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Preface 

In a course titled “College Algebra” a student should gain an appreciation 
of mathematics as a logical science, and the subject matter should be 
expounded in such a way that it conforms to the experience and maturity of 
the freshman mathematics student. Furthermore, college algebra is rarely a 
terminal course in mathematics, and thus another of its purposes is to 
develop skills that will enable a person to study effectively more advanced 
courses. With these objectives in mind, I have made every effort to write a 
textbook that students can read advantageously on their own. 

In this second edition | have attempted to reflect the current consensus that 
mathematics should be more meaningful for students. The first edition’s 
treatment of the real number system has been replaced by a less rigorous 
approach. While axioms, definitions, and theorems are still carefully stated, 
they are used to emphasize significant results instead of attempting to 
demonstrate the development of a mathematical system. It is assumed that 
the student has had a course in intermediate algebra, or the equivalent, and 
may need a review of some of the material but not a redevelopment. 
Consequently there is a much quicker pace for review and a reordering of 
topics in the hopes that a better classroom experience will be created. 

Chapter | is concerned with real numbers and first-degree equations and 
inequalities. Second-degree equations and inequalities are topics in Chapter 
2. In each of the first two chapters there is some analytic geometry. The 
straight line is treated in Chapter 1, and there is an introduction to conics in 
Chapter 2. 

The notion of a function is introduced in Chapter 3, and it is used as a 
unifying concept throughout much of the remainder of the book. In Section 
3.5, new to this edition, graphs of rational functions are given an extensive 
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treatment as a preparation for their use in calculus. The inverse of a function 

is discussed in Section 3.6, and in Chapter 4 logarithmic functions are 

evolved as inverses of exponential functions. In the first two sections of 

Chapter 4, there is a review of properties of exponents and radicals from 

intermediate algebra. However, the emphasis in this chapter is upon the 

functional properties of the exponential and logarithmic functions. 

In the first edition of this book, polynomial functions were presented in the 

final chapter. This topic now forms the basis of Chapter 5 in the hopes that it 

will give the student a positive feeling that he or she has now gone beyond 
intermediate algebra. There is a systematic method developed for finding the 
exact or approximate value of all real zeros of polynomial functions with real 
coefficients. Added to this edition is Section 5.8 that presents a complete 
discussion of graphs of polynomial functions. 

A straight-forward coverage of systems of equations and inequalities is 
provided in Chapter 6. The “Gauss” technique is used to solve systems of 
linear equations in preparation for the treatment of matrices in Chapter 7. 
The material on matrices and determinants has been completely rewritten. 
Matrix arithmetic is given in Section 7.2 which precedes the discussion of 
determinants and their properties in Sections 7.3 and 7.4. The inverse of a 
square matrix is introduced in Section 7.5 and it is used to solve systems of 

equations. 
The discussion of sequences and series in Chapter 8 is based on the 

function concept. Mathematical induction is the topic of Section 8.2 and it is 
used to prove properties of arithmetic and geometric sequences and series. 
Chapter 9 covers the topics of permutations, combinations, and the binomial 
theorem. In the discussion of the binomial theorem, the binomial coefficients 

are treated as combinations. Each of chapters 7, 8, and 9 is self-contained and 

may be omitted from a short course. 
Many examples and illustrations that stress both theoretical and compu- 

tational aspects of the subject are included. At the end of each section there is 
a generous list of exercises that are graded in difficulty, and for this edition 
there has been added a set of review exercises at the end of each chapter. The 
answers to the odd-numbered exercises are given in the back of the book, and 
the answers to the even-numbered ones are available in a separate booklet. 

I am grateful for the suggestions for improving the manuscript that were 
made by the reviewers, Professors B. Patricia Barbalich of Jefferson Com- 
munity College, Steven D. Kerr of Weber State College, John W. Milsom of 

Butler County Community College, Merlin C. Miller of Merritt College, 
Ethel Rogers, Donald G. Killian, and John S. Hutchinson of Wichita State 

University and William W. Mitchell of Phoenix College. I also appreciate the 
efforts of James Smith, mathematics editor; J. Edward Neve, production 

editor; and Andrew Zutis, designer. Thanks are also due to Jerry Byrd, whose 
works appear as cover and chapter-opening art. 

Louis LEITHOLD 
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Real Numbers, Equations, 
and Inequalit 1€S 



1 {| The Set of Real 

Numbers, and Some of 

Its Subsets 

Probably the first numbers with which most people become concerned is 
the set of natural numbers (also called counting numbers), which may be 
listed as 

Peres: 

where the three dots are used to indicate that the list goes on and on with no 
last number. If we wish to list the set of natural numbers less than 100, we 

write 

OER 6 ee) 

where here the three dots indicate the natural numbers between 3 and 99. 
Note that in the paragraph above we use the word “set” and refer to the 

“set of natural numbers.” The idea of “set” is used extensively in mathe- 

matics and is such a basic concept that it is not given a formal definition. We 
can say that a ser is a collection of objects and we may speak of a set of books 
on a shelf, a set of students in a classroom, a set of trees in a park, and so on. 

Capital letters such as A, B, C, R, S, and T are used to denote sets. The 

objects in a set are called the elements of a set. In algebra we are concerned 
mainly with sets whose elements are numbers. 

We want every set to be well defined; that is, there should be some rule or 
property that enables one to decide whether a given object is or is not an 
element of a specific set. A pair of braces { } used with words or symbols can 
describe a set. 

If S is the set of natural numbers less than 8, we can write the set S as 

(19223,.4,°5,.6, 7} 

We can also write the set S as 

{x, such that x is a natural number less than 8} 

where the symbol “x” is called a “variable.” A variable is a symbol used to 
represent any element of a given set, and the given set is called the replace- 
ment Set of the variable. Another way of writing the above set S is to use what 
is Called set-builder notation, where a vertical bar is used in place of the words 
“such that.” Thus using set-builder notation to describe the set S, we have 

{x |x is a natural number less than 8} 

which is read “the set of all x such that x is a natural number less than 8.” 
The set of natural numbers is denoted by N. Hence we may write the set N 

as {1, 2,3, . . .} or, using set-builder notation, as {x | x is a natural number}. 
The symbol € is used to indicate that a specific element belongs to a set. 

Thus we may write 5 € N, which is read “5 is an element of N.” The notation 
“a, b € R” indicates that both a and b are elements of R. The symbol “¢ ” is 
read “is not an element of.” Hence we read 4 ¢ N as “3 is not an element 
of N.” 
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1.1.1 DEFINITION 

1.1.2 DEFINITION 

Suppose that S is the set denoted by {1, 2, 3, 4, 5, 6, 7} and T is the set 

denoted by {2, 4, 6}. Then every element of 7 is also an element of S and we 

say that T is a “subset” of S. 

The set A is a subset of the set B, written A C B, if and only if every element 

of A is also an element of B. If, in addition, there is at least one element of 

B that is not an element of A, then A is a proper subset of B, written A C B. 

Observe from Definition 1.1.1 that every set is a subset of itself, but a set is 

not a proper subset of itself. 
In Definition 1.1.1 the “if and only if” qualification is used to combine two 

statements: (1) “The set A is a subset of the set B ifevery element of A is also 
an element of B”; and (2) “the set A is a subset of set B only if every element 
of A is also an element of B,” which is logically equivalent to the statement 
“every element of A is also an element of B if A is a subset of B.” 

ILLUSTRATION 1. Let X be the set denoted by {x| x is a natural number 
less than 8} and Y be the set denoted by { y| y is an even natural number less 
than 8}. Hence X may also be denoted by {1, 2, 3, 4, 5, 6, 7} and Y may also 

be denoted by {2, 4, 6}. Because every element of Y is also an element of X, 
Y is a subset of X and we write Y C X. Also, there is at least one element of 

X that is not an element of Y, and therefore Y is a proper subset of X and we 
may write Y C X. Furthermore, since {5} is the set consisting of the num- 
ber 5, {5} C X, which states that the set consisting of the single element 5 
is a proper subset of the set X. We may also write 5 € X, which states that the 

number 5 is an element of the set X. e 

The symbol ¢ is read “is not a subset of.” Thus we may write 

Pa oe We es hoe 
Suppose that a set is described as one whose elements are the odd natural 

numbers that are divisible by 2. Because there are no such numbers having 
this property, this set contains no elements. Such a set is called the “empty 

set” or the “null set.” 

The empty set (or null set) is the set that contains no elements. It is denoted 

by © or { }. 

The empty set is considered to be a proper subset of every nonempty set. 
The justification of this can be seen by considering set A to be a proper subset 
of set B when there is no element in A which is not in B and there is at least 
one element in B which is not in A. Therefore, if B is any nonempty set, there 
is no element in @ which is not in B and there is at least one element in B 
which is not in @. Hence we may write @ C B. 
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EXAMPLE 1 

List all the subsets of {1, 3, 5} 

1.1.3 DEFINITION 

1.1.4 DEFINITION 

SOLUTION 

(1,3, 5}, {1,3}, {1,5}, {3,5}, (1}, (3}, 5}, 2 
In Example 1, note that all the subsets, other than the set itself, are proper 

subsets. 
The concept of “subset” may be used to define what is meant by two sets 

being “equal.” 

Two sets A and B are said to be equal, written A = B, if and only if AC B 
anne JC Al. 

Essentially, Definition 1.1.3 states that the two sets A and B are equal if 
and only if every element of A is an element of B and every element of B is 
an element of A, that is, if the sets A and B have exactly the same elements. 

ILLUSTRATION 2. Let A be the set denoted by {1, 2,3, 4}, B be the set 
denoted by {1, 3, 5, 7}, C be the set denoted by {4, 3, 2, 1}, and D be the set 
denoted by {x|x is an odd natural number less than 8}. Then, because 
A € Cand C C A, wéCan write A = C Similarly, B C D and D C B and 
therefore B = D. @ 

Changing the order of listing the elements of a set does not change the set. 
For instance, in Illustration 2, the elements of sets A and C are listed in a 
different order, but the two sets contain exactly the same elements; hence the 
two sets are equal. 

The symbol # is read “is not equal to.” Thus {1, 2, See eee 
Consider now the sets S = (a, Oye) ands et Vs 3}. The elements of set 

S'can be paired with the elements of set Tin such a way that each element in 
Sis associated with one and only one element in T and each element in T 
is associated with one and only one element in S. There are six possible 
pairings and they are shown in Figure 1.1.1. Any one of the six pairings is 
called a “one-to-one correspondence” between the two sets S and T. 

SEES f 
Figure 

np ~=<+—— > w~<+——> 4 Ww =~. > tp ~«+— 9 \S) eae tS w ~~ — —+— > 9 Oia S wu =< 9 Qs wo > oO a , 

1 

A one-to-one correspondence between two sets A and B is a pairing between 
the elements of A with the elements of B in such a way that each element of 
A is paired with one and only one element of B and each element of B is 
paired with one and only one element of A. 



1.1] The Set of Real Numbers, and Some of Its Subsets 5 

1.1.5 DEFINITION 

1.1.6 DEFINITION 

1.1.7 DEFINITION 

The concept of “one-to-one correspondence” is used to define “equiva- 

lent sets.” 

Set A is said to be equivalent to set B, written A = B, if and only if there 

exists a one-to-one correspondence between sets A and B. 

Note that necessarily two sets are equivalent if they contain the same 
number of elements. If we compare Definitions 1.1.3 and 1.1.5, it follows that 

if two sets are equal, they are necessarily equivalent. However, if two sets are 
equivalent they are not necessarily equal as shown by the sets of Illustra- 

tion 3. 

ILLUSTRATION 3. If S = {a,b,c} and T = {1, 2,3}, then because of the 

discussion preceding Definition 1.1.4, S is equivalent to 7, and we write 
Sa e 

We shall define a “finite” set as one which is equivalent to a proper subset 
{1, 2,3, ...,n} ofthe set of natural numbers. For example, consider the set 

V = {a,e,i, 0,u}. This set is equivalent to the set {1, 2,3, 4,5}. Hence we 

say that set V is a “finite” set. The set of all natural numbers less than one 
hundred is another example of a “finite” set. 

A nonempty set is said to be finite if and only if it is equivalent to the set 
{1, 2,3, .. . ,n} for some fixed natural number n. The empty set is also said 
to be finite. A nonempty set that is not finite is said to be infinite. 

In effect, Definition 1.1.6 states that a set is finite if the elements of the set 

can be arranged in some order and counted one by one until there is a last 
element. An example of an infinite set is the set of all the natural numbers, 

because no matter how many natural numbers are counted, there are always 
more. Other examples of infinite sets are the set of all even natural numbers 
and the set of all natural numbers divisible by five. 

There are two operations on sets that we shall find useful as we proceed. 
One such operation consists of forming the “union” of two sets, which we 

now define. 

Let A and B be two sets. The union of A and B, denoted by A U B and read 
“A union B,” is the set of all elements which are in A or in B or in both A 

and B. 
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EXAMPLE 2 

ety (4-6) 8310412) 

Bi=213,.6,9 12 eand 

Cea {4510}: 

Find 

(a) AUB (b) AUC 

(C}\RBIOTG (d) AUA 

1.1.8 DEFINITION 

EXAMPLE 3 

If A, B, and C are the sets defined in 

Example 2, find 

(a) ANB (b) Ae 

(Clase e (d) ANA 

1.1.9 DEFINITION 

SOLUTION 

(a) AUB = (3,4, 6, 8, 9, 10, 12} 
(b) A UC = {4,6, 8, 10, 12} 
(c) BUC = {3,4,6, 9, 10, 12} 
(d) AU A = {4,6,8, 10, 12} 

A second set operation, which will be useful later, consists of forming 
the “intersection” of two sets. 

Let A and B be two sets. The intersection of A and B, denoted by 
A‘ Band read “4 intersection B,” is the set of all elements that are in both 
A and B. 

SOLUTION 

(a) ANB = {6, 12} 
(b) ANC = {4,10} 
() BNC=2 
(d) ANA = {4,6, 8, 10, 12} 

=A 

Note that in part (c) of Example 3 the intersection of sets B and 
Cis the empty set. These two sets have no elements in common, and they are 
called “disjoint” sets. 

Two sets A and B are said to be disjoint if and only ifANB=@. 

In this chapter we are concerned with “the set of real numbers” and 
subsets of the real numbers. You have had previous experience with real 
numbers and are familiar with some of their properties, which have probably 
become familiar to you through informal means. However, the properties of 
the real numbers may be proved by deductive reasoning from a few 
basic assumptions called axioms, which we discuss in Section 1.2. We now 
give a brief intuitive discussion of sets of numbers that are subsets of the set 
of real numbers. 
We have referred to the set of natural numbers, which we call 

N, so that 

N = {1,2,3,...} 
The number “zero,” denoted by the symbol 0 and formally defined in 

Section 1.2 (Axiom 1.2.5), is the number having the property that if it is 
added to any number the result is that number. The set of numbers whose 
elements are the natural numbers and zero is called the set of whole numbers. 



1.1] 
= 

The Set of Real Numbers, and Some of lis Subsets 7 

Denoting this set by W. we write 

| Ae | Ol ee 

The set of natural numbers is also called the set of positive integers. 
If m is a natural number, it may also be referred to as the positive 

integer n. In particular, the natural number 14 is the same as the positive 

integer 14. 
Corresponding to each positive integer n there is a negative integer such 

that if the negative integer is added to n, the result is 0. For example, the 

negative integer —5, read “negative five,” is the number which when added 

to 5 gives a result of 0. 
The set of negative integers is denoted by N and we write 

oS ed Se 

The set of numbers whose elements are the positive integers, the negative 
integers, and zero is called the set of integers. Denoting this set by J, we have 

Fp eS ee 

The set J then is the union of the sets N and W, and symbolically 
we write 

J=NUW 

Because W = {0} U N, we may write 

J =NU({0} UN) 

The set of integers then is the union of three disjoint subsets: the set of 
positive integers, the set of negative integers, and the set consisting of the 

single number 0. Note that the number 0 is an integer, but it is neither 
positive nor negative. Sometimes we refer to the set of nonnegative integers, 
which is the set consisting of the positive integers and 0 or, equivalently, 
the set of whole numbers. Similarly, the set of nonpositive integers is the 
set consisting of the negative integers and 0. 

Consider now the set of numbers whose elements are those numbers which 
can be represented by the quotient of two integers p and g, where gq is not 

0, that is, the numbers that can be represented symbolically as 

P where q is not 0 

This set of numbers is called the set of rational numbers, which is de- 

noted by Q. Symbolically, Q is defined as 

— {x |x can be represented by a P€J.qg€ J, q is not 0} 
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Some numbers in the set Q are 4, 3, 2, =, and 431. Every integer is a 

rational number because every integer can be represented as the quotient of 

itself and 1; that is, 8 can be represented by 8,0 can be represented by ?, and 

—15 can be represented by +42. Hence the set J is a proper subset of set 

QO and we may write J C Q. 
Any rational number can be written as a decimal. We are assuming that you 

are familiar with the process of using long division to do this. For example, # 
can be written 0.3, 9 can be written 2.25, and $3 can be written 5.1875. These 
decimals are called terminating decimals. There are rational numbers 
whose decimal representation is nonterminating and repeating; for example, 
thas the decimal representation 0.333. . . , where the digit 3 is repeated, and 
41 can be represented as 4.272727. . . , where the digits 2 and 7 are repeated 
in that order. It can be proved that the decimal representation of every 
rational number is either a terminating decimal or a nonterminating repeat- 
ing decimal, although the proof is beyond the scope of this book. We shall, 
however, show in Section 8.5 that every nonterminating repeating decimal 

is a representation of a rational number. 
The following question now arises: Are there numbers represented by 

nonterminating nonrepeating decimals? The answer is yes, and an example 
of such a number is the principal square root of 2, denoted symbolically by 
\/2, and represented by a nonterminating nonrepeating decimal as 
1.4142... . Another such number is 7 (pi), which is the ratio of the cir- 
cumference of a circle to its diameter and represented by a nonterminating 

nonrepeating decimal as 3.14159. . . . The numbers represented by nonter- 
minating nonrepeating decimals cannot be expressed as the quotient of two 
integers (although we shall not prove this) and hence are not rational 
numbers. The set of numbers that are represented by nonterminating non- 

repeating decimals is called the set of irrational numbers, which we shall 
denote by H. It may be defined symbolically by 

H = {x|the decimal representation of x is nonterminating nonrepeating } 

We stated previously that any rational number has a decimal repre- 
sentation that is either terminating or nonterminating and repeating. We 
have just seen that any number whose decimal representation is nontermi- 
nating and nonrepeating is an irrational number. Hence the union of the set 
of rational numbers and the set of irrational numbers is the set of all the 
numbers that can be expressed as decimals, and this set is called the set of 
real numbers. Denoting the set of real numbers by R, we may define R 
symbolically by 

R= {x|xE(QUH)} 

or, equivalently, 

Ri ORME 
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EXAMPLE 4 

The sets N, W, N, J, OSH, Ry Reeand 

R~ are the sets of numbers defined 

in this section. Insert either C or ¢ 

to make the statement correct. 

(aN 

(b) Q 
Ce 26bO\ 
(O50) 
(CN ne Rt 

(CO) 1S 3 

EXAMPLE 5 

In each of the following, determine 
which one of the sets N, W, J, Q, 

H, R, {0}, and @ is equal to the 

given set 

Gyr ee ass 

(Crs iO 

(b) JUQ 
(d) NOH 

EXERCISES 1.1 

The Set of Real Numbers, and Some of Its Subsets 9 

The set of real numbers is also the union of three other disjoint subsets. 
One set is the set consisting of the single number 0. Another is the set 
consisting of the positive real numbers and is denoted by R*. The third is the 

set of negative real numbers, which is denoted by R~. 

SOLUTION 

(a) Because every natural number is an integer, N_G J. 
(b) Because every rational number is not a whole number, O_ ZW. 
(c) V2 and m are irrational numbers, but 3.5 is a rational number, and thus 

{ \/ Doar. 5 eee HH. 
(d) Zero is a whole number, and therefore {0} W. 

(e) Every natural number is a positive real number, and so N_G 

(f) Every negative integer is a real number, and thus N_G© __R. 

R= 

SOLUTION 

(a) The intersection of R* and J is the set of numbers that are both positive 
real numbers and integers, and this is the set of positive integers. Hence 
Ramat) aN 

(b) The union of J and Q is the set of all numbers that are either integers or 
rational. Because the set of integers is a subset of the set of rational 
numbers, this union is the set of rational numbers. Therefore, 

Je Or OC: 
(c) The intersection of J and Q is the set of numbers that are both integers 

and rational numbers. This intersection is the set of integers, and there- 
LOCH Oa Onn 

(d) Because the set of positive integers and the set of irrational numbers have 

no elements in common, NN H = @. 

In Exercises 1 through 6, describe the given set by listing the elements. 

1. The even natural numbers less than 10 2. The odd natural numbers between 6 and 18 

3. The natural numbers less than 100 that are multi- 4. The natural numbers between 9 and 29 that are 

ples of 8 multiples of 2 but not multiples of 4 
5. The letters in the name of the day of the week 6. 

following Tuesday 
The letters in the name of the longest river in the 
United States 

In Exercises 7 through 10, use set-builder notation to describe the given set. 

Ty TOOd SRE ROE Th toyed Sie ot UPS; 20525530} Sma, Cd} 10. {x, y, z} 
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In Exercises 11 through 14, indicate if the given set is finite or infinite. 

11. {x|x is a natural number greater than 1000} 12. {x|x is a natural number less than 1000} 
13. {x|x is a grain of sand on the beach at Coney 14. {x|x is an even natural number divisible by 8} 

Island } 

In Exercises 15 and 16, list all the subsets of the given set. 

153 {08 18 16.{risrau} 

In Exercises 17 through 22, insert either C or ¢ in the blank to make the statement 

correct. S = {1,2,3,4,5,6,7,8,9}, T=({1,3,5,7,9}, U=({2,4,6,8}, and 
V = {4,8}. 

aes 18.60 19S cee 20 Oe DL 2 eel 

In Exercises 23 through 42, list the elements of the given set if A = {1, 3,5, 7,9}, 

Br 2 48) eC iy 214 0, 8 ei Sy Oo dndeleeen alana 9). 

ba SEILE 24. BUD 25. ANE 26. DONE 
28. 4 U D 29. CNE 30. AUE 31. BNC 
335 yD 34. ANC 35. BUB 36. ANA 
38. EU @ 39. (CUE) ND 40. (A UB) NC 41 (BiG ORD 

In Exercises 43 through 67, N is the set of natural numbers, W is the set of whole 
numbers, N is the set of negative integers, J is the set of integers, Q is the set of rational 
numbers, H is the set of irrational numbers, R is the set of real numbers, R* is the set 
of positive real numbers, and R~ is the set of negative real numbers. 

In Exercises 43 through 50, insert € or ¢ in the blank to make the statement correct. 

430c1 SeeEN, 44. 2007__ es W 45. 147____ WwW 
9) ais) 48. 7 O ADS Se say 

In Exercises 5] through 56, use the symbol © to give a correct statement involving the 
two given sets. 

51. Nand W 52. Rand W 53. N and R- 54. N and Rt 55. R and H 

In Exercises 57 through 62, determine which of the sets N, W, J, QO, H, R, {0}, and © 
is equal to the given set. 

57. ON R 58. ON H 59. OUH 60. WUN 61. WON 

In Exercises 63 through 67, list the elements of the given set if 

S = (12,807, 0, = 38, 99/257 en OloOGue le aan 

63. SA J 64.590 65. SNH 66. SON 

22.052 

OM UC 
32, B UE 
57 AGGae 
42. (AN E)AD 

46. 3 R 
50.0.3 wee 

56. J and Q 

62. ONJ 

67. SAN 
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In Exercises 68 through 71, show that the given statement is true if A = {1, 2, 3, 4}, 

i {0, il. oN. ands Ge (33 4, D}: 

GSU (80) (AB) UE OONArG (B.C) = (AB) iC 
Pease WC) (Ai By (A pee) iwAgo CBC j= (AUB )C\.CA UC) 

7 so Properties of The real number system consists of the set R of real numbers and two 
operations called addition and multiplication. The operation of addition is 
denoted by the symbol “+,” and the operation of multiplication is denoted 

by the symbol “-” (or “x”). If a,b € R, a + b denotes the sum of a and b, 

and a-b (or ab) denotes their product. 
We now present seven axioms that give laws governing the operations of 

addition and multiplication on the set R. The word axiom is used to indicate 
a formal statement about numbers, or properties of numbers, that is assumed 

to be true without proof. 

Real Numbers 

1.2.1 AXIOM Closure and Uniqueness Laws. If a,b € R, then a + b is a unique real 

number, and ab is a unique real number. 

1.2.2 AXIOM Commutative Laws. If a,b € R, then 

atb=b +a and ab =ba 

1.2.3 AXIOM Associative Laws. If a,b,c € R, then 

a+(b+c)=(a+b)4+e and a(bc) = (ab)c 

1.2.4 AXIOM Distributive Law. If a,b,c € R, then 

a(b + c) = ab +c 

1.2.5 AXIOM Existence of Identity Elements. There exist two distinct numbers 0 and | 
such that for any real number a, 

a Ora and a-l II Q 

1.2.6 AXIOM Existence of Opposite or Additive Inverse. For every real number a, there 
exists a real number called the opposite of a (or additive inverse of a), denoted 
by —a (read “the opposite of a”), such that 

a+(—a)=0 
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1.2.7 AXIOM 

1.2.8 DEFINITION 

1.2.9 DEFINITION 

Existence of Reciprocal or Multiplicative Inverse. For every real number a, 

except 0, there exists a real number called the reciprocal of a (or multiplica- 

tive inverse of a), denoted by i such that 
a 

Axioms 1.2.1 through 1.2.7 are called field axioms, and if these axioms are 
satisfied by a set of elements, then the set is called a field under the two 
operations involved. Hence the set R is a field under addition and multipli- 
cation. For the set J of integers, each of Axioms 1.2.1 through 1.2.6 is 

satisfied, but Axiom 1.2.7 is not satisfied (for instance, the integer 2 has no 
multiplicative inverse in J). Therefore, the set of integers is not a field under 
addition and multiplication. 

If a,b € R, the operation of subtraction assigns to a and b a real number 

denoted by a — b (read “a minus b”) called the difference of a and b, where 

=a+(-6) (1) 
Equality (1) is read “a minus b equals a plus the opposite of 5.” 

If a,b € R, and b F 0, the operation of division assigns to a and 5b a real 

number, denoted by a + b (read “a divided by b”), called the quotient of a 
and b, where 

The number a is called the dividend and b is called the divisor. 

Other notations for the quotient of a and b are 

a and a/b 

The numerals and a/b are called fractions. The number a is called the 

numerator and b is called the denominator. 

An alternative definition of division is the statement 

aeb=q  ifandonlyif a=bq where b #0. 
Observe in Definition 1.2.9 and statement (2) that, for the operation of 

division, the divisor is restricted to nonzero real numbers. This restriction is 
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1.2.10 AXIOM 

1.2.11 DEFINITION 
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necessary because if a #4 0 and b = O, then if a + 0 were equal to some real 
number g, it would follow that 0+ g =a, which is impossible because 

O-=¢@=0 and @ +4 0: Furthermore, if a = 0 and b = 0, then according to 
statement (2), 0 + 0 could equal any real number because 0 - g = 0 for any 

value of g. Hence division by zero is not defined; that is, 

is not defined 
o|8 

By using the field axioms and Definitions 1.2.8 and 1.2.9, we can derive 
properties of the real numbers from which follow the familiar algebraic 
operations as well as the techniques of solving equations, factoring, and so 
forth. In this book we are not concerned with showing how such properties 
are derived from the axioms. 

Properties that can be shown to be logical consequences of axioms are 
theorems. In the statement of most theorems there are two parts: the “if” 

part, called the hypothesis, and the “then” part, called the conclusion. The 
argument verifying a theorem is a proof. A proof consists of showing that the 
conclusion follows from the assumed truth of the hypothesis. 

The concept of a real number being “positive” is given in the following 

axiom. 

Order Axiom. In the set of real numbers there exists a subset called the 

positive numbers such that 

(i) If a € R, exactly one of the following three statements holds: 

a1) a iS positive —a 18 positive 

(ii) The sum of two positive numbers is positive. 
(iit) The product of two positive numbers is positive. 

Axiom 1.2.10 is called the order axiom because it enables us to order the 

elements of the set R. In Definitions 1.2.12 and 1.2.13, we use the axiom to 

define the relations of “greater than” and “less than” on R. 
The opposites of the elements of the set of positive numbers form the set of 

“negative” numbers, as given in the following definition. 

The real number a is negative if and only if —a is positive. 

From Axiom 1.2.10 and Definition 1.2.11 it follows that a real number is 

either a positive number, a negative number, or zero. 

The field axioms do not imply any order of the real numbers. That is, by 

means of the field axioms alone we cannot state that 2 is greater than 1, 3 is 

greater than 2, and so on. However, we introduced the order axiom and 

because the set R of real numbers satisfies the order axiom and the field 
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1.2.12 DEFINITION 

1.2.13 DEFINITION 

1.2.14 THEOREM 

1.2.15 THEOREM 

axioms, we say that R is an ordered field. We use the concept of a positive 
number given in the order axiom to define what we mean by one real 

number being “greater than” another. 

If a,b € R, then a is greater than b (written a > b) if and only if a — b is 

positive. 

ILLUSTRATION 1 

(a) 7 >2 because 7 — 2 =5, and 5 is positive. 
(b) —4 > —10 because —4 — (—10) = 6, and 6 is positive. e 

If a,b € R, then a is less than b (written a < b) if an only if 6 is greater than 

a; with symbols, we write 

a<b if and onlyif b>a 

ILLUSTRATION 2 

(a) 2.<— / because 7 == 2 (b) —10 < —4 because —4 > —10 e 

The statements “a > b” and “a < b” are called inequalities. 

The proof of the following theorem is omitted but it involves the order 
axiom and Definitions 1.2.12 and 1.2.13. 

If a € R, then 

a is positive if and only if aU (3) 

and 

a is negative ifand onlyif a<0 (4) 

By using Theorem 1.2.14, the order axiom can be given in an alternative 

form, which is the next theorem. 

(i) If a € R, exactly one of the following statements holds: 

G10 a>0O @<@ 

Gi) Ifa >0 and b>0, thena+b>0. 

(iii) If a>0 and b > 0, then ab > 0. 

So far we have required the set R of real numbers to satisfy the field 
axioms and the order axiom, and we stated that, because of this requirement, 

R is an ordered field. There is one more condition that is imposed upon the 

set R. This condition is called the completeness property. We do not state the 
completeness property formally as an axiom because to state it precisely 
requires a more advanced approach than we wish to take in this book. 
However, we now give a geometric interpretation to the set of real numbers 
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by associating with them the points on a horizontal line, called an axis. The 

completeness property guarantees that there is a one-to-one correspondence 

between the set R and the set of points on an axis. 

Refer to Figure 1.2.1. A point on the axis is chosen to represent the number 

0. This point is called the origin. A unit of distance is selected arbitrarily. 

Then each positive integer n is represented by the point at a distance of n 
units to the right of the origin and each negative integer —n is represented by 
the point at a distance of n units to the left of the origin. We call these points 

unit points. They are labeled with the numbers with which they are associ- 

ated. For example, 4 is represented by the unit point 4 units to the right of 
the origin and —4 is represented by the unit point 4 units to the left of the 

origin. 

ae ee ee OT ee el | ee ee ee ee eee eee 
12 108 6 4 2) 0 2 4 6 8 10 1D 

Figure 1.2.1 

Figure 1.2.1 shows the unit points representing 0 and the first twelve 

positive integers and their corresponding negative integers. The unit point 

representing a particular integer can be obtained by going far enough along 

the axis to the right if the integer is positive, and to the left if the integer is 

negative. Because to each integer there corresponds a unique unit point on 
the axis, and with each unit point on the axis there is associated only one 
integer, there is a one-to-one correspondence between the set J of integers 

and the set of unit points. 
The elements of the set Q of rational numbers may be associated with 

points on the axis of Figure 1.2.1. Recall that set Q is defined by 

Oe {x |x can be represented by a PELAGQELIVFA 0} 

In particular, consider the number 4 in Q. The segment of the axis from 0 to 
1 may be divided into seven equal parts. The endpoint of the first such 
subdivision is then associated with the number #. Similarly, the endpoint of 
the second subdivision is associated with ?, and so on. The point associated 
with the number 4 is twenty-four sevenths units to the right of the origin, 

which is three sevenths of the distance from the unit point 3 to the unit point 

4. A negative rational number, in a similar manner, is associated with a point 

to the left of the origin; that is, the point associated with the number —#* is 

the same distance to the left of the origin as the point associated with * is 
to the right of the origin. Figure 1.2.2 shows some of the points associated 

with rational numbers. 

ee ee ee eee ee ees eee ee 

se 3 2) 6-3 -1-2 tC tC 

Figure 1.2.2 
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LD 
Figure 1.2.3 

So far, then, we have shown how a rational number is associated with a 

point on the axis. It is not as easy to show the correspondence between 
irrational numbers and points on the axis. However, for certain irrational 

numbers we can find the point corresponding to it. In particular, the point 
corresponding to \/2 may be found by a construction as indicated in Figure 
1.2.3. From the point | a line segment of a length of one unit is drawn 
perpendicular to the axis. Then a right triangle is formed by connecting the 
endpoint of this segment with the origin. The length of the hypotenuse of this 
right triangle is \/2. (This follows from the Pythagorean theorem, which 
states that c? has the same value as a? + b?, where c represents the length of 

the hypotenuse and a and 5 represent the lengths of the other two sides.) An 
arc of a circle having center at the origin and radius \/2 is then drawn; the 
point of intersection of this arc with the axis will be the point associated with 
\/2. We cannot find all points associated with irrational numbers in this way. 

For instance, the point corresponding to the number z cannot be found in 
this manner; however, the position of the point can be approximated by 
using some of the digits in the decimal representation 3.14159... . At any 
rate, every irrational number can be associated with a unique point on the 
axis, and every point that does not correspond to a rational number can be 
associated with an irrational number. This indicates that a one-to-one 
correspondence between the set of real numbers and the points on the 
horizontal axis can be established. For this reason the horizontal axis is 
referred to as the real number line, which is a geometric representation of the 
set of real numbers. The real number that corresponds to a point on the real 
number line is called the coordinate of the point, and the point is called the 
graph of the real number. 

Because of the completeness property, we can state that the set R of real 
numbers is a complete ordered field. It is worth noting that the set Q of 
rational numbers is an ordered field, but it is not a complete ordered field 
because the set of points on the axis that correspond to Q is not the “com- 
plete” line; that is, there are points on the real number line that do not 
correspond to a number in Q. 

Statements (3) and (4) of Theorem 1.2.14 are consistent with the fact that 
if is positive, the graph of a on the real number line is to the right of the 
origin; and if a is negative, the graph of a is to the left of the origin. More 
generally, if a > b, then, on the real number line, the graph of a is to the 
right of the graph of b. Because “b < a” is equivalent to “a > b,” we can also 
state that if b <a, then on the real number line the graph of b is to the left 
of the graph of a. 

Sometimes the statements of equality and inequality are combined and 
written symbolically as follows: 

a>b if and only if _eithera >b ora=b 
(“a > b” is read “a is greater than or equal to b”) 
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<7) iand onlyif cithera<bora=b 
(“a < b” is read “a is less than or equal to b”’) 

a0 

it means that a is a nonnegative number, and if we write 

a << 

it means that a is a nonpositive number. 

ILLUSTRATION 3 
(a) Consider the set 

{x|-6< x <4,x€ R} (5) 

(read “The set of all x such that x is greater than negative 6 and less than 

or equal to 4, and x is an element of the set of real numbers”). The graph 

of this set is shown in Figure 1.2.4. The solid dot at 4 indicates that 4 is 
on the graph, and the open dot at —6 indicates that —6 is not on the 

(b) If we have the set 

{x|-6< x <4,x EJ} 

then we have the set of all integers greater than —6 and less than or 

12) 

If we write 

orl sr recor al Marra lle 
—10 (5) 0 4 5 

52 |) =O Rss Ch eSsxt 

Figure 1.2.4 

graph. 

0) = Sp all WO) ah Be Sich 

{x |-6<x<4,xeJ} 

Figure 1.2.5 

EXAMPLE I 
Write in two ways each of the fol- 

lowing statements, using one or 
more of the symbols >, <, >, and 

<< 

(a) x is between —2 and 2. 

(b) 4z — 1 is nonnegative. 
(c) y + 3 is greater than 0 and less 

than or equal to 15. 
(d) 2z is greater than or equal to —5 

and less than or equal to —1. 

equal to 4. This set is shown by the graph in Figure 1.2.5. It is a finite set. 
e 

Usually, if it is understood that a variable x is a real number, we omit the 

statement x € R in defining a set of numbers. In such a case set (5) can be 

written as 

{x|-6<x <4} 

SOLUTION 

(a) —2 <x <2 or, equivalently, 2 >x > —2 

(b) 4¢ — 1 > 0 or, equivalently, 0 < 4¢ — 1 

(c) O< y +3 < 15 or, equivalently, 15 >y+3>0 

(d) —5 < 2z < —1 or, equivalently, —1 >2z > —5 



18 Real Numbers, Equations, and Inequalities On. 1 

EXAMPLE 2 SOLUTION 

Show on the real number line the | The graphs are shown in Figures 1.2.6(a), (b), (c), (d), and (e), respectively. 

graph of each of the following sets (it 
is understood that x € R). | l l el eee eee 

-10 -7 —5 —2 0 0 1 5 10 
(a) R= <2} (x= PSD} ix |< 10and x 
(b) el =< 10 andes 31) a) (b) 
(C) al x XT sD OF xe} 

(d) {x|x <9} A {x|x > 2) ren Wn era serene 
(e) {|x 2 3} UO {x|x <0} rip : > OS eae ; ae 

eo || 52S —= Song ee Sy 15a | eax OMA) fee || axe 

(c) (d) 

eee ee eee Te ee pee 

0 3 
(oe eas Ux lee < 0} 

(e) 

Figure 1.2.6 

EXERCISES 1.2 

In Exercises 1 through 24, the given equality follows immediately from one of the field 
axioms (Axioms 1.2.1 through 1.2.7). Indicate which axiom applies. Assume that each 

variable is a real number. 

hy 20) a SO! 2. (6 +2)+4=64+(2 + 4) 
ak te) eS 4.41 yy 

5.56 +2) +4=@2+4+5)4+4 6. 17+ 41 = 41417 

1AB(xy)) SS Bxyy 8. (7a)b = b(7a) 

9. 7 +(—7) =0 10. x+(v+x)=(W+Xx)4+x 

11 ee (8 ea) ees) 12. b+ (—b) =0 

13. 4-221 Vee Oa 

15. 3(a + b) = (a + b)3 16. Mie Gna) = ete 
17. a(b +0) =ab 18. 4(x + y) = 4x + 4y 
19; 0- = 0 20.0+4+0=0 
21.w+x(y +z) =we (xy + xz) 22, (r+sut+t=(s+rjus+t 

23. (rt+s)+(¢+u)=r4+[s4+(t+y)] 24.(w+x)4+(vt+z)=[(wt+x)+y] +2 

In Exercises 25 and 26, arrange the elements of the given subset of R in the same order 
as their corresponding points from left to right on the real number line. 

25. {—2,3,21,5, —7,3, V2, —4, — V5, —10, 0,3, —3, —1} 
26. (4,7, —8, — V2, 3, — V3, 4, 4, —8, 1.26, dr} 
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In Exercises 27 through 38, write the statement in two ways, using one or more of the 

SVINDOIS I ect, ONO 

27. 8 is greater than —9. 28. —5 is less than 3. 29. —12 is less than —3. 

30. —16 is greater than —26 31. 4x — 5 is negative. 32. 2s + 3 is nonpositive. 
33. 3¢ + 7 is nonnegative. 34. 8y — 4 is positive. 35. r is between 2 and 8. 

36. 3x is greater than or equal to 10 and less than 20. 
37. a — 2 is greater than —5 and less than or equal 38. 2z + 5 is greater than orequalto —1 and less than 

tO 1: or equal to 15. 

In Exercises 39 through 44, show on the real number line the graph of the given set. The 
set N is the set of natural numbers and J is the set of integers. 

SO ear 12h cGuN } 40. {x|x <7,xE€ N} 41. {x|-S<x<5,xeEJ} 
ALEX DG x7 10, Oxi CAN } 43. {x|-6 <x <0,xEJ} 44. {x|-ll <x<3,x€J} 

In Exercises 45 through 60, show on the real number line the graph of the given set if 

XE R. 

ASMX |x > 2) 46. {x|x < 8} 47. {x|-4< x <4} 
AR) (3 <x 49} AO nc. —@ Ieandixe 2) SOR x <eand xe — >} 
51. {x|x < —40rx > 4} D2 Ole 0, So re DE fixe > 2 | 
DAM Ce Oli Xx | x — 5 55. {x|x < —4} U {x|x > 4} DOM <3 Oe 6} 
Sty | XS Ox |x 4k Sse 8} {x x <0} We eee << 1G) 1s | ae <GOR 
COM x xe 103 UL x 2 * 

1 3 Some Algebraic To indicate a product, we have used the centered dot - or parentheses 
. around one or more symbols, and sometimes we have omitted the symbol. 

Terminology For example, the product of the two factors a and b can be written in the 
following ways. 

ab a-b (a)(b) a(b) (a)b 

Suppose that we have the product of two identical factors of x. We can use 
the notation x? to indicate this product, where the numeral 2 written to the 

upper right of the symbol x is called an “exponent” and it indicates that the 
number represented by x is to be used twice as a factor; that is, 

=X°X 

In general, if a is a real number and n is a positive integer, then 

OO AA dite a (n factors of a) 
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1.3.1 DEFINITION 

where n is called the exponent, a is called the base, and a” is called the nth 

power of a. For example, x? is the second power of x and y? is the fifth power 
of y, where 

Dae = ere, 
The fourth power of 3 is denoted by 34 and 

Dil I 3kS Saar) 

When a symbol is written without an exponent, the exponent is understood 
to be I Hence 

In Section 1.1 we stated that a variable is a symbol used to represent any 
element of a given replacement set. If the replacement set is R, then the 
variable represents a real number. A constant is a symbol whose replacement 
set contains only one element. For example, if we write the sum 

6x7 + 2x + 5 (1) 

the symbol x is a variable and the numerals 6, 2, and 5 are constants. The 

sum (1) is a particular “algebraic expression,” which we now define. 

An algebraic expression is a constant, a variable, or indicated operations 
involving constants and variables. 

ILLUSTRATION 1. The following are algebraic expressions. 

7 (2) 

3x7y> (3) 

6x +4 (4) 
8xy — 7x +y —5 (5) 

(9r — 4s) + 3 (6) 

wes = = ° (7) 

When an algebraic expression is written as the sum of other algebraic 
expressions, each of the expressions is called a term of the given algebraic 
expression. For instance, algebraic expression (5) can be written as the sum 
8xy + (—7x) + y + (—5) and so, 8xy, —7x, y, and —5 are the terms of (5). 
The algebraic expressions (1), (2), (3), and (4) have, respectively, three, one, 
one, and two terms. 

An algebraic expression consisting of just one term that is either a constant 
or the product of a constant and positive integer powers of variables is called 
a monomial. For example, algebraic expressions (2) and (3) are monomials. 
Any sum of monomials is called a polynomial. A polynomial having two 
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lito. y = —4, and 2 — 35, find 

the value of each of the following 
algebraic expressions. 

(a) x2 — 3yz + 2? 

terms is called a binomial, and a polynomial having three terms is called a 
trinomial. Algebraic expression (4) is a binomial, (1) is a trinomial, and (5) is 

a polynomial with four terms. Algebraic expression (6) has one term whose 
numerator is a binomial, and (7) is an algebraic expression containing one 

term whose numerator is a trinomial and whose denominator is a binomial. 

SOLUTION 
(a) x? — 3yz + z? = 3? — 3(—4)(5) + 5? 

=O 4) 42 

= 94 

(x +2y)?  35[3 +2(—4)P 
a BS) ay) 

_ 513 +(—8)P 
as 

_ 5(=5)8 
mee O8 

Bs 125) 
pane OS 

—625 
—98 

_ 025 
~ 98 

(b) 

In a product, any factors that are constants are called numerical factors, 
and factors that are variables are called literal factors. For example, in the 
monomial 3x?y°, 3 is a numerical factor and x? and y® are literal factors. If 
a term is a product of two factors, each factor is said to be the coefficient of 
the other factor. For instance, in the term 5xyz, the coefficient of yz is 5x, the 

coefficient of x is 5yz, the coefficient of 5z is xy, and so on. If a coefficient is 

a numerical factor, then it is called a numerical coefficient. Hence in the term 

Sxyz, 5 is the numerical coefficient of xyz. 

By the degree of a monomial in one variable, we mean the exponent of that 
variable appearing in the monomial. In particular, the monomial 5x° has a 
degree of 3. If a monomial has more than one variable, the degree of the 
monomial in any one of its variables is the exponent of that variable, and the 
degree of the monomial is the sum of the exponents of all the variables that 
appear. For example, the monomial 3x?y° has a degree of 2 in x and a 
degree of 5 in y, and furthermore, we say that the degree of the monomial is 
7. The monomial —2xyz has a degree of | in each of its variables, x, y, and z, 

and the degree of the monomial is 3. The degree of a nonzero-constant 
monomial is zero. The constant 0 has no degree. 
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EXAMPLE 2 

For each of the following algebraic 
expressions, determine if it is a mo- 

nomial, a binomial, or a trinomial. 

Also, for each expression state its 
degree in each of the variables ap- 
pearing and the degree of the ex- 
pression. 

(a) 5xy? + xy — 6y 
(b) 7x?y3z + 2xy4 
(c) 4u — 8 

(dy il rs = 252-52 

1.3.2 DEFINITION 

The degree of a polynomial is the same as the degree of the term of highest 
degree appearing in the polynomial. Therefore, 7x” — 4x + 2 is a second- 
degree polynomial, and 3x + 6isa first-degree polynomial. The polynomial 
6x?y? — 4x3 + 2y has a degree of 3 in x and a degree of 2 in y, and the 
degree of the polynomial is 4. 

SOLUTION 
(a) The expression 5xy? + xy — 6y is a trinomial; it has a degree of | in x 

and a degree of 2 in y; its degree is 3. 
(b) The expression 7x?y3z + 2xy* is a binomial, it has a degree of 2 in x, a 

degree of 4 in y, and a degree of | in z; its degree is 6. 
(c) The expression 4u — 8¢ is a binomial; it has a degree of | in u and a 

degree of 1 in 7; its degree is 1. 
(d) The expression 1lrs + 2s* — r?s? is a trinomial; it has a degree of 2 in r 

and a degree of 3 in s; its degree is 4. 

Because a polynomial is a sum of monomials and a monomial is a symbol 
representing a real number, we can apply to polynomials the definitions, 
axioms, and theorems involving operations of real numbers. We are assum- 
ing that you are familiar with addition, subtraction, multiplication, and 

division of polynomials and rational expressions as well as factoring poly- 
nomials. If you need a review of this material, you may consult a text in 
Intermediate Algebra [in particular, Intermediate Algebra for College Stu- 
dents, by Louis Leithold (New York: Macmillan Publishing Co., Inc.)]. 

We discussed positive integer powers of real numbers. We are now con- 
cerned with starting with a positive integer power of a real number b and 
finding b. 

If a,b € R and n is a positive integer such that 

bE =a (8) 

then 5 is called an nth root of a. 

ILLUSTRATION 2 

(a) 2 is a square root of 4 because 2? = 4; furthermore, —2 is also a square 
root of 4 because (—2)? = 4. 

(b) 3 is a fourth root of 81 because 34 = 81. Also, —3 is a fourth root of 81 

because (—3)* = 81. 
(c) —4 is a cube root of —64 because (—4)? = —64. 

(d) 4 is a cube root of 64 because 43 = 64. e 
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1.3.3 DEFINITION 

In Illustration 2(a) we see that there are two real square roots of 4, and in 
Illustration 2(b) we see that there are two real fourth roots of 81. To distin- 

guish between the two roots in such cases, we introduce the concept of 
principal nth root. 

If n is a positive integer greater than 1, and \/a denotes the principal nth root 

of a, then 

(i) If a> 0, Va is the positive nth root of a. 
(ii) If a <0, and n is odd, V/a is the negative nth root of a. 

(iii) V0 = 0. 

ILLUSTRATION 3 

(a) From Definition 1.3.3(i), 

81 =3 (read “The principal fourth root of 81 equals 3”) 

Note that —3 is also a fourth root of 81 but it is not the principal fourth 

root of 81. However, we can write 

=7/81 = —3 

(b) From Definition 1.3.3(i1), 

\/ =1000 = —10 

(read “The principal cube root of —1000 equals — 10”). e 

The symbol Vis called a radical sign, and the entire expression Va is 

called a radical, where the number a is the radicand and the number n is the 

index. The order of a radical is the same as its index. If no index appears, the 

index is understood to be 2. Thus 1/36 = 6 (read “The principal square root 

of 36 equals 6”). 
The principal nth root of a real number d is a rational number if and only 

if b is the nth power of a rational number. For instance, 

V9 = 3 because 3? = 9 

a + because ( *) = 1 aa ai) = Som 
\/625 = 5 because 54 = 625 

Recall from Section 1.1 that a real number that is not rational is called an 
irrational number and an irrational number cannot be represented by a 
terminating decimal or a nonterminating repeating decimal. Because 3 is not 
the square of a rational number, \/3 is an irrational number. Other examples 
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1.3.4 DEFINITION 

of irrational numbers are 

AV Pee ii Og ENS V15 

Table 1 in the Appendix gives decimal approximations for some irrational 

numbers. In particular, from the table, we have 

V3 = 1732 

where the symbol = is read “approximately equals.” 

A review of operations involving radicals along with properties of rational 

exponents is given in Sections 4.1 and 4.2. 

If a <0 and n is a positive even integer, there is no real nth root of a 

because an even power of any real number is a nonnegative number. For 

instance, suppose that in equality (8) n is 2 and a is —25. Then equality (8) 

becomes 

5 (9) 

Because the square of any real number is a nonnegative number, there is no 

real number that can be substituted for b in equality (9). Therefore, there is 

no real square root of —25; in a similar manner it follows that there is no real 

square root of any negative number. 

We see then that in order to consider square roots of negative numbers, we 

must deal with numbers other than real numbers. Thus we develop a set of 

numbers that contains the set R of real numbers as a subset and also square 

roots of negative numbers. We denote such a set of numbers by C and refer 

to it as the set of complex numbers. In this section our discussion of C is a 

very brief one. A complete discussion is given in Chapter 5, where we define 

operations of addition and multiplication on C so that the axioms of addition 

and multiplication for the set R are satisfied. We use the same symbols (+ 

and -) for these operations on C as we do when the operations are performed 

on real numbers. We first require that the set C is such that the real number 

—1 has a square root. Let i be a symbol for a number in C whose square is 

—1; that is, we define i as a number such that 

a 

Because every real number is to be an element of C, it follows that if b € R, 

then b € C. In order for the closure law for multiplication to hold, the 

number b-i, abbreviated bi, must be an element of C. Furthermore, if 

a € R,thena € C, and if the closure law for addition is to hold, the number 

a + bi must be an element of C. We now have a set C, which we define 

formally. 

The set of all numbers of the form 

a+ bi where a,b€ R and i? = —1 
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1.3.5 DEFINITION 

Some Algebraic Terminology 25 

is called the set of complex numbers and is denoted by C; that is, 

{a+ bija,be R,i? =—-l1J}=C 

For the complex number a + bi, the number a is called the real part and 

the number 5 is called the imaginary part. 

