-
Notifications
You must be signed in to change notification settings - Fork 36
/
train.py
517 lines (425 loc) · 22.6 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
import argparse
import datetime
import logging
import inspect
import math
import os
from typing import Dict, Optional, Tuple
from omegaconf import OmegaConf
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
import numpy as np
from PIL import Image
import diffusers
import transformers
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import set_seed
from diffusers import AutoencoderKL, DDPMScheduler, DDIMScheduler, PNDMScheduler, ControlNetModel, PriorTransformer, UnCLIPScheduler
from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer
from diffusers.optimization import get_scheduler
from diffusers.utils import check_min_version
from diffusers.utils.import_utils import is_xformers_available
from tqdm.auto import tqdm
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection, CLIPTextModelWithProjection
from makeaprotagonist.models.unet import UNet3DConditionModel
from makeaprotagonist.dataset.dataset import MakeAProtagonistDataset
from makeaprotagonist.util import save_videos_grid, ddim_inversion_unclip
from makeaprotagonist.pipelines.pipeline_stable_unclip_controlavideo import MakeAProtagonistStableUnCLIPPipeline, MultiControlNetModel
from einops import rearrange
from makeaprotagonist.args_util import DictAction, config_merge_dict
import ipdb
import random
from glob import glob
import sys
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.15.0.dev0")
logger = get_logger(__name__, log_level="INFO")
def main(
pretrained_model_path: str,
controlnet_pretrained_model_path: str,
output_dir: str,
train_data: Dict,
validation_data: Dict,
validation_steps: int = 100,
trainable_modules: Tuple[str] = (
"attn1.to_q",
"attn2.to_q",
"attn_temp",
),
trainable_params: Tuple[str] = (),
train_batch_size: int = 1,
max_train_steps: int = 500,
learning_rate: float = 3e-5,
scale_lr: bool = False,
lr_scheduler: str = "constant",
lr_warmup_steps: int = 0,
adam_beta1: float = 0.9,
adam_beta2: float = 0.999,
adam_weight_decay: float = 1e-2,
adam_epsilon: float = 1e-08,
max_grad_norm: float = 1.0,
gradient_accumulation_steps: int = 1,
gradient_checkpointing: bool = True,
checkpointing_steps: int = 500,
resume_from_checkpoint: Optional[str] = None,
mixed_precision: Optional[str] = "fp16",
use_8bit_adam: bool = False,
enable_xformers_memory_efficient_attention: bool = True,
seed: Optional[int] = None,
adapter_config=None, # the config for adapter
use_temporal_conv=False, ## use temporal conv in resblocks
):
*_, config = inspect.getargvalues(inspect.currentframe())
accelerator = Accelerator(
gradient_accumulation_steps=gradient_accumulation_steps,
mixed_precision=mixed_precision,
)
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger.info(accelerator.state, main_process_only=False)
if accelerator.is_local_main_process:
transformers.utils.logging.set_verbosity_warning()
diffusers.utils.logging.set_verbosity_info()
else:
transformers.utils.logging.set_verbosity_error()
diffusers.utils.logging.set_verbosity_error()
# If passed along, set the training seed now.
if seed is not None:
set_seed(seed)
# Handle the output folder creation
if accelerator.is_main_process:
# now = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S")
# output_dir = os.path.join(output_dir, now)
os.makedirs(output_dir, exist_ok=True)
os.makedirs(f"{output_dir}/samples", exist_ok=True)
os.makedirs(f"{output_dir}/inv_latents", exist_ok=True)
OmegaConf.save(config, os.path.join(output_dir, 'config.yaml'))
prior_model_id = "kakaobrain/karlo-v1-alpha"
data_type = torch.float16
prior = PriorTransformer.from_pretrained(prior_model_id, subfolder="prior", torch_dtype=data_type)
prior_text_model_id = "openai/clip-vit-large-patch14"
prior_tokenizer = CLIPTokenizer.from_pretrained(prior_text_model_id)
prior_text_model = CLIPTextModelWithProjection.from_pretrained(prior_text_model_id, torch_dtype=data_type)
prior_scheduler = UnCLIPScheduler.from_pretrained(prior_model_id, subfolder="prior_scheduler")
prior_scheduler = DDPMScheduler.from_config(prior_scheduler.config)
# image encoding components
feature_extractor = CLIPImageProcessor.from_pretrained(pretrained_model_path, subfolder="feature_extractor")
image_encoder = CLIPVisionModelWithProjection.from_pretrained(pretrained_model_path, subfolder="image_encoder")
