-
Notifications
You must be signed in to change notification settings - Fork 8
/
cochlear_model2018.py
530 lines (494 loc) · 22.8 KB
/
cochlear_model2018.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
# -*- coding: utf-8 -*-
import numpy as np
import time
from scipy.integrate import ode
from scipy import signal
import ctypes
import os
import sys
DOUBLE = ctypes.c_double
INT = ctypes.c_int
PINT = ctypes.POINTER(ctypes.c_int)
PLONG = ctypes.POINTER(ctypes.c_long)
PDOUBLE = ctypes.POINTER(ctypes.c_double)
class tridiag_matrix(ctypes.Structure):
_fields_ = [("aa", ctypes.POINTER(ctypes.c_double)),
("bb", ctypes.POINTER(ctypes.c_double)),
("cc", ctypes.POINTER(ctypes.c_double))]
# load C library
libName = 'tridiag.dll' if 'win32' in sys.platform else 'tridiag.so'
libtrisolv = np.ctypeslib.load_library(libName,os.path.dirname(os.path.abspath(__file__)))
# load tridiagonal solver function and defines input
libtrisolv.solve_tridiagonal.restype = None
libtrisolv.solve_tridiagonal.argtypes = [ctypes.POINTER(tridiag_matrix), # aa
PDOUBLE, # vv
PDOUBLE, # solution
INT, # nrows
]
libtrisolv.delay_line.restype = None # TODO SPEEDUP W POINTERS!
libtrisolv.delay_line.argtypes = [PDOUBLE, # in_matrix
PINT, # delay1
PINT, # delay2
PINT, # delay1
PINT, # delay1
PDOUBLE, # dev
PDOUBLE, # YZweig
INT, # delay_buffer_length
INT # n
]
# definition of the function
def TLsolver(t, y, model): # y''=dv/dt y'=v
n = model.n + 1
frac = (t - model.lastT) / model.dt
a = model.interplPoint1
b = model.interplPoint2
c = model.interplPoint3
d = model.interplPoint4
cminusb = c - b
#fast cubic interpolation
F0 = b + frac * \
(cminusb - 0.1666667 * (1. - frac) *
((d - a - 3.0 * cminusb) * frac + (d + 2.0 * a - 3.0 * b)))
model.Vtmp = y[0:n]
model.Ytmp = y[n:2 * n]
if(model.non_linearity): # non-linearities here
factor = 100
Vvect = np.abs(model.Vtmp) / model.RthV1
Sxp = (Vvect - 1.) * model.const_nl1
Syp = model.Sb * np.sqrt(1 + (Sxp / model.Sa) ** 2)
Sy = Sxp * model.sinTheta + Syp * model.cosTheta
SheraP = model.PoleS + Sy / factor
SheraP = np.fmin(SheraP, model.PoleE)
# update non-linear parameters here only if the pole displacement is
# larger than 1%
if(np.max(abs(SheraP[1:n] - model.SheraP[1:n]) /
abs(model.SheraP[1:n])) > 0.01):
model.SheraP = SheraP
model.SheraParameters()
model.ZweigImpedance()
model.current_t = t
model.Dev[0:n] = model.Dev[0:n] + frac
libtrisolv.delay_line(
model.Ybuffer_pointer, model.Zrp_pointer, model.Zrp1_pointer,
model.Zrp2_pointer, model.Zrp3_pointer, model.Dev_pointer,
model.YZweig_pointer, ctypes.c_int(model.YbufferLgt),
ctypes.c_int(model.n + 1))
model.Dev[0:n] = model.Dev[0:n] - frac
model.calculate_g()
model.calculate_right(F0)
#compute q
libtrisolv.solve_tridiagonal(
ctypes.byref(model.tridata), model.r_pointer, model.Qpointer,
ctypes.c_int(n))
zero_val = (model.RK4_0*model.Qsol[0] + model.RK4G_0*(model.g[0] + model.p0x * F0))
Vderivative = (model.Qsol - model.g)
Vderivative[0] = zero_val;
solution = np.concatenate([Vderivative, model.Vtmp])
return solution
class cochlea_model ():
# init constants
def __init__(self):
self.ttridiag = 0
self.calling_function = 0
self.cochleaLength = .035
self.bmMass = 0.5
self.bmImpedanceFactor = 1
self.scalaWidth = 0.001
self.scalaHeight = 0.001