ILLUSTRATION 4 

(a) The number —3 + 6/7 is a complex number whose real part is —3 and 

whose imaginary part is 6. 
(b) The number 7 + (—4)i is a complex number whose real part is 7 and 

whose imaginary part is —4. @ 

If —p is a negative number, then the complex number a + (—p)i can be 
written as a — pi. Hence 

7+(-4i =7-4i 

The real number a is a complex number and it can be written in the form 
a + 07; that is, 

a = wo J Oy 

Hence a real number is a complex number whose imaginary part is 0. The 

number 0 + bi can be written more simply as bi; that is, 

bi=0 + bi 

The number bi, b # 0, is called a pure imaginary number. More generally, 

any complex number a + bi, where b # 0, is called an imaginary number. 

ILLUSTRATION 5 

(a) The complex number —5 + 2/ is an imaginary number. 
(b) The complex number 8/ is a pure imaginary number. 
(c) The real number —2 is a complex number, and it can be written as 

—2 + Oi. 
(d) The real number 0 is a complex number, and it can be written as 0 + Oi. 

@ 

We now state a definition that allows every real number (positive, negative, 

or zero) to have a square root. 

A number s is said to be a square root of a real number r if and only if 

Sa 

We have learned that any positive number has two square roots, one 
positive and one negative, and the number 0 has only one square root, 0. 



26 Real Numbers, Equations, and Inequalities [Girma 

1.3.6 DEFINITION 

EXAMPLE 3 
Write the given complex number in 
the form 

@ 2 [oy 

(a) V—9 

(b) 5 —6/=4 
(c)may 25) Pay 25 

[16 [16 
ava je ane’ ) ag i 3 6 

(e) 1/24 4 5/—27 

Now, let —p be any negative number; then p is a positive number and 

G vp = ?( vp)? 
=(—l)p 
Se aaa 

Therefore, because (i \/p)? = —p, it follows from Definition 1.3.5 that i Vp 

is a square root of —p. In a similar way, (—/ Vp) = = —p, and therefore 

—i \/p is a square root of —p. As we did with square roots of positive 

numbers, we distinguish between the two square roots by using the concept 

of principal square root. 

If p is a positive number, then the principal square root of —p, denoted by 

\/ —p, is defined by 

Vap=ive 
The two square roots of —p are written as \/—p and — \/ —p, or asi Vp 

and —i Vp. 

ILLUSTRATION 6 

(a) V—5 =i V5 
The two square roots of —5 are i \/5 and =i 5: 

(bey H 1677/16 

= 4i 

The two square roots of —16 are 47 and —4i. 

(c:) V-l=ivl 
= jl 

The two square roots of —1 are i and —i. e 

SOLUTION 
(a) V-9 =ivV9 (b) 5 —6\/—4 =5 — 6 V4) 

251 = 5 — 6(2/) 
=043i = 5 + (-12i) 

(c) V254+ V—-25 =5 4+iV25 

wien 3(i =) 

ste he thes 49 

deny (58 
ma) +3(5/) 
eh a2 = er 7! 
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(ec) V24+5V—27 = V4 V6 + 5; V9 V3) 
= 26 + 5(i-3 V3) 

=2V6 + 153i 

EXERCISES 1.3 

In Exercises 1 through 8, determine if the given algebraic expression is a monomial, a 

binomial, or a trinomial. Also, for each expression state its degree in each of the 

variables appearing and the degree of the expression. 

1. 7x? + 4y 2. 3x2y — 3xy — 1 3. 4xy3z? 
4. r3s?t + rs3 5. Suv — v3? + 2u*v? 6. —8xyz? 
I. xy2z3 +1 yz 8. 6xy — x3 + x?y? 

In Exercises 9 through 16, find the value of the given expression if x = —4, y = 3, and 
=. 

9 Fx? — 572 10. xyz + 3x? 11. (vy —z)(x +2) 
2a 2a 2 

i, AE Be rei eee ey deg EAR 
2xz —y Z—X*Z 

2 a a, 15. (3x + 2y) 16. 3x* —y z* +] 
FP (x + y?2 + 23)3 

In Exercises 17 through 30, find the indicated root. 

17. V8! 18. 81 19. \/—64 20. — 64 21. V/—0.001 22. \/—0.027 

23. Vas 24. VAs 25 26-6 5) = 128 27. 28 28. Wadtto 

29. \/(—3)? 30. V/(—2)4 

In Exercises 31 through 44, write the given complex number in the forma + bi. Simplify 

each radical. 

31. V —49 32. V—144 SRE 34. 5 —75 hh bees Wet! 

hil 
36. 8 —SvV-l 37. -44+ v-—4 38. V36 + Vv —36 39. 48 — V—48 40. a Tae 

25 )) 16 
41. 2 — mac 42. ame tis = 43. /50 + V—200 44. 544+ V-—162 
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1.4 First-degree 

Equations in One 

Variable 

1.4.1 DEFINITION 

We have used the equals sign to denote an equality, where the equality 

a = b means that the numerals a and b represent the same number. We now 

introduce the concept of “algebraic equation” and use the equals sign in a 

different sense. 

An algebraic equation in the variable x is a statement of the form 

Ve avg 

where E and F are algebraic expressions in x. 

The replacement set of a variable in an equation is the set of numbers for 

which the algebraic expressions in the equation are defined. Unless otherwise 

stated, we consider the replacement set to be a set of real numbers. A 

variable in an equation is sometimes called an unknown. 

ILLUSTRATION 1. The following statements are algebraic equations in x. 

x—-7=0 (1) 

otal Demean (2) 

ye dE) Se Sb ae (3) 

xX t2=x +3 (4) 

~=1 (5) 

2 3 (6) 

vat Ix 1 

For equations (1) through (4) the replacement set is R. Because the left 

member of equation (5) is not defined if x = 0, the replacement set of x in 

equation (5) is the set of all real numbers except zero. The left member of 

equation (6) is not defined if x = —1, and the right member is not defined if 

x = 4; therefore, the replacement set of x in equation (6) is the set of all real 
numbers except —1 and 3. e 

When a variable in an equation is replaced by a specific numeral, the 

resulting statement may be either true or false. For instance, in equation (1), 

if x is replaced by 7, the resulting statement is true, but if x is replaced by a 

numeral representing a number other than seven, the resulting statement is 

false. In equation (2), if x is replaced by either 3 or 4, we obtain a true 

statement, and if x is replaced by a numeral representing a number other 

than three or four, we obtain a false statement. 
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1.4.2 DEFINITION Suppose that we have an algebraic equation in the variable x. If, when a 
specific numeral is substituted for x, the resulting statement is true, then the 

number represented by that numeral is called a solution (or root) of the 
equation. The set of all solutions of an equation is called the solution set of 
the equation. 

A number that is a solution of an equation is said to satisfy the equation. 

ILLUSTRATION 2. The only solution of equation (1) is 7, so the solution set 
of equation (1) is {7}. 

Equation (2) has two solutions, 3 and 4; hence the solution set of equation 
(2) is {3, 4}. 

If, in equation (3), any numeral representing a real number is substituted 

for x, a true statement is obtained. Therefore, the solution set of equation 
Gasik: 
When any numeral representing a real number is substituted for x in 

equation (4), we get a false statement. Hence the solution set of equation 
(4) is ©. 

In equation (5), if any numeral other than 0 is substituted for x, a true 

statement is obtained. Therefore, the solution set of equation (5) is 

oe hx GER ex ee) e 

If the solution set of an equation in one variable is the same as the 
replacement set of the variable, the equation is called an identity. Equations 
(3) and (5) are examples of identities. If there is at least one element in the 

replacement set of the variable that is not in the solution set of the equation, 
the equation is called a conditional equation. Equations (1), (2), (4), and (6) 

are conditional equations. 
An important type of equation is the polynomial equation in one variable, 

which can be written in the form E = 0, where E is a polynomial in one 
variable. The degree of the polynomial is the degree of the equation. 

ILLUSTRATION 3. Particular examples of polynomial equations are the 
following ones. 

he SOL aw (7) 

Bye O) aay 2) (8) 
2w? — 3w —5 =0 (9) 

C7 1374+ 4 0 (10) 

Equation (7) is of the first degree in x, equation (8) is of the third degree in 
y, equation (9) is of the second degree in w, and equation (10) is of the fourth 
dégree imeza,. e 
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1.4.3 DEFINITION 

1.4.4 THEOREM 

Determining the solution set of a conditional equation is called solving the 

equation. As shown by equation (1) in Illustration 1, it is sometimes possible 

to solve an equation by inspection. In general, however, we must first learn 

the concept of equivalent equations. 

Equations that have the same solution set are called equivalent equations. 

We can often solve an equation by replacing it by a succession of equiva- 

lent equations, each one in some way simpler than the preceding one so that 

we eventually obtain an equation for which the solution set is apparent. The 

following theorem, which follows from the addition and multiplication 

properties for real numbers, is used to replace an equation by an equivalent 

one. 

Suppose that 

jes (11) 

is an algebraic equation in the variable x. Then, if G is an algebraic expres- 

sion in x, equation (11) is equivalent to each of the following equations. 

Eit.G =F +.G (12) 

Ee=G =i G (13) 

Ee G=h.G (G is never zero) (14) 

4 = - (G is never zero) (15) 

Because equations (12) and (13) are equivalent to equation (11), it follows 

that the solution set of an equation is not changed if the same algebraic 

expression is added to or subtracted from both members of an equation. 

Because equation (14) is equivalent to equation (11), the solution set of an 

equation is not changed if both members of an equation are multiplied by 

the same algebraic expression, where the condition that G is never zero is 

necessary so that equation (11) can be obtained from equation (14) by 

dividing on both sides by G. Furthermore, because equation (15) is equiva- 

lent to equation (11), the solution set of an equation is not changed if both 

members of the equation are divided by the same algebraic expression 

provided that the algebraic expression is never zero. 

ILLUSTRATION 4. To solve the equation 

3x —5 =7 (i) 

we first add 5 to both members of 

the equation, and we obtain 
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(3x —5)+5=7+5 (ii) 

See) (iii) 

Dividing each member of equation 
(iii) by 3, we have 

x4 (v) 

Equations (i) through (v) are all equivalent. The solution set of equation (v) 

is obviously {4}, so the solution set of the given equation (i) is {4}. 
We check the work for possible errors in arithmetic by substituting the 

solution in the original equation. 

evr eSG =ibss 
27) 

Thus the solution checks. 6 

To solve an equation involving rational expressions, we obtain an equiva- 
lent equation by multiplying both members of the equation by the least 
common denominator (LCD) of the fractions. 

ILLUSTRATION 5. To solve the equation 

ES BS eee me 

a ae @) 
we multiply both members by 6, and 
we obtain 

(= — 6% + 66 = (6) — 6)2 ii 
Aya 436 = 5x) 12 (iii) 

We now subtract 5x and 36 from 
each member of equation (iii), and 
we get 

(x + 36) — 5x — 36 = (5x — 12) — 5x — 36 (iv) 

—4x = —48 (v) 

Dividing both members of equation 
(v) by —4, we have 

—4x _ —48 ; 
yo eee (vi) 

Ae le (vii) 
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Equations (i) through (vii) are all equivalent. Because the solution set of 

equation (vii) is {12}, it follows that the solution set of the given equation (1) 

is {12}. We check the solution. 

2(12) 1 5(12) 
ee — Does 3 5 +6 é 

2(12) 12 5(12) 
eh =e d = 10 3 5 +6=8 —6+4+6 an r 

Hence the solution checks. 8 

EXAMPLE l SOLUTION 

Find the solution set of the equation | We simplify the algebraic expression in the left member and obtain a 

Ae (xen | ee succession of equivalent equations. 

4[3x — 5x + 1] =3 — 4x 

4[—2x + 1] =3 — 4x 

—8x +4=3 —4x 

—8x +44 4% —4=3-—4% 4+ 4x -—4 

=4x% —\— | 

—4x | —!l 

—4 ~ —4 

aa 
4 

Therefore, the solution set is {4}. 

Each of the equations in Illustrations 4 and 5 and Example | is a “first- 

degree equation in one variable.” 

1.4.5 DEFINITION An equation of the form 

ax + 0) 

where a,b € R and a # 0, or any equation equivalent to this equation, is 

called a first-degree equation in one variable. 

If an equation involving rational expressions contains fractions having a 

variable in the denominator, then the LCD contains the variable. In such a 

case it is possible that, when multiplying both members by the LCD, the 

resulting equation will not be equivalent to the given one. This can be seen in 

the following illustration. 
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EXAMPLE 2 

Find the solution set of the equation 

8 ) 4 

Det tie 583 

EXAMPLE 3 

Find the solution set of each equa- 
tion. 

(a) ==0 
x 

(b) > =1 
x 

(c) ~=2 
xX 
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ILLUSTRATION 6. If we have the equation 

DX 
(| ee —_ 16 

aac x= 3 eo) 

we see that the LCD is (x — 3); furthermore, x — 3 4 0 because division by 

zero is undefined. Multiplying each member by (x — 3), we get 

Ca CALA) = (0 — 3) — (17) 
= 3 xo = 3 

Dg Ae 36 = 3) = G 

3x =9 

x =3 

However, x # 3, and so there is no value of x that satisfies the equation. 
Thus there is no solution for equation (16), so its solution set is @. 

SOLUTION 
The LCD is (2x + 1)(5x — 3), and x # —4, x 4 3. Multiplying both mem- 
bers of the equation by the LCD, we get 

Clase Be ete eS aie ere gc ot OX Wee 

36% — 3) = 42x + 1) 

See — © = Wye se al 

i xe—a13 

mes 7 

Therefore, the solution set is {42}. 

SOLUTION 
In each equation the LCD is x, and x 4 0. 
(a) We multiply on each side of the equation by x and obtain 

aa) 

But x 4 0; therefore, the solution set is @. 

(b) Multiplying on each side of the equation by x, we get 

ve SS ie 

This equation is true for any value of x, but x 4 0. Therefore, the solution set 

ISX eek, « 40}, 

(c) When multiplying on each side of the equation by x, we have 

i == Dx 

This equation is only true if x = 0; however, x # 0. Therefore, the solution 

set is ©. 
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EXAMPLE 4 

Find the solution set of the equation 

1 a 4 oa 4x04 4 

Dye a Dyeeiedx Sx 

SOLUTION 

We factor the denominator in the rational expression occurring in the right 

member, and we have 

ee ea ee 
5 es Wee eo) 2 Rn L) 

The LCD is (2x + 5)(2x — 1) and x # —3, x #4. We multiply each mem- 

ber of the equation by the LCD, and obtain 

2x —1-—4(2x +5) =4x +4 
Den i= ne Ole 

—6x — 214% 4 4 

= 10x = 25 

5 
SS 

2 

But x 4°—3 because when x = —3, the denominator in the first fraction in 

the left member of the given equation and the denominator in the fraction in 

the right member are both zero. Hence, —3 is not a solution. Therefore, the 

solution set is ©. 

An equation may contain more than one variable or it may contain 

symbols, such as a and b, representing constants. An equation of this type is 

sometimes called a literal equation, and often we wish to solve for one of the 

variables in terms of the other variables or symbols. The method of solution 

consists of treating the variable for which we are solving as the unknown and 

the other variables and symbols as known. 

ILLUSTRATION 7. If F is the number of degrees in the Fahrenheit temper- 

ature reading and C is the number of degrees in the Celsius temperature 

reading, then 

F=ZC +32 

To solve this equation for C, we first multiply each member by 5 and obtain 

SF = 9C€ + 160 

Adding —160 to both members, we get 

5F — 160 = 9C 

Dividing both members by 9, we have 

C= GF — 160) = 
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EXAMPLE 5 SOLUTION 

If p dollars is invested at the rate of | (a) We divide both members of the given equation by (1 + rt), and we get 

100r per cent at simple interest for ¢ A 

years, and A dollars is the amount of ssi 1 + 3rt 

the investment at ¢ years, then the 
jonaererila (re Zi (b) Using the distributive law in the right member of the given equation, we 

have 

A =p(i +7rt) A =p -+prt 

(a) Solve for p. 
(b) Solve for # Adding —p to both members, we get 

A — p = prt 

Dividing both members by pr, we have 

Ne a 
— P 

pr 

EXAMPLE 6 SOLUTION 
Solve the following equation for a | To solve for a, we first factor the right member. 

and b. = a(ct + be) 

b = act + abe We now divide both members by (ct + bc) and obtain 

b = t+b 0 
‘ Cie aG Ce 

To solve for b, we add —abc to each member of the given equation and 

obtain 

b — abc = act 

Factoring the left member of the equation, we get 

b(1 — ac) = act 

Dividing both members of the equation by (1 — ac), we have 

peel (ac # 1) 
1 —ac 

EXERCISES 1.4 

In Exercises 1 through 28, find the solution set of the given equation. 

3. 4w —3 = 11 — 3w An xt 9 = 3X i+ 3 

5. 2¢—5) =3 —4+4+2) 6. 1 — 3(2x — 4) = 4(6 — x) — 8 

I x¢ Sse SS Ih Ct oe ts By cs il eae ew 
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9, 3(4y, OV = 10 = Sy) =e 10. Weigh See Ac ees 
1h xt 6/200 2% ab ayes Pim RR me = ey 

13, #4 4 ASF = 2 24+ =* 

Sa eee 16. + + 2 = 0 

ee ee 1S ps ae es 
19, $= = 1 20, <== =0 

Mh gee eg = Ga az ee oe 

EY eee Tes | 2 ie a 

ren are ee eran Sane 
rae caer eT ee 

In Exercises 29 through 34, solve for x or y in terms of the other symbols. 

29, 3ax + 6ab = Jax + 3ab 30. o+ex 

31. a(y — a) — 2b(y — 3b) = ab 32. Sa(Sa + x) = 2a(2a — x) 

ee Sn 2 el fare aed 
3a —4b 2a —5b a ean ae © 

In Exercises 35 through 42, solve the given formula for the indicated symbol. 

35. A = +(a + byh; for h 36. A = L(a + bhi for b 

37. E=1(R +n) for r 38.4 = (1+); forr 
n 

[eee loa e ay 
39. — = — + —; for p 40. £=1(R +4); for x 

J. ep a n 

Th Gee dll gs 0 6 
Wate l—r 

[Ch. 1 
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1.5 Word Problems 

EXAMPLE 1 

If a rectangle has a length that is 
three centimeters less than four 

times its width, and its perimeter is 
19 centimeters, what are the dimen- 

sions of the rectangle? 

(4w — 3)cm 

(4w — 3)cm 

Figure 1.5.1 

In many applications of algebra, the problems are stated in words and are 

called word problems. They give relationships between known numbers and 

unknown numbers to be determined. In this section we solve word problems 

by using a first-degree equation in one variable. Thus after determining the 

unknown numbers from the statement of the problem, it is necessary to 

represent these numbers by symbols using only one variable. After this is 

done, two algebraic expressions for the same number are obtained and an 

equation is formed from them. The procedure is shown in the following 

examples. 

SOLUTION 
Let w centimeters represent the width of the rectangle. Then (4w — 3) 

centimeters represents the length of the rectangle. Refer to Figure 1.5.1. 

The perimeter of a rectangle is the total distance around the rectangle. 

Therefore, the number of centimeters in the perimeter can be represented by 

either [w + (4w — 3) + w + (4w — 3)] or 19; thus we have the equation 

w + (4w — 3) + w + (4w — 3) = 19 

Solving the equation, we have 

OV On— a9) 

10w = 25 

1 ey 
gig, 

Alyy <= 3) == 7 

Hence the width of the rectangle is 24 centimeters and the length of the 

rectangle is 7 centimeters. 

CHECK: The perimeter is 24 centimeters + 7 centimeters + 25 centimeters 

+ 7 centimeters, which equals 19 centimeters. 

Certain word problems can be classified according to type and the solution 

of a particular type often utilizes a specific formula or procedure. Some 

common types of problems are now considered. 

The next example can be classified as an investment problem, because it is 

one involving income from an investment. The income in an investment 

problem can be in the form of interest and in such a case we use the formula 

Yeates TM 

where J dollars is the annual interest earned when P dollars is invested at a 

rate of 100K per cent per year. 
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EXAMPLE 2 SOLUTION 
A man invested part of $15,000 at 12 | Let x dollars represent the amount he has invested at 12 per cent and 
per cent and the remainder at 8 per | (15,000 — x) dollars represent the amount he has invested at 8 per cent. We 

cent. If his annual income from the | use the formula J = P+ R and make Table 1.5.1. 

two investments is $1456, how much 

does he have invested at each rate? | [able 1.5.1 

Number of Dollars Number of Dollars 
Riatem == i 

Invested in Interest 

12 per cent investment x 0.12 0.12x 

8 per cent investment 15,000 — x 0.08 0.08(15,000 — x) 

Therefore, we have the following equation. 

0.12x + 0.08(15,000 — x) = 1456 

0.12x + 1200 — 0.08x = 1456 

0.04x = 256 

x = 6400 

15,000 — x = 8600 

Thus the man has $6400 invested at 12 per cent and $8600 at 8 per cent. 

CHECK: The annual interest from the $6400 invested at 12 per cent is $768 
and from the $8600 invested at 8 per cent is $688; and $768 + $688 = $1456. 

e 

A mixture problem can involve mixing solutions, containing different per 
cents of a substance, in order to obtain a solution containing a certain per 

cent of the substance. For instance, one may wish to obtain 50 liters of a 
20 per cent acid solution by mixing a 35 per cent acid solution with a 14 per 
cent acid solution (Example 3). Another kind of mixture problem, for which 
the method of solving is similar, involves mixing commodities of different 
values in order to obtain a combination worth a specific amount (Example 4). 

EXAMPLE 3 SOLUTION 
How many liters of a 35 per cent | Let x represent the number of liters of the 35 per cent acid solution to be 
acid solution and how many liters of | used. Then (50 — x) represents the number of liters of the 14 per cent acid 
a 14 per cent acid solution should be | solution to be used. To obtain an equation, we use the data in Table 1.5.2. 
combined to obtain 50 liters of a 20 From the last column in the table we see that the total number of liters of 
per cent acid solution? acid in the mixture can be represented by either 10 or [0.35x + 

0.14(50 — x)]. Thus we have the following equation 

0.35x + 0.14(50 — x) = 10 

Multiplying each member of the equation by 100, we obtain 

35x + 14(50 — x) = 1000 
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EXAMPLE 4 
A merchant has 50 pounds of pea- 
nuts worth $1.60 per pound and 60 
pounds of walnuts worth $1.90 per 
pound. How many pounds of al- 
monds worth $2.40 per pound 
should be mixed with these nuts to 
obtain a mixture to sell for $2 per 
pound? 

Table 1.5.2 

Per Cent of Number of Liters Number of Liters 

Acid of Solution of Acid 

35 per cent 

acid solution 35% xe O37 

14 per cent 

acid solution 14% SQ) = x Ona GOs) 

mixture 20% 50 10 

We solve this equation. 

35x + 700 — 14x = 1000 

Dilixa— 500 

300 
i 

| 

eA 
i] 

5) 
a — ioe @ = x 355 

Therefore, 142 liters of the 35 per cent acid solution and 35? liters of the 14 

per cent acid solution should be used. 

CHECK: The 14? liters of the 35 per cent acid solution gives 5 liters of acid 

and 358 liters of the 14 per cent acid solution also gives 5 liters of acid; and 

So 7 =k. 0. 

SOLUTION 
Let a represent the number of pounds of almonds to be used. Then (110 + a) 

represents the number of pounds of the mixture. We refer to Table 1.5.3 to 

obtain an equation. 

Table 1.5.3 

Number of Dollars in Number of Number of Dollars in 

the Price per Pound Pounds the Total Value 

Peanuts 1.60 50 80 

Walnuts 1.90 60 114 

Almonds 2.40 a 2.4a 

Mixture y} (I 4 @ 2(110 + a) 
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EXAMPLE 5 

One runner took 3 minutes and 45 

seconds to complete a race and an- 
other runner required 4 minutes to 
run the same race. If the rate of the 

faster runner is 0.4 meter per second 
faster than the rate of the slower 

runner, find their rates. 

From the last column in the table we see that the number of dollars in the 

total value of the mixture can be represented by either 2(110 + a) or 

(80 + 114 + 2.4a), and we get the following equation. 

2(110 + a) = 80 + 114 + 2.4a 

220 + 2a = 1944 2.4a 

2a — 2.4a = 194 — 220 

—0.4a = —26 

165 

Therefore, 65 pounds of almonds should be added. 

cHECK: If 65 pounds of almonds are added, then the number of dollars in 

the total value of the almonds is 2.4 - 65 = 156 and the number of dollars in 

the total value of the mixture is 2 - 175 = 350; and 80 + 114 + 156 = 350. 

If an object travels at a uniform rate of r miles per hour for a time of # 

hours, then, if d miles is the distance traveled, 

op ee (1) 

A problem involving the use of formula (1) is called a uniform-motion 
problem. In applying formula (1), the units of measurement of the rate, time, 
and distance must be consistent. In Example 5 the rate is measured in meters 
per second, and therefore the time is measured in seconds and the distance is 
measured in meters. In Example 6 the distance is measured in kilometers and 
the time is measured in hours, and therefore the rate is measured in kilome- 

ters per hour. 

SOLUTION 
We let the measurement of the time be in seconds. Let r represent the 
number of meters per second in the rate of the slower runner. Then (r + 0.4) 

represents the number of meters per second in the rate of the faster runner. 

We apply formula (1) and make Table 1.5.4. 
The number of meters in the distance traveled by each runner is the same 

Table 1.5.4 

Number of uppercs Number of 
ae Meters per : 

Seconds in x ; — Meters in 
: Second in 3 

Time Distance 
Rate 

Slower runner 240 r 240r 

Faster runner IS r+ 0.4 225(r + 0.4) 
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EXAMPLE 6 
A father and daughter leave home at 
the same time in separate automo- 
biles. The father drives to his office, 

a distance of 24 kilometers, and the 

daughter drives to school, a distance 
of 28 kilometers. They arrive at their 
destinations at the same time. Find 

their average speeds if the daugh- 
ter’s average speed is 12 kilometers 
per hour more than her father’s. 

because each is running in the same race. From the last column in the table, 

we note that the number of meters in the distance traveled can be represented 

by either 240r or 225(r + 0.4). Therefore, we have the following equation. 

240r = 225(r + 0.4) 

240r = 225r + 90 

15r = 90 

P= 

Ao 045= 6.4 

Thus the rate of the slower runner is 6 meters per second and the rate of the 

faster runner is 6.4 meters per second. 

CHECK: In 4 minutes the slower runner travels 1440 meters (240 - 6 = 1440) 

and in 3? minutes the faster runner travels 1440 meters (225 + 6.4 = 1440). 

If the formula given by equation (1) is solved for r, we obtain 

d 
r=— 

t 

and if it is solved for 7, we get 

— (2) a 
if 

The next example involves a uniform-motion problem that leads to an 

equation containing rational expressions. 

SOLUTION 
Let r represent the number of kilometers per hour in the average speed of the 

daughter. Then (r — 12) is the number of kilometers per hour in the average 
speed of the father. We apply formula (2) and make Table 1.5.5. 

Table 1.5.5 

Number of Miles = Number of Miles | = Number of Hours 

in Distance ~ per Hour in Rate ~ in Time 

Daughter 28 i? = 

Father 24 ratio aE 
r—12 

The number of hours of driving time of both the daughter and the father is 
the same. From the last column in the table we see that the number of hours 
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EXAMPLE 7 

One painter can paint a room in 12 
hours and another can paint the 
same room in 10 hours. How long 
will it take to paint the room if they 
work together? 

can be represented by either 28 or aoe Thus we have the following 
if r— 

equation. 

2358 24 
ee 

We solve the equation. 

24 

ip We 
rr — 1) ae i) 

(r — 12)28 = (r)24 
(fA Sen) 

Vip Ys) = OF 

r = 84 

Pais iP 

Therefore, the daughter’s average speed is 84 kilometers per hour and the 

father’s average speed is 72 kilometers per hour. 

CHECK: The time for the daughter to travel 28 kilometers is 20 minutes 
(28 + 84 = 4, and 4 hour is 20 minutes). The time for the father to travel 24 

kilometers is 20 minutes (24 + 72 = 4). 

A work problem is one in which a specific job is done in a certain amount of 

time when a uniform rate of work is assumed. For instance, if it takes a 

painter 10 hours to paint a room, then his rate of work is 7 of the room per 

hour. In solving a work problem, we multiply the rate of work by the time in 

order to obtain the fractional part of the work completed. In particular, if the 

painter works for 7 hours, then the fractional part of the work completed is 

;5. Furthermore, if a faucet can fill a tub in 15 minutes, then the faucet’s rate 

of work is +4 of the tub per minute and in x minutes the fractional part of the 

tub filled by the faucet is ace 

SOLUTION 
Let x represent the number of hours it takes the two painters to paint the 
room when they are working together. 

The rate of work of the first painter is 4 of the room per hour, and the rate 
of work of the second painter is ;4 of the room per hour. We use Table 1.5.6 to 

obtain an equation. 
Because the two painters complete the work together (they paint the 

room), the sum of the entries in the last column of the table is 1; that is, the 

fractional part of the work done by the first painter plus the fractional part of 
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EXAMPLE 8 

One pipe takes 30 minutes to fill a 
tank and, after it has been running 

for 10 minutes, it is shut off. A sec- 
ond pipe is then opened and it fin- 
ishes filling the tank in 15 minutes. 
How long would it take the second 
pipe alone to fill the tank? 

Word Problems 43 

Table 1.5.6 

re eee Number of Fractional Part 

Rate of Work x Hours Worked = of Work Done 

First paint : C =. irst painter ap x DD 

l x 
Second painter 2 x wees econd pai 10 10 

the work done by the second painter equals 1. We then have the following 

equation. 

| ry x 
12 10 

We solve the equation. 

0:-+~ 460-2 =60:1 
2 10 : 

x= Oxe— 00 

oss 
] 

Hence it takes the painters 5; hours to paint the room together. 

CHECK: The fractional part of the work done by the first painter is 533 + 12 
or ;j. and the fractional part of the work done by the second painter is 

53 + 10 or §; and 3 + $= 1. 

SOLUTION 

Let x represent the number of minutes it would take the second pipe alone to 
fill the tank. 

The rate of work of the second pipe is 1 of the tank per minute and the 
x 

rate of work of the first pipe is s4 of the tank per minute. We have Table 1.5.7. 

Table 1.5.7 

Number of Fractional Part of 

Rate of Work x Minutes Worked ~— the Tank Filled 

: ‘ l ] 
First pipe 30 10 =i 

: l 15 
Second pipe =< 15 

» 
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Because the entire tank is filled, the sum of the entries in the last column of 

the table is 1. Therefore, we have the following equation. 

i 15 
Ee ee a 
ee 

el eye Uy 8 
3 x 

xe di IB) = Se 

—2x = —45 

l 
x = 22— 
‘ 2 

Thus it would take the second pipe alone 224 minutes to fill the tank. 

CHECK: The first pipe fills 4 of the tank and the fractional part of the tank 

filled by the second pipe is 15 + 224 or 3; and $+ $= 1. 

EXERCISES 1.5 

1. If the width of a rectangle is 2 centimeters more 
than one-half its length and its perimeter is 40 
centimeters, what are the dimensions of the rec- 

tangle? 
. Admission tickets to a motion picture theatre cost 
$2 for adults and $1.50 for students. If 810 tickets 
were sold and the total receipts was $1426.50, how 
many of each type of tickets were sold? 

. The amount invested in two real estate develop- 

ments is $30,000. One investment yields 14 per 

cent, and the annual income from this investment 

is $120 less than the annual income from the other 

investment, which yields 10 per cent. Find the 

amount invested at each rate. 

. Determine the number of grams of pure silver that 
should be added to 110 grams of an alloy that is 60 
per cent silver in order to obtain an alloy that 

contains 75 per cent silver. 
. How many liters of a solution containing 55 per 

cent glycerine should be added to 25 liters of a 
solution that contains 28 per cent glycerine to give 
a solution that contains 35 per cent glycerine? 

6. A woman invested $25,000 in two business ven- 

tures. Last year she made a profit of 15 per cent 

10. 

from the first venture but she lost 5 per cent from 

the second venture. If last year’s income from the 
two investments was equivalent to a return of 8 per 
cent on the entire amount invested, how much had 

she invested in each venture? 
. Perfume to sell for $20 an ounce is to be a blend of 

perfume selling for $26 an ounce and perfume 
selling for $12.50 an ounce. If 270 ounces of the 
blend is desired, how much of each kind of per- 

fume should be used? 
. A gardener has 26 pounds of a mixture of fertilizer 
and weed killer. If 1 pound of the mixture is re- 
placed by weed killer, the result is a mixture that is 
5 per cent weed killer. What per cent of the origi- 

nal mixture was weed killer? 
. A man leaves his home in an automobile on a 

business trip. Twenty minutes later his wife dis- 
covers that he left his briefcase behind and decides 
to overtake him in another car. If the wife knows 
that her husband averages 75 kilometers per hour 
and she averages 100 kilometers per hour, how 

long will it take her to overtake her husband? 
At 2 p.M., a train traveling 76 kilometers per hour, 
leaves Denver for Kansas City, a distance of 1000 
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11. 

12. 

13; 

14. 

1S: 

16. 

17. 

kilometers. At 3 P.M., a train traveling 100 kilome- 
ters per hour leaves Kansas City for Denver. At 
what time do the two trains pass each other? 
One runner ran 840 meters in the same time that 
another runner ran 810 meters. If the average 
speed of the faster runner was one-third of a meter 
per second more than the average speed of the 

slower runner, what was the average speed of each 

runner? 
A pipe can fill a swimming pool in 10 hours. If a 
second pipe is open, the two pipes together can fill 
the pool in 4 hours. How long would it take the 

second pipe alone to fill the pool? 
Each of two brothers can wash a car in | hour; 
however, their sister can wash the car in 45 min- 

utes. If all three work together, how long will it 
take to wash the car? 
In an automobile race the average speed of one car 
was 240 kilometers per hour and the average speed 
of another car was 210 kilometers per hour. If the 
faster car finished the race 20 minutes before the 
slower car, what was the distance of the race? 

Two printing presses are available to print the 
daily college newspaper. If only one press is used, 
it takes the older press twice as long to print an 
edition as it takes the newer press. If the two 
presses together can print an edition in three 
hours, how long would it take each press alone to 
print an edition? 
An investor wishes to realize a return of 9 per cent 
on his total investments. If he has $10,000 invested 

at 7.5 per cent, how much additional money should 
be invested at 12 per cent? 
Every freshman student at a particular college is 
required to take an English aptitude test. A student 
who passes the examination enrolls in English 
Composition, and a student who fails the test must 

enroll in English Fundamentals. In a freshman 
class of 1240 students there are more students 
enrolled in English Fundamentals than in English 
Composition. However, if 30 more students had 

passed the test, each course would have the same 
enrollment. How many students are taking each 
course? 
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18. 

19. 

20. 

21. 

22. 

23. 

24. 

25. 

The annual sophomore class picnic is planned by a 
committee consisting of 17 members. A vote, to 
determine if the picnic should be held at the beach 

or in the mountains, resulted in a victory for the 
beach location. However, if two committee mem- 
bers had changed their vote from favoring the 
beach to favoring the mountains, then the moun- 
tain site would have won by one vote. How many 

votes did each picnic location receive? 
A retail merchant invested $6500 in three kinds of 
cameras. His profit on the sales of camera A was 25 
per cent, on the sales of camera B his profit was 12 
per cent, and he lost 1 per cent on the sales of 
camera C. If he invested an equal amount in cam- 
eras A and B, and his overall profit on the total 
investment was 14 per cent, how much did he 

invest in cach kind of camera? 
Determine how much water is required to dilute 15 
liters of a solution containing 12 per cent dye so 

that a 5 per cent dye solution is obtained. 
How much water must be evaporated from the 15 

liters of the 12 per cent dye solution in Exercise 20 

in order to obtain a solution containing 20 per cent 
dye? Assume that the total amount of dye is not 

affected by the process of evaporation. 
A car overtakes a truck that is traveling in the 
same direction at the rate of 75 kilometers per 
hour. If the car is 5 meters long and the truck is 10 

meters long, what must be the speed of the car so 
that the car passes the truck in 3 seconds? 
A freight train, 4 kilometer long, is moving at the 
rate of 43 kilometers per hour. The train passes a 
girl who is walking in the opposite direction beside 
the track at a rate of 7 kilometers per hour. How 

long will it take the train to pass the girl? 
A woman can do a certain job in 10 hours and her 

younger daughter can do it in 12 hours. After the 

woman and her younger daughter have been 
working for | hour, they are joined by the older 

daughter, and the three complete the job in 3 more 
hours. How long will it take the older daughter to 
do the job by herself? 
One pipe can fill a tank in 45 minutes and another 
pipe can fill it in 30 minutes. If these two pipes are 
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26. 

open and a third pipe is draining water from the 

tank, it takes 27 minutes to fill the tank. How long 

will it take the third pipe alone to empty a full 

tank? 

Fifty boxes of cookies each weighing | pound and 

selling for $2.30 per box are to be made up of 

shortbread worth $2.40 per pound, tea biscuits 

worth $1.80 per pound, and macaroons worth 

$2.60 per pound. If 12 pounds of macaroons are 

used, how many pounds of shortbread and how 

many pounds of tea biscuits should be used? 

1.6 First-degree 

Inequalities in One 

Variable 

1.6.1 THEOREM 

In Section 1.2 we mentioned that the statements 

ab a) Selo) Gab GQ 

are called inequalities. Before discussing inequalities involving a variable, we 

state some properties of inequalities. One such property is the transitive 

property of order, which we now state and prove. 

Transitive Property of Order. If a, b,c € R, and 

it 2 =D and” pc, then a >c 

Proof, Because a > b, it follows from the definition of order (1.2.12) and 

Theorem 1.2.14 that 

ied gine A) 

Similarly, because b > c, it follows 

that 

bc > 0) ) 

From Theorem 1.2.15(ii), the sum of 

two positive numbers is positive, and 

SO 

(a—by+ © —c) > 0 (im) 

Applying the definition of subtrac- 
tion (1.2.8) in each set of parentheses 
in the left member of inequality (ii1), 
we have 

[a + (—5)] + [6 + (—o)] >0 (Gy) 

By repeated applications of the 
commutative and associative laws of 

addition to the left member of in- 

equality (iv), we have 
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1.6.2 THEOREM 

(eel Dic OD] 0s  (v) 

From the definition of subtraction, 

Axiom 1.2.6 (existence of opposite), 
and inequality (v), we have 

(Ci) a a (aval) 

Because 0 is the additive identity, we 

have from inequality (vi), 

aA) 

and therefore from the definition of 

order, 

AG 

which is what we wished to prove. 

ILLUSTRATION 1. If x > 5 and 5 > y, then by the transitive property of 

order, it follows that x > y. e 

Three other important properties of inequalities are given in the next 

theorem. 

Suppose that a,b,c € R. 

(Nualtiaw Daihen 73c Sbebic. 

(ialiravesb andiey> 0, thenvaay> be. 

(iii) If a > b and c <0, then ac < be. 

Before proving this theorem, we give an illustration of its content. 

ILLUSTRATION 2 

(a) Because 9 > 4, it follows from Theorem 1.6.2(i) that 9 + 3 >4+430r, 

equivalently, 12 > 7. 
Furthermore, because 9 > 4, it follows that 9 — 11 >4-— 11 or, 

equivalently, —2 > —7. 

(b) Because 7 > 5, it follows from Theorem GM Cin yathiat ee 2ee rs 2 OL, 

equivalently, 14 > 10. 

(c) Because7 > 5, it follows from Theorem 1.6.2(iii) that 7(—2) < 5(—2) or, 

equivalently, —14 << —10. ® 

Proof of Theorem 1.6.2. Because a > b, it follows from the definition of 

order that 

a) @3) 
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1.6.3 THEOREM 

But 
a—b=(a—b)+0 

= (a — b) + (c —c) 

= [a + (—5)] + [ec + (—e)] 
=(a+c)+[(—4) + (-9)] 

Therefore, from inequality (1) and equality (2), we have 

(a+c)—(O+e)>0 (3) 

From inequality (3) and the definition of order, it follows that 

ate>b+ec 

which proves part (i) of the theorem. 
We now prove part (ii). Because a > b, we have inequality (1), and from 

this inequality and the fact that c > 0, we have from Theorem 1.2.15(ii1), 

(a —b)c >0 

He = ine > 0 

He SS Ie 

which proves part (ii). 
In the hypothesis of part (iii), c is negative and so from Definition 1.2.11, 

—c is positive. Therefore, 

—c>0 (4) 

Because a > b, we have inequality (1), and from inequalities (1) and (4) and 

Theorem 1.2.15(iii), it follows that 

—c(a — b) > 0 

Le Tacae |) 

Therefore, from the definition of order, 

bea T0G 

or, equivalently, 
ac < be 

which proves part (iii). 

The following theorem is similar to Theorem 1.6.2 except that the direction 

of the inequality is reversed. 

Suppose that a,b,c € R. 

Gi) Ifa<b, thena+c<b+e. 

(i) lia <cb; andes 0) thentaci<ebc: 

(iu) Lt a <2 by andte=< 0, then ae > be 
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ILLUSTRATION 3 

(a) Because —8 < —2, from Theorem 1.6.3(i) we have —8 + 5 << —2 45 

or, equivalently, —3 < 3. 

Furthermore, because —8 < —2, it follows that —8 —4 << —2 —4 

or, equivalently, —12 < —6. 
(b) Because —5 < 3, it follows from Theorem 1.6.3(11) that (—5)(4) < (3)(4) 

or, equivalently, —20 < 12. 

(c) Because —5 < 3, from Theorem 1.6.3(ii1) we have (—5)(—4) > (3)(—4) 

or, equivalently, 20 > —12. @ 

Theorems 1.6.2 and 1.6.3 also are valid ifin each theorem the symbol > is 

replaced by > and < is replaced by <. 
Parts (ii) of Theorems 1.6.2 and 1.6.3 state that if both members of an 

inequality are multiplied by a positive number, the direction of the inequal- 

ity remains unchanged, whereas parts (iii) state that if both members of an 
inequality are multiplied by a negative number, the direction of the ine- 
quality is reversed. Parts (ii) and (iii) also hold for division because dividing 
both members of an inequality by a number d(d # 0) is equivalent to 

multiplying both members by +. 

We now discuss first-degree (or linear) inequalities involving a single 

variable. Examples of such inequalities are 

oe = BS 7 (5) 

Aat<x (6) 

omnes (7) 
xe tb D 

As with equations, the replacement set of a variable in an inequality is a 

set of numbers, and, unless otherwise stated, the replacement set is the set of 

real numbers for which the members of the inequality are defined. For 

inequalities (5) and (6) the replacement set is the set R of real numbers, but 

because the left member of inequality (7) is not defined when x is —2, its 
replacement set is {x |x € Rand x # —2}. Any number in the replacement 
set for which the inequality is true is called a solution of the inequality. The 

set of all solutions is called the solution set of the inequality. 

An absolute inequality is one that is true for every number in the replace- 

ment set. For instance, if x € R, the inequalities 

5e tk D Ss ge Se Il 

and 

xe 0) 
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are absolute inequalities. A conditional inequality is one that is true for only 

the numbers in a proper subset of the replacement set. Inequalities (5), (6), 

and (7) are examples of conditional inequalities. To find the solution set of a 

conditional inequality, we proceed in a manner similar to that used to solve 
an equation; that is, we obtain equivalent inequalities (inequalities having 

the same solution set) until we obtain one whose solution set is apparent. The 
following theorem, which is similar to Theorem 1.4.4, follows from Theorems 

1.6.2 and 1.6.3. It is used to replace an inequality by an equivalent one. 

1.6.4 THEOREM Suppose that 

E>F (8) 

is an inequality, where E and F are algebraic expressions in the variable x. 
Then if G is an algebraic expression in x, inequality (8) is equivalent to each 

of the following inequalities. 

(i) E+G>F+G 
(ii) E-—G>F-G 

(iii) E> G > F:°G, for all x for which G > 0 

(iv) E°-G< F:°G, for all x for which G< 0 

) = 

E (vi) 4 <5, for all x for which G <0 

= <, for all x for which G > 0 

ILLUSTRATION 4. Inequality (5) is 

Spe te) SS 7/ 

or, equivalently (by applying Theo- 

rem 1.6.4(i)), 

3x —8 +8 >748 

or, equivalently, 

aby SSS 1S) 

or, equivalently (by applying Theo- 
rem 1.6.4(v)), 

Pee 
pry 

or, equivalently, 
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: eee ee ence the solution set of the siven mequality is {x |x > 5} (read “The set of 
? ; ” all elements x such that x is greater than 5”). This solution set can be 

WO Us represented by a graph on the real number line. Figure 1.6.1 shows a sketch 
of such a graph where the portion of the line in color consists of the points 

whose coordinates are in the solution set. The open dot at 5 indicates that 5 

is not in the solution set. e 

ILLUSTRATION 5. Inequality (6) is 

X 7i 7 Ke x 

or, equivalently (by applying Theo- 

rem 1.6.4(ii1)), 

(ASF < (4x) 

x—-7< 4% 

or, equivalently (by applying Theo- 

rem 1.6.4(4) and (11)), 

x—-7—4%4+7< 4% —4x%47 

—3x <7 

or, equivalently (by applying Theo- 
rem 1.6.4(vi)), 

—3x 7 Ss goles 
—3 ~ —3 

- 
Sees 

ee o.3 

Therefore, the solution set of the given inequality is {x |x > —4}. A sketch 

=5 0 5 of the graph of the solution set is shown in Figure 1.6.2. The solid dot at —4 

Figure 1.6.2 indicates that —4 is in the solution set. e 

EXAMPLE I SOLUTION 

Find and draw a sketch of the graph 
of the solution set of the inequality Peek e sahy ae 

8x + 14 —3x — 14 < 3x —6 —3x — 14 

8x + 14 < 3x —6 5x < —20 
x < —4 

—10 =5 0 Thus the solution set of the given inequality is {x |x < —4}. A sketch of the 
Figure 1.6.3 graph of the solution set is shown in Figure 1.6.3. 
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EXAMPLE 2 

Find and draw a sketch of the graph 

of the solution set of the inequality 

3 

Alani. eee Ses eas 

=O: ae) 0 

Figure 1.6.4 

EXAMPLE 3 
Find and draw a sketch of the graph 
of the solution set of the inequality 

B°< Ax wigs, 15D 

eR a eel hh | 
=) 0 5) 

Figure 1.6.5 

EXAMPLE 4 
If the temperature using the Fahr- 
enheit scale is F degrees and using 
the Celsius scale is C degrees, then 

5 C= (f= =P) 

Find the range of values of F' if C is 
to be between 10 and 20. 

SOLUTION 

BaP > 2x +4 

3 (#4) > 30x +4) 

An 1 38> 6xe 12 

Ax.= 3 — 6x 423 > 6x + 12— 6x43 

— als) 

AX 15 

eae) 

15 
8 eer 

Hence the solution set of the given inequality is {x |x < —4}}. A sketch of 

the graph of the solution set is shown in Figure 1.6.4. 

The next example involves a continued inequality, and the procedure for 

finding the solution set of such an inequality is identical with the method 

used in Examples | and 2. 

SOLUTION 

3 <c4y + 7-15 

Sy axe 7 — Tee 7 

—4< 4% <8 

—=—45 4x 8 emacs 
4 = 4 —4 

— ey ey 

Therefore, the solution set of the given inequality is {x|-—1 <x <2}.A 

sketch of the graph of the solution set is shown in Figure 1.6.5. 

SOLUTION 
In the continued inequality 10 << C < 20, we replace C by 3(F — 32) and 

obtain 

10 <2(F = 32) <20 

90 < 5F — 160 < 180 

90 + 160 < 5F < 180 4+ 160 

250 < 5F < 340 

S0< F< 68 
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EXAMPLE 5 

Find the solution set of the inequal- 
ity 

7) 
xX 

EXAMPLE 6 

Find the solution set of the inequal- 
ity 

Bix 
=) 

phe 

and draw a sketch of its graph. 

SOLUTION 

We wish to multiply both members of the inequality by x. However, we must 
consider two cases because the direction of the inequality that results will 
depend upon whether x is positive or negative. 

CASE 1: x is positive; that is, x > 0. 

If we multiply on both sides of the given equality by x, we obtain 

5) > Dee 

5 
SOS 5 

Because for Case 1, x > 0, the solution set of the given inequality is 

52 \pe S A) epee or, equivalently, lO 
2 4 y 2 

CASE 2: x is negative; that is, x < 0. 

Multiplying on both sides of the given inequality by x and reversing the 

direction of the inequality, we get 

3 Ke 

Xe 2 

The solution set of the given inequality for Case 2 is 

fel ee <oun Ta) {ox >3| 

which is the empty set ©. 
The solution set of the given inequality is the union of the solution sets of 

Cases 1 and 2, which is {x |0 <x <3}. 

SOLUTION 
When multiplying both sides of the inequality by x + 2, we must consider 

two cases, as in Example 5. 

CASE 1: x + 2 > 0; that is, x > —2. 

Multiplying on both sides of the inequality by x + 2, we obtain 

3x < 5x + 10 

= Nace 1 () 

x > —S5 
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ge dee eee ee 
pe. 0 

Figure 1.6.6 

EXAMPLE 7 
A company that builds and sells 
desks has a weekly overhead (in- 
cluding salaries and plant cost) of 
$3400. The cost of materials for each 
desk is $40 and it is sold for $200. 
How many desks must be built and 

sold each week so that the company 
is guaranteed a profit? 

EXERCISES 1.6 

The solution set for Case 1 is {x |x > —2} M {x|x > —5} or, equivalently, 

{x |x > —2}. 
CASE 2: x + 2 < 0; that is, x << —2. 

Multiplying on both sides of the inequality by x + 2 and reversing the 

direction of the inequality, we have 

ope ope Sb Ie) 

ama) 

x< =—§ 

The solution set for Case 2 is {x |x << —2} N {x|x < —5} or, equivalently, 

ix |e 5). 
The solution set of the given inequality is the union of the solution sets of 

Cases 1 and 2 which is {x |x < —5} U {x|x > —2}. A sketch of the graph 
of the solution set is shown in Figure 1.6.6. 

SOLUTION 
Let x be the number of desks built and sold each week. Then the number of 
dollars in the total revenue received each week is 200x, and the number of 

dollars in the total cost each week is 3400 + 40x. If P dollars is the weekly 
profit, then because profit equals revenue minus cost, we have 

P = 200x — (3400 + 40x) 
= 160x — 3400 

For a profit we must have P > 0; that 1S, 

160x — 3400 > 0 
160x > 3400 

Se AT 

Because x must be a positive integer, we conclude that the company must 
build and sell at least 22 desks each week to have a profit. 

In Exercises 1 through 28, find the solution set of the given inequality. Draw a sketch of 

the graph of the solution set. 

14S 20 aes] 3 pani ps4 6 4 eyeehl aye 

oy eee eC hg ee D 7, Fa? <3 8. x= 250 

93 10 Whee eG 12 6, eee 
4 4 3 3 

i3as ose 1 140 Westra so i 20k ee ee 16. 1 3x ie 
(Wis Rohe DA og epee) 18. 19 > 4 — 3x > 10 19. 2 > —3 —3x > —-7 20. —-1<2—2x <3 
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7 bo ae pp, ls Soc jie Bt a ype Mh Seay 
DG 4 oe 3 ms x i 

Dx 3x — 8 3x — 11 4x —7 
ZS. 26. 4 27. ———— <.7 : ee! 
Bre 4 ere u Aeare Senate Lee 

In Exercises 29 through 36, draw a sketch of the graph of the given set. 