# image noising components
image_normalizer = StableUnCLIPImageNormalizer.from_pretrained(pretrained_model_path, subfolder="image_normalizer")
image_noising_scheduler = DDPMScheduler.from_pretrained(pretrained_model_path, subfolder="image_noising_scheduler")
# regular denoising components
tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_path, subfolder="tokenizer")
text_encoder = CLIPTextModel.from_pretrained(pretrained_model_path, subfolder="text_encoder")
unet = UNet3DConditionModel.from_pretrained_2d(pretrained_model_path, subfolder="unet", use_temporal_conv=use_temporal_conv)
noise_scheduler = DDPMScheduler.from_pretrained(pretrained_model_path, subfolder="scheduler")
# vae
vae = AutoencoderKL.from_pretrained(pretrained_model_path, subfolder="vae")
## controlnet
assert not isinstance(controlnet_pretrained_model_path, str)
controlnet = MultiControlNetModel( [ControlNetModel.from_pretrained(_control_model_path) for _control_model_path in controlnet_pretrained_model_path] )
# Freeze vae and text_encoder and adapter
vae.requires_grad_(False)
text_encoder.requires_grad_(False)
## freeze image embed
image_encoder.requires_grad_(False)
unet.requires_grad_(False)
## freeze controlnet
controlnet.requires_grad_(False)
## freeze prior
prior.requires_grad_(False)
prior_text_model.requires_grad_(False)
for name, module in unet.named_modules():
if name.endswith(tuple(trainable_modules)):
for params in module.parameters():
params.requires_grad = True
if len(trainable_params):
for name, params in unet.named_parameters():
if name.endswith(tuple(trainable_params)):
params.requires_grad = True
if enable_xformers_memory_efficient_attention:
if is_xformers_available():
unet.enable_xformers_memory_efficient_attention()
controlnet.enable_xformers_memory_efficient_attention()
else:
raise ValueError("xformers is not available. Make sure it is installed correctly")
if gradient_checkpointing:
unet.enable_gradient_checkpointing()
if scale_lr:
learning_rate = (
learning_rate * gradient_accumulation_steps * train_batch_size * accelerator.num_processes
)
# Initialize the optimizer
if use_8bit_adam:
try:
import bitsandbytes as bnb
except ImportError:
raise ImportError(
"Please install bitsandbytes to use 8-bit Adam. You can do so by running `pip install bitsandbytes`"
)
optimizer_cls = bnb.optim.AdamW8bit
else:
optimizer_cls = torch.optim.AdamW
optimizer = optimizer_cls(
unet.parameters(),
lr=learning_rate,
betas=(adam_beta1, adam_beta2),
weight_decay=adam_weight_decay,
eps=adam_epsilon,
)
# Get the training dataset
train_dataset = MakeAProtagonistDataset(**train_data)
# Preprocessing the dataset
train_dataset.prompt_ids = tokenizer(
train_dataset.prompt, max_length=tokenizer.model_max_length, padding="max_length", truncation=True, return_tensors="pt"
).input_ids[0]
train_dataset.preprocess_img_embedding(feature_extractor, image_encoder)
# DataLoaders creation:
train_dataloader = torch.utils.data.DataLoader(
train_dataset, batch_size=train_batch_size
)
# Get the validation pipeline
# validation_pipeline = TuneAVideoPipeline(
# vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet,
# scheduler=DDIMScheduler.from_pretrained(pretrained_model_path, subfolder="scheduler")
# )
prior_val_scheduler = DDIMScheduler.from_config(prior_scheduler.config) if validation_data.get("prior_val_scheduler", "") == "DDIM" else prior_scheduler
validation_pipeline = MakeAProtagonistStableUnCLIPPipeline(
prior_tokenizer=prior_tokenizer,
prior_text_encoder=prior_text_model,
prior=prior,
prior_scheduler=prior_val_scheduler,
feature_extractor=feature_extractor,
image_encoder=image_encoder,
image_normalizer=image_normalizer,
image_noising_scheduler=image_noising_scheduler,
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
controlnet=controlnet,
scheduler=DDIMScheduler.from_pretrained(pretrained_model_path, subfolder="scheduler")
)
validation_pipeline.enable_vae_slicing()
ddim_inv_scheduler = DDIMScheduler.from_pretrained(pretrained_model_path, subfolder='scheduler')
ddim_inv_scheduler.set_timesteps(validation_data.num_inv_steps)
# Scheduler
lr_scheduler = get_scheduler(
lr_scheduler,
optimizer=optimizer,
num_warmup_steps=lr_warmup_steps * gradient_accumulation_steps,
num_training_steps=max_train_steps * gradient_accumulation_steps,
)
unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
unet, optimizer, train_dataloader, lr_scheduler
)