self.helicotremaWidth = 0.001
self.rho = float(1e3)
self.Normal_Q = 20
self.Greenwood_A = 20682
self.Greenwood_alpha = 61.765
self.Greenwood_B = 140.6
self.stapesArea = float(3e-6)
self.EardrumArea = float(60e-6)
self.MiddleEarResonanceFrequency = float(2e3)
self.MiddleEarQualityFactor = 0.4
self.SpecificAcousticImpedanceOfAir = 415
self.middleEarTransformer = 30
self.damping_coupler = float(140e5)
self.mass_coupler = float(43.2e2)
self.stiffness_coupler = 1. / float(2.28e-11)
self.p0 = float(2e-5)
self.ZweigQ = 1 / 0.0606
self.ZweigFactor = 1.7435
self.ZweigQAtBoundaries = 20
self.ZweigBeta = 10000
self.ZweigGamma = 6200
self.ZweigN = 1.5
self.SheraMuMax = 3
self.RMSref = 0.6124
self.Rme = float(0.3045192500000000e12) # TODO setRme function
#variable to check if the model is intialize before calling the solver
self._is_init = 0
self.interplPoint1 = 0
self.interplPoint2 = 0
self.interplPoint3 = 0
self.interplPoint4 = 0
# function to intitialize all the parameters
def init_model(self, stim, samplerate, sections, probe_freq, sheraPo,
compression_slope=0.4, Zweig_irregularities=1,
non_linearity_type='vel', KneeVar=1.,
low_freq_irregularities=1, subject=1,IrrPct=0.05):
self.low_freq_irregularities = low_freq_irregularities
self.SheraPo = np.zeros(sections+1)
self.SheraPo = self.SheraPo+sheraPo # can be vector or single value, line changed so it can work with both single and vector
self.KneeVar = (KneeVar)
self.IrrPct = IrrPct
self.non_linearity = 0
self.use_Zweig = 1
if(Zweig_irregularities == 0):
self.use_Zweig = 0
if(non_linearity_type == 'disp'):
self.non_linearity = 1
elif(non_linearity_type == 'vel'):
self.non_linearity = 2
else:
self.non_linearity = 0 # linear model
self.n = sections
self.fs = samplerate
self.dt = 1. / self.fs
self.probe_freq = probe_freq
self.initCochlea()
self.initMiddleEar()
self.SetDampingAndStiffness()
self.initZweig()
self.initGaussianElimination()
self.compression_slope_param(compression_slope)
self.is_init = 1
self.lastT = 0
self.seed = subject # change here the seed
np.random.RandomState(self.seed)
np.random.seed(self.seed)
self.Rth = 2 * (np.random.random(self.n + 1) - 0.5)
self.Rth_norm = 10 ** (self.Rth / 20. / self.KneeVar)
lf_limit = self.ctr
if(self.use_Zweig==0):
lf_limit=0
print('No irregularities')
factor = 100
n = self.n + 1
Rth = self.Rth
Rth_norm = self.Rth_norm
#Normalized RTH, so save a bit of computation
self.RthY1 = self.Yknee1 * Rth_norm
self.RthY2 = self.Yknee2 * Rth_norm
self.RthV1 = self.Vknee1 * Rth_norm
self.RthV2 = self.Vknee2 * Rth_norm
Rndm = self.IrrPct * Rth / 2.
self.PoleS = (1 + Rndm) * self.SheraPo
self.RthY1[lf_limit:n] = self.Yknee1
self.RthY2[lf_limit:n] = self.Yknee2
self.RthV1[lf_limit:n] = self.Vknee1
self.RthV2[lf_limit:n] = self.Vknee2
self.PoleS[lf_limit:n] = self.SheraPo[lf_limit:n]
Theta0 = np.arctan(
((self.PoleE - self.PoleS) * factor) /
((self.RthV2 / self.RthV1) - 1.))
Theta = Theta0 / 2.
Sfoc = (self.PoleS * factor) / (self.RthV2 / self.RthV1)
Se = np.cos((np.pi - Theta0) * 0.5)
self.Sb = Sfoc * Se
self.Sa = Sfoc * np.sqrt(1. - ((Se ** 2)))
self.const_nl1 = np.cos(Theta) / np.cos(2 * Theta)
self.cosTheta = np.cos(Theta)
self.sinTheta = np.sin(Theta)
#
# PURIAM1 FILTER ###
#
puria_gain = 10 ** (18. / 20.)