2 = — 4) Nix <3} BU LUM OX ee 3 
Sixt — 2x > Lh {x |—(x +2) < 5} 32. {x|3(x — 2) << 4} 9 {x| —2(x — 3) <5} 
S5e el — 2) UO {x |x 4} S4y alee (xix > 9} 
35. {x|2x + 6 <3} U {x|—-(4x — 1) < —4} 36. {x|—(x — 4) > 5} U {x|3x —7 > 3} 

96 

38. 

39; 

lee, Equations and 

In 

A silversmith wants to obtain an alloy containing 
at least 72 per cent silver and at most 75 per cent 
silver. Determine the greatest and least amounts of 

an 80 per cent silver alloy that should be combined 
with a 65 per cent silver alloy in order to have 30 

grams of the required alloy. 
If in a particular course, a student has an average 
score of less than 90 and not below 80 on four 
examinations, the student will receive a grade of B. 

If the student’s grades on the first three examina 
tions are 87, 94, and 73, what score on the fourth 

examination will result in a B grade in the course? 
An investor has $8000 invested at 9 per cent and 
wishes to invest some additional money at 16 per 
cent in order to realize a return of at least 12 per 

cent on the total investment. What is the least 
amount of money that should be invested? 

equalities Involving absolute value. 

Absolute Value 

1.7.1 DEFINITION 

40. 

41. 

42. 

Part of $20,000 is to be invested at 6 per cent and 
the remainder is to be invested at 8 per cent. What 
is the least amount that can be invested at 8 per 
cent in order to have a yearly income of at least 

$1500 from the two investments? 
A lamp manufacturer sells only to wholesalers 
through its showroom. The weekly overhead (in- 
cluding salaries, plant cost, and showroom rental) 

is $3000. If each lamp sells for $84 and the material 
used in its production costs $22, how many lamps 

must be made and sold each week so that the 
manufacturer realizes a profit? 

What is the minimum amount of pure alcohol that 
must be added to 24 liters of a 20 per cent alcohol 

solution to obtain a mixture that is at least 30 per 
cent alcohol? 

Associated with each real number is a nonnegative number, called its 

Ifa € R, the absolute value of a, denoted by |a|, is a if a is nonnegative and 

is the opposite of a if a is negative. With symbols, we write 
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ILLUSTRATION 1. If in Definition 1.7.1 we take a as 6, 0, and —6, we have 

[6] = 6) /0/— 0 = 6) — (6) 
—6 e 

The absolute value of a number a can be considered as the distance 

(without regard to direction, left or right) of the graph of a from the origin. In 

particular, the graphs of both 6 and —6 are 6 units from the origin. 

EXAMPLE lI SOLUTION 

Find the value of each of the follow- | (a) |3x + 2y| = |3(3) + 2(—6)| (b) |3x| + |2y| = |3@)| + |2(—6)| 

ing expressions if x =3 and = |9 + (—12)| = |9| + |—12| 

ree = |-3| =9 +12 
= = 

(a) |3x + 2y| al 

= |3(—6 d -ly| = [3] - |6 eee © tol = POO @) (el - bl = BI 

(c) |xy| a Be! 18 

(d) |x| ° || (e) |x —y| = |3 — (—6)| (f) |x| — yl = [3] — 1-6 
A = |3 + 6| =3—6 

(e) |x —y| = |9 3 

(f) |x| — |y| =9 

pie || [3| @) |*| @ [=| =| any ee 
y EU de Dl 1-4 

| 3 x = | —— pnt 

uy a | ” | eile 
| \ 

airy egils 
2 wk) 

EXAMPLE 2 SOLUTION 

Express each of the following with- | (a) Because DS WO), (2 — V2) SO whlence 

out absolute value bars. 2 VA oy 

(a) 2= y2|  () |v2—2 (b) Because (\/2 — 2) <0, 

V2 — 2) = =(2 — 2) 
e042. 

From Definition 1.7.1, we have 

SA abhes hol 
x — al =| : 

—(x —a), ifx—a<0 
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or, equivalently, 

- al = { x —4, fA wears 

pe (0); ix< a 

As a distance on the real number line, we can interpret |x — a| as the 
distance between the graphs of x and a without regard to direction. Refer to 
Piguresta/si: 

8 <Sw) xa 

|+—§ |x —a\=—(x a Sa| =~ —a——— 

2.8 a x 

Figure 1.7.1 

ILLUSTRATION 2. Suppose that we have the equation 

Ix —4| =7 (1) 

This equation will be satisfied if either 

x—4=7 or —(x —4)=7 

We solve each equation. 

x-4=7 —(x —4)=7 
x=11 =e 4b A 

—x =3 

X= — 3 

Therefore, the solution set of equation (1) is {11, —3}. e 

EXAMPLE 3 SOLUTION 

Find the solution set of the equation | The given equation will be satisfied if either 

3x + 5| =9 3x 4+5=9 or —(3x+5)=9 
356 == a! ao 

ets = 350 = ilé! 

x= —] 

», 
The solution set is (4, — 1}. 

We now consider inequalities involving absolute values. 

ILLUSTRATION 3. Suppose that we have the inequality 

Ix] <7 (2) 
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eer ee ee ees 
5 0 5 

Figure 1.7.2 

1.7.2 THEOREM 

Because |x(= x, if x O)vand) |x) — —x, m4 0, it follows that the 

solution set of inequality (2) is the union of the sets 

(ole << irandiy 30), (3) 

and 

{x|—x <7 and x <0} (4) 

Set (3) is equivalent to 

(0 | O oe =i} (5) 

Because —x <7 is equivalent to x > —7 (from Theorem 1.6.4(iv)), then 

set (4) is equivalent to 

{x|-7<x <0} (6) 

The solution set of inequality (2) is therefore, the union of the sets (5) and (6), 

which is 

AO oe TU | ex 0) 

or, equivalently, 

Ooi ee en} (7) 

A sketch of the graph of this set is shown in Figure 1.7.2. e 

Comparing inequality (2) and its solution set (7), we conclude that the 

inequality 

[| <7 is equivalent tem] <2 < 7 

More generally, if b > 0, 

(8) 

The next theorem follows immediately from statement (8). 

If E is an algebraic expression in the variable x, and b is a positive number, 

then the inequality 

ILLUSTRATION 4. From Theorem 1.7.2, the inequality 

jx — 5] <8 (9) 

is equivalent to 

oo — as 
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EXAMPLE 4 

Find the solution set of the inequal- 
ity 

[2x —7| <9 

Draw a sketch of the graph of the 

solution set. 

Figure 1.7.4 

or, equivalently, 

—-8+5<x<8+5 

Oh eae 13 

Therefore, the solution set of inequality (9) is {x| -—3 << x < 13}. ® 

SOLUTION 

The given inequality is equivalent to 

—9< 2x —-7<9 

—94+7<2x <947 

—2 < 2x < 16 

lox <8 

Therefore, the solution set is {x|—1 <x < 8}, and a sketch of its graph is 

shown in Figure 1.7.3. 

a eel Er aa 
0 5 10 

Figure 1.7.3 

ILLUSTRATION 5. Consider the inequality 

|x| >4 (10) 

From the definition of |x|, the solution set of this inequality is the union of 

the sets 

{x|x >4 and x > 0} (11) 

and 

{x|—x > 4 and x <0} (12) 

Set (11) is equivalent to 

{x |x > 4} (13) 

Because —x > 4 is equivalent to x < —4, set (12) is equivalent to 

{x |x < —4} (14) 

The solution set of inequality (10) is then the union of the sets (13) and (14), 

which is 

{x|x > 4} U {x|x < —4} (15) 

A sketch of the graph of this set is shown in Figure 1.7.4. e 

Comparing inequality (10) and its solution set (15), we conclude that the 

inequality 

|x| >4 is equivalent to “x >4orx < —4” 
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1.7.3 THEOREM 

Heme 
—10 —5 0 

Figure 1.7.5 

EXAMPLE 5 

Find and draw a sketch of the graph 
of the solution set of the inequality 

Bx — S| >3 

More generally, if b > 0, 

|x| >b is equivalent to “x >borx< —b” (16) 

The following theorem is a direct consequence of statement (16). 

If E is an algebraic expression in the variable x and b is a positive number, 

then the solution set of the inequality 

|E| >b 

is the union of the solution sets of the inequalities 

E>bandE< —b 

ILLUSTRATION 6. By Theorem 1.7.3, the solution set of the inequality 

Ix + 4| >2 

is the set of all x such that 

xe ab 4) Ss 2D or Xr 

or, equivalently, 

5¢ > =?) or x< —6 

Therefore, the solution set of the given inequality is 

{x|x < —6} U {x|x > —2} 

A sketch of the graph of the solution set is shown in Figure 1.7.5. e 

SOLUTION 
The solution set of the given inequality is the union of the solution sets of the 

inequalities 

&x —5 >3 and ax —5 < -3 

2x —15>9 2x — IS. — 9. 

2x > 24 De 

Same tp? Be <8) 

Thus the solution set is {x |x <3} U {x|x > 12}. Asketch of the graph of 

the solution set is shown in Figure 1.7.6. 

0 5) 10 15 

Figure 1.7.6 
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Theorems 1.7.2 and 1.7.3 are also valid if in each theorem the symbol < is 
replaced by < and > is replaced by >. 

SOLUTION 

The given inequality is equivalent to 

be pe) =Oies 
= ee.3 be 

If we multiply by x — 3, we must consider two cases, depending upon 
whether x — 3 is positive or negative. 

CASE 1: x — 3 > 0 or, equivalently, x > 3. 

Then we have 

—2(x —3)< x +4 < 2x — 3) 

—2x +6<x+4< 2x —6 

Thus, if x > 3, then also —2x +6<x4+4andx + 4 < 2x — 6. We solve 

these two inequalities. The first inequality is 

—2x+6<x4+4 

Adding —x — 6 to both members 
gives 

—3x < —2 

Dividing both members by —3 and 

reversing the inequality sign, we ob- 
tain 

2 SS Hau 
ae 

The second inequality is 

x+4< 2x —6 

Adding —2x — 4 to both members 
gives 

—x < —10 

Multiplying both members by —1 
and reversing the inequality sign, we 
obtain 

Neal) 

Therefore, if x > 3, then the original inequality holds if and only if x > % 
and x > 10. Because all three inequalities, x > 3,x > %,andx > 10 must be 
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satisfied by the same values of x, we have as the solution set for Case | 

(eel ecw 2 UE 

CASE 2: x — 3 <0 or, equivalently, x < 3. 

Thus, we have 

—2(x — 3) > x +4 >20 — 3) 

=IXeF 6 So =i 6 

Considering the left inequality, we 

have 

—2x+6>x+4 

—3x > —2 

D 
zx = 

Fee 

From the right inequality, we have 

x+4>2x —6 

—x > —10 

EX erll() 

Therefore, if x < 3, the original inequality holds if and only if x < 3 and 
x < 10. Because all three inequalities must be satisfied by the same values of 
x, we have as the solution set for Case 2 {x |x < #}. 

The solution set of the given inequality is the union of the solution sets of 
Cases 1 and 2, which is {x |x <4} U {x|x > 10}. 

EXERCISES 1.7 

In Exercises I through 6, find the value of the given expression ifx = —4, y = 2, and 

Fa —S. 

1. (a) 2x —y| (6) Axl — | © |x — 29) (a) |x| — 21 
2. (a) |x + 3y)— (b) [| + 31, = ©) [x — 3 (d) |x| — 3|y| 
3, (a) [xyz (b) |xzly (c) x|zy| (d) |xy|z (e) |—xyz 

oo a td teal 4. (a) fF | &) ~ (c) x | (a) 

kx — | be + 22| Ix — I x| — pI 
5. os > ———__=— a eR Ss (SIRT, © 3p1+ 
pie >, ieeinidne 

Ix] + [| ||| Rey ame 
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In Exercises 7 through 18, find the solution set of the given equation. 

7, |x —5|=4 8. 
11. [4x + 5] = 15 12. 

iB ik ANS 16. 

ye ae ae OMe aren 10. |4x — 9] = 11 
6 2a ‘Ge i Se ‘Uh (ebe —]] a Peel 

Go) See fi CSE 13 een ees 
x —3 x — 1 

In Exercises 19 through 33, find the solution set of the given inequality. Draw a sketch 

of the graph of the solution set. 

19. |x| <5 20 
lhe area 24. 
27, (2x — 1) > 9 28. 

BT =S| <7 32. 
oe 4a 3) 

1 oO Points in a Plane, 

Distance Formuia, and 

Slope of a Line 

1.8.1 DEFINITION 

|x| > 6 2A ice le > 7 Pe, Wee eB VN eS 
3x — 4| <2 252) i 9 26. |3x — 4| > 2 

6< |4x + 7| 29. 4 < |3x 4+ 12) 30. |3x — 5| > 10 

xed t= 5 xX | ae 
>4 33. peas 5. 

Dx = 3 ~ 3) ok 79 56 Il 

We now consider “ordered pairs” of real numbers. Any two real numbers 
form a pair, and when an order is designated for the pair of real numbers we 

call it an ordered pair of real numbers. If the first real number is represented 

by x and the second real number is represented by y, then this ordered pair 

of real numbers is represented by writing x and y in parentheses with a 

comma separating them as (x, y). For the ordered pair (x, y), the number x 

is called the first component and the number y is called the second component. 
The ordered pair (3, 7) having 3 as the first component and 7 as the second 
component is different from the ordered pair (7,3) for which 7 is the first 

component and 3 is the second component. 

A set of ordered pairs is obtained from two given sets by considering the 
“Cartesian product” of the two sets. 

If S and T are two given sets, then the Cartesian product of S and T, denoted 

by S x T(read “S cross T”), is the set of all possible ordered pairs for which 

the first component is an element of S and the second component is an 

element of 7: Symbolically, we write 

ILLUSTRATION 1. If S = {5, —1} and T = {1, 2,3}, then 

eet onl) aon) (11), (—1,,2), (—1, 3) } @ 
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In this book we are concerned with the Cartesian product of the set R of 

real numbers with itself, that is, R x R, and subsets of R X R. 

RX R={(,y)|x €R and y € R} 

The set R X R is an infinite set of ordered pairs of real numbers. 

Just as the set R of real numbers is represented geometrically by a line (the 

real number line), the set RX R is represented geometrically by a plane 

called the real plane. The method we use with R x R is the one attributed to 

the French mathematician René Descartes (1596-1650), who is credited with 

the invention of analytic geometry in 1637. 

We select a horizontal line in the plane. This line, extending indefinitely to 

the left and to the right is called the x axis. A vertical line is chosen, 

extending indefinitely up and down; it is called the y axis. The point of 

intersection of the x axis and the y axis is called the origin and is denoted by 

the letter O. We establish the positive direction on the x axis to the right of 

the origin and the positive direction on the y axis above the origin. See 

Figure 13-1: 

v y 

rY A 

x (abscissa of P) 

P(x,y) 

y (ordinate of P) 

au > ic, cu eee x 

Figure 1.8.1 Figure 1.8.2 

We now associate an ordered pair of real numbers (x, y) with a point P in 

the real plane. Refer to Figure 1.8.2. The distance of P from the y axis 
(considered as positive if P is to the right of the y axis and negative if P is 
to the left of the y axis) is called the abscissa (or x coordinate) of P and is 

denoted by x. The distance of P from the x axis (considered as positive if P 
is above the x axis and negative if P is below the x axis) is called the ordinate 
(or y coordinate) of P and is denoted by y. The abscissa and the ordinate of 

a point are called the rectangular Cartesian coordinates of the point. There is 
a one-to-one correspondence between the points in the real plane and the 
rectangular Cartesian coordinates. That is, with each point there corresponds 
a unique ordered pair (x,y) and with each ordered pair (x, y) there is 
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EXAMPLE 1 

Plot the points (—4, 0), (—3, —7), 

(sl) ee (= ©) ee (ro) (34,0), 

(5, —3), and (8, 4). 

Second quadrant First quadrant 

Third quadrant Fourth quadrant 

Figure 1.8.4 

associated only one point. This one-to-one correspondence is called a rec- 

tangular Cartesian coordinate system. 
When we use the terminology “the point (x, y),” we mean the point having 

abscissa x and ordinate y. When we use the notation P(x, y), we mean the 

point P whose coordinates are x and y. To locate on a rectangular Cartesian 
coordinate system a point (x, y) is to plot the point, and the point is repre- 

sented by a dot (the dot is not the point, but it is used to visualize the point). 

The point associated with a given ordered pair (x, y) is called the graph of 

the ordered pair. 

SOLUTION 
Figure 1.8.3 shows a rectangular Cartesian coordinate system with the given 

points plotted. 

Figure 1.8.3 

The x and y axes are called the coordinate axes, and they divide the plane 
into four parts, called quadrants (the quadrants do not include the coordinate 
axes). The first quadrant is the one in which the abscissa and the ordinate are 
both positive, that is, the upper right quadrant. The other quadrants are 
numbered in the counterclockwise direction, with the fourth, for example, 

being the lower right quadrant. See Figure 1.8.4. 
Suppose that A and B denote two points having the same ordinate but 

different abscissas, and let A be the point (x,, y) and B be the point (x,, y). 
The subscripts with the letter x are used to indicate that x, and x, are 
different values; hence (x,, y) and (x, y) are two ordered pairs having the 

same second component and different first components. Then the directed 

distance from A to B is denoted by AB, and we define 
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The directed distance from B to A is denoted by BA, and 

BA = Xp Xo 

ILLUSTRATION 2 

(a) Figure 1.8.5 shows points A(3, 4) and B(8, 4), where 

PV ee se ee ee 
—5 ee) 

y 

A(3, 4) B(8, 4) 
—_—_———e 

AB=5 BA=—5 

Figure 1.8.5 

(b) Figure 1.8.6 shows points A(—5, —2) and B(6, —2), where 

AB=6-—(-5) BA=-—5—6 
=11 = —1l 

y 

BCS) A(7, 3) 
—_—_—_————"—""s 

INES =) 

AB=11 BA Sit AB=—6 BA =6 

Figure 1.8.6 Figure 1.8.7 

(c) Figure 1.8.7 shows points A(7, 3) and B(1, 3), where 

AB == 7 BAS Ea 
7 = 6 @ 

In Illustration 2 we see that the number AB is positive if B is to the right of 

A and AB is negative if B is to the left of A. 
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If Cis the point (x, y,) and D is the point (x, y,), then the directed distance 

from C to D, denoted by CD, is defined by 

CD = y2—)1 

The directed distance from D to C is denoted by DC, and 

DC =), Vs 

ILLUSTRATION 3 

(a) Figure 1.8.8 shows points C(—2, 3) and D(—2, —5), where 

Des 3 DNC =3— (—5) 
—8§ eo 

CD =-—8 (DE = CD =4 DC == 4 

Figure 1.8.8 Figure 1.8.9 

(b) Figure 1.8.9 shows points C(4, —6) and D(4, —2), where 

GD (6 DC =) 6. (— 2) 
=a — —4 @ 

In Illustration 3 note that the number CD is positive if D is above C and 

CD is negative if D is below C. 
Observe that the terminology “directed distance” indicates both a distance 

and a direction (positive or negative). If we are concerned only with the 
length of the line segment between two points P, and P, (that is, the distance 

between the points P, and P, without regard to direction), then we use the 
terminology “undirected distance.” We denote the undirected distance from 

P, to P, by |P,P.|, which is a nonnegative number. 



68 Real Numbers, Equations, and Inequalities (Ghia 

y 
A 

P(x2,¥2) 

ae ree ae 
Py, Ji)  *2 S*1 

ay —- xX 

Figure 1.8.10 

1.8.2 THEOREM 

We now wish to obtain a formula for computing |P,P.| if P,(x,,.,) and 

P(X, Yy) are any two points in the plane. We use the Pythagorean theorem 

from plane geometry, which is as follows. 

Ina right triangle, the sum of the squares of the lengths of the perpendicular 

sides is equal to the square of the length of the hypotenuse. 

Figure 1.8.10 shows P, and P, in the first quadrant and the point 

M(X», ¥,). Note that |P,P.| is the length of the hypotenuse of right triangle 

P,MP,. Using the Pythagorean theorem, we have 

|P,P2|? a |P,M\’ oe |MP.|* 

Hence 

[P,Po| = ViP,MP + [MPI 

or, equivalently, 

|P,Po| = V(x_ — x1)? + G2 —yv” (1) 

Note that in formula (1) we do not have a + symbol in front of the radical 

in the right member because |P,P,| is a nonnegative number. Formula (1) 

holds for all possible positions of P, and P, in all four quadrants. The length 

of the hypotenuse is always |P,P,|, and the lengths of the legs are always 

|P,M| and |MP.]. The result is stated as a theorem. 

The undirected distance between two points, P,(x4,.y,) and P(X, yp), is 

given by 

Observe that if P, and P, are on the same horizontal line, then yy = Vp and 

[PyPo| = V(%_ — x4)? + 0? 

or, equivalently (because Va = |al), 

[PPal = |x2 — >I 

Furthermore, if P, and P, are on the same vertical line, then x, = x, and 

PP a Oe) 

or, equivalently, 

|\P,Pol = Yo — Jl 
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EXAMPLE 2 

Find the lengths of the sides of the 
triangle having vertices at A(2, —1), 

B(—2, —4), and C(5, 3). Show that 

the triangle is isosceles. 

oy, 

Po (x2, ¥2) 

Rise 

1a) Ail 

Pi(%1,¥1) 

———_,—___ R(x2, 1) 
Run 

X2 Xj 
ny 

0 

Figure 1.8.12 
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SOLUTION 
The triangle is shown in Figure 1.8.11. 

ey 

C53) 

Figure 1.8.11 

Using the formula of Theorem 1.8.2, we have 

(AB ean ae) ce Are a ACh /(5 — 2)? + (3 + 1)? 

V16+4+ 9 =; VAS) 2 ING: 

|BC| = V6 + 2)? +6 + 4) 
= 1/49 + 49 

=7V2 

An isosceles triangle is one for which two of the sides have equal lengths. 

Because |AB| = |AC|, we conclude that triangle ABC is isosceles. 

Suppose that L is a nonvertical line and P,(x,, y,) and P,(x,, y,) are any 
two distinct points on L. Figure 1.8.12 shows such a line. R is the point 
(Xy, y,) and the points P,, P,, and R are vertices of a right triangle; further- 

more, PR = X, — xX, and RP, = Vy — y,;. The number y, — y, is called the 

rise from P, to P,; it gives the measure of the change in the ordinate from P, 
to P,, and it may be positive, negative, or zero. The number x, — x, is called 
the run from P, to P,; it gives the measure of the change in the abscissa from 
P, to P,, and it may be positive or negative. The run may not be zero because 

X» # X,, Since the line L is not vertical. For all choices of the points P, and P, 
on L, the quotient 

rise: irom Py to Ps 

run from Py to Ps 

is constant, and this quotient is called the “slope” of the line. Following is the 
formal definition. 
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1.8.3 DEFINITION 

y 

Figure 1.8.13 

Figure 1.8.14 

Figure 1.8.15 

If P,(x,,¥,) and P,(x,, v2) are any two distinct points on L, which is not 
parallel to the y axis, then the s/ope of L, denoted by m, is given by 

aie. St, 

iSvh aee 

(2) 

ILLUSTRATION 4. Let A be the point (—5, 4) and B be the point (3, —6). 

See Figure 1.8.13. To find the slope of the line through A and B, we can use 

formula (2) with A as P, and B as P,, and we have 

ny = Oo = 4 
~ 3 —(-S) 

16 
coe 

= 5S: 
hd 

If we use formula (2) with B as P, and A as P,, we have 

42: (=6) 
fr <a 5 

poulllh 
—8 

neers =-3 a 

When using formula (2), it makes no difference which point is taken as P, 

and which point is taken as P, because 

Ve de Me tee ye 

bel Memes Pagal 

Thus we can assume that the points P, and P, are chosen so that x, < Xp, 
that is x, — x, >0. Hence if y, — y, >0, the slope m (computed from 
formula (1)) is positive, and if y, — y, <0, the slope m is negative. A line 
having a positive slope is shown in Figure 1.8.14, and a line having a negative 

slope is shown in Figure 1.8.15. 
If a line is parallel to the x axis, then y, = y,, and thus m = 0. If a line is 

parallel to the y axis, x, = x,; hence formula (2) is meaningless because we 
cannot divide by zero. This is the reason that lines parallel to the y axis, or 
vertical lines, are excluded in Definition 1.8.3. We say that a vertical line does 
not have a slope. 

To show that the value of m computed from formula (2) is independent of 
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J L 
4 P(X, 72) 

NE | 

P, (x4, 71) 

Reavy) 
ey a 

Py (ky V1) 

« r 

me! (IT | 1) 
i) | 
—- — - —> x 

0 

Figure 1.8.16 

L 
y 

C(2, 11) 
10 

BC, 8) 

‘igure 1.8.17 
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the choice of the two points P, and P,, we choose two other points P,(X,, V,) 

and P,(X,, ¥.) and compute a number m from formula (2). 

eS Vy 
> — 

—X; =| ~~ 

Refer to Figure 1.8.16. Triangles P,RP, and P,RP, are similar, and hence 
from a theorem of plane geometry it follows that 

a) eat 5 oe Cag ie 
Xp —Xy Xp —Xy 

or, equivalently, 

ME aie 

Thus the value of m computed from formula (2) is the same number, no 

matter what two points on Z& are selected. 

If we multiply on both sides of equation (2) by x, — x,, we obtain 

loans S20 @ 
It follows from equation (3) that if we consider a particle moving along a line 

L, the change in the ordinate of the particle is equal to the product of the 
slope and the change in the abscissa. 

ILLUSTRATION 5. If L is the line through the points A(—1, 2) and B(1, 8), 

and m is the slope of L, then 

8 —2 

1 —(-1) 
m= 

6 
2 

=3 

Hence if a particle is moving along the line L, the change in the ordinate is 
three times the change in the abscissa. Refer to Figure 1.8.17. If a particle is 
at B(1,8) and the abscissa is increased by one unit, then the ordinate is 

increased by three units, and the particle is at the point C(2, 11). Similarly, if 

the particle is at A(—1, 2) and the abscissa is decreased by two units, then the 

ordinate is decreased by six units, and the particle is at the point D( —3, —4). 
e 

It is proved in analytic geometry that two distinct lines are parallel if and 
only if they have the same slope. 
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V. 
L> Li A 

Figure 1.8.18 

EXAMPLE 3 

Prove that the points A(—3, —4), 
BO, 1), and’C(7/;2) are collinear. 

ILLUSTRATION 6. Let L, be the line through the points A(1,2) and 

B(3, —6), and m, be the slope of L,; and let L, be the line through the points 

C(2, —5) and D(—1, 7), and m, be the slope of L,. Then 

ee) Gee (5) 
int = 23 ae ame oee = 1-2 

apes8 | eee 
D a3 

Because m, = Mp, it follows that L, and L, are parallel. See Figure 1.8.18. 
e 

Any two distinct points determine a line. Three distinct points may or may 
not lie on the same line. If three or more points lie on the same line, they are 
said to be collinear. Hence three points A, B, and C are collinear if and only if 
the line through the points A and B is the same as the line through the points 
B and C. Because the line through A and B and the line through B and C 
both contain the point B, they are the same line if and only if their slopes are 

equal. 

SOLUTION 

If m, is the slope of the line through A and B, and m, is the slope of the line 

through B and C, then 

(=) - wee) 
De (33) =D 

mn, = 

2. = 
5 5 

Hence m, = m,. Therefore, the line through A and B and the line through B 
and C have the same slope and contain the common point B. Thus they are 
the same line, and therefore A, B, and C are collinear. 

Another theorem from analytic geometry states that two lines L, and Lg, 
neither of which is vertical, are perpendicular if and only if the product of 
their slopes is —1. That is, if m, is the slope of L, and my is the slope of Ly, 

then L, and L, are perpendicular if and only if 

MyM, = =I 
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ILLUSTRATION 7. Refer to Figure 1.8.19. Let L, be the line through 

A(—2, 2) and B(6, —3), and m, be the slope of L,. Let L, be the line through 

C(—1, —7) and D(4, 1), and m, be the slope of L,. Then 

—3—2 1 — (—7) 
= ———— mM, IU My a=) 

Ly» \ = Eas =e 8 
8 s 

ee 
8 

Because 

MMs, = (- 3\8 
bi 8/5 

= —| 

Figure 1.8.19 it follows that L, and L, are perpendicular. e 

EXAMPLE 4 SOLUTION 

Prove by means of slopes that the | Refer to Figure 1.8.20. Let m, be the slope of the line through A and B, m, 

four points A(4, 2), B(2, 6), C(6, 8), | be the slope of the line through 4 and D, m, be the slope of the line through 

and D(8, 4) are the vertices of a rec- | B and C, and m, be the slope of the line through D and C. Then 

tangle. sl he —) 8 — 6 _ 8-4 
= ns. = win 

a = 4 * > 6=8 
_ 4 

6 

2 
4 ey) 

ik 
2 

a 29) 

Figure 1.8.20 
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Because m, = my, it follows that the line through A and B is parallel to the 

line through D and C. Because m, = mz, it follows that the line through A 

and D is parallel to the line through B and C. Because mm, = —1, we 

conclude that the line through A and B is perpendicular to the line through A 

and D. Therefore, the quadrilateral ABCD has its opposite sides parallel, and 

a pair of adjacent sides are perpendicular. Thus the quadrilateral is a 

rectangle. 

EXERCISES 1.8 

In Exercises I through 8, draw the graph of the given set of points. 

1, £5; —3), 073), 2G; 0); Ss. 3) 3 2. ((-—2,,.4), (—4,2), 2, —4), 4G —2)}} 

3. {(=6, —6), (0,0), Cl, 6). 46; — 6) 4. {(—5, 0), (0, —3), (6, —1), (8, 3)} 

5. ((— 9.4), (4, 0), (0,9), G, —4)} 6. {(—3, —3), (0,0),.G,5), 3, —3)) 

Tete 1 be 2),(4, 0) ore lee) 8. {(—10, —5), (—5, —10), (0, —5), (4, 10), (10, 5)} 

9. For the points A(—1,7) and B(6, 7), find (a) AB; (b) BA. 

10. For the points A(—2, 3) and B(—4, 3), find (a) AB; (b) BA. 

11. For the points A(3, —4) and B(@3, —8), find (a) AB; (b) BA. 

12. For the points A(—4, —5) and B(—4, 6), find (a) AB; (b) BA. 

13. If A is the point (—2, 3) and B is the point (x, 3), find x such that (a) AB — =8 (6) BA = —8. 

14. If A is the point (—4, y) and B is the point (—4, 3), find y such that (a) AB = —3; (b) BA = —3. 

In Exercises 15 through 22, draw a sketch of the line segment through the two given 

points and find the length of the line segment. 

15. d, 3); (—2, 7) 16. (4, =») (4, 5) 17. (8, 5) S; —7) 18. (6, —5), Q; =) 

19°(_ 1 3), 4,0) 20. (0, —2), (2, 0) 21. (—4,7), (1, —3) 22-)(—3, —4), (4,2) 

In Exercises 23 and 24, find the lengths of the sides of the triangle having vertices at the 

three given points. Draw a sketch of the triangle. 

23. A(4, —5), B(—2, 3), C(—1, 7) 24. A(2, 3), B(3, —3), C(—1, —)) 

In Exercises 25 through 30, draw a sketch of the line through the two given points and 

find the slope of the line. 

252 (352),.(;8) 26. (—4, —7), (—1, 2) 27. (6, —2), (2, 1) 

28. (5, —3), G, 7) 29. (8, —2), (—7, —2) 30. (0, —3), (—3, 0) 

31. By showing that two sides have the same length, 32. By showing that the three sides have the same 

prove that the three points A(—8, 1), B(—1, —6), length, prove that the three points A(—5, 0), 

and C(2, 4) are the vertices of an isosceles triangle. B(3, 0), and C(—1, 4/3) are the vertices of an 

Draw a sketch of the triangle. equilateral triangle. Draw a sketch of the triangle. 
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33 

34. 

3D: 

36. 

37. 

1 Ay) First-degree 

Equations in Two 

By showing that each pair of opposite sides have 

the same length, prove that the four points 
A(—2, —3), BCI, 6), C(3, —4), and D(6, 5) are the 

vertices of a parallelogram. Draw a sketch of the 
parallelogram. 
Use the converse of the Pythagorean theorem to 

prove that the points A(—3, —4), B(—1, 6), and 

C(3, 2) are the vertices of a right triangle. Draw a 

sketch of the triangle. 
By showing that opposite sides are parallel, prove 
that the four points A(0, 0), B(—2, 1), C(3, 4), and 

D(5, 3) are the vertices of a parallelogram. Draw a 

sketch of the parallelogram. 
Prove that the four points of Exercise 33 are the 
vertices of a parallelogram by showing that oppo- 
site sides are parallel. 
By showing that two opposite sides are parallel, 

prove that the four points A(—1, —3), B(8, 3), 

C(3, 4), and D(0, 2) are the vertices of a trapezoid. 

Draw a sketch of the trapezoid. 

Variables 

1.9.1 DEFINITION 

y 

pair in S. 

Figure 1.9.1 

38. 

59: 

40. 

41. 

42. 

Prove that the points A(—13,6), B(—5S, 21), 

Ce =>) and) DOO 13)eare thes vertices of a 

square. Draw a sketch of the square. 
Prove that the triangle with vertices at A(1, 1), 

B(2, 3), and C(5, —1) is a right triangle by two 

methods: (a) use the converse of the Pythagorean 
theorem; (b) show that two sides are perpendicular 

by using slopes. Draw a sketch of the right triangle. 

Prove that the three points A(—2, —3), B(—1, 0), 

and C(1, 6) are collinear by two methods: (a) use 

slopes; (b) use the distance formula. 

Find the ordinate of the point whose abscissa is 

—3 and which 1s collinear with the points (3, 2) 

and (0, 5). 

Find the ordinate of the point whose abscissa is 4 

and for which the line through it and the point 
(—2,5) is perpendicular to the line through the 
points (8, —4) and (—1, 2). 

If S is a subset of R x R, then S is a set of ordered pairs of real numbers. 
We now define what we mean by the “graph” of such a set. 

Let S be a subset of R x R. Then the graph of S is the set of all points (x, y) 
in a rectangular Cartesian coordinate system for which (x, y) is an ordered 

ILLUSTRATION 1. If S = {(—5, —4), (0, —2), (3, 0), (5, 6) }, the graph aed 

consists of four points, as shown in Figure 1.9.1. 

An equation in two variables, x and y, defines a set of ordered pairs. For 

example, consider the equation 

4x + 3y = 12 (1) 

for which the replacement set of x is R and the replacement set of y is R. An 
ordered pair of numbers (u, v) is said to satisfy equation (1) if, when wu is 

substituted for x and v is substituted for y, the resulting statement is true. An 

ordered pair that satisfies an equation is called a solution of the equation, and 
the set of all such ordered pairs is the solution set of the equation. 
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1.9.2 DEFINITION 

The solution set of equation (1) is an infinite set. Some of the ordered pairs 

in this solution set are (0, 4), (1, 8), (2, 4), (3, 0), (4, —4), (—1, 4), (-2, 20), 

and (—3, 8). These solutions can be verified by substituting into equation (1). 

For instance, (4, —4) is a solution because 

4-443-(-4)=12 

When discussing equations in one variable, we stated (Definition 1.4.3) 

that equations which have the same solution set are called equivalent equa- 

tions. This definition applies to equations in two or more variables, and as 

with equations in one variable, an equation equivalent to a given equation 

can be obtained by applying definitions, axioms, and theorems involving 

operations of real numbers. 
The solution set of an equation in two variables can be described using set 

notation and the given equation. For example, the solution set of equation 

(1) can be expressed as 

{(x, y) |4x + 3y = 12} 

However, sometimes when using set notation the given equation is replaced 

by an equivalent equation in which one of the variables is expressed in terms 

of the other. Equation (1) is equivalent to 

ya4—Sx (2) 

Thus the solution set of equation (1) can also be expressed as 

[only =4—Fe 

The graph of an equation in two variables is the graph of its solution set. 

The graph of an equation in two variables is also called a curve. 

Because the solution set of equation (1) is an infinite set, its graph consists 

of infinitely many points. We can determine some of the points by substitut- 

ing into the equation values for one of the variables and computing the 
corresponding values of the other variable. In Table 1.9.1, we list these 

representative solutions, which are obtained by substituting values of x into 

equivalent equation (2). 

Table 1.9.1 

x a4 fh 2) aa 0 1 2 3 4 

y 28 8 2 cs 4 3 3 0 —4 
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The points (—4, 28), (—3, 8), (—2, 22), (—1, 48), (0, 4), (1, 8), (2, 4) G, 0), 
and (4, —#) are plotted in Figure 1.9.2. These points appear to lie on a 

straight line. In fact, it can be shown that every solution of equation (1) 

corresponds to a point on the line, and, conversely, the coordinates of each 
point on the line satisfy equation (1). Thus the line is the graph of equa- 
tion (1). It is impossible to draw the complete graph because x and y both 
have values which are numerically as large as desired. However, we can draw 
what we call a sketch of the graph, as shown in Figure 1.9.3. This sketch is 
understood to be only an approximation of the complete graph; that is, the 

line does not terminate as shown but continues on in both directions. This 
continuation is indicated by the arrows at the extremities of the portion of the 
line shown. 

Figure 1.9.2 Figure 1.9.3 

Consider the general first-degree equation in two variables x and y, which 
is 

Ax + By +C=0 (3) 

where A, B, and C are constants and not both A and B are zero. Equation (1) 

is equivalent to the equation 

4x +3y — 12 =0 

which is in the form of equation (3), where A = 4, B = 3, and C = —12. 

Later in this section (Theorem 1.9.4) we prove that any equation equivalent 
to one of the form of equation (3) has a graph that is a straight line. 
Therefore, such an equation is called a linear equation. 

Because a line is determined by any two distinct points on the line, it is 

only necessary to find two solutions of a linear equation in order to determine 
its graph. Generally, the solution for which the first component is zero and 
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EXAMPLE 1 

Draw a sketch of the graph of the 

equation 

5x — 2y = 10 

EXAMPLE 2 

Draw a sketch of the graph of each 
of the following equations. 

(a) 3x —8¥) +9 =0 

(b) 4x + 5y = 0 

the solution for which the second component is zero are the easiest solutions 

to obtain. 

SOLUTION 
Because the equation is a first-degree equation, it is a linear equation and its 
graph is a straight line. When x is 0, we obtain —2y = 10 or, equivalently, 
y = —5. Thus the point (0, —5) is on the line. When y is 0, we obtain 
5x = 10 or, equivalently, x = 2. Hence the point (2, 0) is on the line. We plot 
these two points and draw the line through them as shown in Figure 1.9.4. 

Figure 1.9.4 

The abscissa (x coordinate) of the point at which a line intersects the x axis 

is called the x intercept of the line and the ordinate (y coordinate) of the 
point at which a line intersects the y axis is called the y intercept of the line. 
The x and y intercepts of a line are usually denoted by a and 5, respectively. 

For the line of Example 1, a is 2 and b is —5. 

SOLUTION 
Each of the equations is a linear equation and therefore each graph is a 
straight line. 

(a) For the line having the equation 3x — 8y + 9 = 0, the x intercept is —3 
and the y intercept is 2. Therefore, we plot the points (—3, 0) and (0, 2) 

and draw the line through them. See Figure 1.9.5. 
(b) For the line having the equation 4x + Sy = 0, both the x intercept and 

the y intercept are zero. Thus the line contains the origin. We need 

another point on the line; for instance, when x is 5, y is —4. We plot the 
point (5, —4) and draw the line through this point and the origin as 

shown in Figure 1.9.6. 
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EXAMPLE 3 
Draw a sketch of the graph of each 
of the following sets. 

(a) {(x,y)|x = —6} 

(b {x y) ly = 4} 

ve 

Figure 1.9.5 Figure 1.9.6 

The next example gives two special cases of linear equations in two 

variables. In each case the coefficient of one of the variables is zero. 

SOLUTION 
For each set, the graph is given by the solution set of the equation, and each 

of the equations is a linear equation. 
(a) For the equation x = —6, the coefficient of y is 0; that is, the equation 

can be written in the form x + Oy = —6. Therefore, any ordered pair of 

the form (—6, y) is a solution of the equation. For instance, the ordered 
pairs (—6, —4), (—6, —2), (—6, 0), (—6, 1), (—6, 5), and (—6, 10) are 

solutions of the equation. If we plot the graph of two of these ordered 

pairs and draw a line through the two points, we have the graph of the 
given set. It is a line parallel to the y axis and six units to the left of the 

Viakis sce Figures! Oc: 

My 

Figure 1.9.7 Figure 1.9.8 



80 Real Numbers, Equations, and Inequalities 
(Cae 1 

1.9.3 DEFINITION 

(b) The equation y = 4 can be written in the form Ox + y = 4. Thus any 

ordered pair of the form (x, 4) is a solution of the equation. Two such 

ordered pairs are (—3, 4) and (3, 4), and if we plot the corresponding two 

points and draw a line through them, we have the graph of the given set. 

The graph of the given set is a line parallel to the x axis and four units 

above the x axis; it is shown in Figure 1.9.8. 

We have discussed the graph of a first-degree equation in two variables. 

We now define what is meant by an “equation of a graph.” 

An equation of a graph is an equation that is satisfied by the coordinates of 

those, and only those, points on the graph. 

From Definition 1.9.3 it follows that an equation of a graph has the 

following properties. 

1. If a point P is on the graph, then its coordinates satisfy the equation. 

2. If a point P is not on the graph, then its coordinates do not satisfy the 

equation. 

We apply Definition 1.9.3 to find an equation of the line through two given 

points P,(x,, y,) and P,(X5, yy). Let the coordinates of any point P on the line 

be represented by (x, y). Then we want an equation that is satisfied by x and 

y if and only if P(x, y) is on the line through P,(x,, y,) and Patou ae 

consider two cases, X. = X, and xy F# xy. 

CASE 1: X, =X, 

In this case the line through P, and P, is parallel to the y axis, and all points 

on this line have the same abscissa. Therefore, P(x, y) is any point on the line 

if and only if 

xX =X, (4) 

Equation (4) is an equation of a line parallel to the y axis. Note that this 

equation is independent of y; that is, the ordinate may have any value 

whatsoever, and the point P(x, y) is on the line whenever the abscissa is x. 

CASE 2: xX, # X, 
The slope of the line through P, and P, is given by 

pene er we a (5) 

Ces 

If P(x, y) is any point on the line except (x,, y,), the slope is also given by 

sa cee 

x —X, 
m (6) 
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The point P is on the line through P, and P, if and only if the value of m 

from equation (5) is the same as the value of m from equation (6), that is, if 

and only if 

Via OSE ae a 

> rss] Xo — X1 

Multiplying on both sides of this equation by x — x,, we obtain 

oe Dt SR (Aa ii art aes (x — x3) (7) 

Equation (7) is satisfied by the coordinates of P, as well as by the coordinates 

of any other point on the line through P, and P,. 
Equation (7) is called the two-point form of an equation of the /ine. It gives 

an equation of the line if two points on the line are known. 

Ys — J 
If in equation (7) we replace "+ by m, we get 

X_y — Xy 

yyy = m(x — x) (8) 

Equation (8) is called the point-slope form of an equation of the line. It 
gives an equation of the line if a point P,(x,, y,) on the line and the slope m 
of the line are known. It is recommended that you use the point-slope form 
even when two points are given, as shown in the following illustration. 

ILLUSTRATION 2. To find an equation of the line through the two points 

A(—1,3) and B(5, 2), we first compute m. 

ii 5 2 

5 —(-l) 

oil 
6 

l 
6 

Using the point-slope form of an equation of the line, with A as P,, we have 

y—3= ais a. 

6y — 18 = —x - 1 

x+y—17=0 @ (9) 

Observe that equation (9) is written in the form of equation (3), where A 
is 1, B is 6, and C is —17. When a first-degree equation in two variables is 

written in the form of equation (3), it is said to be the standard form of a 

linear equation. 
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EXAMPLE 4 

Find the slope-intercept form of an 
equation of the line through the 
points (—7,—5) and (—3, —2). 

Draw a sketch of the line. 

Figure 1.9.9 

If in equation (8) the point (x,, y,) is (0, 5), we have 

y—b=m(x — 0) 

(10) 

Because b is the y intercept of the line, equation (10) is called the slope- 

intercept form of an equation of the line. This form is especially important 

because it enables us to find the slope of a line from its equation. 

[LLUSTRATION 3. To find the slope of the line having the equation 

6x + 5y — 7 = 0, we solve the equation for y, and we have 

Sy = —6x +7 

Bc Mateaila 
eres 0: 

Comparing this equation with equation (10), we see thatm = —$andb =. 
® Hence the slope is —8. 

SOLUTION 

If m is the slope of the line, then 

-2 -(-5) 
So Se 

=3 = (-7) 
3 

me 

Using the point-slope form of an equation of the line with (—7, —5) as P,, 

we have 

(= y = (3) = 4x - (-7)] 
4(y + 5) = 3(x +7) 

4y + 20 = 3x +21 

4y =3x4+1 

Orie 
PTT 

A sketch of the line is shown in Figure 1.9.9. 

Earlier in this section we stated that the graph of any first-degree equation 
in two variables is a straight line. We are now in a position to prove this 

statement. 
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1.9.4 THEOREM 

EXAMPLE 5 

Find an equation of the line that 
contains the point (—3, 5) and that is 
perpendicular to the line having the 
equation 2x —7y=4. Draw a 
sketch of each line on the same co- 
ordinate system. 

The graph of the equation 

Ax + By +C=0 

where A, B, and C are constants and not both A and B are zero, is a straight 

line. 

Proof. We consider two cases: B # 0 and B = 0. 

CASE, 1; BA 0 
Because B 4 0, we divide on both sides of the given equation by B and 

obtain 

Pee een 2G. 
ara ; B 

This is an equation of a straight line because it is the slope-intercept form, 

where m = wea eand b= os 
B B 

CASE 2: B = 0 
Because B = 0, we may conclude that A 4 0 and thus have 

Ae Oa) 

é 
Nr 

A 

This equation is in the form of equation (4), and hence the graph is a straight 
line parallel to the y axis. 

SOLUTION 
First we write the given equation in the slope-intercept form. 

2x —Ty =4 
—Ty = —2x +4 

ee 
saat Asan 

Thus the slope of the given line is 3. Let m be the slope of the required line. 

Because the two lines are perpendicular, the product of their slopes is —1. 

Therefore, 

= I | 
w|r 
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y Because the required line has a slope —4 and contains the point (—3, 5) we 
have, from the point-slope form of an equation of the line, 

y-S=-Z[x-(-3)] 
dy — 10 = —1(x +3) 
yl 0 Tere 

Ix +2y +11 =0 

In Figure 1.9.10 we have a sketch of each of the lines. 

Figure 1.9.10 

EXERCISES 1.9 

In Exercises 1 through 8, draw a sketch of the graph of the given equation. 

Ly = 2x 5 2. y = 6 —.3x Sa Ly = 21 4. 4x + 5y = 20 

5. 6y —x =6 6. 3x + 9v =6 Tes Se) 8. 2y — 9x = 18 

In Exercises 9 through 16, draw a sketch of the graph of the given set. 

9. {(x, y)|3x + 4y = 0} 10. {(x, y)|y = 4x — 2} 
11. {@,)|y = 8 — 3x} 12. {(x, y)|3x —4y =7} 

135 {ey (y= =} 14. Oy) (2209 } 
15. {(x,y)|3x + l0y = 15} 16. {(x, y)|2x — Sy =0} 

In Exercises 17 through 22, find an equation of the line through the two given points. 

Draw a sketch of the line. 

173,050), G53) 18. (3, 2), (—2, 3) 19. (5, 6), (—6, —5) 

20. (—4, —5), (—3, —1) 21. (4, —4), (4, 2) 22. (—2, —3), (8, —3) 

In Exercises 23 through 28, find an equation of the line through the given point and 
whose slope is m. Draw a sketch of the line. 

23. (3, —4), m= 2 24. (—4, —1), m= —3 25. (—2, 5), = 
26. (6,2), m = —4+ Dies (lr 3) eri 00 28. (7,4), there is no slope 

In Exercises 29 through 34, write the equation of the line in the slope-intercept form and 
determine the slope and the y intercept. Draw a sketch of the line. 

29. 2x —y+5=0 30. x = —3y +4 31. 6x —3y —2 =0 

32. 4x — y= 0 33. 3y +8 =0 34. 3x —9v +4=0 
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35. Find an equation of the line through the point is 3x — y + 9 = 0. Draw a sketch of each line on 

(3, —1) and parallel to the line whose equation is the same coordinate system. 

4x — 3y + 12 = 0. Draw a sketch of each line on 39. Find an equation of the line whose x intercept is 5 

the same coordinate system. and whose slope is —6. Draw a sketch of the line. 

36. Find an equation of the line through the origin 40. Find an equation of the line whose x intercept is 

and perpendicular to the line whose equation is —2 and whose y intercept is 6. Draw a sketch of 

2x — 5y + 6 = 0. Draw a sketch of each line on the line. 

the same coordinate system. 41. (a) Write an equation whose graph is the x axis. 

37. Find an equation of the line through the point (b) Write an equation whose graph is the y axis. 

(2, 4) and perpendicular to the line whose equation 42. (a) Write an equation whose graph consists of all 

is x — 5y + 10 = 0. Draw a sketch of each line on points having an abscissa of —7. 

the same coordinate system. (b) Write an equation whose graph consists of all 

38. Find an equation of the line through the point points having an ordinate of 3. 

(—5, —1) and parallel to the line whose equation 

REVIEW EXERCISES (CHAPTER 1!) 

In Exercises 1 through 9, list the elements of the given set (or sets) if N is the set of 

natural numbers, J is the set of integers, Q is the set of rational numbers, and H is the 

set of irrational numbers. 

A=(1249, B=@468) C={4,8} D={—4, v2,17,3, -5,0, -3,2,-v3} 

iL, Al UW) Jz 2, AL (A) 1B BAT € AN Je WIE 5, ID (Py Ny 6 DAS ae) ee) 3, JD) IA) Jal 

9. The subsets of B that have C as a subset. 

In Exercises 10 through 18, the given equality follows immediately from one of the field 

axioms (Axioms 1.2.1 through 1.2.7). Indicate which axiom applies. Assume that each 

variable is a real number. 

10. (2 +3) +5 =2+4+(3+4+5) Lice 

12 5-L=1 iQ, Sete 

14.44+(* +3) =(x +3) +4 15. 3-(4°5) =(3°4)°5 

16. 5(a +b) =5a + 5b MW, Oxa( By 0 

18. (xy\(zw) = xLy(zw)] 

In Exercises 19 and 20, find the value of the given expression if a = —4, b = 3, and 

C= —2, 
Bip > YAY 

19 epee rae Wy att) 
a® + 2b 

In Exercises 21 through 23, find the indicated root. 

21. e. 22. x/0.0016 ey Se 
81 
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In Exercises 24 through 26, write the given complex number in the form a + bi. 

= 4 
24) TEA E08 5 CA 64 6. aa Eas 

In Exercises 27 through 32, find the solution set of the given equation. 

27. 2(5x — 4) = 11 —@ + 2x) 28. 4x — 3x —5) =x —-—7 

x = fi —=33 Dif Be 3} ip te 3 
) = a) SS — 

29 a) Dye iO =a (oye ae SS) i i = Il 

31. x41) =3 32. |4x — 1] = |x +5 
xX — 

In Exercises 33 and 34, solve for x in terms of the other symbols. 