# For mixed precision training we cast the text_encoder and vae weights to half-precision
# as these models are only used for inference, keeping weights in full precision is not required.
weight_dtype = torch.float32
if accelerator.mixed_precision == "fp16":
weight_dtype = torch.float16
elif accelerator.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
# Move models to gpu and cast to weight_dtype
text_encoder.to(accelerator.device, dtype=weight_dtype)
vae.to(accelerator.device, dtype=weight_dtype)
image_encoder.to(accelerator.device, dtype=weight_dtype)
## note controlnet use the unet dtype
controlnet.to(accelerator.device, dtype=weight_dtype)
## prior
prior.to(accelerator.device, dtype=weight_dtype)
prior_text_model.to(accelerator.device, dtype=weight_dtype)
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / gradient_accumulation_steps)
# Afterwards we recalculate our number of training epochs
num_train_epochs = math.ceil(max_train_steps / num_update_steps_per_epoch)
# We need to initialize the trackers we use, and also store our configuration.
# The trackers initializes automatically on the main process.
if accelerator.is_main_process:
accelerator.init_trackers("text2video-fine-tune")
# Train!
total_batch_size = train_batch_size * accelerator.num_processes * gradient_accumulation_steps
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(train_dataset)}")
logger.info(f" Num Epochs = {num_train_epochs}")
logger.info(f" Instantaneous batch size per device = {train_batch_size}")
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
logger.info(f" Gradient Accumulation steps = {gradient_accumulation_steps}")
logger.info(f" Total optimization steps = {max_train_steps}")
global_step = 0
first_epoch = 0
# Potentially load in the weights and states from a previous save
if resume_from_checkpoint:
if resume_from_checkpoint != "latest":
path = os.path.basename(resume_from_checkpoint)
else:
# Get the most recent checkpoint
dirs = os.listdir(output_dir)
dirs = [d for d in dirs if d.startswith("checkpoint")]
dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
path = dirs[-1]
accelerator.print(f"Resuming from checkpoint {path}")
accelerator.load_state(os.path.join(output_dir, path))
global_step = int(path.split("-")[1])
first_epoch = global_step // num_update_steps_per_epoch
resume_step = global_step % num_update_steps_per_epoch
# Only show the progress bar once on each machine.
progress_bar = tqdm(range(global_step, max_train_steps), disable=not accelerator.is_local_main_process)
progress_bar.set_description("Steps")
if not "noise_level" in validation_data:
validation_data.noise_level = train_data.noise_level
image_embed_drop = train_data.get("image_embed_drop", 0)
for epoch in range(first_epoch, num_train_epochs):
unet.train()
train_loss = 0.0
for step, batch in enumerate(train_dataloader):
# Skip steps until we reach the resumed step
if resume_from_checkpoint and epoch == first_epoch and step < resume_step:
if step % gradient_accumulation_steps == 0:
progress_bar.update(1)
continue
with accelerator.accumulate(unet):
# Convert videos to latent space
pixel_values = batch["pixel_values"].to(weight_dtype)
video_length = pixel_values.shape[1]
pixel_values = rearrange(pixel_values, "b f c h w -> (b f) c h w")
latents = vae.encode(pixel_values).latent_dist.sample()
latents = rearrange(latents, "(b f) c h w -> b c f h w", f=video_length)
latents = latents * vae.config.scaling_factor
# Sample noise that we'll add to the latents
noise = torch.randn_like(latents)
bsz = latents.shape[0]
# Sample a random timestep for each video
timesteps = torch.randint(0, noise_scheduler.num_train_timesteps, (bsz,), device=latents.device)
timesteps = timesteps.long()
# Add noise to the latents according to the noise magnitude at each timestep
# (this is the forward diffusion process)
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
# Get the text embedding for conditioning
encoder_hidden_states = text_encoder(batch["prompt_ids"])[0]
#
# ipdb.set_trace()
ref_imbed = batch["ref_imbed"].to(accelerator.device, dtype=weight_dtype) # 1,1,768
##
if train_data.noise_level >= 1000:
train_noise = random.randint(0, 999)
else:
train_noise = train_data.noise_level
image_embeds = validation_pipeline.noise_image_embeddings(
image_embeds=ref_imbed,
noise_level=train_noise,
generator=None,
)
if random.random() < image_embed_drop:
image_embeds = torch.zeros_like(image_embeds)
# Get the target for loss depending on the prediction type
if noise_scheduler.prediction_type == "epsilon":
target = noise
elif noise_scheduler.prediction_type == "v_prediction": ## use this for unclip model
target = noise_scheduler.get_velocity(latents, noise, timesteps)
else:
raise ValueError(f"Unknown prediction type {noise_scheduler.prediction_type}")
# Predict the noise residual and compute loss
# model_pred = unet(noisy_latents, timesteps, encoder_hidden_states, adapter_features=adapter_features).sample
model_pred = unet(noisy_latents, timesteps, encoder_hidden_states=encoder_hidden_states, class_labels=image_embeds).sample
loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
# Gather the losses across all processes for logging (if we use distributed training).
avg_loss = accelerator.gather(loss.repeat(train_batch_size)).mean()
train_loss += avg_loss.item() / gradient_accumulation_steps
# Backpropagate
accelerator.backward(loss)
if accelerator.sync_gradients:
accelerator.clip_grad_norm_(unet.parameters(), max_grad_norm)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
progress_bar.update(1)
global_step += 1
accelerator.log({"train_loss": train_loss}, step=global_step)
train_loss = 0.0
if global_step % checkpointing_steps == 0:
if accelerator.is_main_process:
save_path = os.path.join(output_dir, f"checkpoint-{global_step}")
accelerator.save_state(save_path)
logger.info(f"Saved state to {save_path}")
if global_step % validation_steps == 0:
if accelerator.is_main_process:
# ControlNet
conditions = [_condition.to(weight_dtype) for _, _condition in batch["conditions"].items()] # b f c h w
masks = batch["masks"].to(weight_dtype) # b,f,1,h,w
if not validation_data.get("use_masks", False):
masks = torch.ones_like(masks)
ddim_inv_latent = None
if validation_data.use_inv_latent: #
emb_dim = train_dataset.img_embeddings[0].size(0)
key_frame_embed = torch.zeros((1, emb_dim)).to(device=latents.device, dtype=latents.dtype) ## this is dim 0
ddim_inv_latent = ddim_inversion_unclip(
validation_pipeline, ddim_inv_scheduler, video_latent=latents,
num_inv_steps=validation_data.num_inv_steps, prompt="", image_embed=key_frame_embed, noise_level=validation_data.noise_level, seed=seed)[-1].to(weight_dtype)
if not validation_data.get("interpolate_embed_weight", False):
validation_data.interpolate_embed_weight = 1.0
samples = []
generator = torch.Generator(device=accelerator.device)
generator.manual_seed(seed)
for idx, prompt in enumerate(validation_data.prompts):
_ref_image = Image.open(validation_data.ref_images[idx])
image_embed = None
## prior latents
prior_embeds = None
prior_denoised_embeds = None
if validation_data.get("source_background", False):
## using source background and changing the protagonist
prior_denoised_embeds = train_dataset.img_embeddings[0][None].to(device=latents.device, dtype=latents.dtype) # 1, 768 for UnCLIP-small
if validation_data.get("source_protagonist", False):
# using source protagonist and changing the background
sample_indices = batch["sample_indices"][0]
image_embed = [train_dataset.img_embeddings[idx] for idx in sample_indices]
image_embed = torch.stack(image_embed, dim=0).to(device=latents.device, dtype=latents.dtype) # F, 768 for UnCLIP-small # F,C
_ref_image = None
sample = validation_pipeline(image=_ref_image, prompt=prompt, control_image=conditions, generator=generator, latents=ddim_inv_latent, image_embeds=image_embed, masks=masks, prior_latents=prior_embeds, prior_denoised_embeds=prior_denoised_embeds, **validation_data).videos
save_videos_grid(sample, f"{output_dir}/samples/sample-{global_step}-seed{seed}/{idx}-{prompt}.gif")
samples.append(sample)
#
samples = [sample.float() for sample in samples]
samples = torch.concat(samples)
save_path = f"{output_dir}/samples/sample-{global_step}-s{validation_data.start_step}-e{validation_data.end_step}-seed{seed}.gif" # noise level and noise level for inv
save_videos_grid(samples, save_path, n_rows=len(samples))
logger.info(f"Saved samples to {save_path}")
logs = {"step_loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
progress_bar.set_postfix(**logs)
if global_step >= max_train_steps:
break
# Create the pipeline using the trained modules and save it.
accelerator.wait_for_everyone()
accelerator.end_training()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str, default="./configs/tuneavideo.yaml")
parser.add_argument(
'--options',
nargs='+',
action=DictAction,
help='Override some settings in the '
'used config, the key-value pair in xxx=yyy format will be merged '
'into config file. If the value to be overwritten is a list, it '
'should be like key="[a,b]" or key=a,b It also allows nested '
'list/tuple values, e.g. key="[(a,b),(c,d)]" Note that the quotation '
'marks are necessary and that no white space is allowed.')
args = parser.parse_args()
## read from cmd line
# ipdb.set_trace()
# Load the YAML configuration file
config = OmegaConf.load(args.config)
# Merge the command-line arguments with the configuration file
if args.options is not None:
# config = OmegaConf.merge(config, args.options)
config_merge_dict(args.options, config)
main(**config)