# was the orignal Puria in 2012
# second order butterworth
# b, a = signal.butter(
# 1, [100. / (samplerate / 2.), 3000. / (samplerate / 2)],
# 'bandpass')
# self.stim = signal.lfilter(b * puria_gain, a, stim)
b, a = signal.butter(1, [600 / (samplerate / 2.), 4000. / (samplerate / 2)],'bandpass')
self.stim = signal.lfilter(b * puria_gain, a, stim)
# from intializeCochlea.f90
def initCochlea(self):
self.bm_length = self.cochleaLength - self.helicotremaWidth
self.bm_width = self.scalaWidth
self.bm_mass = self.bmMass * self.bmImpedanceFactor
self.ZweigMso = 2. * self.rho / (self.bm_width * self.scalaHeight)
self.ZweigL = 1. / (2.3030 * self.Greenwood_alpha)
self.ZweigOmega_co = 2.0 * np.pi * self.Greenwood_A-self.Greenwood_B
self.ZweigMpo = (
self.ZweigMso * (self.ZweigL ** 2)) / ((4 * self.ZweigN) ** 2)
self.Ko = self.ZweigMpo * (self.ZweigOmega_co ** 2)
self.x =np.array(np.linspace(0, self.bm_length, self.n+1), order='C') #Old
self.dx = self.bm_length / (1. * self.n)
self.g = np.zeros_like(self.x)
self.Vtmp = np.zeros_like(self.x)
self.Ytmp = np.zeros_like(self.x)
self.Atmp= np.zeros_like(self.x)
self.right = np.zeros_like(self.x)
self.r_pointer = self.right.ctypes.data_as(PDOUBLE)
self.zerosdummy = np.zeros_like(self.x)
self.gamma = np.zeros_like(self.x)
self.Qsol = np.zeros_like(self.x)
self.Qpointer = self.Qsol.ctypes.data_as(PDOUBLE)
def initMiddleEar(self):
self.q0_factor = self.ZweigMpo * self.bm_width
self.p0x = self.ZweigMso * self.dx/(1. * self.ZweigMpo * self.bm_width)
self.d_m_factor = -self.p0x * self.stapesArea * self.Rme
self.RK4_0 = -(self.bm_width * self.ZweigMpo) / (self.stapesArea)
self.RK4G_0 = (self.ZweigMpo * self.bm_width) / (
self.ZweigMso * self.stapesArea * self.dx)
def SetDampingAndStiffness(self):
self.f_resonance = self.Greenwood_A * \
10 ** (-self.Greenwood_alpha * self.x) - self.Greenwood_B
self.ctr = np.argmin(np.abs(self.f_resonance - 100.))
if(self.low_freq_irregularities):
self.ctr = self.n + 1
self.onek = np.argmin(np.abs(self.f_resonance - 1000.))
self.omega = 2. * np.pi * self.f_resonance
self.omega[0]=self.ZweigOmega_co
self.omega2 = self.omega ** 2
self.Sherad_factor = np.array(self.omega)
self.SheraP = np.zeros_like(self.x)
self.SheraD = np.zeros_like(self.x)
self.SheraRho = np.zeros_like(self.x)
self.SheraMu = np.zeros_like(self.x)
self.SheraP = self.SheraPo + self.SheraP
self.c = 120.8998691636393
#
# PROBE POINTS ##
#
if(self.probe_freq=='all'):
self.probe_points=np.zeros(len(self.f_resonance)-1)
for i in range(len(self.f_resonance)-1):
self.probe_points[i]=i+1
self.probe_points=(self.probe_points)
self.cf=(self.f_resonance[1:len(self.f_resonance)])
elif(self.probe_freq=='half'):
self.probe_points=np.zeros((len(self.f_resonance)-1)/2)
for i in range((len(self.f_resonance)-1)/2):
self.probe_points[i]=i+1
self.probe_points=(self.probe_points)
self.cf=(self.f_resonance[range(1,len(self.f_resonance),2)])
elif(self.probe_freq=='abr'):
# self.probe_points=np.zeros([401,1])
self.probe_points=np.array(range(110,911,2))
self.cf=(self.f_resonance[range(110,911,2)])
# print(np.shape(self.probe_points))
# print('abr')
else:
self.probe_points=np.zeros(self.probe_freq.size,dtype=int)
for i in range(len(self.probe_freq)):
idx_help=abs((self.f_resonance)-np.float(self.probe_freq[i]))
self.probe_points[i]=np.argmin(idx_help)
self.cf=self.f_resonance[self.probe_points]
self.probe_points=np.array(self.probe_points)
# print(np.shape(self.probe_points))
def initZweig(self):
n = self.n + 1
self.exact_delay = self.SheraMuMax / (self.f_resonance * self.dt)
self.delay = np.floor(self.exact_delay) + 1
self.YbufferLgt = int(np.amax(self.delay)) #quick fix, maybe can be shorter but it works so better not touch
self.Ybuffer = np.zeros([n, self.YbufferLgt])