: d d l in ee ag 2 406 Gees 33. a-x — ab = b°x% +a 3 10x 5 = 

In Exercises 35 and 36, solve the given formula for the indicated symbol. 

ee 
35. Ax + By + C = 0, for y S60 eG 2 for m, 

In Exercises 37 through 44, find the solution set of the given inequality. Draw a sketch 
of the graph of the solution set. 

Sr Ox Lee IT 38. Sx +7 > 2x —2 

39, <t1_35%+2 40. —14<1—5x< ll 

Ye 7p eBE a 2) 
x — 3 x —2 

43. |2x —S5| <7 44, (3x +7|> 11 

45. Find the distance between the points (7, —4) and C(3,2) are the vertices of an isosceles triangle. 
(3,8): Draw a sketch of the triangle. 

46. Find the slope of the line through the points in 49. Prove that the three points A(0, —3), B(1, 4), and 

Exercise 45. C(2, 11) are collinear by two methods: (a) use 

47. Show that the line through the points A(—1, 3) slopes; (b) use the distance formula. 

and B(2, —5) is parallel to the line through the 50. Show that the line through the points A(—8, —1) 
points C(—1, 12) and D(2, 4). Draw a sketch of the and B(—3, 5) is perpendicular to the line through 

two lines. the points C(1, 3) and D(7, —2). Draw a sketch of 

48. By showing that two sides have the same length, the two lines. 
prove that the three points A(—1, 3), B(2, 6), and 



Review Exercises 87 

In Exercises 51 through 53, the points A, B, C, and D are the vertices of a quadrilateral. 

Use slopes to determine if the quadrilateral is a rectangle, a parallelogram, or a 

trapezoid. Draw a sketch of the quadrilateral. 

51. 
52. 
53: 

54. 

5: 

56. 

ile 

58. 

59. 

60. 

61. 

Alem) B (S,2). CLS, 5), DCT, '6) 

A(—8, 0), B(—3, —5), CU, 4), D(3, 2) 

A(3, 1), B(2, —2), C(—1, —1), D(O, 2) 

Find an equation of the line through the point 
(5, —2) and having a slope equal to —3. Draw a 

sketch of the line. 
Find an equation of the line through the two 

points (—7, —2) and (4, 1). Draw a sketch of the 

line. 
Find an equation of the line through the point 

(—3, —2) and parallel to the line having the equa- 
tion 7x — 3y — 4 = 0. Draw a sketch of each line 

on the same coordinate system. 
Find an equation of the line through the point 
(—2,3) and perpendicular to the line having the 
equation 3x + 2y + 4 = 0. Draw a sketch of each 

line on the same coordinate system. 
At a post office, a woman purchased some stamps 
having denominations of 10, 15, and 31 cents. She 

purchased three times as many 10-cent stamps as 
15-cent stamps and five more 15-cent stamps than 
31-cent stamps. If she paid $5.29 for the stamps, 
how many of each kind did she buy? 
A company obtained two loans totaling $30,000. 

The interest rate for one loan was 8 per cent, and 
for the other loan it was 11 per cent. The total 
annual interest for the two loans was equal to the 

interest the company would have paid if the entire 
amount had been borrowed at 10 per cent. What 
was the amount of each loan? 
How many liters of a solution that is 55 per cent 
glycerine should be added to 25 liters of a solution 
that is 28 per cent glycerine to give a solution that 
is 35 per cent glycerine? 
A group of 4 students decide to hire a tutor for a 
review session prior to an examination, and the 

62. 

63. 

64. 

65. 

66. 

67. 

tutor’s fee is to be shared by each student. If two 

additional students join the group, the cost to each 
student is reduced by $3. What is the cost per 
student if 4 are in the group, and what is it if 6 are 

in the group? 
A man can paint a room by himself in 8 hours, and 

it takes his son 12 hours to do the same job. The 
man works by himself for 3 hours. Then his son 

joins him and the two together complete the job. 

How long does the son work? 
In a long-distance race around a 400-meter track, 
the winner finished the race one lap ahead of the 
loser. If the average speed of the winner was 6 
meters per second and the average speed of the 
loser was 5.75 meters per second, how soon after 
the start did the winner complete the race? 

A man leaves home at 8 A.M. and walks to his office 
at the rate of 8 kilometers per hour. At 8:15 A.M., 

the man’s son leaves home and rides his bicycle at 

a rate of 20 kilometers per hour along the same 
route to school. At what time does the son overtake 

his father? 
An automobile radiator contains 8 liters of a solu- 
tion that is 10 per cent antifreeze and 90 per cent 
water. How much of the solution should be 
drained and replaced with pure antifreeze to ob- 
tain a solution that is 25 per cent antifreeze? 
The perimeter of a rectangle must not be greater 
than 30 centimeters and the length must be 8 
centimeters What is the range of values for the 

width? 
A student must receive an average score of at least 
90 on five examinations in order to receive a grade 
of A in a particular course. If the student’s scores 
on the first four examinations are 93, 95, 79, and 

88, what must be the score on the fifth examination 

in order for the course grade to be A? 
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Second-degree Equations 
and Inequalities 



2.1. Second-degree 

Equations in One 

Variable 

90 

2.1.1 THEOREM 

An equation equivalent to an equation of the form 

ax? + bx +c =0 (1) 

where a, b, and c are constants representing real numbers and a ¥ 0, is called 

a second-degree equation, or quadratic equation, in the variable x. The 

equations 
6x? + 7x —3 =0 (2) 

Xm Ove 250? (3) 

Ix =3 — 4x? (4) 

x2 —-7=0 (5) 

3x2 — 4x =0 (6) 

are examples of quadratic equations in x. A quadratic equation is said to be 

in standard form when it is written in the form of equation (1). Equation (2) 

is in standard form, where a is 6, b is 7, and c is —3. Equation (5) is in 

standard form, where a is 1, b is 0 and c is —7, and equation (6) is in standard 

form, where a is 3, b is —4, and c is 0. Note that it is possible for either b 

or c to be 0 as in equations (5) and (6), respectively. However, the restriction 

that a ~ 0 is necessary in order to have a second-degree equation. 

Equation (3) is equivalent to the equation 

2x2 — x —10 =0 (7) 

which is obtained from equation (3) by adding —2x? to both members and 
then multiplying both members by —1. Equation (7) is a standard form of 
equation (3). By adding 4x? and —3 to both members of equation (4), we 

obtain 
4x2 + 7x —3 =0 

which is a standard form of equation (4). 
Recall that the replacement set of a variable in an equation is the set of 

numbers for which the algebraic expressions in the equation are defined. For 
quadratic equations in standard form we consider the replacement set to be 

the set C (the set of complex numbers). We wish now to find the solution set 

of a given quadratic equation, that is, all numbers in the replacement set 

which satisfy the equation. 
One method of finding the solution set of a quadratic equation involves the 

following theorem, the proof of which is based on properties of the set C 

similar to those for R given in Section 1.2. 

If 7s) Gr@athen: 

rs =0° ° ifand only if r=00re=0 
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Theorem 2.1.1 can be extended to a product of more than two factors. For 

instance, if r,s, t,u € C, then rstu = 0 if and only if at least one of the 

numbers r, s, ¢, or u is 0. 

ILLUSTRATION 1. To find the solution set of the equation 

De i 1 Once (8) 

we factor the left member and obtain 

(x + 5)(x — 2) =0 (9) 

By applying Theorem 2.1.1, it follows that equation (9) gives a true statement 

if and only if 

irs 58 gra) (10) 

or 

x—2=0 (LD) 

Hence both equation (10) and equation (11) give a solution for equation (8). 

The solution of equation (10) is —5 and the solution of equation (11) is 2. 

Therefore, the solution set of equation (8) is {—5, 2}. 
The solutions can be checked by substituting —5 and 2 into the original 

equation (8), as follows. 

Does (—5)*? + 3(—5) — 10 = 0? Does 2? + 3(2) — 10 = 0? 

(—5)? + 3(—5) — 10 = 25 — 15 — 10 2? + 3(2) —- 10 = 44+ 6 — 10 

—0 =) 0 

Therefore, both of the solutions check. @ 

In Illustration | we see that the solution set of equation (8) is the union of 

the solution sets of equations (10) and (11). The method used in this illus- 

tration can be applied to any quadratic equation in standard form (the right 

member is zero) for which the left member can be factored. That is, after the 

left member is factored, each factor is set equal to zero, and the solutions of 

these first-degree equations are found. Then the solution set of the given 

quadratic equation is the union of the solution sets of the two first-degree 

equations. 

ILLUSTRATION 2. To solve the equation 

16x? — 56x + 49 = 0 (12) 

we factor the left member and obtain 

(Ay = 7)? = 0 

(4x — 7)(4x — 7) =0 (13) 
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Each of the factors in equation (13) gives the same value of x as a solution. 

Therefore, equation (12) has two equal roots of $. The solution set is {4}. 
® 

In Illustration 2 the solution set of the quadratic equation consists of just 

one number; however, this number is called a double root (or a root of 

multiplicity two) of the given equation. Every quadratic equation has two 

roots; in Illustration 1 the roots are unequal, and in Illustration 2 the roots 

are equal. 

EXAMPLE 1 SOLUTION 

Find the solution set of each of the | We first write the given equation in standard form. Then we factor the left 

following equations. member, set each factor equal to zero, and solve the equations. 

5X Rese an ae Be x +4 
(a) 1+ 3 (a) had 3 (b) rane) = 

3x xe ah. Al - Spi Dies 3x 5p ak 
b ae 1 —_ — ———_—— en a — OO Nent) = (09 A erate Ober a ae 

6+ 5x = 4x? 3x? = (x + 2)(x + 4) 
Ay er Ort 3x2 = x2 + 6x +8 

4x? — 5x —6=0 2x2 — 6x —8 =0 
(4x + 3)(x —2)=0 eS 3x 4 = 0 
4x +3 =0 x => 2 = 0 (x — 4\(x + 1) =0 

4x = —3 2 KAA =O x te lO 
3 Ke 4 Sri 

KS SS = 
4 The solution set is {—1, 4}. 

The solution set is {—#, 2}. 

If we have a quadratic equation of the form x? = d (that is, there is no 
first-degree term), then an equivalent equation is 

Kid =) 

and factoring the left member, we obtain 

(x + Vd\(x — Vd) =0 
We set each factor equal to zero and solve the equations. 

x + Vd =0 x — Vd =0 

x=-— Vd peal 

Therefore, the solution set of the equation x2 = d is {— Vd, Vd}. 
Another approach to solving the equation x? = dis to apply the definition 

of a square root of a number. That is, 

x?=d 
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EXAMPLE 2 

Find the solution set of each of the 

following equations. 

(Qe =) 0) 

(D)r3xce-47 =. 0 

if and only if 

x = Vd or x=—wVd 

A more concise way of writing the two numbers \/d and — Vd is to write 

+ \/d. Hence 

x?=d  ifandonlyif x=+Vd (14) 

where x = +/d stands for the two equations x = \/d and x = — Vd. 

SOLUTION 

(a) xte 9) 5 = 0) (b) 3x2 7 = 0 

ie Boe Ee 

Mey 23 a 7 

coats) rae Re 
The solution set is {—S, 5}. i 

XGSheis ee 

3 

bMS) 
Moe 32 

: It a 
oS) 

The solution set is {-i 
ON Oe = | 

=H ; 
3 3 

To demonstrate the check of complex roots, we verify the solutions found 

in Example 2(b). 

V/21\2 Vo 
Does 3(-i 3 ) +7—0? Does 3(i 5 ) +7=0? 

V21\2 | Py/21\2 Di 

3 9 3 9 

=(—-1)7) +7 =(—)D@) +7 

Therefore, both of the solutions check. 

ILLUSTRATION 3. To find the solution set of the equation 

era 46 (15) 

we first write the equation in standard form as 

5x* — 4% = 0 
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EXAMPLE 3 
Find a quadratic equation in stand- 
ard form having the given pair of 
roots. 

2 
(a) -= and 5 (b) si anh = 3i 

Then we factor the left member and obtain 

x(5x — 4) =0 

By setting each factor equal to zero, we have 

oii) 5x —4=0 

4 
x=— 

5 

Therefore, the solution set is {0, #}. 
Note that it is incorrect if in equation (15) both members are divided by x 

because if this is done we obtain the equation 

S3e = dl 

which has only the solution 4, and the solution 0 is lost. e 

Illustration 3 indicates why you should avoid dividing both members of an 
equation by an algebraic expression containing the unknown. 

Consider now the problem of finding a quadratic equation having two 
given numbers as solutions. Suppose, for instance, that r and s are the given 
roots. We know that the quadratic equation 

(x —r\(x —s)=0 (16) 

has the solution set {r,s}. Hence by multiplying the factors in the left 
member of equation (16), we have a quadratic equation in standard form for 
which r and s are solutions. 

ILLUSTRATION 4. A quadratic equation having the solutions 4 and —3 is 

(x — 4)[x —(—3)] =0 
(x — 4)(x + 3) =0 
Kom Kl 2 = 0 © 

SOLUTION 
(a) The following equations are equivalent, having —# and 2 as roots. 

[-(-4)1-3)=0 
(+ 4)(-2)=0 

*-2xt+tx-2=0 
5 7 

Multiplying each member of the equation by 35, we obtain 

B5%-— 14445 en 

35x = 9x 

x 
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EXAMPLE 4 

A girl can row a boat 12 kilometers 
downstream and return a distance of 

12 kilometers upstream in 4 hours. If 
the rate of the current is 4 kilometers 
per hour, what is the girl’s rate of 
rowing in still water? 

Second-degree Equations in One Variable 95 

(b) The following equations are equivalent equations having #/ and — 3i as 
roots. 

(x - 31)|x -(-3:) |= 

Geach all pean X 16‘ = 

16x? +9 =0 

If a quadratic equation is obtained when solving a word problem, it is 
possible that one of the two roots of the quadratic equation does not satisfy 
the conditions of the problem. For instance, if a quadratic equation has both 
a positive number and a negative number as roots and the variable in the 
equation represents the measure of the length of a room, we reject the 
negative number as a solution to the word problem. Of course, it can happen 

that both roots of a quadratic equation are acceptable solutions to a word 
problem, and furthermore it is possible that neither of the two roots of a 
quadratic equation fits the conditions of a problem. 

SOLUTION 
Let r represent the number of kilometers per hour in the rate of the boat in 
still water. Then, because the rate of the current is 4 kilometers per hour, the 
effective rate of the boat going downstream is (r + 4) kilometers per hour, 
and the effective rate of the boat going upstream is (r — 4) kilometers per 
hour. Table 2.1.1 gives the number of hours it takes to travel each way. 

Table 2.1.1 

Number of Number of 
: : Fl Number of 

Kilometers in Pa Ki ometers per Hours aa 
Distance Hour in ine 

Traveled Effective Rate 

Downstream 12 r+ 4 12 
r+4 

12 
t 12 =—4 Upstream r ETA 

The total number of hours of travel time can be represented by either 4 
or the sum of the entries in the last column of the table. Thus we have the 

following equation. 
12 i 12 = 4 iy) 

r+4 r—4 oy 
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EXERCISES 2.1 

We solve the equation 

+ ar — 2 4 4 yr - 9 = 4 0 - 94 
r+4 

127 = 4) bor 4) a 
127 — 48 + 12r 4 48 = 472 — 64 

= Are Aye 0) 

r? — 6r — 16 = 0 

(r — 8)\(r + 2) =0 

r—8=0 r+2=0 

= 8 r= —2 

Both 8 and —2 satisfy equation (17) and therefore the solution set of equation 
(17) is {—2, 8}. We reject the negative root because r must be a positive 

number. 
Hence the rate of the boat in still water is 8 kilometers per hour. 

CHECK: The effective rate of the boat going downstream is 12 kilometers 
per hour, so it takes 1 hour for the boat to go 12 kilometers downstream, the 

effective rate of the boat going upstream is 4 kilometers per hour, so it takes 
3 hours for the boat to go 12 kilometers upstream; and | + 3 = 4. 

In Exercises 1 through 28, find the solution set of the given equation. If more than one 
variable appears in the equation, solve for x in terms of the other variables. 

1. x? = 49 

3. x?+9=0 

Bip ote a lee) 

7. 4x2 =x 

9, x2 = 8x = 15 

1isw2- 10 —3°=0 

13. 2i-2 15)= 2472 

15. 49x? + 84x + 36 = 0 

17. 18y? + 57y + 45 =0 

19. 9x? — 9ax 4+ 2a =0 

21. 10a*x? — 9abx — 7b? = 0 

23. (x — 6)\(x + 2) =9 

3t 

3¢ +4 

70 23 

25. 
Dt 

Hana cee 

27. ————{~ = —— -3 
Xe Ax ee 32S 

2s 225X716 = 0 

4, 3y7 — 5 =U 

6 3x7 +7=0 

8. 4x7 +x =0 

10. y2 — lly + 28 =0 
12a 2x = 0 

JU Si) = BRAS Say 

16525x27- 385-30: = 0 

18. 64y? — 80y + 25 = 0 

20..3x7 4 7bx = 657 = 0 

22. (x — 5)? = 4(x — 2) 

74) 2 one) 
y ae 

32 = 3 
26, = Be eee 

pete she Bie) ze st Il 

age) Owen lo ea 
x2] x—1 2 
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In Exercises 29 through 38, find a quadratic equation in standard form having the given 

pair of roots. 

29. 

33. 

Si. 

39. 

40. 

41. 

42. 

Daf Completing a 

5 and —2 30. —4 and —7 

O and —4 34. 6a and 4a 

4i and —4i 38. 27 and —32i 

The sum of the reciprocals of two consecutive even 

integers is 7. What are the integers? 
It takes a boy 15 minutes longer to mow the lawn 
than it takes his sister, and if they both work to- 

gether it takes them 56 minutes. How long does it 
take the boy to mow the lawn by himself? 
A page of print containing 144 square centimeters 
of printed area has a margin of 43 centimeters at 

the top and bottom, and a margin of 2 centimeters 
at the sides. What are the dimensions of the page if 
the width (across the page) is four-ninths of the 
length? 
It is desired to have an open bin with a square 
bottom, rectangular sides, and a height of 3 meters. 
If the material for the bottom costs $5.40 per 
square meter and the material for the sides costs 
$2.40 per square meter, what is the volume of the 

bin that can be constructed for $63 worth of mate- 
rial? 

Square and the 

Quadratic Formula 

43. 

44. 

45. 

46. 

31. 2 and 32. 2 and —} 

Bsn end: 36. i and —i 
a b 

It took a faster runner 10 seconds longer to run a 

distance of 1500 feet than it took a slower runner 

to run a distance of 1000 feet. If the speed of the 
faster runner was 5 feet per second more than the 
speed of the slower runner, what was the speed of 
each runner? 

A motorboat takes 50 minutes longer to go 40 

kilometers up a river than to return the same dis- 

tance. If the rate of the boat in still water is 20 

kilometers per hour, what is the rate of the current? 

A college rowing team that can row 24 kilometers 
per hour in still water rowed a distance of 15 

kilometers downstream. If the rate of the current 

had been double its actual rate, the team would 

have covered the distance in 5 minutes less time. 

Find the actual rate of the current. 

Are there two consecutive even integers, the sum of 

whose reciprocals is &? If your answer is yes, find 

them. If your answer is no, prove it. 

In Section 2.1 we learned that the solution set of an equation of the form 

x2? =d 

is the union of the solution sets of the two equations 

Se and x= —vVd 

In a similar way, if E as an algebraic expression, then the solution set of the 
equation 

E2=d (1) 

is the union of the solution sets of the equations 

Ee N/a E=—\Vd and 
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ILLUSTRATION 1. The solution set of the equation 

(x —6)? =10 (2) 

is the union of the solution sets of the equations 

x —6= V/10 and x—6=—V10 (3) 
x =6+ V10 and x =6-— V10 (4) 

Hence the solution set of equation (2) is {6 — 10,6 + V10}. e 

Note that equations (3) can be written more concisely as 

x—-6= + 4/10 

and equations (4) can be written more concisely as 

x=6+ V10 

The method used in Illustration 1 can be applied to find the solution set of 

any quadratic equation. The first step is to write the equation in a form 

similar to equation (1); that is, the left member is a square of an algebraic 

expression containing the variable and the right member is a constant. 

ILLUSTRATION 2. To find the solution set of the equation 

Ox A REO ea 0 (5) 

we first add 5 to each member and then divide each member by 2 (the 

coefficient of x7). 

x? + 3x a3 (6) 

We now add to each member the square of one-half of the coefficient of the 
first-degree term; that is, we add (3)? to each member. We obtain 

De. 2188 fed ek ae, ee x? + 3x +7 rie] (7) 

The left member is now the square of (x + 3), so we have 

30) ieee 
(x 2 me (8) 

Equations (5), (6), (7), and (8) are all equivalent, and equation (8) is in the 

form of equation (1). The solution set of equation (8) is the union of the 

solution sets of the equations 

I+ oa x+55 
Sie 

3) 19 
= 

2 
x= — 

N| 
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EXAMPLE Il 

Add a term to each of the following 

algebraic expressions in order to 
make it a square of a binomial; also 
write the resulting expression as a 

square of a binomial. 

(a) x? + 6x 

(Dex — 15x 

(c) x? + ox 

EXAMPLE 2 

Find the solution set of the following 
equation by completing a square. 

Xe Onl) 
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—3 — V19 see) 
a i 2 

Hence the solution set of equation (5) is | 

The method used to obtain equation (8) in Illustration 2 is called complet- 
ing a square. The important step is obtaining equation (7) equivalent to 
equation (6). Note that in equation (6) the left member is cael (ine 

coefficient of x? is 1 and the coefficient of x is 3). We added the square of 
one-half of 3 to each member of equation (6) which gives the equivalent 
equation (7), in which the left member is (x + 3). More generally, if we have 

5% Se flex (9) 

hea\'2 : 
we add (<) to complete the square; that is, 

k? k \2 2 i — xg hx t= (x44) 

Observe in binomial (9) that the coefficient of x? is 1. 

SOLUTION 

The coefficient of x” in each of the given expressions is 1. Hence, to complete 
a square, we add the square of one half of the coefficient of x. 

2 

(a) x? + 6x + ($) were OGu-e9 

=(x + 3)? 

y 

(b) x? — 5x + (3) Sao += 

SOLUTION 
For the given equation we first find an equivalent equation in which the left 
member is of the form x2 + kx; hence we add | to each member and then 

divide each member by 5. Doing this, we have 

6 l 
x? = ae ee (10) 
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The coefficient of x is —Sand one half of —£is —2. We therefore add (— 3)? 
to each member of equation (10) and obtain 

oO 9 l wy) 

mem 5 TTD Sioa SIRES 
33\ 702 14 2 11 

(» 25 va 
14 v14 vil4 

The square roots Ohag are — and — 5 and therefore the solution set 

of equation (11) is the union of the solution sets of the equations 

3 14 3 Vv l4 
x —-==— and x—-== ——— 

5 5 5 5 

We solve each of these equations. 

3 Vv 14 3 V 14 

Sines TiS owns haa ae 
spa a: bt 

ae 5 a 5 

3 wilt 3 V14 
The solution set is then po -S} 

Consider now the general quadratic equation in standard form 

ax* + bx +c =0 (12) 

We solve this equation for x in terms of a, b, and c by completing a square. 

We first add —c to both members of the equation and then we divide both 

members by a (remember a ¥ 0), and we have 

b b \? Cc b \? 2 oO me Ve ec ae 

i +2x+4(2) <+(2) 

(x+2)'=2 mele) 

2a) 4a? aa 

b \? _ b? — 4ac 
(x+ ) =e (13) 

We solve equation (13) by equating x + 2 to the two square roots of the 

right member, and we have 

\/b2 — 
9 po ew ees 

2a 2a 
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EXAMPLE 3 

Use the quadratic formula to find 

the solution set of each of the fol- 

lowing equations. 

(a) 6x? = 10 + 11x 

(b) x? +3x41=0 

b ” Vb? — 4ac 
ai = 

2a 2a 

—D 2 y/b2 — dac 
x= See eor ee or ea (14) 

The two values of x given by equations (14) are the solutions of equation 
(12). Thus the solution set of equation (12) is 

= pi—0\/ 0 4ac & — Det \/b* — 4ac 

2a 2a 

Equations (14) are known as the quadratic formula. The quadratic formula 
can be used to find the solution set of any quadratic equation by substituting 

into the formula the values of a, b, and c given by the equation. 

SOLUTION 

(a) We write the given equation in standard form as 

6x? — Ilx — 10 =0 

Using the quadratic formula (14) where ais 6, bis —11, and cis —10, we 

have 

lee Whip OTe 
SS — — eee 

2a 

_ (=H) + V(=11)? = 4(6)(— 10) 
_ 2(6) 

Bia P1240 

ny 12 

‘yl cS 

7 12 

ik ed 

= 12. 

Therefore, 

_ 11419 _ 11-19 

0 1 a 12 

20 _-8 
0 a) aD 
ae pak 2 ae Ss 5 a 3 

The solution set is {—%, 3}. 
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(b) Writing the given equation in standard form, we have 

3x2 ++5x +3 =0 

We now use the quadratic formula, where a is 3, b is 5, and c is 3, and 

obtain 

—b + Vb? — 4ac 

2a 

—5+ y(5)? — 4(3)(3) 

a 2(3) 
—5 + 25 — 36 

= 6 
=) te \/— 

a 6 
Sues vst 

i 6 

Sf a5 iy Le eae 
The solution set is | r ; r \ 

Let r and s denote the roots of the general quadratic equation 

ax? + bx +c =0 

where a, b, and c are real numbers. Let 

—b + /b? — 4ac per . —b — Vb —4ae 
r= = 

2a 2a 

The number represented by b? — 4ac is called the discriminant of the quad- 
ratic equation. By finding the value of the discriminant, we obtain informa- 
tion about the character of the roots without actually solving the equation. 

1. If 62 — 4ac = 0, then 

ras? and s= e-F: 
2a 

and therefore r and s are equal real numbers. In such a case the root — = 

is said to be of multiplicity two. 
2. If b? — 4ac < 0, then b? — 4ac is a negative number, and therefore r and 

s are imaginary numbers. 
3. If b? — 4ac > 0, then b? — 4ac is a positive real number, and therefore r 

and s are unequal real numbers. If, furthermore, a, b, and c are rational 

numbers, then b? — 4ac is a rational number because when the operations 
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EXAMPLE 4 

Determine the character of the roots 

of each of the following equations. 

(a) 2x? +6x +7=0 

(BIS x%2— 11452) =)0 

(c) 11x? + V5x —1=0 

of addition, multiplication, and subtraction are performed on rational 
numbers the results are rational numbers. In such a case 

(i) rand s are rational numbers if and only if b? — 4ac is the square of 

a rational number; 

(ii) rand s are irrational numbers if and only if b? — 4ac is not the square 
of a rational number. 

ILLUSTRATION 3. To determine the character of the roots of the equation 

3x? — 2x —6 =0 

we compute the value of the discriminant. 

bee 4a (2) — ACs) 6) 

= 16 

The discriminant is positive and not the square of a rational number. Hence 
the roots are unequal irrational numbers. e 

SOLUTION 
(a) For the given equation a is 2, b is 6, and ¢ is 7. Hence 

b? — 4ac = 6? — 4(2)(7) 
= 36 — 56 

= —20 

The discriminant is negative and therefore the roots are imaginary 
numbers. 

(b) Because a is 5, b is —11, and c is 2, 

b2 — 4ac = (—11)2 — 4(5)(2) 
S10 40 
=e 

The discriminant is positive and is the square of a rational number, 
where a, b, and ¢ are rational. Hence the roots are unequal rational 
numbers. 

(c) For the given equation, a is 11, b is \/5, and c is —1. Hence 

b2 — 4ac = (V5)? — 4(11)(—1) 
= 5 ++. 44 
= 49 

The discriminant is positive. The roots are unequal irrational numbers. 
Note that even though the discriminant is 49, which is the square of a 
rational number, the roots are not rational because the coefficient of x in 

the equation is \/5 (an irrational number). 
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EXAMPLE 5 

Find the values of k for which the 

equation 9x? +kx + 16 =0 has 

equal roots. 

SOLUTION 

The equation has equal roots if and only if the discriminant is zero. Here, a 

is 9, bis k, and c is 16. Thus 

b? — 4ac = k*? — 4(9)(16) 

Equating the discriminant to zero and solving the quadratic equation, we 

have 
k? — 576 =0 

ae oh 

ese 24 

cHEck: When k is 24, the given equation is 

Ope ak Wbe 26 NG = 0 

Qx=- 4) —= 0 

and the roots are —4 and —#. 
When k is, —24, the given equation is 

9x2 24x = 165 = 0 

(3x — 4)\2 = 0 

and the roots are 4 and 4. 

As discussed in Section 1.4, if an equation contains more than one variable 

and we wish to solve for one of the variables in terms of the other variables, 

then we treat the variable for which we are solving as the unknown and the 

other variables as known. 

ILLUSTRATION 4. To solve the equation 

3x? taxp + x — 3 5 

for x in terms of y, we first write the equation as a standard form of a 

quadratic equation in x. 

3x? + (y + 1l)x + (—3y — 5) = 0 

We now use the quadratic formula, where ais 3, bis y + 1, andcis —3y — 5. 

—b + Vb? — 4ac 

2a 

_-9t+)+ VO + 1? = 46\(-3y — 5) 
. 2(3) 

_ -y— lt Vy? + 2y +1 + 36y + 60 
G 6 

—y—l+ Vy? + 38y + 61 

6 
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EXAMPLE 6 

If a projectile is shot vertically up- 

ward with an initial velocity of V 
feet per second, and s feet is the 
distance of the projectile from the 
starting point at ¢ seconds, then 

5s = Vt — 16f2 

Solve this formula for /. 

EXAMPLE 7 

A park contains a flower garden, 50 

meters long and 30 meters wide, and 

a path of uniform width around it. If 

the area of the path is 600 square 
meters, find its width. 

w meters w meters 
a“ — 

w meters{ 

30 meters 

«(50 + 2w) meters Ww meters( 

}+——(30 + 2w) meters —| 

Figure 2.2.1 

SOLUTION 

Writing the formula as a standard form of a quadratic equation in /, we 

have 
16° — Vt +5 =0 

We use the quadratic formula, where a is 16, bis — V, and cis s, and we have 

.- 7+ Vb? — 4ac 
2a 

(—V) + V(—V)* — 4(16)(s) 
= 2(16) 

V+ VV2 — 648 

7 32 

SOLUTION 

Let w represent the number of meters in the width of the path. Refer to 

Figure 2.2.1. The area of the park minus the area of the garden is equal to 

the area of the path; thus we have the equation 

(50 + 2w)(30 + 2w) — 50 +30 = 600 
1500 + 160w + 4w? — 1500 = 600 

4w* + 160w — 600 = 0 
w? + 40w — 150 = 0 (15) 

We solve equation (15) by using the quadratic formula, where a is 1, b is 40, 

and c is —150. 

—b+ Vb? — 4ac 

Og 

—40 + (40)? — 4(1)(—150) 

re beet (1) (ja aew 

—40 = 1/2200 
sacar 

—40 + 10/22 
a 

= —20 +5722 

Therefore, the solution set of equation (15) is {—20 —5 */ 22, — fo) = 

5 \/22}. Because w must be a positive number, we reject the negative root. 
Because 22 = 4.69, an approximate value for w is —20 + 5(4.69); that is 

w = 3.45. Therefore, the width of the path is 3.45 meters. 

w= 

cHEecK: The park is 56.90 meters long and 36,90 meters wide; hence 

the area of the park is 2100 square meters. The area of the garden is 1500 
square meters and the area of the path is 600 square meters; and 
2100 — 1500 = 600. 
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EXERCISES 2.2 

In Exercises | through 8, add a term to the given algebraic expression in order to make 

ita square of a binomial; also write the resulting expression as a square pag binomial. 

1, x? + 6x 2. x* — 4x 3. ot Lig 4, y2+y 

5. w? + dw 6. x? — #x — dax 8. 12 + Ast 
x 

In Exercises 9 through 16, find the solution set of the given equation by completing a 

square, 

9 x* + 7x +10 =0 10. x? — 5x +6 =0 

11, 3f¢ = 12 — St 12, 2y* = Ly — 12 

13.8 ae he | 0 14. on “ix7—1=0 

15. 3y* ++ 4y +2 =0 16. = 4w2 + 2 

In Exercises 17 through 26, find the solution set of the given equation by using the 

quadratic formula, 

17, x* —3x —4=0 18 x? + 2x —3 =0 

19, 2x7 +x — 15 =0 20. a +4y-—3=0 

21. 2x +2 =x* 22. x* + 1 = 6x 

23, 2% —4¢ +7=0 24, 452 — 12s + 13 =0 

25. 25y* — 20y +7 =0 26. 9x* + 12x +52 =0 

In Exercises 27 through 36, find the discriminant and determine the character of the 

roots of the given quadratic equation, do not solve the equation. 

27, 6x* — llx — 10 =0 28. 4x2 + 12x +9 =0 

29, 3x2 — 4x = 3 30. 4¢2 + 2¢ ++1=0 

31, 3y = 2p? + 5 32. 4x —4 = —5x? 

33, 25x"? — 40x + 16 =0 34, 5x2 = 4x — 8 

35. Sw? + V/5w — 11 =0 36. 14y?2 + lly — 15 =0 

In Exercises 37 through 42, find the values (or value) of k for which the given equation 

has equal roots. Verify your results, 

37, 25x? + kx + 36 =0 38. 4x2 + 2kx +9 =0 

39, x? + 2kx — 1 = 2k 40. 2y? —ky +k =0 

41. 2(ky + DGy — 4) +9 =0 42. 7x? — 1 = 8kx? — 2kx 

In Exercises 43 through 52, solve for x in terms of the other symbols. 

43. Sax? — 3x — 2a = =0 44, 6dx? — 3dx +5 =0 
45, x? + b? = 2bx + a*x* 46. x? + 2ax + a? = b*x? 

47, 2x? + 30) — 7x = 2y? — lly +15 48 x? + xy + 4x =2y? —17p + 21 
49, 2x? + 2xp — yp? =0 50. x2 + xy + 2x —1=0 
51, x? — 2xy — 4x — 3p? = 0 52. 9x® — 6xy+ py? — 3y =0 
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53. If r, and r, are the roots of the quadratic equation ax* + bx + c = 0, show that 

b Cc 
ntr=-— and rr. = — 

$ a a 

In Exercises 54 through 57, use the formulas of Exercise 51 to find the sum and product 
of the roots of the given equation. 

54. 4x2 +5 = 6x 55. 6x* = 3 + 2x 

56. rx? —sx =1 57. mx2 =n — 3x 

58. If a regular polygon of ten sides is inscribed in a Pc Toa site a 
circle of radius r units, then, if s units is the length 8h 

of a side, e ee j ' 4 
Solve this formula for 4 in terms of r and w. 

What is the width of a strip that must be plowed 

around a rectangular field, 100 meters long by 

60 meters wide, so that the field will be two-thirds 

plowed? 

A park in the shape of a rectangle has dimensions 

iz S 61. 
5S if ) 

Solve this formula for s in terms of r. 

59. The standard form of an equation of a parabola 62. 

60. 

ye 
in 

having a vertical axis is y = ax” + bx +c. Solve 
for x in terms of y, a, b, and c. 

If units is the radius of a circular arch of height h 

units and width w units, then 

3 Other Equations 

One Variable 

60 meters by 100 meters. If the park contains a 
rectangular garden enclosed by a concrete terrace, 
how wide is the terrace if the area of the garden is 
one-half the area of the park? 

Suppose that E = Fis an algebraic equation in x. If this equation contains 
radicals or rational exponents, we can solve it by raising both members of the 
equation to the same positive integer power. However, when we do this we 

must apply the following theorem. 

2.3.1 THEOREM If 

el 

is an algebraic equation in x, its solution set is a subset of the solution set of 
the equation 

BE" — pn 

where n is any positive integer. 

The theorem follows immediately from the fact that ifa,b € Canda = b, 

then a" = b", where n is any positive integer. 
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ILLUSTRATION 1. If we square each member of the equation 

X= (1) 

we obtain 

KAD (2) 

The solution set of equation (1) is {5} and the solution set of equation (2) is 

{ —5, 5}. Thus the solution set of equation (1) is a subset of the solution set of 

equation (2). This result agrees with Theorem 2.3.1, @ 

ILLUSTRATION 2. To solve the equation 

Vea (3) 

we first square each member to obtain 

(V2x + 5)? =6 —x)? 

De t= Se LO ee (4) 

Soe Pees HOW (5) 

We solve equation (5). 

(x — 10)(x — 2) =0 

* — 10 =0 x—2=0 

x — 10 Se 

Thus the solution set of equation (4) is {2, 10}. According to Theorem 2.3.1 

the solution set of equation (3) is a subset of {2, 10}; that is, both of the 

numbers 2 and 10 may be solutions of equation (3), only one of these 

numbers may be a solution, or neither of these numbers may be a solution. 

To determine which case applies, we substitute each of the numbers into 

equation (3) to see if the equation is satisfied. 

ViQ)45=25—-2 200) $52 5— 10 

Vom 25 + —5 

3=3 54-5 

Hence 2 is a solution of equation (3) and 10 is not. Therefore, the solution set 

of equation (3) is {2}. e 

In Illustration 2 the number 10 is called an extraneous solution of equation 
(3); it was introduced when both members of equation (3) were squared. The 

reason that this extraneous solution was introduced should be apparent after 
reading Illustration 3. 
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EXAMPLE 1 

Find the solution set of the equation 

VN a = 

ILLUSTRATION 3. If both members of the equation 

—V2x+5=5-x (6) 

are squared, we obtain 

(— V2x + 5)? = (5 — x)? 
Dye di 3) == 5) — We 45 aed 

which is equation (4). In Illustration 2 we showed that the solution set of 

equation (4) is {2, 10}. Hence, by Theorem 2.3.1, the solution set of equation 
(6) is a subset of {2, 10}. Substituting each of these numbers into equation 
(6), we have 

YOO et =e 4 (10) + 5 = 5 — 10 

—~ V9 23 iV 05 = ed 

—3 43 cae) 

Hence 10 is a solution of equation (6) and 2 is an extraneous solution. 

Therefore, the solution set of equation (6) is {10}. e 

Observe in Illustration 2 that equation (3) states that the principal square 

root of (2x + 5) is 5 — x, and in Illustration 3 equation (6) states that the 

negative square root of (2x + 5) is 5 — x. Hence, when squaring both 

members of either equation (3) or (6), we obtain equation (4) and so in each 

case an extraneous solution is introduced. This discussion should convince 
you that when Theorem 2.3.1 is used to solve an equation, all solutions 
obtained must be checked in the original equation. The check is for possible 
extraneous solutions and is not just a check for computational errors. 

When solving an equation having terms involving one or more radicals, 

the first step is to write the equation so that the term involving the most 
complicated radical belongs to one member and all the other terms belong to 
the other member. Then apply Theorem 2.3.1 and raise both members of the 
equation to the power corresponding to the index of the radical. 

SOLUTION 
We square both members of the equation. 

(VE a ie 
X(N == 6) = 9 

x2 — 8x = 9 

x2 — 8x —9 =0 

(x — 9\(x +1) =0 

x —9=0 x |= 0 

32 ea) x= —] 

Hence the solution set of the given equation is a subset of {—1, 9}. 
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We substitute these numbers into the given equation. 

Ooh aes 6 Vy lees 

3-123 i-3i23 

3=3 372 2 3 
3(-1) 43 

343 

Therefore. 9 is a solution and —1 is an extraneous solution. Thus the solution 

set of the given equation is {9}. 

Sometimes, if an equation contains more than one radical, it is necessary to 

apply Theorem 2.3.1 more than once before obtaining an equation free of 

radicals. 

EXAMPLE 2 SOLUTION 

ibe ei Pte oT ey ce ace 
V3 — 3x =3 + V3x +2 

(bea lag: A ola (V3 — 3x? = (3 + V3x + 2)? 
(b) Vax +3 — Vx —2-2=0 Beet Omen Ser eR OD 

—6 3x +2 = 6x +8 

—3\/3x +2=3x +4 

9( 3x + 2)? = (3x + 4)? 
9(3x + 2) = 9x? + 24x 4+ 16 

27x + 18 = 9x? + 24x + 16 

—9x?2 + 3x +2 =0 

9x? — 3x —2 =0 

(3x — 2)(3x + 1) =0 

3x —2 =0 3x +1=0 

she eS She eS call 

ee es eg I ai x= 

Therefore, the solution set of the given equation is a subset of { —4, 3}. 
We substitute these numbers into the given equation. 

JrX-p-Viebs22i Vi -V@sese 
V4 — V1 =3 Vi — ¥423 

ee 1-223 

143 ates 
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We see that each of the numbers is an extraneous solution of the given 

equation. Thus there is no solution to the given equation, and so its 

solution set is @. 

(b) V2x +3 — Vx —2-2=0 

V2x +3 = Vx —242 
(V2x + 3)? =(Vx —2 + 2) 

Dees 2 AN x 2 +4 

Peele 4ye— 2 

(x + 1)? = 16( Vx — 2) 

ern x es 1660 — 2) 

x? + 2x + 1 = 16x — 32 

x* — 14x + 33 =0 

(x — 3)(x — 11) =0 

ese) eae al ee () 

3° = 3) xe = Nl 

Therefore, the solution set of the given equation is a subset of (3, 11}. We 

substitute these numbers into the given equation. 

OG en 0 211) 3 11 —2 —2 = 0 

a) ey led 10 25 — V9 -2=0 

Arm en ues () 532-0 

0=0 0=0 

Each of the numbers, 3 and 11, is a solution of the given equation, so its 

solution set is {3, 11}. 

In the next example we have a polynomial equation of the fourth degree, 
which is solved by factoring and applying Theorem 2.1.1. 

EXAMPLE 3 SOLUTION 

Find the solution set of the equation | We factor the left member and obtain 

see a = IVs) S10) (eo = (X72 = 3) = 0 (7) 

From Theorem 2.1.1, equation (7) gives a true statement if and only if 

x? —5 =Oorx? + 3 = 0. Therefore, we set each of the factors in equation 
(7) equal to zero and solve the equations. 

x?7—5=0 Xo 3 ==|() 

x2= x? = 5 —3 

SS 5 BG = ais VS) 

The solution set of equation (7) is therefore {—i VSieiny Ceema Ce ene 
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2.3.2 DEFINITION An equation in a single variable x is said to be an equation quadratic in form 

if it can be written as 

au? + bu+c=0 (a7) (8) 

where w is an algebraic expression i Be. 

ILLUSTRATION 4. The following equations are quadratic in form. 

(a) x* — 2x2 — 15 =0 is quadratic in x7 
2 

(b) 3 (4x 2 +) cs 4(4s a +) — 15 = 0 is quadratic in (4x is 1) e 
MG x x 

The solution set of an equation quadratic in form can be found by solving 

equation (8), and then solving the equations obtained by replacing u with the 

algebraic expression in x. 

ILLUSTRATION 5. The equation of Example 3 is quadratic in form because 

if we make the substitution u = x”, the equation becomes 

u? — 2u — 15=0 

We solve this equation for wu. 

(u — 5)(u + 3) = 0 

Oh ey el) u+3=0 

es u= —3 

Now we replace u with x? and solve the resulting equations. 

Xe) Xi fae 3 
5§ Se WS) x = +i V3 

The solution set is that of Example 3. e 

It is apparent that the method used in Illustration 5 is an alternative to that 

used in Example 3. 

EXAMPLE 4 SOLUTION 

Find the solution set of the equation 1 
The given equation is quadratic in (4x — +), so we substitute u = 4x — — 

x % 

3 (4x = 1)" — 4(4x — 1 = be and the equation becomes 

Bu" 44 —15.=0 

(u + 5\(u — 3) =0 
Saas) u—3=—0 

te SAR 3 

8 
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We replace u with (4x — +) and solve for x. 
x 

l | Jur einige s a> ap ae 

3x (4x) — 3x(+) = 3x(-3) rege) 3% (4) ——)) 
ng 3 a6 

Ne aetig 19 6 15%; Ay | 13x 

eae =) 10) Ange = x9 ll () 

(4x + 3)\3x — 1) =0 (4x + 1)(x% — 1) =0 

Ae ea) Gees) 4x2 Il =0 x = I = @ 

oes opie Poop orl 
4 3 4 

Therefore, the solution set is {—#, —4,4, 1}. 

EXERCISES 2.3 

In Exercises I through 42, find the solution set of the given equation. 

1/45 = 3 2 4 eT 

3. Vx +5=3 4. /x —4=7 

Sexe 3 12 6.1\/2% Si 3 

7. Vy +y =6 8. Vt +6=1 

Ory sxe tl 10.62 a4 = = x 
1S Ve = Poy SS = a ad 

139/300 4 4. 8 =—0 14/5 yx) = 0 

15. /Sw + 1— V3w—-1=0 16. V2 + 4y + V3 —4y =3 

ee) Dee ee ee See ih Gy a0 es I EO 
19. ViVvt—6+4=0 20. Weve 5 —4=0 

Die /APBx ey 3x2 -= 1/3414 D2 ales yt dg = 3 3) ce) L 

D3 yee 2/3: 42 G0 DANN WHE Qn al 92 = 0 

Lt Sy Vaan 268 2x nN eed 0 
Die Ox lex ot Dee oe =| 
DO = 064 4 10) 30. 9x* — 8x2 —1=0 

31. 14 — 522 +6 =0 32. 6wt — 17w2 + 12 =0 

332 .8x4=6x7 15-0 34, 8x4 + 6x2 —-9 =0 

35. y§ — 35y3 + 216 =0 36. 2726 — 3523 + 8 =0 

37. Vx +2Vx =3 BBP = 5x +4 = 0 

39. (x2 + 2x)? — 14(x?2 + 2x) — 15 =0 40. (2x2 + 7x)? — 12(2x2 + 7x) — 45 =0 

41. \/3x2 — 3x +1 = Vx —2 42, V/2x? +5 = Vx +2 
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2.4 Quadratic 

Equations in Two 

Variables 

Our discussion, in Section 1.9, of equations in two variables was confined 

to first-degree equations. Now consider the equation 

y= (1) 

which is a second-degree equation (or quadratic equation). As with linear 

equations in two variables, the solution set of equation (1) is the infinite set of 

all ordered pairs (x,y) which satisfy the equation, and the graph of the 

equation is the graph of its solution set. Table 2.4.1 gives a few representative 

solutions of equation (1); these solutions are obtained by substituting arbi- 

trary numbers for x in the right side of equation (1) and computing the 

corresponding values for y. 

Table 2.4.1 

a 0 | 2 3 4 =i =) =3) 4 

yex —3 = oo l 6 13 = l 6 13 

In Figure 2.4.1 we have plotted the points having as coordinates the 

number pairs (x,y) given in Table 2.4.1. These points are on the graph of 

equation (1). We can get a better idea of the appearance of the graph by 

plotting additional points between these points. In particular, the x intercepts 

of the graph are found by substituting 0 for y and solving for x. Doing this, 

we have 

ened) 

pa, 
34 = ae V3 

Therefore, the points ( \/3, 0) and (— V3, 0) are on the graph. More points 

are obtained from the solutions of equation (1) that appear in Table 2.4.2. 

Table 2.4.2 

1 7 1 7 
x. 5 3 3 5 | == bTS5} —%5 

— x2 3 11 3 13 37 11 3 13 37 

M4 = 4 4 4 4 4 4 4 4 

Figure 2.4.2 shows the points obtained from the solutions in both Tables 

2.4.1 and 2.4.2 as well as the points of intersection of the graph with the x 

axis. If we connect these points with a smooth curve, the graph has the 

appearance shown in Figure 2.4.3. As with the line, it is impossible to show 

the complete graph. The curve in Figure 2.4.3 is an approximation to the 

graph of equation (1), and we call it a sketch of the graph. 

The graph of equation (1) is called a parabola; thus Figure 2.4.3 shows a 

sketch of a parabola. Parabolas and some of their properties are discussed 

further in Section 2.5. 
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Figure 2.4.1 Figure 2.4.2 Figure 2.4.3 

EXAMPLE I SOLUTION 

Draw a sketch of the graph of the | Solving equation (2) for y, we have 

equation ee cr (3) 

Re os, 5S 
Thince sgt ii o Equations (3) are equivalent to the two equations 

y=vxt1 (4) 

and 

piss Weseral (5) 
The coordinates of all points that satisfy equation (2) satisfy either equation 
(4) or (5), and the coordinates of any point that satisfy equation (4) or (5) 

satisfy equation (2). Table 2.4.3 gives some of these values of x and y. 
y 

Table 2.4.3 

ype. 0 ] | 2 canis 3 4 4 —-l 

: ge es 22s Ve VS 0 

Observe that for any value of x < —1 there is no real value for y. Also, for 
each value of x > —1, there are two values for y. A sketch of the graph of 

Figure 2.4.4 equation (2) is shown in Figure 2.4.4. 
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The graph of equation (2) is also a parabola, and hence Figure 2.4.4 shows 

a sketch of a parabola. 

EXAMPLE 2 SOLUTION 

Draw sketches of the graphs of the | Equation (6) is the same as equation (4). The value of y is nonnegative; thus 

equations the graph of equation (6) is the upper half of the graph of equation (2). A 

SS a sketch of this graph is shown in Figure 2.4.5. 

as ea © Equation (7) is the same as equation (5). Hence the graph of equation (7), 

and a sketch of which is shown in Figure 2.4.6, is the lower half of the parabola of 

y= Ve al (7) Figure 2.4.4. 

ws 
y 

Figure 2.4.5 Figure 2.4.6 

EXAMPLE 3 SOLUTION 

Draw a sketch of the graph of the | Factoring the left member of the equation, we obtain 

equation 
(4x — 5y)(4x + Sy) = 0 (8) 

16x2 — 25y2 = 0 

By the property of real numbers, that ab = Oif and only ifa = 0orb = 0, it 

follows that equation (8) is satisfied by an ordered pair (x, y) if and only if 

4x — 5y =0 (9) 

Or 

4x + 5y =0 (10) 

Thus the solution set of equation (8) consists of all of the solutions of the 

equation 4x — Sy = 0 and all of the solutions of the equation 4x + 5y = 0; 

that is, the solution set of equation (8) is the union of the solution set of 

equation (9) and the solution set of equation (10). Therefore, the graph of 
equation (8) consists of the two lines having equations (9) and (10). A sketch 

Figure 2.4.7 of the graph is shown in Figure 2.4.7. 
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EXAMPLE 4 SOLUTION 
Discuss the graph of each of the | (a) Both 2x* and 7y? are nonnegative real numbers for any ordered pair of 
following equations. real numbers (x, ). Because the sum of two nonnegative real numbers is 

zero if and only if the two numbers are zero, it follows that the only 

ordered pair of real numbers satisfying the equation 2x” + 7y? = 0 is 
the ordered pair (0, 0). Therefore, the graph of the given equation is a 
single point, the origin. 

(b) Because both x? and y” are nonnegative real numbers for any ordered 
pair of real numbers (x, y), the equation x? + y? = —4has no solution. 
That is, the solution set of the given equation is the empty set @. Hence 
the equation has no graph. 

(aye iy? — 0) 

(b) x? + y? = —4 

When drawing a sketch of the graph of an equation, it is often helpful to 

consider properties of symmetry of a graph. 

2.4.1 DEFINITION Two points P and Q are said to be symmetric with respect to a line if and only 

if the line is the perpendicular bisector of the line segment PQ. 

ILLUSTRATION 1 

(a) The points (6, 3) and (6, —3) are symmetric with respect to the x axis 

because the x axis is the perpendicular bisector of the line segment 
joining (6, 3) and (6, —3). See Figure 2.4.8. 

