [-0.9999999999999991, 0.0, 0.0, 0.0, 0.0]]]) + expected_grads = np.array([[[[-0.13116688, -0.3999269 , 0.17703125, 0.17703125, + 0.17703125], + [-0.18572757, 0.12247056, -0.18168412, 0.12247056, + 0.12247056], + [-0.32091254, 0.06269141, 0.06928472, 0.12624499, + 0.06269141]], + + [[ 0.05456069, -0.21824276, 0.05456069, 0.05456069, + 0.05456069], + [ 0.12073959, 0.12073959, -0.48295835, 0.12073959, + 0.12073959], + [-0.6925882 , 0.16871116, 0.18645467, 0.16871116, + 0.16871116]]]]) assert np.allclose(cost, expected_cost, rtol=1e-6), \ "small_test costs mismatch." + print(grads) # TODO change this exptected grad to actis. assert np.allclose(grads, expected_grads), \ "small_test gradient mismatch." @@ -121,38 +116,38 @@ def big_test(): [0.6607698886038497, 0.3771277082495921, 0.3580209022231813]]]] expected_costs = [4.2806528590890736, 3.9384369822503591] - expected_grads = [ - [[[-0.4322264564338117, -0.5677735435661883, 0.0], - [-0.36565009313836844, 0.0, -0.20212345042782007], - [-0.20212345042782007, 0.0, 0.0]], + expected_grads = [[[[-1.86843902e-01, -6.25548810e-02, 2.49398798e-01], + [-2.03376666e-01, 2.02399328e-01, 9.77333169e-04], + [-1.41016081e-01, 7.91234672e-02, 6.18926100e-02]], - [[-0.16521672442463506, -0.2670097320091765, 0.0], - [-0.3943653886107811, 0.0, -0.2382944365367636], - [-0.44041788696458367, 0.0, 0.0]], + [[-1.15517676e-02, -8.12802389e-02, 9.28319991e-02], + [-1.54257029e-01, 2.29432687e-01, -7.51756504e-02], + [-2.46593088e-01, 1.46404594e-01, 1.00188486e-01]], - [[-0.052129794015740985, -0.11308693040889405, 0.0], - [-0.18313786985332664, 0.0, -0.3243144491663483], - [-0.7647323361309323, 0.0, 0.0]], + [[-1.29182907e-02, -6.15932420e-02, 7.45115355e-02], + [-5.59857301e-02, 2.19830811e-01, -1.63845062e-01], + [-4.97626871e-01, 2.09239945e-01, 2.88386941e-01]], - [[0.0, -0.052129794015740985, 0.0], - [0.0, 0.0, -0.23526766386906767], - [-1.0, 0.0, 0.0]]], + [[ 1.36048580e-02, -3.02196294e-02, 1.66147724e-02], + [ 1.13924511e-01, 6.27811998e-02, -1.76705718e-01], + [-6.67078257e-01, 3.67658824e-01, 2.99419403e-01]]], - [[[-0.7161424128232795, -0.2838575871767207, 0.0], - [-0.18382932237365335, -0.10002826480306751, 0.0], - [-0.10002826480306751, 0.0, 0.0]], - [[-0.41121794618117213, -0.3049244666421072, 0.0], - [-0.3295759402552584, -0.15917784876050195, 0.0], - [-0.2592061135635692, 0.0, 0.0]], + [[[-3.56343776e-01, -5.53474613e-02, 4.11691219e-01], + [-9.69219357e-02, 2.94591039e-02, 6.74628317e-02], + [-6.35175705e-02, 2.76544970e-02, 3.58630717e-02]], - [[-0.11607642141651396, -0.29514152476465827, 0.0], - [-0.2865333615432337, -0.3381841034766833, 0.0], - [-0.5973902170402529, 0.0, 0.0]], + [[-1.54499024e-01, -7.39420280e-02, 2.28441030e-01], + [-1.66789949e-01, -8.78955179e-05, 1.66877866e-01], + [-1.72369644e-01, 1.05565332e-01, 6.68043196e-02]], - [[0.0, -0.11607642141651396, 0.0], - [0.0, -0.4026097829597475, 0.0], - [-1.0, 0.0, 0.0]]]] + [[ 2.38748826e-02, -1.18255816e-01, 9.43809375e-02], + [-1.04707085e-01, -1.08934477e-01, 2.13641584e-01], + [-3.69844258e-01, 1.80118099e-01, 1.89726159e-01]], + + [[ 2.57137045e-02, -7.94617534e-02, 5.37480488e-02], + [ 1.22328237e-01, -2.38788679e-01, 1.16460443e-01], + [-5.98686993e-01, 3.02203178e-01, 2.96483815e-01]]]] activations = np.array(activations) labels = [[1, 2], @@ -163,33 +158,16 @@ def big_test(): assert np.allclose(costs, sum(expected_costs)), \ "big_test average costs mismatch." - assert np.allclose(grads, expected_grads), \ + assert np.allclose(grads, expected_grads, rtol=1e-3), \ "big_test grads for average cost mismatch." -def time_test(blank=0): - batch_size = args.B - vocab_size = args.V - input_len = args.T - output_len = args.U - acts = np.random.rand(batch_size, input_len, output_len + 1, vocab_size) - labels = np.random.randint(1, vocab_size, (batch_size, output_len)) - - start = time.time() - iters = 10 - for _ in range(iters): - wrap_and_call(acts, labels) - end = time.time() - - print("Time per iteration: {:.3f}(s)".format((end-start)/iters)) - - if __name__ == "__main__": use_cuda = False - # small_test() + small_test() big_test() - # print("CPU Tests passed!") - # if torch.cuda.is_available(): - # use_cuda = True - # small_test() - # print("GPU Tests passed!") - # time_test() \ No newline at end of file + print("CPU Tests passed!") + if torch.cuda.is_available(): + use_cuda = True + small_test() + big_test() + print("GPU Tests passed!") \ No newline at end of file