# Ybuffer implemented here as a dense matrix
# (python for cycles are slow...)
self.Ybuffer = np.array(self.Ybuffer, order='C', ndmin=2, dtype=float)
self.Ybuffer_pointer = self.Ybuffer.ctypes.data_as(PDOUBLE)
self.ZweigSample1 = np.zeros_like(self.exact_delay)
self.Zwp = int(0)
self.ZweigSample1[0] = 1.
self.ZweigSample2 = self.ZweigSample1 + 1
# init buffers etc...
self.Dev = np.zeros_like(self.x)
self.Dev_pointer = self.Dev.ctypes.data_as(PDOUBLE)
self.YZweig = np.zeros_like(self.x)
self.YZweig_pointer = self.YZweig.ctypes.data_as(PDOUBLE)
self.Zrp = np.array(np.zeros(n), dtype=np.int32, order='C')
self.Zrp_pointer = self.Zrp.ctypes.data_as(PINT)
self.Zrp1 = np.array(np.zeros(n), dtype=np.int32, order='C')
self.Zrp1_pointer = self.Zrp1.ctypes.data_as(PINT)
self.Zrp2 = np.array(np.zeros(n), dtype=np.int32, order='C')
self.Zrp2_pointer = self.Zrp2.ctypes.data_as(PINT)
self.Zrp3 = np.array(np.zeros(n), dtype=np.int32, order='C')
self.Zrp3_pointer = self.Zrp3.ctypes.data_as(PINT)
#set tridiagonal matrix values for transmission line
def initGaussianElimination(self):
n = self.n + 1
self.ZweigMs = (self.ZweigMso * self.ZweigOmega_co) / self.omega # TAPERING self.omega*
self.ZweigMp = self.Ko / (self.ZweigOmega_co * self.omega)
#self.ZweigMs = self.ZweigMs/ self.omega[1]
#self.ZweigMp = self.ZweigMp/self.omega[1]
self.ZASQ = np.zeros_like(self.x)
self.ZASC = np.zeros_like(self.x)
self.ZAL = np.zeros_like(self.x)
self.ZAH = np.zeros_like(self.x)
# init values of transimission line
self.ZASQ[0] = 1.
self.ZASC[0] = 1 + self.ZweigMso * self.dx
self.ZAH[0] = -1*self.ZweigOmega_co/self.omega[1]
self.ZAL[1:n] = -self.ZweigMs[1:n]*self.omega[1:n]/self.omega[0:n-1]
self.ZAH[1:n-1] =-self.ZweigMs[0:n-2]*self.omega[1:n-1]/self.omega[2:n]