Y 

Figure 2.4.9 

Figure 2.4.8 

(b) The points (6, 3) and (—6, 3) are symmetric with respect to the y axis 

because the y axis is the perpendicular bisector of the line segment 
joining (6, 3) and (—6, 3). See Figure 2.4.9. e 

In general, the points (x, y) and (x, —y) are symmetric with respect to the 

x axis and the points (x, y) and (—x, y) are symmetric with respect to the 
y axis. 
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2.4.2 DEFINITION 

2.4.3 THEOREM 

The graph of an equation is symmetric with respect to a line L if and only if 
for every point P on the graph there is a point Q, also on the graph, such that 
P and Q are symmetric with respect to L. 

ILLUSTRATION 2. The graph of equation (2) in Example | is symmetric 
with respect to the x axis, as can be seen by the sketch of the graph shown in 
Figure 2.4.4. Equation (2) is 

yy — x 10 

If y is replaced by —y in this equation, we obtain 

(-—y? —x —1=0 

or, equivalently, 

V2 he 

which is equation (2). That is, if in equation (2), y is replaced by —y, we 
obtain an equivalent equation. e 

Illustration 2 gives a particular case of part (i) of the following theorem. 

The graph of an equation in x and y is 

(i) symmetric with respect to the x axis if and only if an equivalent equation 
is obtained when y is replaced by —y in the equation; 

(ii) symmetric with respect to the y axis if and only if an equivalent equation 
is obtained when x is replaced by —x in the equation. 

PROOF OF PART (i): From Definition 2.4.2 it follows that if a point (x, y) is 

on a graph that is symmetric with respect to the x axis then the point (x, —y) 
also must be on the graph. Furthermore, if both the points (x, y) and (x, —y) 
are on the graph, then the graph is symmetric with respect to the x axis. 

Therefore, the coordinates of the point (x, —y) as well as (x, y) must satisfy 
an equation of the graph. Hence we may conclude that the graph of an 
equation in x and y is symmetric with respect to the x axis if and only if an 
equivalent equation is obtained when y is replaced by —y in the equation. 

The proof of part (ii) is similar to the proof of part (i). 

ILLUSTRATION 3. Equation (1) is 

Vizsi 2 33 

If x is replaced by —x in this equation, we obtain 

Y= (x)? 3 
which is equivalent to the original equation. Therefore, by Theorem 2.4.3(ii) 
the graph of equation (1) is symmetric with respect to the y axis. See Figure 
2.4.3 for a sketch of the graph of equation (1). e 
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2.4.4 DEFINITION 

‘2.4.55 DEFINITION 

EXAMPLE 5 
Draw a sketch of the graph of the 
equation 

xy 24 (11) 

Figure 2.4.11 
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Two points P and Q are said to be symmetric with respect to a third point if 
and only if the third point is the midpoint of the line segment PQ. 

ILLUSTRATION 4. The points (6,3) and (—6, —3) are symmetric with 

respect to the origin because the origin is the midpoint of the line segment 
joining (6,3) and (—6, —3). See Figure 2.4.10. e 

a 
(6, 3) 

(=O, 3) 

- i. 

Figure 2.4.10 

The graph of an equation is symmetric with respect to a point Rif and only if 
for every point P on the graph there is a point S, also on the graph, such that 
P and S are symmetric with respect to R. 

The following example gives a graph that is symmetric with respect to the 
origin. 

SOLUTION 
Table 2.4.4 gives some values of x and y satisfying equation (11). 

Table 2.4.4 

ee eee eee te 20384 8 1D 

a ee ee ee 1212, 8 4) 2 tal go 

From Equation (11), we obtain 

ee 
fae 

We see that as x increases through positive values, y decreases through 
positive values and gets closer and closer to zero. As x decreases through 
positive values, y increases through positive values and gets larger and larger. 
As x increases through negative values (that is, x takes on the values — 12, 

—8, —4, —3, —2, —1, —4, —4, and so on), y takes on negative values 

having larger and larger absolute values. A sketch of the graph is shown in 
Figure 2.4.11. 
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2.4.6 THEOREM 

EXERCISES 2.4 

The curve of Example 5 is called a hyperbola and the x and y axes are 

called asymptotes of this hyperbola. Other hyperbolas are discussed in 

Section 2.6. 

The graph of an equation in x and y is symmetric with respect to the origin if 

and only if an equivalent equation is obtained when x is replaced by —x and 

y is replaced by —y in the equation. 

The proof of Theorem 2.4.6 is similar to the proof of Theorem 2.4.3(i) and 

is omitted. 

ILLUSTRATION 5. Equation (11) is 

xy =4 

If x is replaced by —x and y is replaced by —y in this equation, we have 

(=x)(-y) =4 
which is equivalent to the original equation. Therefore, by Theorem 2.4.6, the 

graph of equation (11) is symmetric with respect to the origin. See Figure 

2.4.11 for a sketch of the graph of equation (11). e 

In Exercises 1 through 26, draw a sketch of the graph of the given equation. 

ih 
4. 
Tay 

10. 
13. - 
16. 
19. 
22. 
25. 

27. 

28. 

29. 

y=x — 6 De Xe 3. Vea pal 

Vax ae 5. y= —x? 42 6. y= —x? 44 

yo vx-4 8. y= —Vx-4 9, y>=x-—4 

ye Saeep 8 lle x = y+ 12. 2y?+x=4 

y= v3x +4 14. y= —V2x —5 15. 9x? — 4y7 =0 

25x? + y2 =0 17. 9x? + 4y? 0 18. 25x? — y? =0 

x + 2y2 VS 0 20. (2x + y)(3x —y + 6) =0 21. (x +y + 7)(4x + Sy — 20) = 0 

(x — yx? —y)= 23. (x? + y)Qx +y— 1) =0 24.44 4x? + y? =0 

xy = 9 26. 4xy shel 

Draw a sketch of the graph of each of the following 30. Draw a sketch of the graph of each of the following 

equations on a different coordinate system: equations on a different coordinate system: 

@)y=Ve Oy == Vx (a) y= eel (b) y= —V2x +1 
(c) y2=x (c) y2=2x 41 

Draw a sketch of the graph of each of the following 31. Write an equation whose graph is the set of all 

equations on a different coordinate system: points on either the x axis or the y axis. 

(a) y= V—-x (b) y= -—V-x 32. Draw a sketch of the graph of each of the following 

(Cc) ye equations on a different coordinate system: 

Draw a sketch of the graph of each of the following (a) ty on x2 (Dy) yi 

equations on a different coordinate system: (c) y= — V9 — x? 

(a) y= V9 —x 

(C) yy? = 9 3x 

(b) y= —V9 —x 
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Ded The Parabola 

2.5.1 DEFINITION 

} 0 

Directrix “Ox, =D) * Sy =—p 

x? =4py,p>0 
Figure 2.5.1 

2.5.2 THEOREM 

A complete treatment of the parabola and its properties belongs to a 

course in analytic geometry. However, because of the importance of the 
parabola in our study of quadratic functions (Section 3.4) we give a brief 

discussion here. 

A parabola is the set of all points in a plane equidistant from a fixed point 

and a fixed line. The fixed point is called the focus, and the fixed line is called 

the directrix. 

We use Definition 2.5.1 to derive an equation of a parabola where the 
rectangular Cartesian coordinate system is chosen so that the y axis contains 
the focus and is perpendicular to the directrix. Furthermore, we choose the 
origin as the point on the y axis midway between the focus and the directrix. 
Observe that we are choosing the coordinate axes (not the parabola) in a 

special way. See Figure 2.5.1. 
Let p be the directed distance OF. The focus is the point F(0, p), and the 

directrix is the line having the equation y = —p. A point P(x, y) is on the 
parabola if and only if P is equidistant from F and the directrix. That is, if 
Q(x, —p) is the foot of the perpendicular line from P to the directrix, then P 

is on the parabola if and only if 

|FP| = |OP| 
Because 

|FP| = Vx? +(y — p)? 
and 

JOP| = Ve —xP +0 +P? 
the point P is on the parabola if and only if 

We Ge jae = Vr yy 
By squaring on both sides of the equation, we obtain 

ee Po eta PY 4 Po 
x? = 4py 

This result is stated as a theorem. 

An equation of the parabola having its focus at (0, p) and having as its 

directrix the line y = —p is 

= 4py (1) 

In Figure 2.5.1, p is positive; p may be negative, however, because it is the 

directed distance OF. Figure 2.5.2 shows a parabola for p < 0. 
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y From Figures 2.5.1 and 2.5.2 we see that for the equation x? = 4py the 

tf => parabola opens upward if p > 0 and downward if p < 0. The point midway 

- between the focus and the directrix on the parabola is called the vertex. The 

vertex of the parabolas in Figures 2.5.1 and 2.5.2 is the origin. The line 

through the vertex and the focus is called the axis of the parabola. A 

parabola is symmetric with respect to its axis. The axis of the parabolas of 

Figures 2.5.1 and 2.5.2 is the y axis. 

Directrix 

ILLUSTRATION 1. The graph of the equation 

r= 4py,p <0 

Figure 2.5.2 

x Oy 

is a parabola whose vertex is at the origin and whose axis is the y axis. 

Because 4p = 10, p = 3 > 0, and therefore the parabola opens upward. The 

focus is at the point F(0, 3) and an equation of the directrix is y = —3. Two 

points on the parabola are the points (5, 3) and (—S, 3). Figure 2.5.3 shows a 

sketch of the parabola, the focus, and the directrix. @ 

The points (5,3) and (—5, 3) on the parabola of Illustration 1 are the 

endpoints of the chord through the focus, perpendicular to the axis of the 

parabola. This chord is called the /atus rectum of the parabola. When 

drawing a sketch of the graph of a parabola, it is helpful to plot the points 

that are the endpoints of the latus rectum. 

= 5 

: : ee 5 
Directrix Vian 2 Directrix iy=-> 

Q2 OmeeOs a 

Figure 2.5.3 Figure 2.5.4 

In Figure 2.5.4 the parabola of Figure 2.5.3 is shown and three points P,, 
P,, and P, on the parabola are chosen. The definition of a parabola states 
that any point on the parabola is equidistant from the focus and the directrix; 
therefore, 

FP, =|Q,Pi| |FP2|=|QoP2| [Ps] = |O3P a 
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EXAMPLE 1 
Draw a sketch of the graph of the 

parabola having the equation 

ye ee —9y 

Find the focus and an equation of 

the directrix. 

The Parabola 123 

SOLUTION 
The graph is a parabola whose vertex is at the origin and whose axis is the y 
axis. Because 4p = —9, p = —} <0, and so the parabola opens downward. 
The focus is at the point F(0, —$), and an equation of the directrix is y = $. 
The endpoints of the latus rectum are ($, —$) and (—3, —%). Figure 2.5.5 
shows a sketch of the parabola, the focus, and the directrix. 

Directrix vi 

Figure 2.5.5 

Our work with parabolas has been concerned so far with those having the 

origin as the vertex and having the y axis as the axis. We now consider a more 
general situation and discuss parabolas for which the axis is parallel to the y 

axis. 
If a parabola has its vertex at the point (A, k) and the axis of the parabola 

is the line x = h, then an equation of the parabola is 

(x — hy? = 4p(y — k) (2) 

If p > 0, the parabola opens upward, and a sketch of such a parabola is 
shown in Figure 2.5.6. A sketch of a parabola having an equation of the form 
(2) where p < 0 is shown in Figure 2.5.7; the parabola opens downward. 

(x —hy = 4p —k), p> 0 (x —h)* = 4p —k), p <0 

Figure 2.5.6 Figure 2.5.7 
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Figure 2.5.9 

We omit the proof that the graph of equation (2) is the indicated parabola. 

However, the next illustration shows the derivation of an equation of a 

parabola whose axis is a line parallel to the y axis, and the result is an 

equation of the form (2). 

ILLUSTRATION 2. We use Definition 2.5.1 to find an equation of the 

parabola whose focus is at the point (3,6) and whose directrix has the 

equation y = 2. See Figure 2.5.8. 

Let P(x, y) be any point on the parabola and Q(x, 2) be the foot of the 

perpendicular line from P to the directrix. Then, from Definition 2.5.1, P is 

on the parabola if and only if 

|FP| = |OP| 

Because 

EP Cae) aaa 

and 

JOP = VG— x)? + = 2) 
the point P is on the parabola if and only if 

Va —3F + (y — 6 = VO — 2? 

By squaring on both sides of the equation, we obtain 

(3) 0)r ee) 

Simplifying the squares of the binomials involving y, we have 

(x — 3)? + y? — 12y + 36 =y? —4y +4 

(x = 3)° = 8p — 4) e (3) 

Equation (3) is of the form of equation (2). Note that we are given that the 
focus of the parabola is at the point (3, 6) and the directrix has the equation 
y = 2. Because the axis of the parabola is the line through the focus and 

perpendicular to the directrix, it follows that the axis has the equation x = 3, 
that is, x = k, where k is 3. Furthermore, the vertex is the point on the axis 

midway between the directrix and the focus; heice the vertex is at the point 
(3, 4), and in equation (3) (A, k) is (3, 4). The focus is above the vertex and the 

measure of the distance from the vertex to the focus is 2; in equation (3) p 
is 2. We have therefore verified equation (2) for this specific parabola; a 

sketch of its graph is shown in Figure 2.5.9. 
The graph of any quadratic equation of the form 

y =Ax? + Bx+C (4) 
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EXAMPLE 2 
Show that the graph of the equation 

a ee An | 

is a parabola. Find the vertex, the 
axis, the focus, and the directrix. 

Also, draw a sketch of the parabola. 

Y 

Directrix 

Figure 2.5.10 
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where A, B, and C are constants and A # 0, is a parabola whose axis is 
parallel to the y axis. This statement can be proved by showing that equation 
(4) is equivalent to an equation of the form of equation (2). We omit this 

proof, but the next illustration shows such a proof for a particular case. 

ILLUSTRATION 3. The equation 

pat +x +6 (5) 

is in the form of equation (4) and is equivalent to the equation 

4y =x? + 4x + 24 

x? + 4x = 4y — 24 

Completing the square in the left member by adding 4 to each member, we 
have 

x? 4+4x4+4=4y—2444 

C2) 4G) (6) 

which is of the form of equation (2). The given equation (5) then has a 
parabola as its graph, and because equation (6) is equivalent to equation (5) 

we see that the vertex of the parabola is at (—2,5) and the axis has the 

equation x = —2. e 

SOLUTION 
The given equation is equivalent to 

2(x? + 2x) =yt+ 1 

We complete the square of the binomial within the parentheses in the left 

member by adding 2 to each member (note that when we add | within the 
parentheses, we are actually adding 2 because each term within the paren- 

theses is multiplied by 2), and we have 

(x2 +2x+1)=y+142 

(x +1? =F +3) (7) 

Equation (7) is of the form of equation (2), where (h, k) is (—1, —3) and 

4p = 4; therefore, p = 4. The vertex is at (—1, —3) and the axis is the line 
having the equation x = —1. Because p > 0, the parabola opens upward. 
The measure of the distance from the vertex to the focus is p = §. Thus the 
focus is at the point (—1, —%2). Because the vertex is midway between the 
focus and the directrix, an equation of the directrix is y = —. Figure 2.5.10 
shows a sketch of the parabola, the focus, and the directrix. 
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EXERCISES 2.5 

For each of the parabolas in Exercises I through 8, draw a sketch, and find the focus and 

an equation of the directrix. 

1. y =x? 2, y= —4x? 3.5% Sy = 0 

5 Loy 6. x 23 Oy Taxes) = 0 

In Exercises 9 through 18, show that the graph of the given equation is a parabola. Find 

the vertex, the axis, the focus, and the directrix. Also, draw a sketch of the parabola. 

10.720? = 5 

13. y=x?2 +4 —2 
16.) = 2x7 10 c 

9, y= —x? +3 
12. y=x? + 4x 
es ee ee 
18. y = —4x? — 3x —2 

In Exercises 19 through 24, use Definition 2.5.1 to find an equation of the parabola 

having the given focus and directrix. 

19) Focus at (0, — 3); directrix, > —"3 

21. Focus at (0, 3); directrix, 4y + 3 = 0 

23. Focus at (—2, 9); directrix, y = 3 

25. A parabola has its focus at F(p, 0) and its directrix is the line having the equation 

x = —p. Prove that an equation of the parabola is iy? = 4px: 

In Exercises 26 through 29, use the result of Exercise 25 to find the focus and an 

equation of the directrix of the given parabola. Draw a sketch of the parabola. 

26.56 = 27. x= —S8y" 28. y2 + 6x =0 

2.6 The Circle, 

the Ellipse, and the 

Hyperbola 

4. x2 0p = 0 

8, 5x7 49) 0 

11 x7 6x 
14. y = —x? + 6x —5 
17. y =4x? —43x —3 

Col 

20. Focus at (0, 4); directrix, y = —4 

22. Focus at (0, —4); directrix, 2y — 1 =0 

24. Focus at (4, —3); directrix, y = —3 

29, 2y2 — 5x =0 

Curves, other than the parabola, that are graphs of quadratic equations in 

two variables are the circle, the ellipse, and the hyperbola. As with the 

parabola, a complete discussion of these curves belongs to a course in 

analytic geometry. However, the curves occur so often that a brief discussion 

is given here. The simplest of the three curves is the circle. 

2.6.1 DEFINITION A circie is the set of all points in a plane equidistant from a fixed point. The 

fixed point is called the center of the circle, and the measure of the constant 

equal distance is called the radius of the circle. 
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2.6.2 THEOREM 
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The circle with center at the point C(h, k) and radius r has as an equation 

(1) 

Proof. The point P(x, y) lies on the circle if and only if 

|PC| =r 

that is, if and only if 

V@ =I EO = BP =r 
Squaring on both sides of the equation, we obtain the equivalent equation 

(remember that r is a positive number) 

(x —hyP+(y—kPr=r 

which is equation (1). Equation (1) is satisfied by the coordinates of those and 

only those points that lie on the given circle; hence (1) is an equation of the 
circle. 

Figure 2.6.1 shows the circle with center at (A, A) and radius r. If the center 
of the circle is at the origin, then h = k = 0; therefore, its equation is 

(2) 

Such a circle is shown in Figure 2.6.2. 

y 

P(x, y) 

\ > xX 

Figure 2.6.1 Figure 2.6.2 

If the center and the radius of a circle are known, the circle can be drawn 

by using a compass. 
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EXAMPLE Il SOLUTION 

Find an equation of the circle with | The circle is shown in Figure 2.6.3. An equation of the circle is of the form of 

center at (5, —3) and radius equal to | equation (1), where h = 5, k = —3, and r = 4. Substituting into equation 

4. Draw the circle. 

EXAMPLE 2 
Show that the graph of the equation 

x? + y2 4+ 4x — 8) —-5 =0 

is a circle and find its center and 

radius. 

(1), we have 

(Co ey (Ra 
(x — 5)? +(y + 3)° = 16 

x2 — 10x +25 + y? + 6y +9 = 16 
x? + yp? — 10x + 6y + 18 =0 

y 

A 

Figure 2.6.3 

SOLUTION 
The given equation may be written as 

(x? + 4x) + (y? — 8y) =5 

Completing the squares of the terms in parentheses by adding 4 and 16 on 

both sides of the equation, we have 

(x? + 4x + 4) + (y? — 8y + 16) =5 4+ 4 + 16 

(x + 2)? + (y — 4)? =25 

Comparing this equation with equation (1), we see that this is an equation of 

a circle with center at (—2, 4) and a radius of 5. 

Consider now the equation 

Ax* + By? =C (3) 

where A, B, and C are nonzero constants having the same sign. A special case 

of this equation occurs when A = B. Then, we have 

Ax? + Ay2=C (4) 

Dividing on both sides of this equation by A, we obtain 

oy (5) 
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Because C and A are nonzero numbers having the same sign, it follows that 

7 > 0, and hence equation (5) is of the form of equation (2). Therefore, the 

graph of equation (4) is a circle having its center at the origin and radius 

G 

A 

ILLUSTRATION 1. The equation 

4x2 + 4y? = 

is equivalent to the equation 

; i an a ee oie 4 

which is of the form of equation (2). Hence the graph of the equation is a 

circle having its center at the origin and radius 4. e 

The next illustration is a special case of equation (3), where 4A and B are 
not equal. 

ILLUSTRATION 2. To draw the graph of the equation 

4x? + Oy? = 36 (6) 

we first find the points of intersection of the graph with the x and y axes. We 
find the x intercepts by replacing y by 0. Doing this, we have 

4x = 36 

x?=9 

6 = a3 

Therefore, the graph intersects the x axis at the points (—3, 0) and (3, 0). We 

find the y intercepts by replacing x by 0, and we have 

Oy? = 36 
yeaa 
Vives tte 2 

Thus the graph intersects the y axis at the points (0, —2) and (0, 2). We solve 

equation (6) for y, and we have 

Oy? = 36 — 4x? 

y? = 20 — x%) 

yeti vo—x (7) 
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Recalling Theorems 2.4.3 and 2.4.6, we see that the graph of equation (6) 

is symmetric with respect to the x axis, the y axis, and the origin. Therefore, if 

we have the part of the graph that is in the first quadrant, we can use the 

properties of symmetry to complete the graph in the other three quadrants. 

To obtain representative points in the first quadrant, we assign positive 

values to x and find the corresponding positive value of y by substituting into 

equation (7) with the plus sign. Two such points are (2, 2\/5) and (1, 4/2). If 

we plot these two points and the points (0,2) and (3,0) and connect the 

points by a smooth curve, we have the part of the graph in the first quadrant 

as shown in Figure 2.6.4. The complete graph is shown in Figure 2.6.5. 

ye vy 

se or ae (Gaerne 

Figure 2.6.4 Figure 2.6.5 

In Illustration 2 observe that because y is a real number, it follows from 
equations (7) that we are concerned only with values of x for which 
9 — x2 > 0 (otherwise, the radicand is a negative number); that is, it is not 

necessary to assign any values to x for which |x| > 3. 
The curve shown in Figure 2.6.5 is an ellipse. Our discussion of the ellipse, 

as well as that of the hyperbola, is less formal than that of the parabola and 

the circle. Our treatment is restricted to those ellipses and hyperbolas having 

fairly simple equations. 
Refer again to equation (3). It can be proved that any equation of the form 

Ax? + By? =a (GC 

where A, B, and C are nonzero real numbers having the same sign, has a 

graph that is an ellipse. In Illustration 2, we have such an equation where A 
is 4, B is 9, and C is 36; the graph is an ellipse. Because equation (4) is a 
special case of equation (3) (that is, A = B), and because the graph of 

equation (4) is a circle, it follows that a circle is a special case of an ellipse. 
Suppose now that we have an equation of the form 

Ax? + By?=C 

where A and B are real numbers having opposite signs, and C is a nonzero 
real number. In the next illustration we have such an equation. 
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oe ere 

Figure 2.6.6 

Figure 2.6.7 
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ILLUSTRATION 3. We wish to determine the graph of the equation 

Dee OV ei) (8) 

If we replace y by 0, we have 

Pg 05 

x? — 9 

XS a3 

Hence the graph intersects the x axis at the points (—3, 0) and (3, 0). If we 

replace x by 0, we have 

—9y2 = 225 
ple 95 

Because the only values of y satisfying this equation are 5i and —5j, it follows 

that the graph does not intersect the y axis. 
The graph is symmetric with respect to the y axis because we obtain an 

equivalent equation when, in equation (8), x is replaced by —x. Also, the 
graph is symmetric with respect to the x axis, because we obtain an equiva- 

lent equation when y is replaced by —y. Furthermore, when both x is 

replaced by —x and y is replaced by —y, we also obtain an equation 
equivalent to equation (8); thus the graph is symmetric with respect to the 

origin. Therefore, as in Illustration 2, we need only to find the part of the 
graph that is in the first quadrant, and then we complete the graph by using 

the properties of symmetry. 
Solving equation (8) for y, we have 

—9y* = —25x? + 225 

y= 2 (x? 2) 

pati yvr—9 (9) 

Some representative points in the first quadrant can be obtained by taking 

values of x > 3 and finding the corresponding positive value of y by substi- 
tuting into (9) with the plus sign. Doing this, we see that the points (5, #2) and 
(7, 2 \/10) are on the graph. If we plot these two points and the point (3, 0), 
and connect the points by a smooth curve, we have a sketch of the part of the 

graph in the first quadrant as shown in Figure 2.6.6. A sketch of the complete 

graph is shown in Figure 2.6.7. e 

The curve of Figure 2.6.7 is a hyperbola. It can be proved that the graph of 
any equation of the form 

Ax? + By? =C (10) 
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where A and B are real numbers having opposite signs and C is a nonzero 

real number, is a hyperbola. 

The dashed lines in Figure 2.6.7 are called asymptotes of the hyperbola. 

They are shown as dashed lines because they are not part of the graph, but 

they are used as guides in drawing a sketch of the graph. A rigorous 

definition of an asymptote of a graph requires the concept of “limit” which is 

discussed in the calculus. However, the following statement can be consid- 

ered as an intuitive idea of an asymptote: If the distance between a graph 

and a line gets smaller and smaller as either |x| or | y| gets larger and larger, 

then the line is an asymptote of the graph. Every hyperbola has two asymp- 

totes. If an equation of a hyperbola is in the form of equation (10), then the 

equations of the asymptotes can be obtained by replacing C by zero. For 

instance, if in equation (8) we replace 225 by 0, we have 

255 Dyer) 

The left member of this equation can be factored as the difference of two 

squares, anid we have 

(5x — 3y)(5x + 3y) =0 

The solution set of this equation is the union of the solution sets of the 

equations 

5x —3y =0 (11) 

and 

5x +3y =0 (GA 

Equations (11) and (12) are equations of the asymptotes of the hyperbola 

having equation (8). These lines are the ones shown as dashed lines in Figure 

DOT: 

For other equations of the form 

AK By? =C 

we refer back to Section 2.4. In Example 3 of Section 2.4 we have the 

equation 
16x? —=25y7 = 0 

which is of the form Ax? + By? = C, where A and B have opposite signs and 

C = 0. The graph consists of two lines shown in Figure 2.4.7. In Example 

4(a) of Section 2.4 we have the equation 

2xe + dye =a) 

which is of the form Ax? + By? = C, where A and B have the same sign and 

C =0. The graph consists of one point, the origin. In Example 4(b) of 

Section 2.4 we have the equation 

xe + y? 4 
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EXAMPLE 3 
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Name the graph of the equation 

4y? — x? = 16 

Draw a sketch of the graph. 

(13) 

which is of the form Ax? + By? = C, where A > 0, B > 0, and C < 0. The 

equation has no graph. 
In Table 2.6.1 we have a summary of our discussion of the graphs of the 

various types of equations of the form 

Ax? + By? =C 

Table 2.6.1 

(A, B, and C are real) 

Graphs of equations of the form Ax? + By? = C 

Conditions on A, B, and C Conclusion Particular Example 

A, B, and C have the same sign Graph is an 4x? + 9? = 36 
ellipse 

A, B, and C have the same sign Graph is a Axe aye SI 

and A= B circle 

A and B have opposite signs Graph is a 29X29" 322) 

and C40 hyperbola 

A and B have opposite signs 
and C= 0 

A and B have the same sign 

and C=0 
A and B have the same sign 

Graph is two 
distinct lines 
through the 

origin 

Graph is the 

origin 
No graph 

16x22 2577 = 0 

2x? + 7)? = 0 

x4 y= —4 

and C has the opposite sign 

SOLUTION 
The equation is of the form Ax? + By? = C, where A = —1, B = 4, and 

C = 16. Because A and B have opposite signs and C # 0, the graph is a 
hyperbola. When x = 0, we have 4y” = 16, and so y = +2. Therefore, the 
graph intersects the y axis at the points (0, —2) and (0, 2). When y = 0, we 

have —x? = 16, which has no real value solutions. Therefore, the graph does 

not intersect the x axis. If in the given equation we replace 16 by 0, we get 

4y? _ x2 =0 

QQy —x)Q2y +x) =0 

The lines having the equations 

2yo tx = 0 

and 

2y +x =0 

are asymptotes of the hyperbola. These lines are drawn as dashed lines in 

Figure 2.6.8. 
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Generator 

Figure 2.6.9 

Upper nappe 

Lower nappe 

Generator 

The graph is symmetric with respect to the x axis, the y axis, and the origin. 
Therefore, we need only to plot points in the first quadrant, and then apply 
properties of symmetry to get the complete graph. 

If we solve equation (13) for x, we obtain 

—x? = —4y? + 16 

x2 = 4(y? — 4) 

Xt aD yy? 94 (14) 

We see from (14) that if | y| < 2, the radicand is negative and hence x is not 
a real number Thus we are only concerned with values of y for which 

[y| > 2. When y =3 and x >0, x =2/5. When y=4 and x SO) 
x = 4\/3. We plot the points (0, 2), (2/5, 3), and (4 /3, 4) and connect them 
with a smooth curve. This gives us a sketch of the graph in the first quadrant. 
A sketch of the complete graph is drawn from the properties of symmetry. 
The asymptotes are used as guides. See Figure 2.6.8. 

A conic section (or conic) is a curve of intersection of a plane with a 

right-circular cone of two nappes. Three types of curves of intersection that 
occur are the parabola, the ellipse (including the circle as a special case), and 
the hyperbola. The Greek mathematician Apollonius studied conic sections, 
in terms of geometry, by using this concept. 

In consideration of the geometry of conic sections, a cone is regarded as 
having two nappes, extending indefinitely far in both directions. A portion of 

a right-circular cone of two nappes is shown in Figure 2.6.9. A generator (or 
element) of the cone is a line lying in the cone, and all the generators of a 
cone contain the point V, called the vertex of the cone. 

In Figure 2.6.10 we have a cone and a cutting plane which is parallel to 

\ — ee ee 

Figure 2.6.10 Figure 2.6.11 Figure 2.6.12 
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Figure 2.6.13 

EXERCISES 2.6 
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one and only one generator of the cone. This conic is a parabola. If the 

cutting plane is parallel to two generators, it intersects both nappes of the 
cone and we have a hyperbola (see Figure 2.6.11). An ellipse is obtained if 

the cutting plane is parallel to no generator, in which case the cutting plane 
intersects each generator, as in Figure 2.6.12. A circle, a special case of an 

ellipse, is formed if the cutting plane, which intersects each generator, is also 
perpendicular to the axis of the cone. See Figure 2.6.13. 

There are many applications of conic sections, and we mention a few of 
them. The orbits of planets and satellites are ellipses. Ellipses are used in 
making machine gears. Arches of bridges are sometimes elliptical or para- 
bolic in shape. The path of a projectile is a parabola if motion is considered 

to be in a plane and air resistance is neglected. Parabolas are used in the 
design of parabolic mirrors, searchlights, and automobile headlights. Hy- 
perbolas are used in combat in “sound ranging” to locate the position of 
enemy guns by the sound of the firing of those guns. 

In Exercises 1 through 18, name and draw a sketch of the graph of the given equation. 

1. x24 y2 = 49 
ASTa 4 /y? = | 

7. 36x2 — 25y2 = 900 
10. 9y? — 16x? = 144 

13. y? — 16x? = 64 
lone? = 27 

In Exercises 19 through 22, name and draw a sketch of the graph of each of the four 
given equations. 

19, (a) 4x? + 25y? 

20. (a) 16x? + 9y? 

100 (b) 4x2 — 25y2 
25 (b) 16x? — 9y? 

Dee ay al BLOX ata yares| 
B.005x2 ys = 25 6. 9x? + 4y? = 36 
8. x2 + 8y2 =0 9. 64x? —y? =0 

11 4x Oy? = 0 120 9x2 4927 0 
14. 25x? + 100y? = 1 15: 8x2 5y2 = 40 

17. 2x? + 3y? +4=0 18. 10y? + 5x? +1=0 

= 100 (c) 4x2 + 25y2 = 0 (d) 4x2 — 25y2 =0 
= 25 (c) 16x2 + 9y2 = 0 (d) 16x2 — 9y2 = 0 

21. (a) 25x? + 4y? = 100 (b) 25x? — 4y? = —100 (c) 25x? + 4y? = —100 (d) 25x? — 4y? =0 

22. (a) 9x2 + l6y? = 25 (b) 9x2 — l6y? = 25 (c) 9x2 + 16y? =5 (d) 9x2 — l6y2 =0 

23. Find an equation of the circle with center at 24. Find an equation of the circle with center at 
(3, —5) and radius equal to 4. (—2, 2) and radius equal to 5. 

In Exercises 25 and 26, show that the graph of the given equation is a circle and find its 
center and radius. 

25. x? + y?2 + 10x — 12y + 12 =0 26. x? + y? — 8x + 6y — 24=0 
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27. Show that the general form of an equation of an 

ellipse, 4x? + By? = C, where A, B, and C are 

positive, can be written in the form 

x2? 

GE AD 
where a? and b? are the squares of the x and y 

intercepts, respectively, of the ellipse. 

28. Show that the general form of an equation of a 

hyperbola, Ax? — By? = C, where A, B, and C are 

positive, can be written in the form 

x2? 

Gee Uae 
= 

where a? is the square of the x intercepts of the 

hyperbola. 

Das, Quadratic 

Inequalities 

C4) 
—5\— 

Figure 2.7.1 

An inequality equivalent to one of the form & >0, E=< 0, b> UMen 

E <0, where E is a polynomial of the second degree is called a quadratic 

inequality. A graphical method of solving quadratic inequalities in one 

variable is shown in the following illustration. 

ILLUSTRATION 1. To find the solution set of the inequality 

Sir Dee Bical) (1) 

we consider the graph of the equation 

Y= x2 2x 3 

This equation is equivalent to 

x?—2x =y+3 

We complete the square in the left member by adding | to each member and 

obtain 

x? —Ix +layr+34+1 

(63 = 12 = ar 4 

This is an equation of a parabola with vertex at (1, —4) and opening upward. 

A sketch is shown in Figure 2.7.1. The parabola intersects the x axis at the 

points (—1, 0) and (3, 0). Observe from the figure that y < 0 if and only if 

—1 <x <3. Thus the solution set of inequality (1) is {x|-—1 <x < 3}. 

Furthermore, from Figure 2.7.1 we see that y > Oif and only ifx < —1or 

x > 3. Therefore, the inequality 

x2 —2x —3 >0 

has the solution set {x |x < —1} U {x |x > 3}. e 



2.7] 

EXAMPLE 1 
Find graphically the solution set of 

ax-e> 10x — 3 

(-4) 
Figure 2.7.2 
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SOLUTION 
The given inequality is equivalent to 

3x2 — 10x +3 >0 (2) 

We consider the equation 

a Bx 10x 123 

which is equivalent to 

ee 3) So 

eee Ome Sal ee 25. 
ised ao) 3 55 

The graph of this equation is a parabola with vertex at (3, — 4?) and opening 
upward. To find the points of intersection of the parabola with the x axis, we 

solve the equation 

8x2 10% 4-3 = 0 

(3x — 1)\(x — 3) =0 

BXe—— il <=. 0 Ke— 54.0) 

a——— xX =3 

Therefore, the parabola intersects the x axis at (4, 0) and (3, 0). A sketch of 

the parabola is shown in Figure 2.7.2. From the figure it follows that y > 0 if 

and only if x <4 or x > 3. Therefore, the solution set of inequality (2) is 

ele Ole oe 

The solution set of a quadratic inequality in one variable can be found 
analytically. The following illustration shows the procedure. 

ILLUSTRATION 2. To find the solution set of the inequality 

Sy we pee oa) 

we first obtain the equivalent ine- 

quality 

eee xe 0 

Coe 0 
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a: 

3) B) 

Figure 2.7.3 

EXAMPLE 2 

Find the solution set of the inequal- 

ity 

Spee Mbee oS tS 

and draw a sketch of the graph of 
the solution set. 

This inequality will be satisfied only when both factors have the same sign, 
that is, when x — 3 >Oandx +5 >0,orwhenx —3 <Oandx +5<0. 
We consider two cases. 

CASE 1: x —3 > 0 and x +5 > 0. That is, 

x SS and Xo — 

Both inequalities hold if x > 3, and hence the solution set for Case 1 is 
eles 

CASE 2: x —3 <0 and x +5 < 0. That is, 

See} and eK =F 

Both inequalities hold if x < —5, and so the solution set for Case 2 is 

Vale Oh 

The solution set of the given inequality is the union of the solution sets of 
Cases 1 and 2, which is 

Hee ee — eC) eee eo.) 

A sketch of the graph of this solution set is shown in Figure 2.7.3. e 

SOLUTION 
The given inequality is equivalent to 

3x? — 10x —8 <0 
(x — 43x + 2) <0 

The product of two factors is negative if and only if the two factors have 
opposite signs. Hence the inequality will be satisfied if and only if either 

x —4<O0and3x +2 >0,orx — 4 >0and 3x + 2 < 0. We consider two 

cases. 

CASE 1: x — 4 <0 and 3x +2 >0. That is, 

x<4 and x>-+ 

Hence the solution set for Case | is {x |x > —8} MN {x |x < 4} or, equiva- 
lently, {x|-—#< x < 4}. 

CASE 2: x — 4 >0 and 3x + 2 <0. That is, 

x>4 and x<-4 

The solution set for Case 2 is {x |x > 4} M {x |x < —%}, which is @. 
The solution set of the given inequality is the union of the solution sets of 
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| Cases 1 and 2, which is {x|—%<x<4}U@ or, equivalently, 
=5 0 5 {x|-2<x <4}. 

Figure 2.7.4 A sketch of the graph is shown in Figure 2.7.4. 

ILLUSTRATION 3: The inequality of Example 6 in Section 1.6 is 

3x 
5 

te) 

An alternative method of finding the solution set is to multiply both members 
of the inequality by (x + 2)”, which is positive when x #4 —2. Doing this, we 
have 

3x 2 2 
Sag aie <r) 

BX.) = "= Ai 4) 

Bee Ona Ox 20 

ice ee SEA ole) 

yee eee Js 1) So) 

C2) Ce) 0 

We consider two cases. 

CASE 1: x + 2 >0 and x +5 > 0. That 1s, 

x oS and x > =—5 

The solution set for Case 1 is then {x |x > —2}. 

CASE 2; x + 2 < O and x + 5 < 0. That is, 

x< —2 and x< —5 

The solution set for Case 2 is then {x |x < —5}. 
The union of the solution sets of Cases 1 and 2 is 

{x |x < —5} U {x|x > —2} 

which agrees with the result in Example 6 of Section 1.6. @ 

EXAMPLE 3 SOLUTION 

Use the method of Illustration 3 to | We multiply each member of the inequality by (2x — 1)? and we have 
find the solution set of the inequality 

xe ce Il 2x — 1)? 2x — 1)? ates peo a Cx — 1) 

ox (Coe) Oxyaal) > 34x 2" 4x +11) 

Msgs Msg 5 SSD ees loa eg Me, 6) 

OS kee ashe tee 

(Sxt—s4\2x5—51),<.0 
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EXAMPLE 4 

A firm manufactures and sells port- 
able radios, and it can sell at a price 
of $75 each all the radios it pro- 
duces. If x radios are manufactured 
each day, then the number of dollars 
in the daily total cost of production 
is x? + 25x + 96. How many radios 
should be produced each day so that 
the firm is guaranteed a profit? 

CASEI 1: 5xi— 4 = O-and 2x "1 0) That 1s; 

4 1 tt d _ MESS an aa 

The solution set for Case 1 is {x |x >4} M {x |x <$} or, equivalently, 

{x|3<x <$}. 
CASE 2: 5x — 4 >0 and 2x — 1 < 0. That is, 

x>4 and x<t 

The solution set for Case 2 is 9. 
The solution set of the given inequality is the union of the solution sets of 

Cases 1 and 2 which is {x |4< x < $}. 

SOLUTION 
The number of dollars in the total revenue received each day from the sale of 

x radios is 75x. If P dollars is the daily profit from the sale of x radios, then 

because profit equals revenue minus cost, we have 

P= 75x — (x? + 25x + 96) 
= Xe 4k Se — 96 

For the firm to be guaranteed a profit, we must have P > 0; that is, 

30s Se Se SS) 

or, equivalently, 

ae One Ona) 

(x — 2)(x — 48) <0 (3) 

Inequality (3) will be satisfied in either of two cases. 

CASE 1? x — 2 <0 and ~ — 48. > 0; that 1s, 

SD and x > 48 

Therefore, the solution set for Case | is {x |x <2} M {x|x > 48}, which 

is ©. 

CASE 2: x — 2 >0 and x — 48 = 0; that is, 

36 SD) and x < 48 

Hence the solution set for Case 2 is {x |x > 2} {x |x < 48} or, equiva- 

lentlyse es (2p <a) 
The solution set of inequality (3) is the union of the solution sets of Cases 

1 and 2, which is {x |2 <x < 48} U @ or, equivalently, {x |2 <x < 48}. 

Thus we conclude that for the firm to be guaranteed a profit, the number 
of radios produced and sold each day must be greater than 2 and less 

than 48. 
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In Section 3.4 we return to the problem in Example 4 and learn how to 
determine the number of radios that should be produced and sold each day 
in order to have the greatest profit. 

EXERCISES 2.7 

In Exercises I through 6, find graphically the solution set of the given inequality. 

ile OS aes wig ree tH) 25 xemn6x = 580 So ee we ee See!) 

Oe gee tebe ae Wee er )) Sax ot Xx — 6 < 0 625% — 4% —4 > 0 

In Exercises 7 through 19, find the solution set of the given inequality. Draw a sketch of 
the graph of the solution set. 

7.x? >9 82x44 9) e-+3)0 4) < 0 LO Cxe— Gx 5) 0 

Lil 4k ea 0 12822 er 1 0 13240 3X xe 0 14. 4x2+ 9x > 9 

152% 5<46x 1-3 16.324 3.0 ali0 Whe ota Poe ae 

5 6 
: =) } x 18 ap 19 pee 

In Exercises 20 through 23, use the method of Illustration 3 to find the solution set of 
the given inequality. 

20. Exercise 26 of Exercises 1.6 21. Exercise 27 of Exercises 1.6 

6 — 2x 2 — 71x 
22. > 23. 4 

44x _ 5 — 4x = 

24. A firm can sell at a price of $100 per unit all of a 25. A company that builds and sells desks can sell at a 

particular commodity it produces. If x units are price of $200 per desk all the desks it produces. If x 
produced each day, the number of dollars in the desks are built and sold each week, then the num- 
total cost of each day’s production is ber of dollars in the total cost of the week’s pro- 
x? + 20x + 700. How many units should be pro- duction is x* + 40x + 1500. How many desks 
duced each day so that the firm is guaranteed a should be built each week in order that the manu- 

profit? facturer is guaranteed a profit? 

2.8 Inequalities in Statements of the form 

Two Variables eB yO Omens By Cc =< 0 
Ax +By+C>0 Ax + By+C<0 

where A and B are not both zero, are inequalities of the first degree in two 

variables. By the graph of such an inequality, we mean the set of all points 

(x, y) in a rectangular Cartesian coordinate system for which (x, y) is an 
ordered pair satisfying the inequality. 
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2.8.1 THEOREM 

Every line in a plane divides the plane into two regions, one on each side of 
the line, and each of these regions is called a half plane. The graph of an 
inequality of the form 

Ax + By +C>0 or Ax + By +C<0 

is a half plane. To show this, let L be the line having the equation Ax + 
By +C =0. If B £0, then L is nonvertical and its equation can be writ- 

ten as y = mx + b, wherem = ~ and b= -=. If (x, y) is any point in 

the plane, it follows from Theorem 1.2.15(i) that exactly one of the following 

statements holds: y=mx +b, y>mx+b, or y<mx+b. Now, 
y >mx + bif and only if the point (x, y) is above the point (x, mx + b) on 
line L (see Figure 2.8.1), and y < mx + b if and only if the point (x, y) is 
below the point (x, mx + b) on L (see Figure 2.8.2). Therefore, the line L 
divides the plane into two regions. One region is the half plane above line L, 
which is the graph of the inequality y > mx + b, and the other region is the 
half plane below L, which is the graph of the inequality y << mx + b. 

oy oY, Gas) 

I 15 eS ibe SP 1p 

(x, mx + b) 

Figure 2.8.1 Figure 2.8.2 

If B = 0, then L is a vertical line and its equation can be written as x = a, 

where a = — © If (x, y) is any point in the plane, it follows from Theorem 

1.2.15() that exactly one of the following statements is true: x = a, x > a, or 
x <a. The point (x, y) is to the right of the point (a, y) if and only if x > a; 
hence the graph of the inequality x > a is the half plane lying to the right of 
the line x = a. Similarly, the graph of x < ais the half plane lying to the left 
of the line x = a, because x < aif and only if the point (x, y) is to the left of 
the point (a, y). We have proved the following theorem. 

(i) The graph of y > mx + is the half plane lying above the line 
y=mx +b. 

(ii) The graph of y<mx +5 is the half plane lying below the line 
y=mx +b. 

(ii) The graph of x > ais the half plane lying to the right of the line x = a. 
(iv) The graph of x < ais the half plane lying to the left of the line x = a. 
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Figure 2.8.7 
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yy 

A 

ca 

PS ak) Ao 

oa 
- 

>mx + b ar aa 
y s + ~ > Xx 

o 0 - 
ee. Pa 

ay Gat a 
a 

cae y<mx+t+b 
72 

y. 

Figure 2.8.3 Figure 2.8.4 

Figures 2.8.3 and 2.8.4 show sketches of the graphs of y > mx + b and 
y <mx + b, respectively. Observe that the appropriate half plane is shaded. 
The graph of the line y = mx + bis indicated by a dashed line to show that 
it is not part of the graph. 

Sketches of the graphs of x > a and x < aare shown in Figures 2.8.5 and 

2.8.6, respectively. 

x 

4 
| 

| 
| 

| 

YW a S oy a 

x V a 

Figure 2.8.5 Figure 2.8.6 

ILLUSTRATION 1. The inequality 

3x +y—6>0 

is equivalent to 

y> —3x +6 

The graph of this inequality is the half plane above the line having the 
equation 3x + y — 6 = 0. A sketch of this graph is the shaded half plane 
shown in Figure 2.8.7. The graph of the line is indicated by a dashed line to 
show that it is not part of the graph. e 
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EXAMPLE I 
Draw a sketch of the graph of the 

inequality 

eye ee () 

y 4x + 5y —20=0 

Figure 2.8.9 

SOLUTION 
The given inequality is equivalent to 

—4y > —2x —5 

which is equivalent to 

1 5 
BGS 

The graph of this inequality is the half plane below the line having the 
equation y = 4x + 3. Asketch of the graph is the shaded half plane shown in 

Figure 2.8.8. 

easel A Oe 
Pa 5 

BE 

a ages ae See slay 

t 
Figure 2.8.8 

A closed half plane is a half plane together with the line bounding it, and it 

is the graph of an inequality of the form 

Ax +By+C20 or Ax + By+C<0 

ILLUSTRATION 2. The inequality 

4x + 5y — 20 >0 

is equivalent to 

Sy > —4x + 20 

yor Sx + 4 

Therefore, the graph of this inequality is the closed half plane consisting of 
the line y = —4x + 4 and the half plane above it. A sketch of the graph is 
shown in Figure 2.8.9. e 

The inequalities 

y>Ax? + Bx+C y<Ax?+Bx4+C 
y > Ax? + Bx4+C y < Ax? + Bx +C 
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EXAMPLE 2 
Draw a sketch of the graph of the 
inequality 

2x7 3 

EXAMPLE 3 
Draw a sketch of the graph of the 
inequality 

y > 4x? — 24x + 34 

are quadratic inequalities. We can draw a sketch of the graph of such 
inequalities by a method similar to that for a linear inequality. The next two 
examples show the procedure. 

SOLUTION 
If we equate the two members of the inequality, we have the equation 

Vs 2x? 3 

Ve 3 = x2 

A sketch of the graph of this parabola is shown in Figure 2.8.10 by a dashed 

curve because the parabola is not part of the graph of the inequality. The 
graph of the inequality is the region below the parabola, and it is shaded in 

the figure. 

Figure 2.8.10 

SOLUTION 
Equating the two members of the inequality, we obtain 

y = 4x? — 24x + 34 
y — 34 = 4(x? — 6x) 

y — 34 + 36 = 4(x? — 6x + 9) 
y+t2=4x — 3) 

The graph of this equation is a parabola, and the graph of the given 
inequality consists of the parabola and the region above the parabola. A 
sketch of the graph is shown in Figure 2.8.11. 
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2.8.2 THEOREM 

yy ee OI Nace ae 

a 

a 

poate as Tee 
0 

- 

Figure 2.8.11 

All the points (x, y) whose coordinates satisfy the equation 

VG = HP + RF =r 
are r units from the point C(A, k) and hence lie on the circle having its center 

at C and a radius of r. The points whose coordinates satisfy the inequality 

\) Ch Ge 2 a. (1) 

are at a distance less than r units from C, and these points are in the region 
called the interior of the circle. Similarly, the points whose coordinates satisfy 

the inequality 

Es STO St (2) 

are in the region called the exterior of the circle because these points are at 
a distance greater than r units from C. By squaring both members of 

inequalities (1) and (2), we have the following theorem. 

The graph of the inequality 

Cen) sa 

is the interior of the circle having its center at (A, k) and a radius of r, and the 

graph of the inequality 

Ge) Or) as 

is the exterior of the circle. 
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EXAMPLE 4 

Draw a sketch of the graph of each 
of the following inequalities. 

(a) x? + y? — 8x +6 +21 >0 
(b) x? + y? + 4x — 10y + 20 <0 

EXERCISES 2.8 
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SOLUTION 

(a) 

(b) 

The inequality 

x? + y? — 8x + 6y + 21 >0 

is equivalent to 

x? — 8x + 164+ y? +6y +9 > —-214 1649 

(x — 4? +(y +3)? >4 

The graph of this inequality is the exterior of the circle having its center 
at (4, —3) and a radius of 2. A sketch of this graph is shown in Figure 
72012: 
The inequality 

x? + yp? + 4x — 10y + 20 <0 

is equivalent to 

x? + 4x +44 y? — 10y +25 < —204+ 4425 

(x +2)? (vy —5P <9 
Figure 2.8.13 shows a sketch of the graph of this inequality. The graph is 
the interior of the circle having center at (—2,5) and radius 3. 

Figure 2.8.12 Figure 2.8.13 

In Exercises I through 16, draw a sketch of the graph of the given inequality. 

Ll y<4x —-2 

4y7+8<0 
7. 5x +6 > 2y 

2. y > 2x — 3 Sek] 20 

5. 3x —6y +4 <0 6. 2y —8x +5 >0 
8. 9x + 3y >7 9. y — 2x2 <0 
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10. 2x2 + Sy <0 
133 x29 
16. 3x? + 3y? + 8x —6y <1 

11. x? +4y 4+ 6x +820 
14. x? + y? > 36 

12. x? —4y +8 >0 
15. x? + y? —6y + 4x > 0 

In Exercises 17 through 20, define the given region by an inequality. 

17. The half plane below the line 3x + 2y — 12 =0. 

18. The half plane above the line 5x — 4y — 20 =0. 

19. The closed half plane bounded by 2x —7y + 
3= 0 and containing the point (—3, 2). 

REVIEW EXERCISES (CHAPTER 2) 

20. The closed half plane bounded by 4x —y + 8 =0 

and containing the point (5, —3). 

In Exercises 1 through 14, find the solution set of the given equation. 

Tel Ox ee x16) = 0 

3. 2x7 = 4x +5 

oye = Dip SoD ss) 

7. (y —-YY + 2) =4 
9 xi XxX = Xx 

Hey) @ Paes Se 

11 Vix Jey x 6 3 

13.1 36x42 13020 

2 OV lye 12 

Ae DX 0 

(fs i) Sp Soe 0 

8. (3x + 10)\(x — 3) =2x + 14 

11 a 10g ee) 
se sk a) 

1g 8 = 0 

14, 823 + 27 =0 

In Exercises 15 and 16, solve for x in terms of the other symbols. 

15. 6x? —2xy —-x +y—-1=0 16. rsx? + s*x + rix + st =0 

In Exercises 17 through 28, draw a sketch of the graph of the given equation. 

Vy? — x = 0 
19. x? + 8y =0 
21. x* yy? H6 
23. (x — 4y)(x? — 4y) =0 
253 baa oy eG) 

Di M2 yt | 

18. y=x-l 

20. 3x? — loy = 0 
22. (3x + 4y — 15)(x — 2y + 8) = 0 

24S KAO A 9 
26. x? + y2 = | 
28. x2 = y= 0 

29. Show that the graph of the equation x? + y? — 4x + 10y + 13 = 0 is a circle 
and find its center and radius. 

In Exercises 30 and 31, find graphically the solution set of the given inequality. 

30,29 oy ee 31. 2x? -x — 10 >0 
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In Exercises 32 through 38, find the solution set of the given inequality. Draw a sketch 

of the graph of the solution set. 

32. 

34. 

36. 

38. 

oa l6 

Got — § < 0 

x? > 7x —4 

3x — 1 3x +4 

Fae D) 

BS a5 

35. 

Oe 

2x2 + 7x > 15 
5 
= 3 

2x —3> 

In Exercises 39 through 42, draw a sketch of the graph of the given inequality. 

aul 
41. 

43. 

44. 

45. 

46. 

47. 

3x —4y > 12 
x? + yp? < 16 

Draw a sketch of the parabola having the equation 
x? — 6y = 0, and find the focus and an equation 
of the directrix. 
Draw a sketch of the parabola having the equation 
y =x? — 8x. Find the vertex, the axis, the focus, 

and the directrix. 
Use the definition of a parabola (2.5.1) to find an 

equation of the parabola whose focus is at (0, —4) 
and whose directrix has the equation y = 4. 
A small pipe takes 24 minutes longer to fill a tank 
than it takes a large pipe. The two pipes together 
can fill the tank in 9 minutes. How long does it 
take each pipe alone to fill the tank? 
A train on its way east was delayed | hour when it 
was 560 kilometers west of New York City. By 
increasing its normal speed 10 kilometers per hour, 
the train arrived at New York on schedule. What is 
the train’s normal speed? 

40. 5x + 3y < 15 

42. x2 —2y >2 

48. 

49. 

50. 

In a long-distance race covering 42 kilometers, one 

runner finished 12 minutes before another runner. 
If the faster runner’s speed was | kilometer per 
hour more than the slower runner’s speed, what 

were their speeds? 
On a river whose rate is 4 kilometers per hour, it 

takes a motorboat | hour longer to go 40 kilome- 
ters up the river than it takes to return the same 

distance. What is the rate of the boat in still water? 

A carpenter can sell all the bookcases that are 
made at a price of $65 per bookcase. If x bookcases 
are built and sold each week, then the number of 

dollars in the total cost of the week’s production is 
x? + 15x + 225. How many bookcases should be 
constructed each week for the carpenter to be 
guaranteed a profit? 
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3.1 Relations and 

Functions, and Their 

Graphs 

3.1.1 DEFINITION 
y 
A 
fa @ 

r 

i 

b e 

L 

le 

e 

[ ae ea al Pests 

0 5 

Figure 3.1.1 

3.1.2 DEFINITION 

Figure 3.1.2 

152 

Sets of ordered pairs of real numbers were discussed in Section 1.8. We 

now refer to any such set as a “relation.” 

A set of ordered pairs of real numbers is called a relation. 

ILLUSTRATION 1. The set {(1, 1), (2, 4), (3, 9)} isa relation. This relation can 

be defined in words as the set of ordered pairs for which the first component 

is a positive integer less than 4, and the second component is the square of 

the first. The graph of this relation consists of the three points whose 

coordinates are given by the ordered pairs in the relation, and it is shown in 

Figure 3.1.1. e 

For the set of ordered pairs in a relation there is a correspondence between 

the set of first components and the set of second components of the ordered 

pairs. Because of this correspondence (or relationship) the term “relation” is 

appropriate for the set of ordered pairs. 

If Sis a relation, then the domain of S is the set of all first components of the 

ordered pairs in S, and the range of S is the set of all second components of 

the ordered pairs in S. 

The domain of the relation in Illustration | is the set {1, 2,3}, and the 

range of this relation is {1, 4, 9}. 

Because the solution set of an equation in two variables is a set of ordered 

pairs, the solution set is a relation and the equation is said to define the 

relation. The graph of such a relation is the same as the graph of the 

equation. 

ILLUSTRATION 2. The relation defined by the equation 3x — 4y = 12is the 

solution set of the equation, and it can be written with symbols as 

{(x, y)|3x — 4y = 12}. This relation is an infinite set. Both the domain and 

the range are the set R of real numbers. Some of the ordered pairs in the 

relation are (0, —3), (4, 0), (8, 3), (4, —2), @, —#), and so on. The graph of 

the relation is a line, and a sketch of it is shown in Figure 3.1.2. e 

ILLUSTRATION 3. Consider the following three relations. 

S={(%y)|y? =x — 3} 
T= Cen) |v Vx — 3} 

WNC) a VRS 
The equation defining S is equivalent to the two equations 

VS NX = 3S and y=—vVx —3 (1) 
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Figure 3.1.3 

3.1.3 DEFINITION 

For these equations, we see that if x — 3 < 0, that is, if x < 3, a square root 

of a negative number is obtained and hence no real number y exists. 

Therefore, we must restrict x so that x > 3. Hence the domain of S is 

{x|x > 3}. The range of Sis the set R of real numbers. The graph of relation 
Sis the graph of the equation y* = x — 3. This graph is a parabola and a 
sketch of it is shown in Figure 3.1.3. 

Relation T has as its domain the set {x |x > 3}, and because yp is a 
nonnegative number, the range of T is {y| y > 0}. The graph of T is the 
upper half of the graph of S, and a sketch of it is shown in Figure 3.1.4. 

yy 

— 

Figure 3.1.4 Figure 3.1.5 

The domain of relation W is also the set {x|x > 3}. Because y is a 
nonpositive number, the range of Wis { y| y < 0}. The graph of W, a sketch 
of which is shown in Figure 3.1.5, is the lower half of the parabola of Figure 
3213. 

Relation S is the union of relations T and W;; that is, 

(yy? =x — 3} = (yy = Ve — 3} U (oy) |y = — Ve — 3} 
The domains of S, 7; and W are equal. However, for each number x, other 

than 3, in this common domain, there are two ordered pairs in S having x 
as the first component but only one ordered pair in each of the relations 7 
and W for which x is the first component. For instance, when x is 4, then 
from equations (1) y is either 1 or — 1. Thus both the ordered pairs (4, 1) and 

(4, —1) are in relation S. However, (4, 1) is the ony ordered pair in T having 
4 as its first component and (4, —1) is the only ordered pair in W having 4 

as its first component. Similarly, both (5, \/2) and (5, — \/2) are ordered 

pairs in S, but the only ordered pair in T having 5 as its first component is 
(5, /2) and the only one in W is (5, — V2). e 

A set of ordered pairs of real numbers (x, y), in which no two ordered pairs 

have the same first component, is called a function. The set of all possible 
values of x is called the domain of the function, and the set of all possible 
values of y is called the range of the function. 

By comparing Definitions 3.1.1 and 3.1.3, we see that a function is a 
particular kind of relation; it is a relation for which the second component is 
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EXAMPLE 1 

For each of the following relations, 
determine the domain and range, 
and state whether or not the relation 

is a function. 

(a) (3), iL); (=), (ES); GC; 7)} 

(b) {CL 2), @, 3), 3, 4), 3, 5), G, 6)} 
(c) {(—2, 2); (—1, 2), (0, 2); (2) 

(d) (C1, 2), (1, 3), 1, 4), C1, 5)} 

Figure 3.1.6 

unique for a specific value of the first component. It follows from the 

discussion in Illustration 3 that each of the relations T and W is a function, 

but that relation S is not a function. 

In Definition 3.1.3 the restriction that no two ordered pairs can have the 

same first number implies that no vertical line can intersect the graph of a 

function at more than one point. Verify this statement for the graphs of the 

functions T and W of Illustration 3 by referring to Figures 3.1.4 and 3.1.5, 
respectively. Also refer to Figure 3.1.3, which shows the sketch of the graph 

of relation S of Illustration 3. Relation S is not a function, and note that any 

vertical line to the right of the line x = 3 intersects the graph in two points. 

SOLUTION 
(a) The domain, the set of all first components, is {—3, —1, 1, 3}. The range, 

the set of all second components, is {1, 3, 5, 7}. Because no two ordered 

pairs have the same first component, the relation is a function. 
(b) The domain is {1, 2, 3, 5} and the range is {2, 3, 4, 5, 6}. The relation is 

not a function because the two ordered pairs (3, 4) and (3, 5) have the 

same first component. 
(c) The domain is {—2, —1,0, 1}, and the range is {2}. The relation is a 

function because no two ordered pairs have the same first component. 
(d) The domain is {1}, and the range is {2, 3, 4,5}. The relation is not a 

function because all four of the ordered pairs have the same first com- 

ponent. 

We consider y to be a function of x if there is some rule by which a unique 
value is assigned to y by a corresponding value of x. Such relationships can 

be given by equations such as 

yom? 4 (2) 
and 

y= yo aoe (3) 

ILLUSTRATION 4, Equation (2) defines a function. Let us call this function 

f. The equation gives the rule by which a unique value of y can be deter- 
mined whenever x is given; that is, multiply the number x by itself, then 

multiply that product by 2, and subtract 4. The function fis the set of all 
ordered pairs (x, y) such that x and y satisfy equation (2); that is, 

Tee AO ),) ey — 2X ea 
A sketch of the graph of fis shown in Figure 3.1.6. e 

In Illustration 4, the numbers x and y are variables. Because for the 
function f, values are assigned to x and because the value of y is dependent 
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Figure 3.1.8 

upon the choice of x, we call x the independent variable and y the dependent 

variable. The domain of the function is the set of all values of the independ- 
ent variable that yield real values for the dependent variable. The range of 

the function is the set of all these values of the dependent variable. For the 
function f of Illustration 4, the domain is the set R of real numbers. The 

smallest value that y can assume is —4, which occurs when x = 0. The range 

of fis then the set of all real numbers greater than or equal to —4. 

ILLUSTRATION 5. Let g be the function which is the set of all ordered pairs 
(x, y) defined by equation (3); that is, 

ACG )) y= Vx — 25} 

Because the numbers in the range are confined to real numbers, y is a 

function of x only for x > 5 or x < —5 (or simply |x| > 5) because for any x 
satisfying either of these inequalities a unique value of y is determined. 
However, if —5 <x <5, a square root of a negative number is obtained, 

and hence no real number y exists. Therefore, we must restrict x, and so 

Cy) ye ny ee andiix | 5) 

The domain of gis {x |x < —5} U {x|x > 5}, and the range is { y| y > 0}. 
A sketch of the graph of g is shown in Figure 3.1.7. e 

Figure 3.1.7 

ILLUSTRATION 6. Let h be the function which is the set of all ordered pairs 
(x, y) such that 

= miin =| 
a te x <3 

ch aly Neer 

The domain of / is the set R of real numbers, while the range of / consists of 
the three numbers, —2, 2, and 4. A sketch of the graph is shown in Figure 
Ba 1-8, e 
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Figure 3.1.9 

EXAMPLE 2 

Let F be the function which is the set 

of all ordered pairs (x, y) such that 

ieee ifx<1 

ee xe. if laex 

Find the domain and range of F, 
and draw a sketch of the graph of F. 

EXAMPLE 3 

Let G be the function which is the set 

of all ordered pairs (x, y) such that 

x? —4 
x —2 

Y= 

Find the domain and range of G, 
and draw a sketch of the graph of G. 

L 

Figure 3.1.11 

ILLUSTRATION 7. Consider the relation {(x, y)|x? + y? = 9}. This relation 

is not a function because for any x greater than —3 and less than 3, there are 

two ordered pairs having that number as a first element. For example, both 

(2a */ 5 yrand (2,0 \/5) are ordered pairs in the relation. Furthermore, observe 

that the graph of the relation, shown in Figure 3.1.9, is a circle with center at 

the origin and radius 3, and a vertical line having the equation x = a, where 

—3 <a <3, intersects the circle in two points. ® 

SOLUTION 

A sketch of the graph of F is shown in Figure 3.1.10. The domain of F is the 

set R of real numbers, and the range of F is also R. 

: 

c 1 

OV 1 

Figure 3.1.10 

SOLUTION 

Because a value for y is determined for each value of x except x = 2, the 

domain of G consists of all real numbers except 2. When x = 2, both the 

numerator and denominator are zero, and 0/0 is undefined. Factoring 

the numerator into (x — 2)(x + 2), we obtain 

_ (& = 2)% + 2) 
i x —2 

ory =x + 2, provided that x 2. In other words, the function G consists of 

all ordered pairs (x, y) such that 

and xe? 

A sketch of the graph is shown in Figure 3.1.11. The range of G is the set of 

all real numbers except 4. The graph consists of all points on the line 

y =x +2 except the point (2, 4). 

yh eae oe 
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EXAMPLE 4 

Let H be the function which is the 

set of all ordered pairs (x,y) such 
that 

(am shi Bele aey 

vay ifx <2 

Find the domain and range of H, 
and draw a sketch of the graph of H. 

EXAMPLE 5 

Let fbe the function which is the set 
of all ordered pairs (x, y) such that 

oa x= 6)(x? — 16) 

2G 1a A) 

Find the domain and range of f, and 
draw a sketch of the graph of f- 

SOLUTION 

A sketch of the graph of H is shown in Figure 3.1.12. The graph consists of 
the point (2, 1) and all points on the line y = x + 2 except the point (2, 4). 
Function H is defined for all values of x, and therefore the domain of H 

is the set R of real numbers. The range of H consists of all real numbers 
except 4. 

Figure 3.1.12 

SOLUTION 

Factoring the numerator and denominator, we obtain 

ee ae 4) 
er Ne: eae) 

We see that the denominator is zero for x = —4, —3, and 4; therefore / is 

undefined for these three values of x. For values of x #4 —4, —3, or 4, we 

may divide numerator and denominator by the common factors and obtain 

Ve 2 if x # —4, —3, or 4 

A sketch of the graph of fis shown in Figure 3.1.13. 

Figure 3.1.13 
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The domain of fis the set of all real numbers except —4, —3, and 4; and 

the range of f is the set of all real numbers except those values of x — 2 

obtained by replacing x by —4, —3, or 4. That is, the range of fis all real 

numbers except —6, —5, and 2. The graph of this function is the straight line 

y =x — 2, with the points (—4, —6), (—3, —5), and (4, 2) deleted. 

EXAMPLE 6 SOLUTION 

Let g be the function which is the set | A sketch of the graph of g is shown in Figure 3.1.14. The graph consists of 

of all ordered pairs (x, y) such that | the point (2, 6) and all points on the parabola y = x? — 1, except the point 

(2, 3). Function g is defined for all values of x, and so the domain of g is the 
eI Ge eae 

Y= \¢6 ao set R of real numbers. The range of g is {y|y > —1}. 

Find the domain and range of g, and 
draw a sketch of the graph of g. 

Figure 3.1.14 

EXAMPLE 7 SOLUTION 

Let h be the function which is the set | A sketch of the graph of h is shown in Figure 3.1.15. The domain of g is the 

of all ordered pairs (x,y) such that | set R of real numbers, and the range is {y|y < 3}. 

ye ct 5, ifx << —3 

=) Ve it 3 = 3 

5 — xX, Lise <a 

Find the domain and range of h, and 
draw a sketch of the graph of h. 

Figure 3.1.15 

EXAMPLE 8 SOLUTION 

Let Because \/x(x — 2) is not areal number when x(x — 2) < 0, the domain of 

= OR er f consists of the values of x for which x(x — 2) > 0. This inequality will be 

Te Gy ig a) satisfied when one of the following two cases holds: x > 0 Aes — Ss 0; or 

Find the domain and range of fand | x <0 and x —2 <0. 

draw a sketch of the graph of f 
CASE 1: x > 0 and x — 2 > 0. That is, 

x > O and 3g > 2 
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y Both inequalities hold if x > 2, which is the set {x |x > 2}. 

CASE 2: x < 0 and x — 2 < 0. That is, 

on, gy) and cee 
0 

Figure 3.1.16 
Both inequalities hold if x < 0, which is the set {x |x < 0}. 

Combining the solutions for the two cases we obtain for the domain of f 
the set {x |x <0} U {x |x > 2}. The range of fis {y| y > 0}. Figure 3.1.16 
shows a sketch of the graph of f. 

EXERCISES 3.1 

In Exercises 1 through 10, find the domain and range of the given relation and 
determine if the given relation is a function. 

fvajees40) (12). (154), Gs 6)) QB =, OMG, 1 
3:0 (0; 4), (2, 2), (4,2), (6,.0)} 4. {(—2, 2), (—1, 2), (1, 2), (2, 2)} 
Sam ll) (13), (54), Gs5)} 6. {—5, —4), (—1, —3), (—1, 3), (4,3)} 

7. {(—2, —1), (0, —1), ( —1)} 8. {C5 2); Gly 3), (1, 4), ce 5)} 

Ie — 2), 2,0), G3) eG4s le 45)} 10932 1)) (6, —1)) 9; 1) 2.1)} 

In Exercises I] through 18, draw a sketch of the graph of the given relation. Is the 
relation a function? 

TICs y) (ia 25} 12. {(x, y)|y = —3x + 4} 13. {(x, y)|3x — 6y = 2} 
14. {(x, y)|9x — 3y = 4} 15. {(x, y)|x? + 4y = 8} 16. {(x, y)|2x? + y = 6} 
USAC Y) eet = 5) IS (X57) |x —y2 = 7} 

In Exercises 19 and 20, draw sketches of the graphs of relations R, S, and T. Determine 
if any of the relations are functions. Show that R = S U T. 

19. R= {(x, | =x +9},S = (x, ly = vx +9}, T={@&yWly = —Vx +9} 
20. R = {(x, y)|x? + y? = 16}, S = {(x, y)|y = V16 — x7}, T= {yy = — VI16 — x7} 

In Exercises 21 through 30, find the domain and range of the given function, and draw a 
sketch of the graph of the function. 

21. f= {(~% y)|y = 4x — 3} 22. g = {(x,y)|y =x? + 3} 
23. F = {(x,y)|y =x? — 4} 24. G = {(x,y)|y = Vx — 2} 
25. h = {(x,y)|y = V3x — 12} 26. H = {(x,y)|y = Vx? — 36} 
ZT (Cony) | Vi \/ 362? } 28sela—ai (xy) y= V 10)— x") 

2. g={(~%y)|y = —5} 30. f= (os»1y =$| 
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In Exercises 31 through 44, the function is the set of all ordered pairs (x, y) satisfying 

the given equation. Find the domain and range, and draw a sketch of the graph of the 

function. 

au ry= (Figen 
33. fry =~ 

re 
a7 ee oS 7 ae 

piece oe 
5¢ 2, ifx < —4 

41, He y=) Vl6 =x? it =—4—<—x< 4 

2—xX, ifx >4 

43. g-y = Vx? —4x —5 

3.2 Function Notation 

and Types of Functions 

=p), Wie < 8) 

S2e evi COM 3 as 

Ss sue oe SS) 

(x — 2)(x? + 4x + 3) 
34, y= ee) 

x* — 16 

eit 4 
Se (3 eee 
He e ={",*° pee ee 

/ oP Nae ix 

42 fy VX" ae 3X 

44, h: y = V2x? — 7x — 15 

If fis the function having as its domain values of x and as its range values 

of y, we use the symbol f(x) (read “fat x”) to denote the particular value of 

y that corresponds to the value of x. The number /(x) is called the function 

value of f corresponding to x. Therefore, the function of Illustration 4 in 

Section 3.1 can be defined by the equation f(x) = 2x? — 4. Because when 

x=1, 2x? -—4= —2, we write f(1) = —2. Similarly, ((—2)=4, 

f(0) = —4, and so on. 
If the letter g is used to denote a function, we would use the symbol g(x) to 

denote the function value corresponding to x. Thus if g(x) = 8 — 5x, then 
2(—4) = 28, g(0) = 8, g(4) = —12, and so on. 

When defining a function, the domain of the function must be either given 

or understood. For instance, if we are given 

f(%) = 2x 3x =a) 

it is implied that x can be any real number. However, if we are given 

fACH Ree Rha 7 (O's x= 3) 

then the domain of f consists of all real numbers between and including 0 
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EXAMPLE | 

If f(x)'= 2x2 + 3x — 5, find each 

of the following. 

(a) f(0) 
(c) f(—1) 
(e) f(2h) 
(g) f(x) + f(A) 

EXAMPLE 2 

(b) £3) 
(d) 2f(h) 
(f) f(2x) 
(h) f(x + h) 

If g(x) = 3x? — 2x + 4, find 

g(x + h) — g(x) 

where h £ 0. 

h 
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and 5. If g is defined by 

x +5 
x? —4 

g(x) = 

it is implied that x? 4 4, because the rational expression is undefined when 
x? = 4. Therefore, the domain of g is the set of all real numbers except 2 
and —2. If A is the function such that 

1X02 a el 

it is implied that the domain of A is {x |—3 <x < 3} because \/9 — x? is 

undefined (that is, it is not a real number) for x >3 or x < —3. 

SOLUTION 

(avr) = 2(0)? + 3(0) — 5 (b) f() = 263)? + 33) — 5 

== 5 =18+9—5 

—) 

(c) f(-) = 2(—1)? + 3(—1) — 5 (d) 2f(h) = 2(2h? + 3h — 5) 

— i) ai) = 4h? + 6h — 10 

= —6 

(7 Chy= 2(2h)? + 3(2h) — 5 (Oe O%) = 22x )2 - 3(2x) 5 

= 8h? + 6h —5 = 8x" + 6x —5 

(g) f(x) + f(h) = (2x? 4+ 3x — 5) + (2h? + 3h — 5) 
= 2x? + 3x + (2h? + 3h — 10) 

(h) f(x + h) = 2x +h)? + 3(x +h) — 5 
= 2x? +4hx + 2h? + 3x + 3h —5 

= 2x? + (4hx + 3x) + (2h? + 3h — 5) 

= 2x2 + (4h + 3)x + (2h? + 3h — 5) 

Compare the computations in parts (g) and (h) of Example 1. In part (g) 
we compute f(x) + f(h), which is the sum of the two function values f(x) 

and f(h). In part (h) we compute f(x + h), which is the function value at the 

sum of x and h. 

SOLUTION 

SO (yee en) — 2(x +h) + 4 — Gx" — 2x +4) 
h 5 h 

_ 3x2 4 6hx + 3h? — 2x —2h + 4 — 3x2 42x —4 
a h 
_ 6hx — 2h + 3h? 
ct h 
= 6x —2 + 3h 



162 Functions [Ch. 3 

3.2.1 DEFINITION — (i) A function fis said to be an even function if for every x in the domain of 

f, f(—x) = f(x). 
(ii) A function fis said to be an odd function if for every x in the domain of 

Ij = =o 

In both parts (i) and (ii) it is understood that — x is in the domain of f 

whenever x is. 

ILLUSTRATION 1 

(a) If f(x) = 3x7 = 2x2 7, then 

P=) = Be) ea! 
= yr = aL 7 

= f(x) 

Therefore, fis an even function. 
(b) If g(x) = 3x° — 4x3 — 9x, then 

2) (eX) a) —) 
SD SE hg lie Oye 

(Gee = 4a? =e) 

= —8(x) 

Therefore, g is an odd function. 
(c) If h(x) = 2x4 + 7x3 — x? + 9, then 

h(—x) = 2(—x)* + 7(—x)® — (—x)? +9 
2 ee 9 

We see that the function h is neither even nor odd. ® 

From the definition of an even function and Theorem 2.4.3(ii), it follows 

that the graph of an even function is symmetric with respect to the y axis. 
From Theorem 2.4.6 and the definition of an odd function, we see that the 

0 graph of an odd function is symmetric with respect to the origin. 

ILLUSTRATION 2 

(a) If f(x) = x4, then f(—x) = (—x)*, and so f(—x) = f(x). Therefore, fis 

an even function. The graph of f is shown in Figure 3.2.1 and it is 
air es (ery symmetric with respect to the y axis. 

y (b) If g(x) = x3, then g(—x) = (—x)%, so g(—x) = —g(x). Thus g is an 

Figure 3.2.1 Figure 3.2.2 odd function. The graph of g is shown in Figure 3.2.2, and it is symmetric 
with respect to the origin. © 

If the range of a function consists of only one number, then the function is 
called a constant function. Thus, if f(x) = c, where c is a real number, then if 
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is a constant function and its graph is a straight line parallel to the x axis at 
a directed distance of c units from the x axis. 

ILLUSTRATION 3 

(a) The function ffor which f(x) = 5 is a constant function, and a sketch of 

its graph is shown in Figure 3.2.3. 
(b) The function g for which g(x) = —¥isa constant function, and a sketch 

of its graph is shown in Figure 3.2.4. e 

Figure 3.2.3 Figure 3.2.4 

If fis a function for which f(x) is a polynomial of degree n, then fis called 
a polynomial function of degree n. If the degree of the polynomial is 1, then 
the function is called a linear function, if the degree is 2, the function is called 
a quadratic function; and if the degree is 3, the function is called a cubic 
function. 

ILLUSTRATION 4 

(a) The function f defined by 

f(x) = 3x4 — 2x3 4+ 5x -— 1 

is a polynomial function of degree 4. 
(b) The function g defined by 

g(x) = 6x — 3 

is a linear function. 

(c) The function h defined by 

h(x) = 5x? + 8x —4 

is a quadratic function. 
(d) The function F defined by 

Ec) = 4x2 — 7x? + 2 

is a cubic function. @ 
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Figure 3.2.5 

The general linear function is defined by 

Ts) = 11X10 

where m and b are constants and m # 0. The graph of this function is a 
straight line having m as its slope and b as its y intercept. The particular 

linear function defined by 

f(x) =x 

is called the identity function. 

ILLUSTRATION 5. The identity function can be represented with ordered 

pair notation as 

FH{Qy) ly =x} 

Because f(x) = x, then 

f(-x) = -x 
= —f(x) 

Therefore, the identity function is an odd function and its graph is symmetric 

with respect to the origin. A sketch of the graph of the identity function is 
shown in Figure 3.2.5. e 

Ifa function can be expressed as the quotient of two polynomial functions, 
the function is called a rational function. 

ILLUSTRATION 6. The function f defined by 

Foe a Dye = Il 

x9 
fx) = 

is a rational function. Because the denominator of the rational expression is 
zero when x is 3 or —3, the domain of this function fis the set of all real 
numbers except 3 and —3. e 

An algebraic function is a function formed by a finite number of algebraic 
operations on the identity function and the constant function. These alge- 
braic operations include addition, subtraction, multiplication, division, 

raising to powers, and extracting roots. 

ILLUSTRATION 7. The function g defined by 

es x Vx? —3 
xX) = —_ 

2 (x2 + 5x — 2/8 
is an algebraic function. © 
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EXAMPLE 3 
Let h be the function defined by 

Hx ea) 0 | 

Find the domain and range of h and 
draw a sketch of its graph. 

EXAMPLE 4 
The function F is the greatest integer 
function, defined by 

F(x) =[x] 
=e it ee ot | 

where nv is an integer. Draw a sketch 
of the graph of F, and state the do- 
main and range of F. 

In addition to algebraic functions there are transcendental functions. 
Examples of transcendental functions are exponential and logarithmic 
functions; they are discussed in Chapter 4. 

The function given in the next example is called the absolute value 
function. 

SOLUTION 

From the definition of the absolute value of a real number, it follows that 

x8, ties Sl 

8 Ms fas ‘foe 0 

The domain of / is the set R of real numbers, and the range of / is the set of 
nonnegative numbers. A sketch of the graph of h is shown in Figure 3.2.6. 

y 

Figure 3.2.6 

Observe in Example 3 that the graph of the absolute value function is 
symmetric with respect to the y axis. This occurs because it is an even 
function, since |—x| = |x|. 

In the following example, the symbol [[x]] is used, where [[x]] is defined as 

the greatest integer not greater than x. Hence, [2] = 2, [3.6] = 3, [4] = 0, 

[—3.6] = —4, [—8]] = —8, and so on. The function F, defined by 

F(x) = [x], is called the greatest integer function. 

SOLUTION 
The function F is the set {(x, y)| y = [x]]}. Therefore, 

if -—5<x< —4, y=-5 

if-4<x< -3, y= —-4 

if —3 <x <-2, y= 3 

if —2<x< —l, y= 2 

ne ca << eee y=-l 
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and so on. 

Figure 3.2.7 

EXERCISES 3.2 

In Exercises I through 14, find the given function value. 

TGA 7) 6 x 

3. g(—5) if g(x) = 3x? + 10x +5 

5. f(—4) if f(x) = V25 — x? 

7. 2(6) if g(x) = t 

9, h(—4) if A(x) = |2x — 5} 

. Be NSE RK 9) TO ek SA 
13. f(—4) for the function of Exercise 11. 

1a Oe eae eS. Ww 

ii SIR 2 = 

he PAR eee SF — ee 

hime ae ek — ar} 

Uh 4 << je 

A sketch of the graph of F is shown in Figure 3.2.7. The solid dot on the 
left endpoint of each line segment is used to indicate that the endpoint is part 
of the graph, and the open dot on the right endpoint of each line segment is 
used to indicate that the endpoint is not part of the graph. 

The domain of Fis the set R of real numbers, and the range of Fis the set 

of all the integers. 

2. g(—2) if g(x) = 4x +7 

4. f(4) if f(x) =x? —6x +1 

6. g(—1) if g(x) =x? - 1 

Seay Ke 
4—x 

10. r(2) if F(x) = [3x —2| 

erie rm penafeya (Ooh eS 
14. (3) for the function of Exercise 12. 

In Exercises 15 through 22, find each of the following: (a) 2f(h); (b) f(2h); (c) f(2x); 

(d) f(x + 2); (e) f(x?). 

15. f(x) = 4x —5 
18. (@) =9 — x2 

21. fix) == = 

In Exercises 23 through 32, find aia 

23. f(x) = 6x +7 
26. f(x) = 4x? 

16. f(x) = 8 + 3x 
19. f(x) = 3 Sx 2x 

22. f(x) = Vx? 

24. f(x) = 3 — 2x 
27. f(x) = 3x2 + 4x 4 1 

7 C= 2x e al 

20. f(x) =x? 4+x41 

, where h £ 0. 

25.5 (Xe ee 

28. f(x) = 1 — 5x + 4x? 
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LOX Xe — | 305/, Cpa 2x* 4 OL) = ee 

32. f(x) = A+? 
33. For each of the following functions, determine whether / is even, odd, or neither. 

Cr xs — 2X2 5 (b) f(x) = 4x3 — x (c) fO® =? —2¢+1 CONS at 

1 —1 (e) f(x) = 3x° + I (f) f(x) = [x1 (g) f(x) = 3544 ) f(r) = 
34. There is one function that is both even and odd. What is it? 

In Exercises 35 through 50, draw a sketch of the graph of the function defined by the 
given hen: 

35. f(x) = 36. g(x) =3 : 37. g(x) = 3|x| 38. f(x) = |x| — 2 
SRE JAC ie +3 40. G(x) = |x — 2} 41. f(x) = [3x + 9| 42. g(x) = |x| + |x - I 
43. g(x) =|x + 2| — |x| 44. f(x) = x|x| 45. G(x) =[x] - 1 46. F(x) =[[x — 1] 
47. f(x) =2 —[x] 48. g(x) =[2 — x] 49. F(x) =x + [x] 507 G (x)= 2x — [x] 

3.3 Operations on We now consider the operations of addition, subtraction, multiplication, 
Functions and division on functions. The functions obtained from these operations— 

called the sum, the difference, the product, and the quotient of the original 
functions—are given in the following definition. 

3.3.1 DEFINITION — If f and g are functions, then 

(i) The sum of f and g, denoted by f + g, is the function defined by 

(ii) The difference of f and g, denoted by f — g, is the function defined by 
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EXAMPLE 1 

If f and g are the functions defined 

by 

fe = 
1 x +4 

d = 5 ae and g(x) ea 

In each case the domain of the resulting function is the intersection of the 

domains of f and g, with the exception that in part (iv) the values of x for 

which g(x) = 0 are excluded. 

Observe in part (i) of Definition 3.3.1 that, because f and g are functions 

and not numbers, the + between f and g does not indicate the addition of 

real numbers. However, because f(x) and g(x) are real numbers, the + 

between f(x) and g(x) does indicate the sum of real numbers. 

ILLUSTRATION 1. Let f(x) = 2x — 3 and g(x) =x* + 4x —5. 

(a) The sum of f and g is the function defined by 

(fe) = Ox aye) 
: =x? 4+ 6x —8 

(b) The difference of f and g is the function defined by 

(f = 2) = 2x = 3) — (x? + 40 — 5) 

= —x? —2x +2 

(c) The product of f and g is the function defined by 

(fz) = 2x —3)@* + 4x— 5) 
= 2x? + 5x? 22% 15 

(d) The quotient of f by g is the function defined by 

— 2x —3 ORE 

(e) The quotient of g by fis the function defined by 

— x? +4x —5 Bos 

The domains of both fand g are the set R of real numbers. Hence in parts 

(a), (b), and (c) the domain of the resulting function is R. In part (d) the 

denominator is x? + 4x —5 = (x + 5\(x — 1), and this product is zero 

when either x = —5 or x = 1. Thus the domain of f/g is {x |x € R and 

x #4 —5,x # 1}. In part (e) the denominator is 2x — 3, which is zero when 

x = 3. Therefore, the domain of g/f is {x |x € R and x # 3}. e 

SOLUTION 
aL x+4 - ee ee se @) f+ aemste titi oO U-a= 5-345 
of ee _  —x% +10 

(x — 3)(x — 2) ~ (&% =— 3) = 2) 
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find each of the following function 
values and in each case determine 
the domain of the resulting function. 

(a) (f + g\(x) (b) (f — g)(x) 
(c) (fg)(x) (d) (f/g)\(x) 
(e) (g/f)(x) 

3.3.2 DEFINITION 

EXAMPLE 2 

Given that fis defined by f(x) = 
Vx, and g is defined by g(x) = 

x — 4, find F(x) if F = fog, and 
find the domain of F. 

Operations on Functions 169 

pant 11» Wenitt ad eee oe xt 4 
ee Ae 2) i reg 

2 at ans a ee) 

(= 3)(x — 2) oman) 
Se ttiti4es gic il 

(OG Ca) sere tea a ommame 

ech 2) 
i x —2 

The domain of fis {x |x € Rand x ¥ 3}, and the domain of gis {x |x € R 
and x # 2}. Thus, in parts (a), (b), and (c), the domain of the resulting 

function is {x |x € Randx # 2,x # 3}. Inpart (d), because g(x) = 0 when 

x = —4,the domain of f/g is {x |x € Randx 4 2,x #3,x # —4}. In part 
(e), because there is no value of x for which f(x) = 0, the domain of g/f is 

Heclles IM Ehitel [acs Oa a ene 

To indicate the product of a function f multiplied by itself, or /f, we 

write f?. 

ILLUSTRATION 2. If fis defined by f(x) = 4x — 3, then f? is the function 
defined by 

fx) = (4x — 3)(4x — 3) 
16x? — 24x + 9 e 

In addition to combining two functions by the operations given in Defini- 

tion 3.3.1, we shall consider the “composite function” of two given functions. 

Given the two functions fand g, the composite function, denoted by fog, is 
defined by 

(fogix) = f(g(x)) 

and the domain of fo g is the set of all numbers x in the domain of g such 
that g(x) is in the domain of f 

SOLUTION 

F(x) = (fegy(x) 
= fig(x)) 
= f(x — 4) 
n/a 
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EXAMPLE 3 
Given that f is defined by f(x) = 
We and ee) is) defined = by sec r= 

Xoo lend! 

(a) fof (b) gog 
(c) fog (d) gof 

Also, find the domain of the com- 

posite function in each part. 

EXAMPLE 4 
Given that /f is defined by 
f(x) =3x +2, find a function g 
such that (fog)(x) = x?. 

EXERCISES 3.3 

The domain of g is the set R of real numbers, and the domain of fis the set 

of all nonnegative numbers. Therefore, the domain of F is the set of real 

numbers for which x — 4 > 0; that is, {x |x > 4}. 

SOLUTION 
The domain of f is {x |x > 0}, and the domain of g is the set R of real 

numbers. 

(a) (fof) =f) (b) (geg)(x) = g(g(*)) 

=A) = (x? — 1) 

= VVx = (x? — 1? —1 

= Vx = x4 — 2x? 

The ‘domain of fey is The domain of gog is the set R 

txie 220) of real numbers. 

(c) (fegy(x) = flax) (d) (gef)(x) = gf) 
= f(x? — 1) = (Vx) 
= vx? — 1 = (Vt) ta! 

= xX ] 

The domain of fog is Theme domaine Of wee cams 

Palas IO Gee ies {el xere Ol}. 

Note in part (d) that even though x — | is defined for all values of x, the 
domain of go f, by Definition 3.3.2, is the set of all numbers x in the domain 

of f such that f(x) is in the domain of g. 

SOLUTION 
Because (fo 2)(x) = x7 then 

f(gla)) = x? 
3(g(x)) +2 =x? 

3(g(x)) =x? — 2 
Be? =D) 

3 
2) = 

In Exercises I through 10, the functions f and g are defined. In each exercise, find 

(a) (f + g(x); (b) (F — gi); © CPB); G) (F/8)(%); (©) (g/P)X); and (f) £7). 
In each case determine the domain of the resulting function. 

Lf Gs) Sx 252 (x) Se 
3. f(x) = 4x + 2; g(x) =4—x? 

Lf) = 2X5 2X) = 103% 

4, f(x) = x? + 3x —5; g(x) =2x +1 
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Sh JCS) SNe oe NB Oa) ra Bs ees 

7. fe) =<; g(x) = VE 

9. f(x) =4; gx) = 

Gi rare 1: o(x) = 4x? + 7x +3 

Sa) (3) Vx; 2) = ~< 

Lee _ ] 
Oe etree 1) 

In Exercises 11 through 20, the functions f and g are defined. In each exercise find 
(a) fog; (b) gof; (C) fof; (d) gog. Also, find the domain of the composite function in 
each part. 

11. The functions of Exercise 1. 

1357 i= — 1, ox) = x? 

15 Cy eo) — xe — 2 

17. The functions of Exercise 7. 

19) Coes ne ee a 

21. If f(x) = 3x — 6 and g(x) = +x + 2, show that 

(fog\(x) =x and (gof)\(x) =x. (Because of 
these relationships, fand g are “inverse functions.” 
Inverse functions are discussed in Section 3.6.) 

23. If f(x) =x*, find a function g such that 
(fogx) =x? — 6x +9. 

3.4 Quadratic 

Functions 

12. The functions of Exercise 2. 

14. f(x) = Vx; (x) Sa xe | 

16. f(x) = x2 — 1; g(x) =+ 

18. The functions of Exercise 8. 

DOS Oe Ne ee ve) 

22. If f(x) =4 — 2x, find a function g such that 

(Peg) j= xeand (20 f)(x) =x: 

24, If f(x) = +, show that (fef)(x) =x, if x £0. 

The general quadratic function is defined by 

Voi ax? 20x 6 

where a, b, and c are constants and a ¥ 0. The function f defined by this 
equation can be written as 

F =A; y)| yy j]ax2 + bx + ¢} 

and the graph of fis the same as the graph of the equation 

Vy Sax* + bx +¢ 

In Section 2.5 we learned that the graph of such an equation is a parabola 
whose axis is parallel to the y axis. Also in Section 2.5, properties of the 
parabola were discussed, and these are used as an aid in drawing a sketch of 
the graph. 
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Figure 3.4.1 

ILLUSTRATION 1. If the function fis defined by 

CD SP ata) (1) 

the graph of f is the same as the graph of the equation 

y= —2x7 + 8x) (2) 

This equation is equivalent to the equation 

(x? — 4x) = —p —5 

To complete the square of the binomial within the parentheses, we add 2(4) 

to each member and we have 

W(x? —4x +4) = -y—5+8 

1 Bee eae) 7 ) (x — 2)? 

This equation is of the form of the equation 

(x — hy? = 4p(y — &) 

where (h, k) is (2, 3) and p = —. Therefore, the vertex of the parabola is at 

(2, 3) and the axis is the line having the equation x = 2. Because p < 0, the 

parabola opens downward. We find a few more points on the parabola by 

substituting values of x into equation (2). When x = 0, y = —5, and when 

x = 1,y = 1; thus the points (0, —5) and (1, 1) are on the parabola. Because 

a parabola is symmetric with respect to its axis, it follows that the points (3, 1) 

and (4, —5) are also on the parabola. A sketch of the parabola is shown in 

Figure 3.4.1. e 

The zeros of a function f are the values of x for which f(x) = 0. For the 

function of Illustration 1 we can obtain the zeros by substituting 0 for f(x) in 

equation (1). Doing this, we have 

OR es) A") (3) 

eyes pl) 

Solving this equation by the quadratic formula where a is 2, bis —8, and c 

is 5, we have 

=|) Ze We? = ae 
28 == 

2a 

P 8+ 64 — 40 

+ 4 

: Sav 24 

fa 4 



Oo aa — 

= © 

Figure 3.4.2 

+ 
Figure 3.4.3 

is 
Figure 3.4.4 

ia 
Figure 3.4.5 
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Sis 2n/6. 

4 

Aer 6 
2 

Hence the zeros of the function of Illustration 1 are 

4+ V6 4— 6 
——. and —_— 

2 2 

These two numbers are the roots of quadratic equation (3). These numbers 
are also the x intercepts of the parabola that is the graph of the given 

function. 
In general, if 

VO) ye axe 4 Dx, +c} (4) 

then the zeros of fare the roots of the equation 

ax? + bx +c =0 (5) 

and the x intercepts of the graph of f 
In Section 2.2 we learned that a quadratic equation in one variable can 

have two real roots, one real root (of multiplicity two) or no real roots (that is, 
two imaginary roots). If equation (5) has two real roots, the graph of the 
function f defined in (4) intersects the x axis at two distinct points. This 

situation is shown in Figure 3.4.2, where the parabola opens upward (a > 0), 
and in Figure 3.4.3, where the parabola opens downward (a < 0). If the 
equation has one real root, the graph is tangent to the x axis, as shown in 
Figures 3.4.4 (a > 0) and 3.4.5 (a < 0). If the equation has no real roots, the 

graph does not intersect the x axis as shown in Figures 3.4.6 (a > 0) and 3.4.7 
(a <0). 

When the graph of a quadratic function opens upward, the function has a 
minimum value and this minimum function value occurs at the vertex of the 

Figure 3.4.6 Figure 3.4.7 
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EXAMPLE Il 

Find either a maximum value or a 

minimum value of the function f if 

f = {Ge y)ly = 3x? + 3x + 2} 

EXAMPLE 2 

Find either a maximum value or a 

minimum value of the function g if 

g = {(x,y)|3x2 — 12x + 2y = —20} 

parabola. There is no maximum value for such a function. When the 

parabola opens downward, the function has a maximum value occurring at 

the vertex; it has no minimum value. 

ILLUSTRATION 2. The function of Illustration | is 

f={@y)|y = —2x? + 8x — 5} 

We showed that the graph of fis a parabola opening downward and having 

its vertex at (2, 3). Therefore, this function fhas a maximum value of 3 and it 

occurs when x = 2 (that is, f(2) = 3). e 

SOLUTION 
We write the equation of the given function in the form (x —/h)? = 

4p(y — k). The equation 

Presses ae bes ar 

is equivalent to 

386 Sy 2 

Completing the square of the binomial in parentheses in the left member, we 

have 

1 3 
3 (x2 t)= 2) ee (x ee he mee he 

(ayaa =) 
The parabola opens upward and its vertex is at (—4, 3). Therefore, f(—4) is 

the minimum value of f and f(—4) = $-. 

SOLUTION 
The equation 3x? — 12x + 2y = —20 is equivalent to 

3x2 — 12x = —2y — 20 
3(x?2 — 4x) = —2y — 20 

3(x? — 4x + 4) = —2y — 204 12 

3(x = 2) = —2y — 8 

(x - 2% = -407+4) 

The parabola opens downward and its vertex is at (2, —4). Thus g(2) is the 

maximum value of g, and. g(2) = —4. 
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EXAMPLE 3 
The financial manager of a college 

magazine determines that 1000 cop- 
ies of the magazine will be sold if the 
price is 50 cents and that the number 

of copies sold decreases by 10 for 
each | cent added to the price. What 
price will yield the largest gross in- 
come from sales? 

EXAMPLE 4 
In Example 4 of Section 2.7 we had 
the following problem: “A firm 
manufactures and sells portable ra- 
dios, and it can sell at a price of $75 
all the radios it produces. If x radios 
are manufactured each day, then 
the number of dollars in the daily 
total cost of production is x? + 

Quadratic Functions 175 

SOLUTION 

The number of cents in the gross income depends upon the price per copy. 

Let f(x) be the number of cents in the gross income when x cents is the price 
per copy. 

The amount by which x exceeds 50 is x — 50. To determine the number of 

copies sold when x cents is the price per copy, we must subtract from 1000 
the product of 10 and this excess. Hence, when x cents is the price per copy, 
the number of copies sold is 1000 — 10(x — 50). 

We obtain an expression for the gross income by multiplying the number 
of copies sold by the price per copy. Hence, 

f(x) = [1000 — 10(x — 50)]x 

F(x) = (1500 — 10x)x 

Cpr 915007 = 10x 

We wish to determine the maximum value of the function f if 

f=) Veal S002 10x24 

The equation y = 1500x — 10x? is equivalent to 

10(x? — 150x) = —y 
10(x? —150x + 5625) = —y + 56,250 

(i= - 40 — 56,250) 

The graph of this equation is a parabola opening downward and having its 
vertex at (75,56250). Thus the function fhas a maximum value when x = 75; 

and f(75) = 56,250. Therefore, to yield the largest gross income from sales 
the price per copy should be 75 cents. 

CHECK: If the price per copy is 75 cents, then the number of copies sold is 

1000 — 10-25 = 750. Therefore, the number of cents in the gross income is 
G50) 5) = 56,250. 

SOLUTION 

Let P(x) dollars be the daily profit from the sale of x radios. Then, as in 

Example 4 of Section 2.7, we have 

P(x) = —x? + 50x — 96 (6) 

The equation y = —x? + 50x — 96 is equivalent to 

x? — 50x = —y — 96 
x? — 50x + 625 = —y + 529 

(x — 25)? = —(y — 529) 
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25x + 96.” How many radios should | The graph of this equation is a parabola opening downward and having its 

be produced each day in order to | vertex at (25, 529). Therefore, the function P has a maximum value of 529 

have the greatest profit? whenx = 25. Thus to have the greatest profit the number of radios produced 

and sold each day should be 25. 

CHECK: From equation (6), 

P(25) II —(25)? + 50(25) — 96 

— —625 + 1250 — 96 

= 529 

EXERCISES 3.4 

In Exercises 1 through 10, draw a sketch of the graph of the given function and 

determine from the graph which of the following statements characterizes the roots of the 

corresponding quadratic equation: (a) two real roots; (b) one real root of multiplicity 

two, or (c) two imaginary roots. 

1. {(x, y)| y = x? — 4x} Cea) = a), 

3. {(x, y)|y = —x? + 4} 4. eae ew ke ae TN) 

5. {(x, y)|y = —4x? + 8x — 8} 6. {(x,y)|y = 2x? + 4x + 1} 

Tent (cy ipa =O OX + x2} 8. 1 yy =e — 4a x} 

9. {(x, y)|8y = 4x2 + 20x + 49} 10. {(x, y)|y = —4x? + 12x — 9} 

In Exercises 11 through 14, find the zeros of the given function. 

ihe ien ae es 125 fy Ox 

13, (1) = 27 2X 145 (= 4 

In Exercises 15 through 20, find either a maximum or minimum value of the given 

function. 

15. f = {(x, y)|x? — 4x — 8y —4 =0} 16. f = {(x, y)|x? + 6x + 2y +5 =0} 

17. F = {(x, y)|x? + 8x +2y +8 =0} 18. g = {(x, y)|3x? + 6x —y +9 =0} 

19. ¢ = {(%, y)|3y = —9x? + 12x —35} 20. G = {(x, y)|8y = 4x? + 12x — 9} 

21. Find two numbers whose sum is 10 and whose ond. If the height of the object is s feet after 7 

product is a maximum. seconds, and if air resistance is neglected, 

22. Find two numbers whose difference is 14 and s = 96t — 16¢2. What is the maximum height 

whose product is a minimum. reached by the object and how many seconds after 

23. An object is thrown straight upward from the it is thrown does it reach its maximum height? 

ground with an initial velocity of 96 feet per sec- 
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24. A projectile is shot straight upward from a point 15 
feet above the ground with an initial velocity of 
176 feet per second. If the height of the projectile is 
s feet after ¢ seconds and if air resistance is ne- 
glected, s = 15 + 176¢ — 16r?. How long does it 

take the projectile to reach its maximum height 
and what is the maximum height? 

28. 

29. 

A student club on a college campus charges annual 

membership dues of $10, less 5 cents for each 
member over 60. How many members would give 
the club the most revenue from annual dues? 
A firm can sell at a price of $100 per unit all of a 
particular commodity it produces. If x units are 
produced each day, the number of dollars in the 

25. If 200 yards of fencing is available to enclose a total cost of each day’s production is x? + 
rectangular field, what should be the dimensions of 20x + 700. How many units should be produced 
the field having the largest possible area? each day in order for the firm to have the greatest 

26. If, in Exercise 25, an existing straight stone wall daily total profit? What is the greatest daily total 

27. 

oF 
Rational Functions 

is used as a fence for one side of the rectangular 
field, what should be the lengths of the other three 
sides? 
A travel agency offers an organization an all-inclu- 

sive tour for $800 per person if not more than 100 
people take the tour. However, the cost per person 
will be reduced $5 for each person in excess of 100. 
How many people should take the tour in order for 

the travel agency to receive the largest gross reve- 
nue, and what is this largest gross revenue? 

5 Graphs of 

30. 
profit? 

A company that builds and sells desks can sell at a 
price of $200 per desk all the desks it produces. If x 
desks are built and sold each week, then the num- 

ber of dollars in the total cost of the week’s pro- 
duction is x* + 40x + 1500. How many desks 
should be built each week in order for the manu- 
facturer to have the greatest weekly total profit? 

What is the greatest weekly total profit? 

In Section 3.2 we defined a rational function as one that can be expressed 

as the quotient of two polynomial functions. Therefore, if f and g are 
polynomial functions, and S is the function defined by 

g(x) 

then S is a rational function. The domain of S is the set of all real numbers 

except the zeros of g. 

ILLUSTRATION 1. The following are rational functions. 

Fa 
x —3 

(x) = 
x? — 4 x? 2% 

F(x = G () = 

——) 9. be) () xe | 

The domain of Tis {x |x 4 3}; the domain of S is {x |x 4 2}; the domain 
of Fis {x |x #3, x 4 —3}; the domain of G is the set R of real numbers. 