# self.ZAH[0] = -1.
# self.ZAL[1:n] = -self.ZweigMs[1:n]
# self.ZAH[1:n - 1] = -self.ZweigMs[0:n - 2]
self.ZASQ[1:n] = self.omega[1:n] * self.ZweigMs[1:n] * self.ZweigMs[0:n - 1] * (self.dx ** 2) / (self.ZweigOmega_co *self.ZweigMpo)
self.ZASC[1:n] = self.ZASQ[1:n] +self.ZweigMs[1:n] + self.ZweigMs[0:n - 1]
self.tridata = tridiag_matrix()
self.tridata.aa = self.ZAL.ctypes.data_as(PDOUBLE)
self.tridata.bb = self.ZASC.ctypes.data_as(PDOUBLE)
self.tridata.cc = self.ZAH.ctypes.data_as(PDOUBLE)
def calculate_g(self): # same as in fortran
n = self.n + 1
self.g[0] = self.d_m_factor * self.Vtmp[0]
dtot = self.Sherad_factor * self.SheraD
stot = (self.omega2) * (self.Ytmp + (self.SheraRho * self.YZweig))
self.g[1:n] = (dtot[1:n] * self.Vtmp[1:n]) + stot[1:n]
def calculate_right(self, F0): # same as in fortran
n = self.n + 1
self.right[0] = self.g[0] + self.p0x * F0
self.right[1:n] = self.ZASQ[1:n] * self.g[1:n]
def SheraParameters(self): # same as in fortran
a = (self.SheraP + np.sqrt((self.SheraP ** 2.) +
self.c * (1.0 - self.SheraP ** 2))) / self.c
self.SheraD = 2.0 * (self.SheraP - a)
self.SheraMu = 1. / (2.*np.pi*a)
self.SheraRho = 2. * a * \
np.sqrt(1. - (self.SheraD / 2.) ** 2.) * np.exp(-self.SheraP / a)
def ZweigImpedance(self):
n = self.n + 1
MudelayExact =(2*np.pi)*self.SheraMu / (self.omega * self.dt)
Mudelay = np.floor(MudelayExact) + 1.
self.Dev[:] = Mudelay - MudelayExact
self.Zrp1[0:n] = (
(self.Zwp + self.YbufferLgt) - Mudelay[0:n]) % self.YbufferLgt
const = self.YbufferLgt - 1
self.Zrp[0:n] = (self.Zrp1[0:n] + const) % self.YbufferLgt
self.Zrp2[0:n] = (self.Zrp1[0:n] + 1) % self.YbufferLgt
self.Zrp3[0:n] = (self.Zrp2[0:n] + 1) % self.YbufferLgt
def compression_slope_param(self, slope):
self.Yknee1 = float(1.0*(6.9183e-10))
#self.Yknee1 = float(2.0*(6.9183e-10))
self.Yknee2 = float(1.5488e-8)
# # THdB=10.0 #SARAH's Style
# THdB=10.0
# Ax=1
# Bx=20*np.log10(8.461e-11)
# Vknee1 = float(1.0*(2.293e-7))
# self.PoleE = np.zeros_like(self.x)+0.3
# BoffsetV=-slope*THdB+20*np.log10(Vknee1) #find the offset of the compression curves
# Vint=(Bx-BoffsetV)/(slope-Ax) #is the intersection in dB on xaxis
# Vknee2=Ax*Vint+Bx #what it corresponds to in dB on y axis
# self.Vknee2=10.0 ** (Vknee2/20.0)
# self.Vknee1=Vknee1
# Ale Style
self.PoleE = np.zeros_like(self.x)+0.31 #saturating pole
v1=0.6807e-08/3/np.sqrt(2); # velocity at -10 dB with starting Pole
v2=26.490e-11/3/np.sqrt(2); # velocity at -10 dB with saturating pole
K1dB=20; # Knee point of the first linear regime in dB (you can select it from here now)
#but it does not work precisely for K1dB<20...?? So, by using v1 and v2 peak velocities at -10 dB it is possible to impose the desired Knee down to 10 dB.
K1dB=K1dB+20; #fix for the -10 dB of v1 and v2
K1L=10**(K1dB/20) #knee point in linear scale
self.Vknee1=K1L*v1
vst1dB=20*np.log10(v1)+K1dB #velocity with the two poles when the compression starts
vst2dB=20*np.log10(v2)+K1dB
K2dB=(vst1dB-vst2dB)/(1-slope) #intersection in dB re Knee 1
self.Vknee2=v2*10**(K2dB/20)*K1L
def polecalculation(self): # TODO
factor = 100.
# lf_limit = self.ctr
# n = self.n + 1
if(self.non_linearity == 1): # To check
# non-linearity DISP cost about three times more than in
# fortran (Not implemented now)
Yknee1CST = self.RthY1 * self.omega[self.onek]
Yknee2CST = self.RthY2 * self.omega[self.onek]
Yknee1F = Yknee1CST / self.omega
Yknee2F = Yknee2CST / self.omega
Yvect = np.abs(self.Ytmp / Yknee1F)
Theta0 = np.arctan(
((self.PoleE - self.PoleS) / ((Yknee2F / Yknee1F) - 1.)))