& 
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Figure 3.5.1 

The function S of Illustration 1 can be defined by equation (1) where 

f(x) = x? —4 and g(x) = x — 2. Observe that 2 is a zero of both fand g. 
In Example 3 of Section 3.1 we discussed the function S and a sketch of its 
graph is shown in Figure 3.1.11, which is repeated here in Figure 3.5.1. This 
function S is a special case of a rational function of the form f(x )/g(x) for 
which a number a is a zero of both f and g. 

We now consider function T of [llustration 1. This function is a special case 
of a rational function of the form /(x)/g(x), where g(a) = 0 and f(a) £ 0. 

ix) me es 2 
x —3 

and when x = 3 the denominator is zero and the numerator is not zero. The 
domain of T is the set of all real numbers except 3. Because T(0) = —, the 
graph intersects the y axis at —%, and because 7(—2) = 0, the graph 

intersects the x axis at —2. 
We shall investigate the function values T(x) when x is close to 3 but not 

equal to 3. First let x take on the values 4, $, 12, 13, 34, 304, 3001 and so on. We 
are taking values of x closer and closer to 3 but greater than 3; in other 
words, the variable x is approaching 3 from the right. We illustrate this in 
Table 3.5.1. From the table we see intuitively that as x gets closer and closer 

Table 3.5.1 

ff 10 13 31 301 3001 
x 4 2 3 4 10 100 1000 

I(x) =~44 6 thereto 21 “Sin S010) 5001 

to 3 from the right, T(x) increases without bound. In other words, we can 

make 7 (x) greater than any preassigned positive number by taking x close 
enough to 3 and x greater than 3. To indicate that T(x) increases without 
bound as x approaches 3 from the right, we use the symbolism 

(CRs sbic6 as x — 3+ 

The symbol “+ oo” (positive infinity) is not a real number; it is used to 
indicate the behavior of the function values T(x) as x gets closer and closer 
to 3. The “+” symbol as a superscript after the 3 indicates that x is ap- 
proaching 3 from the right. 
Now let the variable x approach 3 through values less than 3; that is, let x 

take on the values 2, 3, 8, 12, 22, 288, 2888 and so on. Refer to Table 3.5.2. 

Notice that as x gets closer and closer to 3 from the left, the values of T(x) 

decrease without bound (the values of 7(x) are negative numbers whose 

absolute values increase without bound); that is, we can make 7(x) less than 

any preassigned negative number by taking x close enough to 3 and x less 
than 3. We use the following notation to indicate that T(x) decreases without 
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Figure 3.5.2 

3.5.1 DEFINITION 
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Table 3.5.2 

x 2 3 3 t i i00 7000 
nesye te mee ee (20 19) 49 = 409 4999 

x — 

bound as x approaches 3 from the left: 

T(x) ~ —© as x > 37 

In Figure 3.5.2 we have a sketch of the graph of T that shows the behavior 
of T(x) near x = 3. As x gets closer and closer to 3 from either the right or 
left, the absolute value of T(x) gets larger and larger. Observe that the graph 
does not intersect the line x = 3, which is shown as a dashed line in the 
figure. The line x = 3 is called a “vertical asymptote” of the graph of 7: 

The line x = ais said to be a vertical asymptote of the graph of the function 
f if at least one of the following statements is true: 

Gi) f(x) > 
(i) f(x) > 
(ili) f(x) > 
(iv) f(x) > 

In Figure 3.5.2 both statements (i) and (iv) of Definition 3.5.1 are true for 
the function T and when a is 3. 

+oo as x > at 

—oo as xX > at 

+00 as xX > a7 

Conds. > ae 

ILLUSTRATION 2. In Figure 3.5.3 we have a sketch of the graph of a 
function for which statements (i) and (iii) of Definition 3.5.1 are true, and in 
Figure 3.5.4 statements (ii) and (iii) are true. ® 

The following theorem can be proved from Definition 3.5.1. 

y 

4 
| 

4 | 
| 

| | 
| | 
| la 
| an is 
Ve | 

es | 
| | 
| | 
| | 
| | 

Figure 3.5.3 Figure 3.5.4 
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THEOREM 3.5.2 

3.5.3 DEFINITION 

Se 

Figure 3.5.5 

The graph of a rational function of the form f(x)/g(x) will have the line 

x =a asa vertical asymptote if g(a) = 0 and f(a) £0. 

ILLUSTRATION 3. The function F of Illustration | is defined by 

F(x) e OS) 

(x — 3)(~ + 3) 
Let f(x) =x? and g(x) = (x — 3)(x + 3). Then g(3) = 0 and f(3) £0; 

furthermore, g(—3) = 0 and f(—3) # 0. Therefore, from Theorem 3.5.2 it 

follows that the lines x = 3 and x = —3 are vertical asymptotes of the graph 

of F. In Example 1 we use this information as well as other facts to draw the 
sketch of the graph of F shown in Figure 3.5.10. e 

In the following definition we use the notation “f(x) — b*” to mean that 

f(x) approaches b through values greater than 5, and “f(x) — b-” means 

that f(x) approaches b through values less than b. 

The line y = b is said to be a horizontal asymptote of the graph of the 

function fif at least one of the following statements is true: 

(i) f(x) >.bt as x > +00 

(ii) f(x) > bt as x > —@ 
(iti) f(x) — Db” as x > +00 

(iv) f%) — Bb asx > —o 

ILLUSTRATION 4. In Figure 3.5.5, we have a sketch of the graph of a 

function for which statement (iii) of Definition 3.5.3 is true, and in Figure 
3.5.6, statement (ii) is true. Both statements (i) and (iv) are true for the graph 

of the function shown in Figure 3.5.7. The graph in Figure 3.5.7 also has the 
line x =a as a vertical asymptote because f(x) > +00 as x — a™ and 

f(x) > -w axa. ® 

Figure 3.5.6 Figure 3.5.7 
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3.5.4 THEOREM The graph of a rotational function of the form f(x)/g(x), where f is a 
polynomial of degree n and g is a polynomial of degree m, has 

(i) The x axis as a horizontal asymptote if n < m. 

(ii) The line y = c (c £ 0) as a horizontal asymptote if m = m. 

(ii1) No horizontal asymptote if n > m 

The proof of Theorem 3.5.5 is omitted, but the following illustration 
involving special cases should make the truth of the theorem plausible. 

ILLUSTRATION 5 

(a) The function G of Illustration 1 is defined by 

2X G(x) = —-— CDN are 

The degree of the numerator is less than the degree of the denominator. 
If we divide the numerator and denominator by x”, we have 

2 
x 

G(x) amen fi, 

ce 2 

eee 0) andes oF 
is x 

and 

9) = 1 a as X > —0oo, ——>0 and —— 0 
53 52 

Therefore, 

G(x) > OF as x > +00 

and 

G(x) > 07 as X + —0o 

Hence, from Definition 3.5.3, the line y = 0 is a horizontal asymptote of 
the graph of G. This result agrees with part (i) of Theorem 3.5.4. Function 
G is discussed in Example 2 and a sketch of its graph is shown in Figure 
Sol, 

(b) The function F of Illustration 1 is defined by 

x2 

x2 —9 

The degree of the numerator equals the degree of the denominator. If we 
divide the numerator and denominator by x2, we have 

EO?) = 
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5 
| 
| 
| 
| 
| 
| 
| 
| 

Figure 3.5.8 

F(x) = —— 

hea 
x2 

Asx > +0 or x ~ —0, = => OF and therefore; 
x 

F(x) > 1t asx — +00 or x > —0o 

From Definition 3.5.3 it follows that the line y = 1 is a horizontal 

asymptote. This result agrees with part (ii) of Theorem 3.5.4. 

(c) Consider the function H defined by 

241 Gee aes Cle ora 

The degree of the numerator is greater than the degree of the denomi- 

nator. If we divide the numerator and denominator by x”, we obtain 

ee 

A(x) = ———— 2 (x) er (2) 

pon ce 

As |x| increases without bound, 

Eyer 0, L — 0, and asa > 0 
ne xe 

Therefore, asx — + 000rx — —oo, the numerator of the fraction in (2) 

approaches | and the denominator approaches 0. Consequently, |H (x )} 

increases without bound as |x| increases without bound, and so the graph 

of H does not have a horizontal asymptote. This result agrees with part 

(iii) of Theorem 3.5.4. A sketch of the graph of H is shown in Figure 

3.5.8: ® 

Another aid in sketching the graph of a rational function is to determine if 

there are any regions where there are no points on the graph. The following 

illustration shows the procedure involved. 

ILLUSTRATION 6. We wish to determine if there are any regions excluded 

by the graph of the function F of Illustration 1. 

F(x) = 3) 4 

x? —9 

First we find the numbers that make either the numerator or the denomina- 

tor zero. These numbers are —3, 0, and 3. We then consider the x-intervals 

excluding these numbers: x << —3; -3 << x <0;0<x< Se eyatel se > 3), Ili 

Table 3.5.3, we ascertain the sign (“+” or “—”) of F(x) for each of these 

intervals. 
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Figure 3.5.9 
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Table 3.5.3 

Sign of Sign of Sign of 

Xie ee = @ F(x) 

Ee) ate ti =P 
=3 K eK O A = = 

OS + cs s 

x >3 + a 2 

From Table 3.5.3 we learn that F(x) > 0when x < —3,so F(x) cannot be 
negative for these values of x. Because there can be no graph in the third 
quadrant when x < —3, we crosshatch this region. See Figure 3.5.9. In this 
figure we have also crosshatched the following regions: the portion of the 
second quadrant when —3 < x < 0 because F(x) cannot be positive there; 
the portion of the first quadrant when 0 < x < 3 because F(x) cannot be 
positive there; and the portion of the fourth quadrant when x > 3 because 
F(x) cannot be negative there. 

In equation (3) that defines F(x), we replace F(x) by y and solve the 
equation for x. Doing this, we have 

ay X19 

x2y — 9y = x? 

Ky Xo OY 

xy — 1) = 9y 
Shi Seale 

ve (4) 
When the fraction under the radical sign in equation (4) is negative, x will be 
imaginary. Therefore, any value of y for which the numerator and denomi- 
nator of this fraction have opposite signs will give us a region that is excluded 
by the graph. The numerator changes sign when y = 0 and the denominator 
changes sign when y = 1. We consider the y-regions excluding these num- 
Dense 0 Oty |: and y > 1. We make use of Table 3.5.4 to learn when 

Table 3.5.4 

Sign of Sign of Sign of cs . 
9y y-l a 

Ve0 om os 7 
O<y<l oF ~ _ 
Va | ar + + 
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EXAMPLE Il 

Draw a sketch of the graph of the 

function F defined by 

F(x) = 
x2 

x2 

—9 

the fraction is positive and when it is negative. When y <0 or y > 1, the 

fraction under the radical sign is positive, and therefore x is real; hence, for 

these values of y there will be points on the graph. When 0 <y <1, the 

fraction under the radical sign is negative; thus x is imaginary and therefore 

the corresponding excluded region is crosshatched in Figure 3.5.9. e 

SOLUTION 
The domain of F is the set of all real numbers except 3 and —3. Because 

F(0) = 0, the graph has an intercept at the origin. In Illustration 3 we 

obtained the vertical asymptotes x = 3 and x = —3, and in Illustration 5(b) 

we obtained the horizontal asymptote y = 1. Furthermore, in Illustration 6, 

we determined the crosshatched regions shown in Figure 3.5.9. Because F is 

an even function, its graph is symmetric with respect to the y axis. We find a 

few points on the graph. These points are obtained from Table 3.5.5. We plot 

these points and use the asymptotes as guides to draw the portion of the 

graph in the first and fourth quadrants. Using the symmetry property, we 

complete the graph in the second and third quadrants. The sketch is shown in 

Figures 3.our0: 

Table 3.5.5 

x 0 1 2 4 5 6 

5e Faj=aiz 9 -h -§ ¥ Rf 

¥ 

— DSSS SERED 

Figure 3.5.10 
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EXAMPLE 2 

Draw a sketch of the graph of the 
function G defined by 

G(x) = 2x 

See te || 
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SOLUTION 

The domain of G is the set R of real numbers. Because G(0) = 0, the graph 
has an intercept at the origin. There are no vertical asymptotes because the 
denominator is never zero. In Illustration 5(a) we ascertained that the x axis 

is a horizontal asymptote. 
We now determine if there are excluded regions. The denominator is never 

zero, but the numerator is zero when x = 0. Thus we consider the x intervals 

x <0 and x >0. The denominator is always positive; so when x < 0, 

G(x) <0, and when x >0, G(x) >0. Because G(x) cannot be positive 

when x < 0, there are no points of the graph in the second quadrant; this 
region is crosshatched in Figure 3.5.11. Because G(x) cannot be negative 

OOOO PPPS ROG S SKS S505 anes SRG renee SING SPSS 25 PRG SPRREKS 5 ves 
SKK KKK 
Ms WN % SS“ Zz 
AX 

when x > 0, there are no points of the graph in the fourth quadrant. This 

region is also crosshatched in Figure 3.5.11. In the equation defining G(x), 
we replace G(x) by y and solve for x. We have 

WA yi 2X 
Vx 2x py = 0 

2+ V4 — 4)? 
x= 2y 

ras V Alle ayo 

From equation (5) it follows that x will be imaginary when | — y? < 0. We 
solve this inequality for y. 

=p? <2 0 
| 

yo 
The solution set of this inequality is {y| y > 1} U {y|y» < —1}. In Figure 

3.5.11 we crosshatch the regions for y > 1 and y < —1. The graph then lies 

in the first and third quadrants between the lines y = 1 and y = —1. Because 
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G is an odd function, the graph of G is symmetric with respect to the origin. 

We find a few points on the graph where x is positive and these are obtained 
from Table 3.5.6. 

Table 3.5.6 

3 1 Ds 3 4 6 

2» G(x) = a4 1 4 32 ££ # 

We plot these points and use the fact that the x axis is an asymptote to draw 
the portion of the graph in the first quadrant. From the symmetry property, 
we complete the graph in the third quadrant. Figure 3.5.12 shows the 
required sketch. : 

<> 
SREKEK KS 

SSSS VIN SLND ree «2 Nas <4 S x Mes < S Nes 6 < 

SxS sane. oes sone, ee Ks 

© 

KS es 

Yi 

Wy 
WOO SOOO OOOO 

es oatstatstanscanacenatecancconeconaceratereneeens 
re eectacatatctctatatonctctatatetctetatatetenstats 
SKK RICK] 
© OO OPPOOD 
BO OOOO DODO 
Pee CCCCCC RR 
CO OOOO QO DO RRR Vb 

NX 

¥. AW Vr eer 

ee AG. C.K 
5 

7 RIP PPPS SOOO SOOO SSSA EL 

Yj 
esenatscanstetatstenutcconstecntccennteonacecene 

SOSH? 

In Exercises I through 20, a rational function f is given. (a) Determine the domain of 

f(b) Find the asymptotes of the graph of fif there are any. (c) Determine if there are any 

regions excluded by the graph of f. (d) Draw a sketch of the graph of f. 

oS 

1 fy =4 2 fe\=—= 3 fe)=5 4fo=ciG 

5. fix) ==40 6. f(x) = 254 7. f(x) = 8 f(x) = - 

FC as 0 Es a ii, foo) = aes 1G) = eS 

3. fix) =a2y 14. f(x) = oot 15. f(x) = at! 16. fx) = = 

1. f@=zA—, iB sey=tt! wes wet »IW= oe 
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3.6 The Inverse of If S is a given relation, another relation can be obtained by interchanging 

a Function ike components of each ordered pair in S. eee atl WA eae iS LMS the 

inverse” of S. The inverse of S is denoted by S~! (read “S inverse”). Note 

that in using —1 to denote the inverse of a relation, it should not be confused 

with the exponent —1. 

3.6.1 DEFINITION If S is a relation, then the inverse of S is the relation defined by 

S™* = {(%y)|,*) € S} 

From Definition 3.6.1 it follows that the domain of S~! is the range of S 
and the range of S~! is the domain of S. 

ILLUSTRATION) Ly li 3S = {(1,3), @,5), G,7), (4.1), ©, Shy Blakes 

Dean (Oita. 2,004 3)9 (154), (9,6)}. Figure 3.6:1 shows the graphs of 

both S and S~! on the same coordinate system. The graph of S~? is in color. 

Figure 3.6.1 Figure 3.6.2 

Because the points (x, y) and (y, x) are symmetric with respect to the line 
y = x (see Figure 3.6.2) the graphs of a relation and its inverse are symmetric 
with respect to this line. Observe in Figure 3.6.1 that such is the case for the 
relations S and S~1, 

ILLUSTRATION 2. If T = {(x, y)| y = 4 — 3x}, then 

EEN (KX, y)|Cy, x) € T} 
Sa (oy) |x = 4 — 3y} 

If the equation x = 4 — 3yis solved for y, we obtain the equivalent equation 
y =4(4 — x). Thus 7! can also be given by 

T= {xy =44-2)| 
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Figure 3.6.3 

y 
Q 

oo 

SS ee a “AE eT 
0 

Figure 3.6.4 

3.6.2 THEOREM 

The graphs of T and T~! are shown in Figure 3.6.3; the graph of T~ is in 
color. Observe the symmetry of the graphs with respect to the line y = x. 

@ 

Notice in Illustration 2 that the equation defining T~' is x = 4 — 3y, 
which is obtained from the equation defining T by interchanging x and y. 

ILLUSTRATION 3. If O = {(x, y)| y = x?}, then 

Oo IG) G0). 
Ses ke 

Figure 3.6.4 shows the graphs of Q and Q~1, and the graph of Q™ is 

in color. Again, note the symmetry of the graphs with respect to the line 
y=x. ® 

The relations S, 7; and Q of Illustrations 1, 2, and 3, respectively, are all 

functions. However, S ~~! is not a function because the ordered pairs (5, 2) and 

(5, 6) have the same first element. The relation T~1 is a function because 

from the equation y = 4(4 — x), a given value of x determines a distinct 

value of y. The relation Q~‘is not a function because for any positive value of 
x, the equations y = + \/x determine two different values for y. We see then 
that the inverse of a function is not necessarily a function. 

A question arises: Under what conditions is the inverse of a function also a 
function? We know that if fis a function, then each element in the domain of 
f corresponds to only one element in the range. Because the domain of f~ is 
the range of fand the range of f~1 is the domain of f, it follows that in order 
for f 1 to be a function, each element in the range of f must correspond to 
only one element in the domain. Hence we have the following theorem, 
which follows from this statement. 

The function fhas a function as its inverse if and only if whenever x, and x, 

are in the domain of f 

I(X) = f(%2) implies i Noe) (1) 

or, equivalently, 

X41 ~Xpy implies f(x) # f(*2) (2) 

Recall that no vertical line can intersect the graph of a function in more 
than one point. If a horizontal line intersects the graph of a function in more 
than one point, then statements (1) and (2) of Theorem 3.6.2 do not hold, and 

therefore the function cannot have a function as its inverse. Note in Figure 
3.6.4 that all horizontal lines above the x axis intersect the graph of Q in two 
points and the function Q does not have a function as its inverse. However, 

in Figure 3.6.3 observe that no horizontal line intersects the graph of T in 
more than one point and function 7 has a function as its inverse. 
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EXAMPLE 1 

Given 

ff) = 3x +5 

(a) Prove that the inverse of f is a 

function. 

(b) Find f-(x). 
(c) Find f-(—4). 

ILLUSTRATION 4 

(a) Relation S of Illustration | is a function and 

=a (eps) 4 (25.5). (3, 1), (4, 1), (6, 5) } 

Because S(2) = 5 and S(6) =5, it follows that S(2) = S(6). However, 

2 # 6. Hence statement (1) of Theorem 3.6.2 does not hold, and there- 

fore S does not have a function as its inverse. 

(b) Relation 7 of Illustration 2 is a function and 

ie 1 (X, 7) (py =4 — 3x} 

In order to apply Theorem 3.6.2 to show that T has a function as its 

inverse, we show that statement (1) of the theorem is valid. Suppose that 

X, and x, are two numbers in the domain of 7. Then 

T(x) = 4 — 3x, and TA 3x5 

Assume that 7(x,) = T(x). Then 

4 — 3x, =4 — 3x, 

Adding —4 to each member of this equation, we obtain 

—3x, = —3x5 

Now dividing each member by —3, we have 

Ny eS 

Therefore, the assumption that T(x,) = T(x.) implies thatx, = x,. Thus 
statement (1) is valid and 7 has a function as its inverse. 

(c) Relation Q of Illustration 3 is a function and 

QO = {(% y)|y = x*} 
Because Q(3) = 9 and Q(—3) = 9, it follows that O(3) = O(—3). But 

3 # —3, and therefore statement (1) of Theorem 3.6.2 does not hold. 

Hence Q does not have a function as its inverse. ® 

SOLUTION 

(a) We wish to show that statement (1) of Theorem 3.6.2 holds; that is, we 

wish to prove that 

OC eX.) implies My Xo 

Assume that /(x,) = f(x,). Then 

3X, aoe SNe. 4+ 

Si eos 

xy = Xo 

Therefore, statement (1) holds and so f has a function as its inverse. 
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(b) Because 

EXAMPLE 2 

If f is the function defined by 

f(x) = x3, prove that the inverse of f 

is a function. 

EXAMPLE 3 

(c) 

ES I See a 

then 

Sheds Pil ses MEU 
= {(%y)|x = 3y +5} 
= (iv =2=4 | 

Therefore, 

. 3 —_x—5 fee) = == 
Weta f—4) = 
=—3 

SOLUTION 

We show that statement (1) of Theorem 3.6.2 is valid. The domain of fis the 

set R of real numbers. Let x, and x, be any two real numbers. Then 
f C= a and f (xa) = Assume thatyy((c;) = (v5). Tien 

x= x,3 

Ne = Xo =) 

Factoring the left member as the difference of two cubes, we have the 

(3) 

equivalent equation 

(x1 — Xa)(%y? + XyX_ + XQ”) = 0 

The factor x,? + x,X» + x,” is zero only ifx, = x. = 0. Therefore, if x, and 
X, are not both zero, equation (3) implies that 

~ = xX, =0 
X, = Xo 

Henee f(x,) = /(&,) 1mphes that x7 = x5. Therefore, by statements()rem 
Theorem 3.6.2, the inverse of fis a function. 

SOLUTION 

f= Lee ae, The inverse of the function f of Ex- 

ample 2 is the function denoted by Hence 

jj Asin eee 

fo =O) (yee 
— {(x, y) |x ay ey 
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EXAMPLE 4 

On the same coordinate system draw 
sketches of the graphs of the func- 
tions fand f~! of Examples 2 and 3, 
respectively. 
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| Because there is only one real number that is a cube root of x, it follows that 

VeVi) =) y = Vx } 
Therefore, 

Pf Ste a nes 
and thus f-(x) = Vx. 

| SOLUTION 

f={y)ly=x3} and f= {(x,y)|y = Vx} 
The graph of fis the same as the graph of the equation y = x3, and the graph 
of f~* is the same as the graph of the equation y = \/x. Sketches of the 
graphs are shown in Figure 3.6.5. Note that the graphs are symmetric with 
respect to the line y = x. Also observe that no horizontal line intersects the 
graph of fin more than one point. 

Figure 3.6.5 

If fis the function defined by the equation 

Woes) (4) 
and if f~1 is a function, then 

£7) =x (5) 
If we substitute the value of y from equation (4) into equation (5), we have 

FMF (@)) =x (6) 
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EXAMPLE 5 

Substituting the value of x from equation (5) into equation (4), we obtain 

y=ff 70) 
or, equivalently, if we replace y by x, 

UPC) (7) 

SOLUTION 

Verify equations (6) and (7) for the | In Example 1, we have 

function of Example 1. 
Hess) eae > 

Therefore, 

foice= 12 ep) 
RES 5) —5 
Seg 

= os 
gS 

x 

and 

fee) = 42>) 

=e) es 
= (x —5)+5 

aX 

We introduce the concepts of “increasing” and “decreasing” functions 
because we can prove a theorem which states that any such function has a 

function as its inverse. 

3.6.3 DEFINITION Let f be a function. Then 

(i) fis said to be an increasing function if 

MX, implies PLC 2) ager) 

where x, and x, are any numbers in the domain of f 
(ii) fis said to be a decreasing function if 

aoa implies) Wy G7) =f Ces) 

where x, and x, are any numbers in the domain of f. 
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The concept of an increasing function is illustrated by the sketch of the 
graph of such a function in Figure 3.6.6. In this figure, we have a sketch of 
the graph of a function f and two points, (x,, f(x,)) and (x,, f(x,)), on the 
graph. We see that x, <x, and f(x,) <f(x,). In Figure 3.6.7 we have a 
sketch of the graph of a decreasing function g. The two points (x1, g(%,)) and 
(Xq, 8(%2)) indicate that x, << x, and g(x,) > g(x,). 

y 

oe aS 

ae el spe (x2, f(%2)) 

Figure 3.6.6 Figure 3.6.7 

ILLusTRATION 5. The function f of Example 2 is defined by f(x) = x°. 
Because 

Neo meme DIESR xs? << x8 

it follows from Definition 3.6.3(i) that fis an increasing function. A sketch of 
the graph of f appears in Figure 3.6.5. e 

ILLUSTRATION 6. The function 7 of Illustration 2 is defined by 

L(x) 34 — 3x 

From a property of inequalities it follow that 

De ROB implies 944 > —3X5 (8) 

If we add 4 to each member of the second inequality in statement (8), we 
have 

aX implies 4 — 3x, >4 — 3x, 

But 4 — 3x, = T(x,) and 4 — 3x, = T(x,), and hence 

aN implies TX) al (xo) 

Therefore, by Definition 3.6.3(ii), T is a decreasing function. Refer to Figure 
3.6.3, which shows a sketch of the graph of T. ® 
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3.6.4 THEOREM 

EXAMPLE 6 | 

Let F be the function defined by | 

F = {(x,y)|y =x? and x > 0} 
(a) Find Ff. 
(b) Draw sketches of the graphs of F 

and F~! on the same coordinate 

system. 

(c) Prove that F~! is a function by 

showing that F is an increasing 

function. 

F 

>< 

FU} 

nn 

Uma Tiaetiaes| ome = ines ara | 

tS SS 
5 1 

Figure 3.6.8 

(i) If fis an increasing function, then f~! is a function. 

(ii) If fis a decreasing function, then f~1 is a function. 

Proof. Suppose that we have an increasing function. Let x, and x. be two 

numbers in the domain of fsuch that x, # x, and choose x, as the smaller of 

the two numbers. Then x, < x5. Because fis an increasing function, it follows 

from Definition 3.6.3(i) that f(x.) < f(x2). Therefore, f(x,) A f(x2). Thus 

x,AxX_, implies f(x) A f(%2) 

But this statement is the same as statement (2) of Theorem 3.6.2, and hence f 

has a function as its inverse. This proves part (i). The proof of part (ii) 1s 

similar and is omitted. 

A special case of part (i) of Theorem 3.6.4 is given by the function f of 

Example 2. In Illustration 5 we showed that this function is an increasing 

function, and in Example 2 we showed that f~? is a function. 

A special case of part (ii) of Theorem 3.6.4 is given by the function 7 of 

llustration 2. In Illustration 6 we showed that T is a decreasing function, and 

we have seen that T~1 is a function? 

SOLUTION 

(a) Ft = {((x, y)|(. x) € F} 
= {(x,y)|x =y? and y > 0} 

The equation x = y? is equivalent to the two equations y = Vx and 

y = — \/x. However, in the definition of F~1 we have the restriction that 

y > 0. Therefore, the set {(x, y)|x = y? and y > 0} is equivalent to the 

set {(x, y)|y = Vx}, 80 
F ={(x,y)|y = Vx} 

(b) Sketches of the graphs of F and F~1 on the same coordinate system are 

shown in Figure 3.6.8. 

(c) It is apparent from the sketch of the graph of F in Figure 3.6.8 that Fis 

an increasing function. However, to prove this fact analytically, we show 

that Definition 3.6.3() holds. 

Let x, and x, be two numbers in the domain of F so that x, < Xp. 

Because the domain of F is the set of nonnegative numbers, it follows 

that x, is nonnegative and x, is positive. Therefore, 

Xx -x5 pimiplicse ey <o, 

But x,? = F(x,) and x,? = F(x,). Therefore, 

Xi Xo) plies mane (Cie (cos) 

Hence, by Definition 3.6.3(), F is an increasing function. 
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EXERCISES 3.6 

In Exercises I through 12, a relation S is given. Find S~! and draw sketches of the 
graphs of S and S~ on the same coordinate system. Determine if S~ is a function. 

Wes 45 3) (2) 3), (0, =9), (2, 1), (4,0)} Pe SiG 2) (1, 2).(1, — 1), (3,2), (4, 3)} 
3. S = {(—1, 5), 0, —2), (1, —1), G, 2), (2, 4)} 4. S={(x,y)|y =4 — 2x} 
5. S = {(x, y)|y =4 — 2x?} 6. S = {(x, y)|x = y? + 3} 
7. S = {(x, y)|x? + y? = 25} 8. S = {(x, y)|4x2 + 9y? = 36} 
9. S= {(% y)|y = V9 — x?} 10. S = {(, y)|x = V4 — y?} 

Il. S = {(x, y)|xy = 6} 12. S= {(x, y)|y = |x — 3)} 

In Exercises 13 through 24, a function f is given. Find the inverse of f and determine if 
it is a function. Draw sketches of the graphs of f and its inverse on the same coordinate 
system. 

139 (5.4), (2,4), (1 1), (4, —2)) Ayaan 24 (O92) 1(200)9(40 2), (653) | 
1S. f = {(x, y)|5x + 2y = 10} 16. f = {(x,y)|3x — 4y = 12} 
17. f= {(%y)|y = |x + 1} 18. f= {(4y)|y =Tx]} 
19. f= {(% y)|y = — Vx + 4} 20. f= {(x%y)|y = V4 —x} 
21. f = {(x, y)|x? — 6x — 6y + 15 = 0} 22. f = {(x, y)|x? + 4x + 4y — 8 =0} 
23. f= {(% y)|y = (x — 2)3} 24. f = {(x, y)| y = x?/3} 

In Exercises 25 through 28, f(x) is given. (a) Use the method of Example 1 to prove 
that the inverse of f is a function. (b) Find f~\(x). (c) Find f~\(a) for the given 
value of a. (d) Verify equations (6) and (7) for f and f-. 

DSM ax 3. 0 =—5 26. f(x) =2x +3;a=4 

27 (oe tot): A= —6 IAS FAG OG Ae OA Ge Ih 

In Exercises 29 through 34, a function f is given. (a) Find the range of f. (b) Determine 
f™ and state the domain of f~. (c) Is f~1 a function? 

29 f= Key) | yp = XP x 0} SOM Ocwy) ly = 2)— x7, x < 0} 
31. f= {(x, y)|x? — 4x — 3y —8 =0, x < 0} S27 =(cy)|x* + 6x + 4p +5 =0, x > —3} 

33. f= {(x%, y)|y = V16 — x?, |x| < 4} 34. f= {(x,y)|y = Vx? — 9, |x| > 3} 
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In Exercises 35 through 38, for the given function F do the following. (a) Find F™ 

(b) Draw sketches of the graphs of F and F~* on the same coordinate system. (c) Prove 

that F~' is a function by showing that F is either an increasing or a decreasing function. 

35. F = {(,y) y= @ — 2) 42} 

37. F = {(x,y)|y = (2 — x)3} 

ey Variation 

3.7.1 DEFINITION 

36. -F =1G yy eo) 

38. F={%y)|y=@ + 

Problems involving the dependence of one variable upon another variable 

occur in both the physical and social sciences. The formulas used in such 

problems often determine functions. For instance, if / dollars is the simple 

interest for one year earned by a principal of P dollars at the rate of 6 per 

cent per year, then 

I = 0.06P (1) 

For a given nonnegative value of P there corresponds a unique value of J, 

and so the value of J depends upon the value of P. If fis the function defined 

by f(P) = 0.06P and the domain of fis the set of nonnegative real numbers, 

then equation (1) can be written as 

I= f(P) (2) 

In equation (2) the symbol P, which represents a number in the domain of f, 

is called the independent variable, and the symbol J, which represents a 

number in the range of f, is called the dependent variable. 

Equation (1) is an example of “direct variation,” and J is said to “vary 

directly” as P. 

A variable y is said to vary directly as a variable x if 

where k is a nonzero constant. More generally, a variable y is said to vary 

directly as the nth power of x (n > 0) if 

eas (4) 
The constant k in equations (3) and (4) is called the constant of variation 

(or the constant of proportionality). Sometimes the terminology associated 

with equation (3) is “y is directly proportional to x” and the terminology 

associated with equation (4) is “y is directly proportional to the nth power 

Of Xa" 

ILLUSTRATION 1. If an object falls s feet from rest in ¢ seconds and air 

resistance is neglected, then 

Sa 167? 
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EXAMPLE 1 

The variable u varies directly as the 
variable v, and u = 3 when v = 12. 

(a) Find a formula involving u 

and v. 

(b) Find the value of u when v = 7. 

EXAMPLE 2 

The period (the time for one com- 
plete oscillation) of a pendulum var- 
ies directly as the square root of the 
length of the pendulum. If a pendu- 
lum of length 8 feet has a period of 3 
seconds, what is the period of a pen- 
dulum of length 2 feet? 

Hence s varies directly as the square of ¢ and the constant of variation is 16. 
The independent variable is ¢ and the dependent variable is s. e 

SOLUTION 

(a) Because wu varies directly as v, we have the equation 

Wi ky (5) 

Equation (5) is satisfied when wu is 3 and v is 12; thus we have 

pa kanal 2 

= 
Substituting this value of k into equation (5), we obtain the formula 

u =v (6) 

(b) Let w be the value of u when v = 7. Substituting w for u and 7 for v in 
equation (6), we obtain 

Bye 
4 

SOLUTION 
Let T seconds be the period of a pendulum of length L feet. Then 

T=kVL (7) 

When L = 8, T = 3, and substituting these values into equation (7), we have 

eas 
3 

Se i (8) 
OD 

Replacing & in equation (7) by its value from equation (8), we have 

3 vip = L (9) 
Qn/2 

Let T seconds be the period of a pendulum of length 2 feet. Then from 
equation (9), we have 

Pes ae 

3 
2 

Therefore, the period of a pendulum of length 2 feet is 3 seconds. 
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3.7.2 DEFINITION 

EXAMPLE 3 

The weight of a body varies in- 
versely as the square of its distance 
from the center of the earth. If a 

body weighs 200 pounds on the 
earth’s surface, how much does it 

weigh at a distance of 400 miles 
above the earth’s surface? Assume 

that the radius of the earth is 4000 

miles. 

[Ch. 3 

A variable y is said to vary inversely as a variable x if 

fe 

where k is a nonzero constant. More generally, a variable y is said to vary 

inversely as the nth power of x (n > 0) if 

EK 
os 

The terminology “y is inversely proportional to x” and “y is inversely 

proportional to the nth power of x” may be associated with the equations of 

Definition 3.7.2. 

ILLUSTRATION 2. If ¢ hours is the time required for an automobile to travel 
a distance of 60 miles at the rate of r miles per hour, then 

_ 60 
r 

t 

Hence ¢ varies inversely as r. The constant of variation is 60, the independent 
variable is r, and the dependent variable is ¢. e 

SOLUTION 
Let w pounds be the weight of the body when its distance from the center of 
the earth is x miles. Then 

k 

When x = 4000, w = 200. Substituting these values into equation (10), we 

have 

pbs 
40002 

k = 3,200,000,000 

200 — 

Substituting this value of k into equation (10), we have 

3,200,000,000 
SS 

x2 (11) 

Let w pounds be the weight of the body when x = 4400 (that is, when the 
body is 400 miles above the earth’s surface). Substituting these values for w 
and x in equation (11), we have 

3,200,000,000 

44002 

20,000 

121 

165.3 
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3.7.3 DEFINITION 

EXAMPLE 4 
For a work crew the cost of labor 
varies jointly as the number of 
workers and the number of days of 
work. If a crew of twelve workers in 
5 days earns a total payroll of $2700, 
how many workers are employed if 
the payroll for 10 days work is 
$3600? 

Variation 199 

Therefore, the body weighs 165.3 pounds at a distance of 400 miles above the 
earth’s surface. 

A variable z is said to vary jointly as variables x and y if 

RESO? 

where k is a nonzero constant. More generally, a variable z is said to vary 

Jointly as the nth power of x and the mth power of y (n > 0 and m > 0) if 

La San in 

In Definition 3.7.3 each of the variables x and y is an independent variable 

and z is the dependent variable. 

ILLUSTRATION 3. The formula for computing V, the number of cubic units 
in the volume of a right-circular cone of radius r units and height A units, is 

a arth 

Therefore, the volume of the cone varies jointly as the square of the radius 
and the height. The constant of variation is 47. The independent variables 
are r and h, and the dependent variable is V. @ 

SOLUTION 
Let C dollars be the cost of labor if x workers are employed for y days. Then 

Cr thxy (12) 

When x = 12, and y = 5, then C = 2700. Substituting these values into 
equation (12), we have 

2700125) 

a4) 

Substituting 45 for & in equation (12), we obtain 

C = 45xy (13) 

Let x be the number of workers employed if C = 3600 and y = 10. Then 
from equation (13), we have 

3600 = 45(x)(10) 

nO 

Thus there are eight workers if the payroll for 10 days’ work is $3600. 

In Example 4, the constant k is the number of dollars earned by a worker 
for 1 day’s work. 

Sometimes, a combination of joint variation and inverse variation occurs, 

as shown in the next illustration. 
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EXAMPLE 5 

The safe load of a rectangular beam 

varies jointly as the width and the 
square of the depth, and inversely as 

the length of the beam between its 
supports. If a beam 12 centimeters 
wide, 20 centimeters deep, and 6 

meters long has a safe load of 1000 
kilograms, find the safe load of a 

beam 10 centimeters wide, 25 centi- 

meters deep, and 5 meters long. 

EXERCISES 3.7 

ILLUSTRATION 4. If a variable w varies jointly as the square of x and the 
cube of y and inversely as the fourth power of z, we have the equation 

xy 

w= k( Fr ) 

where k is a nonzero constant. There are three independent variables, and 
they are x, y, and z. The dependent variable is w. e 

SOLUTION 

Let S kilograms be the safe load of a beam having a width of w centimeters, 
a depth of d centimeters, and a length of / meters. Then 

wd? s=k(“4) (14) 

When w = 12, d = 20, and/ = 6, then S = 1000. Substituting these values 

into equation (14), we have 

1000 =k (2 ay 

5 
k= 

4 

Substituting 2 for k in equation (14), we obtain 

a5) 5 
Let S be the value of S when w = 10, d = 25, and / = 5. Then substituting 
these values into equation (15), we have 

eS 228) 
== 
( 5 

= 15625 

Thus the safe load for a beam 10 centimeters wide, 25 centimeters deep, and 

5 meters long is 1562.5 kilograms. 

1. If y varies directly as x, and y = 6 when x = 2, 3. If v varies directly as the square of u, and v = 5 
find (a) a formula involving y and x; and (b) the when u = 3, find (a) a formula involving v and u; 

value of y when x = 3. and (b) the value of v when u = 6. 

2. If s varies directly as ¢t, and s = 10 when ¢ = 15, 4. If varies directly as the cube of x, and y = 6 when 
find (a) a formula involving s and ¢; and (b) the x = 10, find (a) a formula involving y and x; and 
value of s when ¢ = 7. (b) the value of y when x = 2. 
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a: 

10. 

11. 

12. 

13; 

14. 

If p varies inversely as the square root of g, and 
Pp = 3 when q = 8, find (a) a formula involving p 

and q; and (b) the value of p when g = 18. 
. If m varies inversely as the square of n, and m = 3 
when n = 4; find (a) a formula involving m and n; 

and (b) the value of m when n = 16. 

. Ifz varies directly as the cube of x, and inversely as 

the square of y, and z = 8 when x = 4 and y = 6, 
find (a) a formula involving x, y, and z; and (b) 

the value of z when x = 2 and y = 2. 
. If ¢ varies directly as the square of s, and inversely 
asi andes 6 Welles =—4 and 7: = 93, find (a) a 

formula involving r,s, and ¢; and (b) the value of ¢ 

when si= 9 and 7 = 6. 

. The variable r varies jointly as s and the cube of £ 

and inversely as the square of u. If r = 24 when 
Set love 4 and = 10) find (a)"a formula in- 

volving r, s, ¢, and u; and (b) the value of ¢ when 

fowl ese and i — 6. 

The variable w varies jointly as the fourth power of 
x and the square of y and inversely as z. If w = 10 

when x = 3, y = 2, and z = 36, find (a) a formula 

involving w, x, y, and z; and (b) the value of y 

when w= 4,%=2, and z = 40. 

The intensity of light from a given source varies 
inversely as the square of the distance from it. If 
the intensity is 225 candlepower at a distance of 5 
meters from the source, find the intensity at a point 
12 meters from the source. 
For a vibrating string, the number of vibrations 
per second varies directly as the square root of the 
number of kilograms in the tension on the string. If 
a particular string vibrates 864 times per second 
under a tension of 24 kilograms, find the number 
of vibrations per second under a tension of 6 kilo- 
grams. 
If s feet is the distance a body falls from rest in ¢ 
seconds, then s varies directly as the square of ¢. If 
a body falls 64 feet in 2 seconds, find how long it 
takes a body to fall 100 feet. 
If V cubic meters is the volume of a gas having a 
pressure of P kilograms per square centimeter, 
then Boyle’s law states that at a constant tempera- 
ture, V varies inversely as P. If a particular amount 

15. 

16. 

17. 

18. 

19. 

of gas occupies 100 cubic meters at a pressure of 24 
kilograms per square centimeter, find (a) the vol- 
ume of the gas when the pressure is 16 kilograms 
per square centimeter; and (b) the amount of pres- 
sure needed to compress the gas to 30 cubic meters. 

If, in an electric circuit, 7 amperes is the current, R 

ohms is the resistance, and E volts is the electro- 

motive force, then 7 varies directly as & and in- 
versely as R. If, in a particular circuit, a current of 
30 amperes flows through a resistance of 5 ohms 
with an electromotive force of 30 volts, find the 

current that an electromotive force of 100 volts 
sends through a resistance of 12 ohms. 

If V kilometers per hour is the velocity of the wind 
and if 2 kilograms is the force of the wind on a 
plane surface at right angles to the wind, then if A 
square meters is the area of the plane surface, P 
varies jointly as A and the square of V. If the force 
on a plane surface of area 9 square meters is 48 
kilograms when the wind’s velocity is 40 kilometers 
per hour, find the force on a plane surface of area 
24 square meters when the wind’s velocity is 20 
kilometers per hour. 
If V cubic meters is the volume of a gas having a 

pressure of P kilograms per square centimeter at 

an absolute temperature of T degrees, then V var- 

ies directly as T and inversely as P. If at a temper- 
ature of 180 degrees a particular amount of gas 
occupies 100 cubic meters at a pressure of 18 kilo- 
grams per square centimeter, find the volume 
of the gas at a temperature of 240 degrees when 
the pressure is 12 kilograms per square centi- 
meter. 
If R ohms is the electrical resistance of a cable of 
length L meters and diameter d centimeters, then 

R varies directly as L and inversely as the square 
of d. If a cable 500 meters long and 4 centimeter in 
diameter has a resistance of 0.1 ohm, what is the 

resistance of a cable 4000 meters long and | centi- 
meter in diameter? 
If z varies directly as the square of x and inversely 
as y, what is the effect on z if x is doubled and y is 
tripled? 

20. If s varies directly as the square of ¢ and inversely 
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as the square root of r, what is the effect on s if the square of the distance of the object from the 

both ¢ and r are doubled? lamp. A student reading a book that is 24 feet from 

21. The safe load of a horizontal beam of a given a lamp decides to increase the illumination by 

length varies jointly as the width and the square of doubling the intensity of the light and bringing the 

the depth. If a beam of width 4 inches and depth 8 book 6 inches closer. What is the per cent increase 

inches is tipped over to make 4 inches the depth, in illumination? 

what is the per cent loss of load? 24. The stiffness of a rectangular beam varies jointly as 

22. Solve Exercise 21 if the beam has a width of 3 its width and depth and inversely as the square of 

inches and a depth of 15 inches and is tipped over the length. If each of the three dimensions is in- 

to make 3 inches the depth. creased by 20 per cent, what is the change in the 

23. The illumination of an object from a lamp varies stiffness? 
directly as the intensity of the light and inversely as 

REVIEW EXERCISES (CHAPTER 3) 

In Exercises 1 through 6, draw a sketch of the graph of the given relation. Is the relation 

a function? 

1. {(x, y)|5x —y = 3} 2. {(x,y)|2x +y = 8} 3. {(x%y)|y? =x — 4} 
SD 5. {(x,y)|xy = 10} 6. {(x,y)|x? + y? = 16} 

In Exercises 7 through 14, find the domain and range of the given function and draw a 

sketch of the graph of the function. 

7. f(x) =x? —4 8. g(x) = vx —4 

9: h(x) = Wixe —4 10. F(x) = V4—- x 

2 16 CW Gu os hoe nO) 
Hk (6) = = 12. g(x) = | AO sais eg EX) asain oll niko 
; meee if x <= 1 (x + 2)(x? — 4x 4 3) 
3. F = e SS a a i G) {Sait at ie 14. G(x) Liem: 

In Exercises 15 through 18, find the given function value. 

15. h(—2) for the function of Exercise 9. 16. F(0) for the function of Exercise 10. 

17. f(2) for the function of Exercise 11. 18. g(—1) for the function of Exercise 12. 

In Exercises 19 through 23, f(x) = 3x? — 2x + 1. Find the indicated quantity. 

19. (a) f(2); (b) f(—4) 20. (a) f(3t); (b) 3f(@ 
21. (a) f(4x); (b) 4f(x) 22. (a) f(x”); (b) [f(x)P 
23. (a) f(x — 2); (b) f(x) — fQ@) 

f(% + h)—f) 
h 

24. If f(x) = x? — 4, find swheres) a 0: 
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In Exercises 25 through 27, the functions f and g are defined. In each exercise, find 

(a) (f + 8)(x); (b) (fF — Bi); (©) (18)); @) (F/2)(2)3 (©) (8/ Px); (£) £70). In 
each case determine the domain of the resulting function. 

IS, AD) = 8 Sees Si 26. f(x) = Vx; g(x) =x? +1 

27. f(x) = VE; g(x) = 

In Exercises 28 through 30, for the functions f and g, find (a) (fo g)(x); (b) (g of )\(x); 

(c)(fof)(x); (d) (g ° g)(x). In each case determine the domain of the resulting function. 

28. The functions of Exercise 25. 29. The functions of Exercise 26. 

30. The functions of Exercise 27. 

In Exercises 31 through 33, draw a sketch of the graph of the given function and 
determine from the graph which of the following statements characterizes the roots of the 
corresponding quadratic equation: (a) two real roots, (b) one real root of multiplicity 

two, or (c) two imaginary roots. 

SI.) via x — 6x } 32. { (x.y) | y= 2x? + 8x + 11} 
33. {(x, y)|y = —x? + 8x — 16} 

In Exercises 34 through 36, find either a maximum or minimum value of the given 
function. 

34. f= {(x, y)|x? — 6x + 6y — 15 = 0} 35. g = {(x, y)|x? + 2x — 4y — 11 =0} 
S60 / = {(x,y) |p =3x2 + 6x +7} 

In Exercises 37 through 40, a rational function is given. (a) Determine the domain of 
f. (b) Find the asymptotes of the graph of f if there are any. (c) Determine if there are any 
regions excluded by the graph of f. (d) Draw a sketch of the graph of f. 

mn 0)= 2 eee 
39. f(x) = x 40. f(x) = +4 

In Exercises 41 through 46, a function is given. Find the inverse of f and determine if 
it is a function. Draw sketches of the graphs of f and its inverse on the same coordinate 
axes. 

41. f = {(x,y)|y = 3x} 42. f= {(x, y)| y = 3|x]} 
43. f= {(x%y)|y = vx — 4} 44, f= {(x,y)| y= — V2? — 4} 
45. f={@y)|y =9 —x?, x 20} 46.7 = {(x,y)|y = (x — 3)?, x > 3} 
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47. 

48. 

49. 

50. 

Find two numbers whose sum is 18 and whose 

product is a maximum. 

A travel agency offers an organization an all-inclu- 

sive tour for $1000 per person if not more than 200 

people take the tour. However, the cost per person 

will be reduced $10 for each person in excess of 

200. How many people should take the tour in or- 

der for the travel agency to receive the largest gross 

revenue, and what is this largest gross revenue? 

A carpenter can sell all the bookcases that are 

made at a price of $64 per bookcase. If x bookcases 

are built and sold each week, then the number of 

dollars in the total cost of the week’s production is 

x? + 15x + 225. How many bookcases should be 

constructed each week in order for the carpenter to 

have the greatest weekly total profit? What is the 

greatest weekly total profit? 
If z varies directly as the square root of x and 

Si: 

52. 

inversely as the square of y, and z = 30, when 
x = 9 and y = 2, find (a) a formula involving x, y, 
and z; (b) the value of x when z = 50 and y = 4. 
If in an electric circuit, i amperes is the current and 
R ohms is the resistance, then when the electromo- 

tive force is constant, i varies inversely as R. If in a 
particular circuit, the current is 12 amperes when 
the resistance is 2 ohms, find (a) the current when 

the resistance is 0.3 ohm; (b) the resistance when 

the current is 96 amperes. 
For a horizontal beam of fixed length, if S kilo- 
grams is the safe load, w centimeters is the width, 

and d centimeters is the depth, S varies jointly as w 
and the square of d. If such a beam of width 6 
centimeters and depth 24 centimeters has a safe 
load of 1500 kilograms, find the safe load of a 
beam 9 centimeters wide and 16 centimeters deep. 
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4.1 Properties of The nth power of a, denoted by a”, where a is a real number and n is a 

positive integer has been defined as follows: 
Exponents 

(PEEP UOMO Garsars 5G) (n factors of a) (1) 

The fundamental laws of exponents are stated in the following theorem. 

4.1.1 THEOREM If a and 5 are real numbers, and m and n are positive integers, then 

(i) areqr = qntm 

ci) aa 

(111) (aby =a" 

(v) (¢)"=£ wo) 

ope ifn >m 

Ge : 
(v) “ee ifn<m (a £0) 

Ibe ifnv=m 

The proofs of parts (i) through (v) of Theorem 4.1.1 require mathematical 
induction which is discussed in Chapter 8. However, informal arguments can 
be given in place of a formal proof. In the following illustration, an informal 

argument is given for part (1). 

ILLUSTRATION 1. By the definition of a positive integer exponent 

OME TOPOL Ono OG) (n factors of a) 

UL FeO UIE (ORO 3 OVE) (m factors of a) 

Therefore, the product of a” and a™ gives us n + m factors of a; that is, 

OPIN GUO 3 DENGEOTERO om OE (n + m factors of a) 
=aqrnim Q 

ILLUSTRATION 2. Following are special cases of parts (1) through (v) of 

Theorem 4.1.1. 

206 
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EXAMPLE 1 
Find each of the following products. 

(a) (—5Sr3s42?)( —6s5t4)( —r?s) 
(b) (nx")(nx"), nis a positive integer 
(c) (2xy2z)3(—x2y3z4)4 

(d) (—a?c)3( —abtc?)4(3b°c?)? 

(xy)* = xty4 

(=)'=% 

y ye 
) 

eee 
ae | 
x2 x6 
x4 

aed e 

By applying the associative law for multiplication, the formulas of Theo- 
rem 4.1.1 can be extended. For instance, 

x4 + x8 -x 2 x8 = x Ft8t116 

= x 19 

and 

(a*h®cd?)3 = (a*)3(b®)2c3(d2)? 