Theta = Theta0 / 2.
# save 2 call to trigonometric function on vector by storing
# some data
cos_Theta = np.cos(Theta)
sin_Theta = np.sin(Theta)
cos_Theta0 = 2 * cos_Theta ** 2 - 1
Sfoc = self.PoleS * factor * (Yknee2F / Yknee1F)
Se = sin_Theta
Sb = Sfoc * Se
Sa = Sfoc * np.sqrt(1. - (1. * (Se ** 2)))
Sxp = (Yvect - 1.) * cos_Theta / cos_Theta0
Syp = Sb * np.sqrt(1 + (Sxp / Sa) ** 2)
Sy = Sxp * sin_Theta + Syp * cos_Theta
self.SheraP = self.PoleS + Sy / factor
elif(self.non_linearity == 2): # non-linearity VEL
Vvect = np.abs(self.Vtmp) / self.RthV1
Sxp = (Vvect - 1.) * self.const_nl1
Syp = self.Sb * np.sqrt(1 + (Sxp / self.Sa) ** 2)
Sy = Sxp * self.sinTheta + Syp * self.cosTheta
self.SheraP = self.PoleS + Sy / factor
else:
print('linear')
self.SheraP = self.PoleS
self.SheraP = np.fmin(self.SheraP, self.PoleE)
def solve(self):
n = self.n + 1
tstart = time.time()
if not(self.is_init):
print("Error: model to be initialized")
length = np.size(self.stim) - 2
time_length = length * self.dt
#each probe point signal in a row
self.Vsolution = np.zeros([length + 2, len(self.probe_points)])
self.Ysolution = np.zeros([length + 2, len(self.probe_points)])
self.Asolution= np.zeros([length + 2, len(self.probe_points)])
self.oto_emission = np.zeros(length + 2)
self.time_axis = np.linspace(0, time_length, length)
r = ode(TLsolver).set_integrator('dopri5', rtol=1e-2, atol=1e-13)
r.set_f_params(self)
r.set_initial_value(
np.concatenate([np.zeros_like(self.x), np.zeros_like(self.x)]))
r.t = 0
j = 0
self.last_t = 0.0
self.current_t = r.t
self.polecalculation()
self.SheraParameters()
self.ZweigImpedance()
self.V1=np.zeros_like(self.x)
while(j < length):
if(j > 0):
self.interplPoint1 = self.stim[j - 1]
# assign the stimulus points and interpolation parameters
self.interplPoint2 = self.stim[j]
self.interplPoint3 = self.stim[j + 1]
self.interplPoint4 = self.stim[j + 2]
r.integrate(r.t + self.dt)
self.lastT = r.t
self.V1 = r.y[0:n]
self.V1[0]=self.Vtmp[0]
self.Y1 = r.y[n:2 * n] # Non linearities HERE
self.Atmp=self.Qsol-self.g
self.Zwp = (self.Zwp + 1) % self.YbufferLgt # update Zweig Buffer
self.Ybuffer[:, self.Zwp] = self.Y1
self.ZweigImpedance()
self.current_t = r.t
if(self.probe_freq=='all'):
self.Vsolution[j,:] = self.V1[1:n] #
self.Ysolution[j,:] = self.Y1[1:n]
elif(self.probe_freq=='half'):
self.Vsolution[j,:]=self.V1[range(1,n,2)]
self.Ysolution[j,:] = self.Y1[range(1,n,2)]
elif(self.probe_freq=='abr'):
self.Vsolution[j,:]=self.V1[range(110,911,2)]
self.Ysolution[j,:] = self.Y1[range(110,911,2)]
else:
self.Vsolution[j,:] = self.V1[self.probe_points] # storing the decided probe points
self.Ysolution[j,:] = self.Y1[self.probe_points]
self.oto_emission[j] = self.Qsol[0]
j = j + 1
# filter out the otoacoustic emission ####
samplerate = self.fs
b, a = signal.butter(1, [600 / (samplerate / 2.), 4000. / (samplerate / 2)],'bandpass')
self.oto_emission = signal.lfilter(b * self.q0_factor, a, self.oto_emission)
elapsed = time.time() - tstart
# print(elapsed)
# END