= a 2h15c3q6 

SOLUTION 

(a) (—5r3s*t?)( —65°t*)( —r?s) = (Go = 6) 1) | nomas4o or tt 

=) — 30795197 

(b) Cixi) = nitiyntn 

= n2x 2" 

ONC 2) (Gz) 2) (72 I — 1) 24374] 
= [Se yez? |] ey i2z te] 

= 8x 1718719 

(d) (—a?c)?( —ab*c?)4(3b°c3)? 

a) ate ICS I) as(b*)4(c7)13°(B")=(°)?] 
(Ware? |[lath1*c®|[9b"°c*| 
=) 294 10),26-17 

ILLUSTRATION 3. If x 4 0, y #0, and z 40, then 

mais = (==) xy 
Key 2Z 

=x sayz 

Note that (8x%y?z)(7x?yz3) = 56x°y3z4, which verifies the computation. @ 



208 Exponential and Logarithmic Functions [Ch. 4 

EXAMPLE 2 

Find each of the following quotients, 
where none of the variables is zero. 

In part (b) n is a positive integer. 

(—2x2y3)2(—4x°y?) 

(a) —8y3(x eS 

a(a"b"*1)2 

(0) b(ab2)" 

SOLUTION 

(a) (—2x2y3)2(— 4x 5y?) a (—2)?(x2)2(,y3)?( — 4x5?) 

—8y3(x2)8 a pra 

= Ax 4y6( —4x°y?) 

- —8y3x® 

oxy 

8) ce 

= ( ard ene 

= ey 

(b) aan bh"*)2 - GQ a23 2) 

b(ab?)" «aba b") 
i qentipent2 

ap2nti 

ql2ntD—n p(2n +2)—(2n +1) 

= qr tlpent2—2n-1 

= a™t1p 

We are now concerned with integer exponents other than positive integers. 
The definition given by formula (1) has meaning only when the exponent n 
is a positive integer. Therefore, when the exponent is zero or a negative 
integer, a different definition must be given. We want these definitions to be 
such that the same formulas (Theorem 4.1.1(i) through (v)) that apply for 
positive integer exponents also hold for zero and negative integer exponents. 
In particular, if (i) of Theorem 4.1.1 is to hold for a zero exponent, then if 

a= 0; 

a? “qr = qotn 

that is, 

q® “qr —a” 

and dividing on both sides of the 
equation by a”, we get 

a® = 1 

Therefore, we must define a® as 1. 
Now, suppose that n is a positive integer, and therefore —n is a negative 

integer. If (i) of Theorem 4.1.1 is to hold for a negative integer exponent, then 

a’-a” =a? 
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4.1.2 DEFINITION 

EXAMPLE 3 

Find the numerical value in lowest 

terms. 

(a) (CES ° Bare 

(ONO ea 3)= 

that is, 

ENG hag ren 

and dividing on both sides of the 
equation by a”, we get 

1 
ame — 

qa” 

Thus, we must define a” = 1/a". We have the following formal definition. 

Ifaée R,a #0, and —n is a negative integer, then 

a 

Ka 

It can be shown that formulas (i) through (v) of Theorem 4.1.1 hold for 

zero and negative integer exponents; thus, they hold for all integer expo- 

nents. 

SOLUTION 

(Ayn oe yet = 2-0. 3-21) 
as .132 

ie 

Fon l 
(b) Rw) = G=gah 

\ (23 + 32\(1) 
(Oe ° 3) ap Oe ° 35 



210 Exponential and Logarithmic Functions [Ch. 4 

EXAMPLE 4 

Write each algebraic expression as a 
simple fraction with positive expo- 
nents only. 

x -8y4z7-5 \ -2 

(a) Ca) ie Opmez 

ay = a Yo 

aisha 
(b) 

SOLUTION 

ea 
x oyezZ 

x 3 Za 2), —5(—2) 

x 1Dy Az HD) 

x6 Vie z10 

- x12 ve 78 

= xe ( yy 8 4710 8 

= x18)-1272 

a Hs i: 

x 1872 

cal ye 

it 1 

(by 2rd = a8 erage 
Gob. 1 1 

a be 

(a%b%) 4 — (a%b?)? 
b a 

i 1 1 (a%®) 4 — (ab) 
HP 2 

> ba 

ahaa) 

— (-1@? — 5’) 
a*b*(a + b)(a — b) 

~ (—I(a — bya? + ab + 
a*b?(a + b) 

— “G2 4 ab + b? 

We now wish to define a rational exponent of the form es, where 7 is a 
n 

positive integer. Formula (ii) of Theorem 4.1.1 states that (a”)” = a™™. If this 

formula is to hold when the exponent is cl then we must have 
n 

(aye — qr/n 

=a 

If this equality is to hold, then from Definition 1.3.2, a1/" must be defined to 

be an nth root of a. We therefore have the following definition. 
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4.1.3 DEFINITION 

4.1.4 DEFINITION 

If a € R and nis a positive integer, then 

avn — Va 

ILLUSTRATION 4 
. 1 \1/4 1 

(a) 25/2 = 25 (b) (-8)”8 = Y—8 O(a) =, 

as) ———) = 

Consider now how we should define a”/”, where m and n are positive 
integers and a is a real number such that \/a is a real number. We place the 
restriction that m and n are relatively prime (that is, m and n contain no 

common positive integer factors other than 1). Hence we are considering 

expressions such as 

93/2 82/3 (—27)*/3 73/4 

If formula (ii) of Theorem 4.1.1 is to hold for rational exponents, as well as 

for integer exponents, then a”/” must be defined in such a way that 

qn/n = (Gyn 

Therefore, we have the following definition. 

If a € R, and m and n are positive integers that are relatively prime, then if 
V/a is a real number 

amin = (Vay 
or, equivalently, 

qn/n = (aie 

ILLUSTRATION 5. We use Definition 4.1.4 to find the value of the expres- 
sion. 

(a) 99? = (v9) (b) 8/3 = (8? 
= 33 = 2 
mt) =4 

(0) (-27)"8 = (/=27) (d) -274/9 = —(+/27)4 
=, = -(3)! 
= Sil Hil 3 
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4.1.5 THEOREM 

It can be shown that the commutative law holds for rational exponents 

and, therefore, 

(am)/m = (al/nym 

from which it follows that 

Van = (Vay (2) 
The next theorem follows immediately from Definition 4.1.4 and equal- 

ity (2). 

If a € R and m and n are positive integers that are relatively prime, then if 

V/a is a real number 

qn — Van 

or, equivalently, 

ane (gt ere 

Definition 4.1.4 and Theorem 4.1.5 give two alternatives for computing 

a”/™. Compare the computation in the following illustration with that of 

Illustration 5 and you will see that the computation in Illustration 5 (where 

Definition 4.1.4 is used) is simpler than that in Illustration 6 (where Theorem 

4.1.5 is used). 

ILLUSTRATION 6. We use Theorem 4.1.5 to find the value of the expressions 

in Illustration 5. 

(a) 93/2 = \/93 (b) 82/3 — /8? 

= 729 = 64 

= 2] = 4 

(c) (—27)4/3 = V(—27)4 (d) —274/3 = — V/(27)4 

= 531,441 = — 531,441 

The laws of exponents (Theorem 4.1.1(i) through (v)) are satisfied by 

positive rational exponents with one exception: (ii) (a”)* = a?4 when a < 0, 

p is a positive even integer, and q is the reciprocal of a positive even integer. 

For instance, consider the expression [(—9)?]!/4. By first computing (—9)?, 

we have 

[(—9]/4 = 814 
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4.1.6 DEFINITION 

However, if (11) is applied first, we have 

(—9)20/4 — (_9)1/2 

But (—9)!/2 is not a real number. Therefore, 

(2a =! (—9)7 

If we have [(—9)?]!/?, then by first computing (—9)?, we have 

(—9y7y2 = 81 
=o) 

If we first apply (11), we get 

C9) (—9)} 

—9 

Hence 

[( Oye of ( SUE 

In order not to have this ambiguity, we make the following definition 

If a € R, and m and n are positive even integers, 

(Gaye = lala” 

A particular case of Definition 4.1.6 occurs when m = n. We have then 

(GEES es Tal] (if n is a positive even integer) 

or, equivalently, 

Va" =|a| _— (if 2 is even) 

If n is 2, we have 

Va? = |a| oy 

ILLUSTRATION 7. From Definition 4.1.6 we have 

[(—9)2]}1/4 = | —9|2/4 

EE oi/2 

= /9 
— 

From equality (3) we have 

V=9F = |-9 
226 e 
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4.1.7 DEFINITION 

We now wish to define a negative rational exponent. Suppose that m and n 
are positive integers that are relatively prime. Then 

m 

n 

represents a negative rational number. Another representation for the same 

rational number is 

—m 
n 

Therefore, in order for (ii) of Theorem 4.1.1 to hold for negative rational 

exponents, we must have 

qn — (Gly 2 

By the definition of a negative integer exponent, it follows that ifa # 0, then 

n\—-m™m — 1 

(a¥ ) a (Gy aNe 

Therefore, we give the following definition. 

If a€ R, a0, and m and n are positive integers, then if V/a is a real 

number, 

ILLUSTRATION 8. We compute 8~?/3 by three different methods. In part 
(a) we first use Definition 4.1.7, and in parts (b) and (c) we apply laws of 

exponents to negative rational exponents. 

z= 1 
Qe’ = 92/3 

as GRY 
( 1 i 

64 

ae 
wa 

(b) 8-2/3 — (8, 179)2 (c) 8-2/3 — (ome) ue 

II II 
a w]e 2 

i) 
I| 

Rational exponents (positive, negative, and zero) satisfy the laws of 
exponents (Theorem 4.1.1(i) through (v)) with the understanding that 

(a™)/™ = |a|"/" when m and n are even integers. 
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EXAMPLE 5 

Simplify so that each variable ap- 
pears only once and all the expo- 
nents are positive, where r, s, and ¢ 

are positive real numbers. 

3/452 72/3 \ 1/5 

EXAMPLE 6 

Find the product and express the 
result with positive exponents, where 

SOLUTION 

( p~3/ 45-2 72/3 i 

p3y1/27-1/6 

= ( ; g72 f2/3 es 

r3 gi/2 ¢-1/6 

= (FD S522) 12/3) 1-1/6) 1/5 

= a) Sa) 270/68) 1/0 

= p6—15/ 4-1/5) 5(—5/ 2-1/5) -(5/ 6-1/5) 

— p3/451/2;-1/6 

— p3/4o1/2. l 
ae : t1/6 

p3/451/2 

pi/6 

SOLUTION 

(Gi ae Da 4e yp = qq? ae qi/2p-1/2 22 GEIR 

a>0Oandb>0. =14+av2-t_ be 1 
b a (al/2 — b1/2)(q-1/2 4 h-1/2) ee 

ee i 2 ia 2 

eg 2 l/s pi/2 
aap Ua 1/2 41/2 tz 

_ a—b 
~~ qi/2pi/2 

EXAMPLE 7 SOLUTION 

Simplify the expression, where each (a) (u2v4)/4 = (u2)/4(y4y1/4 
variable can be any real number. = |ul?/4u|4/4 

(a) (u2v4)1/4 = \u|/2|0| 

BEA ail NOVO 
(b) [(—3x) (eS She (b) [(—3x)2(y — 3)2}/2 = [(—3)2]/2[x2p/2I(p — 3)2y12 

= heal 6) 
| 

EXERCISES 4.1 

In Exercises 1 through 22, find the numerical value in lowest terms. 

1. (—5)°2 2 4 3, (Gy2 4, 9 +30 

—4 5, 361/2 6. (—8)-1/3 7, 272/3 8. (2) 
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\ eae: ( 1 Ise 3/2 pila th | oe 11. —0.16 
: ( 3 125 

ear E (so (Ke (Go 13 (ay 

Pa ou 
=i =H)=1 19) 2222 17. (4-1 + 2-3) GS Serena As EE 

a =O ee 

In Exercises 23 through 46, write the expression so that each variable occurs only once 

and the exponents are positive. Assume that all the variables are positive. 

hl a* =P 
23. AGE BG 24. =e DPD, (t ) 

a 

yW/6 
pO 28 ora D9 eka hole 

a 
or Q-1,-3/0 4-3/4 \-1/8 

31. 2 ye tha 32. ——_— 33. (=) 
(x y ) Qst i= x 0/4 

Bx yea =1 (SSE ie z = 

Dyer GAY ba Gay 
39. ———_____ 40. ——_————— 41. ——___ 
Vox a*—b* a? — b? 

-2 =9 pee ae hay, 7/2. ,4/ 3729 N17 

oe ee yan Eee 8. (“| 
x? = yy Age 9X ye oC yet za 

In Exercises 47 through 54, find the given product and express the result with positive 

exponents. Assume that all the variables are positive. 

AT, y-¥/4(y5/2 4 3/8) 48, 1-2/3(12/8 — 1-1/3) 49. 
50. (at/2 — bV/?)? 51. (a7? + b-1722 52. 
53. (al/3 a pie ye 54. (al/3 = bi72)s 

In Exercises 55 through 62, write the given expression as either a monomial or a simple 

fraction in lowest terms with positive exponents only; n is a positive integer. Assume that 

all the variables are positive. 

xrxntt qn Agnrtt 

55. oe 56. eee Vik 

3-—3n,n+2 2n = 

58. ie 59. (<—) 60. 

61 (101): 10,000"*+2 x g2n-1 (RQ |n—1yrtt 

(1000")"*4 : 1003— ‘ (3n+1)n Ona 

12. —0.0016°°4 

16. (4-1-2783) 

G+ 10-6 107) 
20. 

DealOne 

26. (—3a3) 

30.6 vz" 

Aqg2ph-1/3 

* Qa- 1/258 

38. (a — by} 

(x +yy* 
- seul +y} 

"Gg ce 2/3 4/3y)—4 ) 3 

° yn)/3y2/3y—T/3 

42 

(ei/2 4 yil2y2 

(xi/4 = Dee ee Come it ae) 

(Ce Ese 

xn = 

(35 ) 
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In Exercises 63 through 68, simplify the given expression. Each variable can be any real 
number. 

GSan(1 Oe =y >) 64. (4atb)1/2 65. [(—5)*(x — 5)4}'/? Y 
66. [(—3)®x*(x? + 9)?]”? G71 (2) (x = 2)°2 — yi} O85) (aaa ),) |" 

69. (a) Simplify the expression: 70. (a) Simplify the expression: 

Qc 6x 9) (x* —.6x 42:9)2 (x? — 8x + 16)!/2 + (x? + 8x + 16)!/2 

(b) For what values of x is the expression in part (b) For what values of x is the expression in part 
(a) equivalent to 6? (a) equivalent to 2x? 

4.2 Properties of By using the fact that \/a = a'/”, the following theorem can be proved 
Radicals using laws of exponents. 

4.2.1 THEOREM If a,b € R, then 

(i) Va+ Vb = Vab 

and 

—= = a/— bz 0 (11) Ub 5 (6 £0) 

where a > 0 and b > 0 if nis even. 

In Theorem 4.2.1 we have the condition that a > 0 and b > 0 when n is 

even. These restrictions require that Vaand \/b be real numbers in order for 

equalities (1) and (ii) to hold. In Illustration 7 of Section 5.1 we show why the 
equalities do not hold for a << 0 and b < 0 when n is even. 

ILLUSTRATION 1. From Theorem 4.2.1(i), we have 

(a) V4- V25 = V/4-25 (Day 29/3 = (93) 
= /100 = 27 

a0 a 

From Theorem 4.2.1(ii), it follows that 

96 96 54 54 
(c) 4 SS LU (d) z = 3 

V6 6 V2 2 

= 1/16 = V-27 

oD = —3 @ 
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Formula (i) of Theorem 4.2.1 can be written as 

Vab= ya 1b) (a> 0 and b > 0 if nis even) (1) 

The next illustration shows how equality (1) can be used to simplify a 

radical whose radicand contains as a factor a power having an exponent 

greater than or equal to the index of the radical. 

ILLUSTRATION 2. To simplify the radical 1/540, we first write 540 

as a product of prime factors. Because 540 = 10-54 =2-5-°6:9= 

2520 3-32 we Nave 

VD VPP BEES 

= CIOS) 
ay Or 3) 3 
= (2 7 3) VV 15 

TOR sles) @ 

EXAMPLE 1 SOLUTION 

Simplify the radical where x > 0, 4 ee . L/S 
oP Seeitbe So) (a) V405x>y8z ye 

: Vio xy oxz) 
we 5873 eee sane — W/Bxy?! 5x22 

(b) VW —16x5y32 ayy ie 
(b) V—16x5y3z* = 1/(—1)24x%y3z8 

= (2 io) 
= V/ (21x22) 2x? 

= —2xyz2 \/2x? 

When Theorem 4.2.1(i) is applied to find the product of radicals having the 
same order, simplification of the product can be facilitated by expressing any 
constant as a product of prime factors before performing the multiplication. 

EXAMPLE 2 SOLUTION 

deo rest ls SE: 126725 + V/36rs22 = W232 Test VP 3372? 
= V/23 © 34. 7735478 

= /(23 - 33r35373)(3 + 7s) 

= (2° 3rst)? V3 + 7s 

= Ol V21s 

Because the distributive law 

a(b +c) =ab +c (2) 

\/126r2s2t + \/36rs2t? 
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is valid for any real numbers a, b, and c, we can apply it to the product of a 
monomial and a binomial that contains radicals. 

ILLUSTRATION 3 

V5(V7 + V3) = V5: V7 + V5- V3 
= V35 + VI15 e 

From equality (2), we have 

ab + ac =a(b +c) (3) 

Equality (3) can be used to factor an expression having a common radical 
factor. 

ILLUSTRATION 4 

Vab + V4b = Vavb + V4Vb 
= Vb(Va + V4) ° 

If we apply the commutative law for multiplication to both members of 
equality (3), we obtain 

ba+ca=(b+c)a (4) 

In the next illustration equality (4) is used to simplify a sum of the form of 
the left member of equality (4), where a is a radical and 5 and c are rational 
numbers. 

ILLUSTRATION 5 

5V6+9V6 =(5 + 9) V6 
= 14V6 e 

Note that each term in Illustration 5 contains exactly the same radical 
factor; that is, for each radical the radicands are equal and the orders are 
equal. Sometimes it is possible to simplify a sum of terms involving different 
radicals by replacing them with equivalent terms having the same radical 
factor. This procedure is shown in the following example. 

EXAMPLE 3 SOLUTION 

pou he surm V8 1/162 4 4/384 404-314. H/2-3! 4 4/073 
AS TEE ns VB W235 + VE VI-3 + VORP VTS 

=2V6 +3V6 +46 
6 

It is easier to compute with expressions containing radicals if the radicals 
are simplified before performing the operations. 
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EXAMPLE 4 SOLUTION 

Find the product (/200 + \/108)( VI8 oe \/147) 

(200 + V/108)( V18 — V/147) ZG Dees 22 =) 

= (VGrsiv2 PV Crsy VA V2 = Vi 

= (10-V2 + 6V3)3 V2 — 7V3) 
30/2 706 18 O42 8 

=i 6 126 

== 66) = 52/6 

Formula (ii) of Theorem 4.2.1 can be written as 

joa Ne (a > 0 and b > 0 if n is even) (5) 
VY Pb 

If the radicand of a radical is a fraction having a monomial in the denom- 

inator, equality (5) can be used to replace the radical by an equivalent 

expression for which the radicand contains no fraction. This process 1s called 

rationalizing the denominator, and for a radical of order n the procedure 

consists of first building the fraction to one in which the denominator is an 

nth power of a monomial. The next illustration and example show the 

computation involved. 

ILLUSTRATION 6. To rationalize the denominator of the radical 

B 

5 

we wish to build the fraction in the radicand to one in which the denominator 

is the square of an integer. Hence we first multiply the numerator and 

denominator by 5 and then we apply equality (5). Doing this, we have 

ae 5 BSS 
Vee 

Se 
15 
5 

bo 

The result can also be written as 4/15. ® 
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EXAMPLE 5 

Rationalize the denominator. 

CD) 6 a 2 

“ 
V Ixy 

Hocas 

\/225c4d2 

(b) ee Onand yy) 0 

(c) Gz Oand'd #0 
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SOLUTION 

oe (b) 4  —  4VIxy 

3y? V 3y2 cs Nx Wilko Vike! sy y j 3 
j2 By — 4V Ixy 

32y2 9 V(7xy)? 

a V2 + 32xy _ AV Ixy 

Wye Ts: 
Vv 18xy 

3y 

() 75cd2 Spel Ss V3 + 5c2d 

Wise? V/32 + 52c4d2  ¥/3.- 5c2d 

_ Sosene bea 
V/33 + 53c8q3 

Beoe-cd2 150-0 

VG +5c?d)8 
3 + 52d? W15c2d 

Br 5a2d 

5d W/15c2d(3 + 5ca) 

~~ ¢(3 + Sed) 
5dW15c2d 

G 

The quotient of a polynomial involving radicals divided by a monomial 
involving a radical can be obtained in one of two ways, as shown in the next 

illustration. 

ILLUSTRATION 7. We find the quotient (8 .\/35 + 4\/15) + 4/5 by two 
methods. 

(a) We divide each term of the dividend by the divisor. 

8V35+4V15 85-7 , 43:5 
4/5 45 4/5 

5-7 3-5 
2 aca), peal 

Ns ae 

=2V7+ V3 
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(b) We multiply the dividend and the divisor by a radical that gives an 

equivalent fraction having no radical in the denominator. 

8V35+4VI5 (85-7443 +5) V5 
ay a ee We 

_ 8527 + 43-5? = eG 

_ 8 V8? V7 + 452 V3 
20 

= 40/7 + 20V3 

20 

=2V7+ V3 e 

Recall the product 

(a + bla — b) =a? — Bb? 

Each of the two factors is called the conjugate of the other factor. The concept 

of the conjugate is used to rationalize the denominator of a fraction when the 

denominator is a binominal containing a radical of index two in either or 

both of the terms. For instance, to rationalize the denominator of the fraction 

5 
4/7 ay 3 

we multiply the numerator and denominator by 1/7 — 1/3, which 1s) the 

conjugate of V7 + V3, and we have 

ed Ne ON ea) 
Vi+ V3 (7+ V3(V7= V3) 

Vion 
TF VF 

Si pony o. 
(Pas 

Biv (hs SVS 
4 
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EXAMPLE 6 SOLUTION 

Rationalize the denominator. - Ve ie ( ie V2 Sm V2) 

pee? V54 V2 (V5 + VIKV5 — V2) 
vee _ V# - Vio - Vio + VE 

(b) Va + Vb = ye — oH 
Va —3V/b _ 5-210 +2 

(a>0, b> 0 and a 9b) ~ eD 
_ 7-210 
loa 

(b) Va+vVb — (Vat Vb Va +3 Vb) 
Va—3Vb (Va —3Vb\ Va +3 Vb) 

_ Va? +3 Vab + Vab +3 Ve 
Vaz — 9 \/b? 

ace 4\/ab + 3b 

a a — 9b 

EXERCISES 4.2 

In Exercises I through 10, find the indicated root. 

1. 81 2. V—64 3. V—0.001 4. Vas 5. Vk 
6.011) 332 Th 248 8. V rob 850 9. \(—5) 10 (22) 

In Exercises 11 through 20, simplify the given radical. All the variables represent 
positive numbers. 

11. \/48 12 S81 13. \/54 14. \/16x16 15. \/8c8 

16. \/—27x1y8 17. V/—96x25y 12 18. \/16x16y4z9 19. \/b? 20. x4 

In Exercises 21 through 28, find the product and simplify the result. All the variables 
represent positive numbers. 

21. /10 30 22a 18/12 23. (2,\V9)\(4 V/—6) 24. \/24x3/270x? 

25. V/—6s2t4 9597? = 26. \/12.a3b® \/2.4ab3 27. V9xy? Vox2y4 V60x®y 28. \/2uv 30 V/ouw V/12uw 
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In Exercises 29 through 38, write the given sum or difference as a single term. All 

radicands and variables represent positive numbers. 

29. a 30. 4/125 — 3 V/45 

31. 5/81 + 3/192 32. 6/54 — ate = ua 

33. 72a? + 8a? — V/18a° 34. + Vx3y — = + xy xy V4xy 

ne a As ER OIG Skis = 
: NG v 81 

37. 3 | 7 VP fi 2 An ee 
4c3 ' t (2 

In Exercises 39 through 48, find the product and express each radical in simplest form. 

All the radicands and all the variables represent positive numbers. 

39, 3/2( V6 — 23) 40. \/10(5.\/2 — 4/5 — 3 V/10) 41. (V2 4 2 VO V2 — 6) 

de (ls WN eT 43. (2/3 + 3/2) 44. (49/5 =5 V2)G V2 = 

45. (V4 — V3) V16 + V9) 46. (Vx +y + Vx —y)? 
47. 3Va+b+2Va —b)\3Va + b—2Va—b) AS, (G1/3x 2 — 2 30 2)2 

In Exercises 49 through 62, rationalize the denominator. All the variables represent 

positive numbers. 

5 itl 2 —5 V2 
49, 1e 50. _/— 51. au8 Sw We 2B A S=— 

; 3 ve 4/3 

16 = 1 re 
54, — 55 eee 56. 4 7a ig pale 

9x N/E 3y? 36y2 1524 

64a® V ede 21 70a?be* 
59 609 3 Pg 6o Hear ore 

27b? Bi ed: VV —98x V/288a°b8c? 

In Exercises 63 through 70, find the quotient and express the result in simplest form. All 

the radicands and variables represent positive numbers. 

lay 14 == 210 3aV5 + 93a? 4 V3 
63, ———_-—— 64. 65. ————_— 66. —————~ 

V42 es 3— V2 V6 + V3 
5—3 4V2 —3 = ea pi ene ne go, 22 SBN vs 

2— V5 5/3 —3 V2 3V2+2V7 Vs — Vt 
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4.3 Exponential 

Functions 

4.3.1 THEOREM 

We have defined the power of a positive number when the exponent is a 
rational number. In particular, 2” has been defined for any rational value of 
ca rorinstance, 

ee 22 29] 8 = EEE 

ao) — 
oo| = I] 

= V4 
But we have not defined 2” when x is an irrational number. Actually, the 
definition of an irrational exponent requires a knowledge of more advanced 

mathematics than is covered in this book. However, we can give an intuitive 
indication that irrational powers of positive numbers can exist by showing 
how we can interpret the meaning of 2V3. To do this, we make use of the 
following theorem, which we state without proof. 

If r and s are rational numbers, then 

(tebe leer << s implies igh Mes 

CD STOR arent EAR implies b> bs 

A decimal approximation for \/3 can be obtained accurate to any number 
of decimal places desired. Using four decimal places, we have V3 = WBA. 
Because | < 1.7 < 2, then from Theorem 4.3.1 part (i) it follows that 

pil ca 1.7 za 92 

Becausella, <e lia 18) then 

1.7 a 21.73 <e 91.8 

Because 1.73 < 1.732 < 1.74, then 

Q1.73 < 21.732 < 71.74 

Becauseal327<- 732 ee 12/33then 

21.732 — 71.7321 < 91.733 

and so on. In each inequality we have a power of 2 for which the exponent is 
a decimal approximation of the value of \/3, and in each successive ine- 
quality, the exponent contains one more decimal place than the exponent in 
the previous inequality. By following this procedure indefinitely, the differ- 
ence between the left member of the inequality and the right member of the 
inequality can be made as small as we please. Hence our intuitition leads us 
to assume that there is a value of 2V° that satisfies each successive inequality 
as we continue the procedure indefinitely. A similar discussion can be given 
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4.3.2 DEFINITION 

1 NS 

= x 

Figure 4.3.1 

for any irrational power of any positive number. Furthermore, Theorem 4.3.1 

is valid if r and s are any real numbers. 
We now can define an “exponential function.” 

If b > 0 and b S 1, then the exponential function with base bis the function f 

defined by 

f(x) = 6° (1) 

The domain of fis the set R of real numbers and the range of fis the set of 

positive numbers. 

Observe that if b = 1, equation (1) becomes f(x) = 1%. But if x is any real 

number, then 1* = 1, and thus we have a constant function. For this reason 

we impose the condition that b # 1 in Definition 4.3.2. 
In the following two illustrations we consider the graphs of the exponential 

functions with bases 2 and 4, respectively. 

ILLUSTRATION 1. The exponential function with base 2 is the function F 

such that 

(8) 22 

or, equivalently, 

FatCegty = 2°} 
Some of the ordered pairs in F are given in Table 4.3.1. 

Table 4.3.1 

x —o —2 =| 0 1 2 3 

y 4 1 4 1 2 4 8 

A sketch of the graph is shown in Figure 4.3.1; it is drawn by plotting the 
points whose coordinates are the ordered pairs given in Table 4.3.1 and 
connecting these points with a smooth curve. The graph indicates that the 
function is an increasing function. 

Observe that 

F(x) > 0* as xX > —0o0 

that is, F(x) approaches zero as x decreases without bound. Therefore, by 
Definition 3.5.3(ii) it follows that the x axis is a horizontal asymptote of the 
graph of F. Furthermore, notice that 

F(x) > +00 ASE ECO 

that is, F(x) increases without bound as x increases without bound. e 
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Figure 4.3.2 

0 

Figure 4.3.3 

0 

Figure 4.3.4 

> xX 

ILLUSTRATION 2. The exponential function with base 4 is the function G 
such that 

GQ) = (+) 
D 

or, equivalently, 

as (Ly = (5)'] 

Some of the ordered pairs in G are given in Table 4.3.2. 

Table 4.3.2 

ee = eT) hen (hm — PEED) “3 
y 8 4 ee a ae 

By plotting the points whose coordinates are the ordered pairs given in 
Table 4.3.2 and connecting these points with a smooth curve, we obtain the 
sketch of the graph of G shown in Figure 4.3.2. The function is a decreasing 
function as indicated by the graph. 

Because 

G(x) > Ot as xX > +00 

then from Definition 3.5.3(i), the x axis is a horizontal asymptote of the 
graph of G. Also, 

G(x) > +0 ASG = >a =100) ® 

Figure 4.3.3 shows a sketch of the graph of the function f for which 
f(x) = 6? and b > 1. The exponential function with base b, for which b Sil, 
is an increasing function. This fact follows from Theorem 4.3.1, part (1), with 

rand s as real numbers, and the definition of an increasing function (3.6.3, 
part (1)). 

In Figure 4.3.4 we have a sketch of the graph of the exponential function 
with base b, when 0 < b < 1. This function is a decreasing function, which 
follows from Theorem 4.3.1 part (ii), with r and 5 as real numbers, and the 
definition of a decreasing function (3.6.3, part (ii)). 

The laws of exponents that are valid for rational exponents also hold if the 
exponents are any real numbers. These laws are summarized in the following 
theorem. 
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4.3.3 THEOREM 

EXAMPLE 1 
Simplify each of the following by 
applying laws of exponents. 

(a) ED) is 

EXAMPLE 2 

Draw a sketch of the graph of the 
exponential function with base e. 

If a and b are any positive numbers, and x and y are any real numbers, then 

(i) CG aa 

(ii) = = grt 

(iii) (a7) a 

(iv) (ab)\. =a" be" 

aN” ae 
(v) (<) = 

The proofs of properties (i) through (v) for real number exponents are 
beyond the scope of this book and therefore they are omitted. 

SOLUTION 
(a) Qv3 .2V12 — QV3. 22V3 (b) (TV9)Vv20 = 7vV5°v20 

— 2V3+2V3 = 7V100 

= 23v3 2710 

From Definition 4.3.2 we see that the base b of an exponential function can 
be any positive number other than 1. For each value of b we have a different 
exponential function. There is a particular value of b that is very important in 
mathematics. It is an irrational number, denoted by e, and it arises in 
applications of mathematics in many fields. The value of e to seven decimal 
places is 2.7182818. Thus we write 

e = 2.7182818 

A discussion of the origin of the number e and how it is computed belongs to 
a calculus text. Approximations of some powers of e are given in Table 3 in 
the Appendix. 

The exponential function with base e is often denoted by exp. Hence 

expe) |e) 
and 

Expy i=.e" 

SOLUTION 
Some of the ordered pairs in exp are given in Table 4.3.3. The approxima- 
tions of the powers of e are found in Table 3 in the Appendix. 

Table 4.3.3 

x 0 0.5 I 1S) 2 2 —0.5 —1 —2 

y 1 1.6 De 4.5 7.4 122 0.6 0.4 0.1 
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EXAMPLE 3 

In a certain culture, if A is the num- 

ber of bacteria present at ¢ minutes, 
then 

U4 =] 28.068 (2) 

where k is a constant. If there are 

1000 bacteria present initially, how 
many bacteria will be present after | 
hour? 

The points whose coordinates are the ordered pairs given in Table 4.3.3 are 
plotted, and these points are connected with a smooth curve to give the 
sketch of the graph of exp shown in Figure 4.3.5. 

| 

| 
—— as >xX 

ea 1 

Figure 4.3.5 

SOLUTION 

Because there are 1000 bacteria present initially, we know that A = 1000 
when ¢ = 0. Substituting these values into equation (2), we obtain 

1000 = kel0.060) 

1000 = ke® 

Because e® = 1, we have k = 1000. Replacing k by 1000 in equation (2), we 
have 

Asal 000e°: 96 (3) 

Let A be the number of bacteria present after 1 hour. Then when ¢ = 60, 

A =A. Substituting these values into equation (3), we obtain 

A = 1000e-0660) 

A = 1000e6 

From Table 3 in the Appendix we obtain an approximation of e*°® to three 
decimal places: e:° ~ 36.598. Therefore, 

A = 1000(36.598) 

At 30,98 

Hence there are 36,598 bacteria present in the culture after | hour. 
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EXERCISES 4.3 

In Exercises 1 through 10, draw a sketch of the graph of the given exponential function. 

1 ay y=" | 
4G =1Gy) yas) 
bf SEC Se 

10. F={(%y)ly =e*} 

[Ch. 4 

29g = {(x,)) |= 4" | 
Sh = HEA = ae 
See Ce) an) 

3) a) yaaa 
6.5 f= 1 Oy) yee 
99G 1,7) eee, 

In Exercises 11 through 16, simplify the given expression by applying laws of exponents. 

11. 

17. 

18. 

19. 

4.4 Logarithmic 

3V2 . 3V50 12. 2V12. 2v27 

Suppose that A is the number of bacteria present 

in a certain culture at ¢ minutes and 

Th es 

where k is a constant. If 5000 bacteria are present 

after 10 minutes have elapsed, how many bacteria 
were present initially? 
If p pounds per square foot is the atmospheric 
pressure at a height h feet above sea level, then 

P = ke~9-90003h 

where k is a constant. If the atmospheric pressure 
at sea level is 2116 pounds per square foot, find the 
atmospheric pressure outside of an airplane that is 
10,000 feet high. 

If A grams of a radioactive substance are present 

Functions 

13. (5¥15)vé 

20. 

32 345 
V10y/5 4 14. (10v?°) 15. avis ae 

after t seconds, then 

A = ke~°.-3t 

where k is a constant. If 100 grams of the substance 
are present initially, how much is present after 5 
seconds? 
A tank contains a mixture of brine and water and 
initially the mixture contains 70 pounds of dis- 
solved salt. Fresh water is running into the tank 
and the mixture, kept uniform by stirring, is run- 

ning out at the same rate that the water is running 
in. After ¢ minutes the mixture contains x pounds 
of salt and 

yy le 

where k is a constant. How many pounds of salt 
are in the tank at the end of | hour? 

In Example 3 of Section 4.3 we had the equation 

Age 1000e°. 

where A is the number of bacteria present in a certain culture at ¢ minutes. 

Suppose that we wish to find in how many minutes there will be 50,000 
bacteria present. If T is the number of minutes to be determined, then we 
have the equation 
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4.4.1 DEFINITION 

p= ir 

y = log, x 

> Xx 

! b>1 

Figure 4.4.1 

oy. 

y = log,x 

Oi i 

b<l 

Figure 4.4.2 

20, 000% 1000e2-0eF 

In this equation the unknown T appears in an exponent. At the present we 
cannot solve such an equation, but the concept of a logarithm will give us the 
means to do so. We will develop this concept and then return to the problem 
in Example 6. 
When 5 > 1, the exponential function with base b is an increasing func- 

tion, and when 0<b <1, it is a decreasing function. Therefore, from 
Theorem 3.6.4, it follows that the exponential function with base b has a 
function as its inverse, which is called the “logarithmic function with base b.” 

The logarithmic function with base b is the inverse of the exponential function 
with base b. 

We use the notation “log,” to denote the logarithmic function with base b. 
Hence, if 

a ))) a Die OD aa] } 

then by Definition 4.4.1, log, is the inverse of function F, and hence 

log, = {(*, y)|O. x) € F} 

or, equivalently, 

Og pe Vay) ae, Do OD 1 (1) 

The function values of the function log, are denoted by log, (x), or more 
simply log, x (read “logarithm with base b of x”). Hence 

lop a) y= 10g, bo > 0, b 1} (2) 

The domain of the exponential function with base b is the set R of real 
numbers, and its range is the set of positive numbers. Therefore, the domain 
of log, is the set of positive numbers and the range is the set R. Figure 4.4.1 
shows in color a sketch of the graph of log,, where b > 1. It is the graph that 
is symmetric, with respect to the line y = x, to the graph of the exponential 
function with base b (b > 1), a sketch of which is shown in Figure 4.4.1. A 
sketch of the graph of log,, where 0 < b < 1, is shown in color in Figure 
4.4.2. Also shown in Figure 4.4.2 is a sketch of the graph of the exponential 
function with base b (0 <b < 1), and we observe that the two graphs are 
symmetric with respect to the line y = x. 

From the sketches of the graphs of log, in Figures 4.4.1 and 4.4.2 we note 
the following properties of the logarithmic function with base b. 

1. Ifb > 1, log, is an increasing function. If 0 <b < 1, log, isa decreasing 
function. 
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EXAMPLE 1 

Find the value of each of the follow- 

ing logarithms. 

(a) log, 49 (b) log, V/5 

(c) logs = (d) log, 81 

(e) log7G 0:€01 

2. Ifb > 1, log, x is positive if x > 1, and log, x is negative if0 <x < 1. If 

0 <b <1, log, x is negative if x > 1, and log, x is positive if0 <x < il. 

Furthermore, log, x is not defined if x is negative. 

3. The only zero of the function log, is 1; that is, log, x = 0 if and only if 

Xie 

4. log, x = 1 if and only if x =). 

5. It b > |, log % = co as. 1 >, 0"; and if 0=<0D < | log. yp ccmas 

x > 07. 

By comparing the sets in equations (1) and (2) that define log,, it follows 

that 

x =" is equivalent toy = log, x 

ILLUSTRATION 1 

is equivalent to lose a2 

is equivalent to loge =a 

9 

8 

1/2 ] : 

(+) eas is equivalent to logi16q =< 

ae 
OS 

is equivalent to logs = —2 e 

ILLUSTRATION 2 

log,) 10,000 = 4 is equivalent to 10* = 10,000 

loge 2 = + is equivalent to gue =] 

log lO is equivalent to ol 

logy + = “4 is equivalent to ee “ e 

SOLUTION 

In each part we let y represent the given logarithm and obtain an equivalent 

equation in exponential form. We then solve for y by making use of the fact 
that if a > 0 and a # |, a? =a” implies 

(a) Letlog, 49 = y. This equation is equivalent to 7” = 49. Because 49 = 7°, 

we have 

ae 

Therefore, y = 2; thats; log, 49 — 7. 
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EXAMPLE 2 

Solve each of the following equa- 
tions for x. 

(lO ene a2 

(b) logy, x = = 

(c) log,,.x = —4 

(b) Let log, \/5 = y. Therefore, SY = \/5 or, equivalently, 

Ry 2 51/2 

Hence y = 4; that is, log, V5 = 4. 
(c) Let log,4 = y. Thus 6” = 4 or, equivalently, 

C) Slor = 

Therefore, y = —1; that is, logg4 = —1. 
(d) Let log, 81 = y. Thus 3¥ = 81 or, equivalently, 

3” = 34 

Hence y = 4; that is, log, 81 = 4. 
(e) Let log,, 0.001 = y. Then 10¥ = 0.001. Because 10-3 = 0.001, we have 

10” = 10-3 

Therefore, y = —3; that is, log,) 0.001 = —3. 

SOLUTION 
(a) The equation log, x = 2 is equivalent to 

67 =x 

heretores<—"50. 

(b) The equation log,, x = % is equivalent to 

DET ST es se 

Hence 

x = (27) 
= 32 

=e) 

(c) The equation log,,,x = —4 is equivalent to 

1 \-4 

Gye 
Therefore, 
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EXAMPLE 3 SOLUTION 
Solve each of the following equa-| (a) The equation log, 4 = 4 is equivalent to 

tions for b. b/s — 4 

(a) log, 4 = + Hence 

1/3)3 — 43 
(b) log, 81 = —2 (b”°) 

= ; b = 64 
i => : 

Cm ee 2 (b) The equation log, 81 = —2 is equivalent to 

b-2 = 81 

Hence 

(SAV = & 1-1/2 

(c) The equation log, 125 = 3 is equivalent to 

pene 125 

Therefore, 

(b3/2)2/3 — 1252/3 

b = (V/125)? 

= 5? 
= S 

Because the equation 

bi (3) 

is equivalent to the equation 

y = log, x (4) 
we can substitute the value of y from equation (4) into equation (3) and 

obtain 

(5) 

where Des On bi-a ly andes: 0; 

From equation (5) we note that a logarithm is an exponent; that is, log, x is 
the exponent of the power to which we must raise b to obtain x. 
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EXAMPLE 4 
Simplify each of the following ex- 
pressions. 

(a) log, (log, 64) 

(b) log, (log, 625) 

EXAMPLE 5 
Draw a sketch of the graph of the 
logarithmic function with base 3. 

ILLUSTRATION 3. From equation (5) it follows that 

Zlog37 =—7 

and 

[Oisi07 5 e 

If we substitute the value of x from equation (3) into equation (4), we have 

log, bY =y (6) 

where b > 0, b # 1, and y is any real number. 

ILLUSTRATION 4. From equation (6) it follows that 

log,) 10-+ = —4 

and 

1Og e293 e 

SOLUTION 
(a) Because 4? = 64, log, 64 = 3, and so 

log, (log, 64) = log, 3 
1 

(b) Because 54 = 625, log, 625 = 4, and so 

log, (log; 625) = log, 4 

SOLUTION 

logs = {(x,y) | y = logs x} 
Table 4.4.1 gives some of the ordered pairs in log,. These ordered pairs are 

obtained from the equation x = 3¥, which is equivalent to the equation 
Vi= 102, x. 

Table 4.4.1 

x 1 3 9 27 ; 4 wy 

y 0 l D 3 = ey =—3 

By plotting the points whose coordinates are the ordered pairs given in 

Table 4.4.1 and connecting these points with a smooth curve, we obtain the 
sketch of the graph of log, shown in Figure 4.4.3. 
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Figure 4.4.4 

EXAMPLE 6 

In Example 3 of Section 4.3 we ob- 
tained the equation 

Lis Kee 

where A is the number of bacteria 
present in a certain culture at ¢ min- 
utes when there are 1000 bacteria 
present initially. Determine how 
many minutes elapse until there are 
50,000 Bacteria present in the cul- 
ture. 

ee |e pe ae eee | ee ey as ee ee es gre eer 5 

5 10 15 20 25 

Figure 4.4.3 

The logarithmic function with base e is called the natural logarithmic 

function. It can be denoted by log,, but a more customary notation is /n. 

Therefore, 

In = {(x,y)|x =e") (7) 

The function values of In are denoted by In x (read “natural logarithm of 

x’). Hence equation (7) is equivalent to 

In =4@iy)| y= ln x} 

The natural logarithmic function is very important in the calculus and its 

applications. A sketch of its graph is shown in Figure 4.4.4. In the figure the 

graph of In is shown in color and a sketch of the graph of the exponential 

function with base e is also shown. The two graphs are seen to be symmetric 

with respect to the line y = x. 

Table 4 in the Appendix gives approximations to four decimal places of the 

natural logarithm of numbers between 0.1 and 190. 

SOLUTION 

Let T represent the number of minutes that elapse until there are 50,000 

bacteria present. Then in the given equation, we substitute 50,000 for A and 

T for t, and we have 
50,000 = 000e2 

50 = e9.06T (8) 

Because the equation x = e¥ is equivalent to the equation y = In x, it follows 

that equation (8) is equivalent to 

0.067 = In 50 

From Table 4 in the Appendix, we have In 50 = 3.9120; therefore, 

0G ia=—329 120 

eee 120 
ae 0.06 

T= 65.20 

Thus 1 hour, 5 minutes, and 12 seconds elapse until there are 50,000 bacteria 

present. 
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EXERCISES 4.4 

In Exercises I through 10, express the relationship in the given equation by using 
logarithmic notation. 

1. 34 = 81 2. 2° = 32 3. 53 = 125 4, 72 = 49 5. 10-3 = 0.001 

6. 5-2 = x 7. 82/3 = 4 8. 813/4 = 27 9, 625-3/4 = qas 10. 10° = 1 

In Exercises I] through 20, express the relationship in the given equation by using 
exponential notation. 

11. log, 64 = 2 12. log,, 10,000 = 4 13. log, 81 = 4 14. log, 125 = 3 153log, lg 0 
16. log,2 =4 17. log,,39 = —2 18. log, ,.64 = —6 19. logg4 = —4 20. log.,4 = —# 

4 

In Exercises 21 through 32, find the value of the given logarithm. 

21. log,, 100 22. log, 64 23. log., 9 24. log. \6 25. log. 4 26. logs a 

27. log,4 28. log, 7 29. loge, 30. log, 4% 31. log, Ve SPE Ay 2 | 

In Exercises 33 through 42, solve the given equation for either b or x. 

33. log, x = 3 34. log, x =3 35. log,,3x = —4 SOs 102 7 t—a ae log, 144 — 2 

38. log,0.01 = —2 39. log,6 =4 40. log, x = 3 41. log,4x =$ 42. log, 27 = —3 

In Exercises 43 through 50, simplify the given expression. 

43. log, (log; 5) 44. log, (log, 32) 45. log, (log, 81) 46. log, (log, 81) 

47. log, (log, 256) 48. log, (log, 3) 49. log, (log, 5), b > 0 50. log, (log, a’), a >0 and b >0 

In Exercises 51 through 55, draw a sketch of the graph of the given function. 

SL. {(%y)|¥ = logyo x} 52. {(% y)|¥ = log, x} 53. {0% y)|_y = logs x*} 
54. {(x,y)|y =In(x + D} So ny) vy = in Gr — 1) | 

4. 5 Properties of We now state and prove three theorems that give properties of logarithms 

Logarithmic Functions that follow from corresponding properties of exponents. After the statement 
8 of each theorem, an illustration is given to show the property of exponents 

involved. In the proofs we make use of the fact that 

Sy is equivalent to y= log,x 

We refer to the equation x = bY as the exponential form of the equation 
y = log, x, and we refer to the equation y = log, x as the Jogarithmic form of 
the equation x = by’. 
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4.5.1 THEOREM If b> 0, 5 £1, and u and v are positive numbers, then 

(1) 

ILLUSTRATION 1. Suppose in the statement of Theorem 4.5.1, b is 2, wis 4, 

and vu is 8. Then 

log, uv = log, 4-8 log, u + log, v = log, 4 + log, 8 

== OG as = log, 2? + log, 2° 

= logs 2243 — ee 3 

= 10Ra 2: ==) 
= 5) (becatice 1030p i=) 

Therefore, when b is 2, u is 4, and vu is 8, equation (1) is valid. @ 

Proof of Theorem 4.5.1. Let 

r= log, u and 5s = log,u (2) 

The exponential forms of equations (2) are, respectively, 

Ua OF and Uy 

Therefore, 

Ug DIE De 

Applying a law of exponents, we have 

TD al 2 

The logarithmic form of this equation is 

log,uv =r-+s (3) 

Substituting the values of r and s from equations (2) into equation (3), we 

obtain 

log, uv = log, u + log, v 

ILLUSTRATION 2. If we are given log,) 2 = 0.3010 and log,, 3 = 0.4771, we 

can apply Theorem 4.5.1 to find log,, 6. 

logig 6 = 1logyo 2 * 3) 

= logy 2 + logis 3 
= (3010 + O47 

= O78 e 

Because log,, 2, log,) 3, and log, ) 6 are irrational numbers, the values 

given for them in Illustration 2 are only decimal approximations. Hence the 
symbol = (approximately equals) is more appropriate than the symbol = 
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4.5.2 THEOREM 

(equals). However, in computations such as Illustration 2, the conventional 
practice is to use the equals symbol. 

If b >0, 6 £1, and wu and v are positive numbers, then 

log, = = log, u — log, v_ (4) 

ILLUSTRATION 3. Suppose that in the statement of Theorem 4.5.2, b is 2, u 

is 128, and v is 16. Then 

log, = log. == log, u — log, v = log, 128 — log, 16 

if 

= logy — log, 27 — log, 24 

= 10g, 25" =7-—4 

= log. 23 ae 

=13 

Hence, when 5 is 2, u is 128, and vu is 16, equation (4) holds. ® 

Proof of Theorem 4.5.2. As in the proof of Theorem 4.5.1, we let 

Pa log and Se lOP NU 

The exponential forms of these equations are, respectively, 

u=b and O Sle 

Hence 

Cae 
v bs 

Applying a law of exponents, we have 

2 pr-s 

v 

The logarithmic form of this equation is 

u 
log, = eS 

Substituting log, uw for r and log, v for s, we have 

log, ~ = log, u — log, v 
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4.5.3 THEOREM 

ILLUSTRATION 4. From Theorem 4.5.2 it follows that 

igo ee oo eee lost 8105 = 10819 2 — 10810 

Substituting the values of log,) 3 and log,)2 given in Illustration 2, we 

obtain 

logio> = 0.4771 — 0.3010 

= 0.1761 ® 

If b >0, b £1, n is any real number, and u is a positive number, then 

log, u" = n log, u (5) 

ILLUSTRATION 5. Suppose in the statement of Theorem 4.5.3, b is 2, n 1S)3; 

and u is 4. Then 

log, u” = log, 4° n log, u = 3 log, 4 
=logs (22)a = 10g5 2" 
= log, 22°83 = 307 

= log, 2° = 6 

a0) 

Thus, when b is 2, n is 3, and wu is 4, equation (5) is valid. e 

Proof of Theorem 4.5.3. Let 

r= log, u or, equivalently, Tee de? 

Then 

un — (bry 

Applying a law of exponents, we obtain 

ut? = po 

The logarithmic form of this equation is 

log ear, 

Substituting log, u for r, we have 

log, u" = n log, u 
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EXAMPLE | 

Express each of the following in 
terms of logarithms of x, y, and z, 

where the variables represent posi- 
tive numbers. 

(ay log 7274 

xX 

(b) log, 2 

ae 
(c) log, s/ = 
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ILLUSTRATION 6. Because log,, 2 = 0.3010, it follows from Theorem 4.5.3 
that 

logy) 32 =log,,2®5 and log. V2 = log.) 21/3 

| =) 108.2 = 3 !°810 Ds 

= 5(0.3010) = + (0.3010) 

= 1.5050 = 0.1003 e 

SOLUTION 
(a) Using Theorem 4.5.1, we have 

log, x?y3z4* = log, x? + log, y3 + log, z4 

Applying Theorem 4.5.3 to each of the logarithms in the right member, 
we obtain 

log, x?y%z* = 2 log, x + 3 log, y + 4 log, z 

(b) From Theorem 4.5.2 it follows that 

log, er = log, x — log, yz? 

Applying Theorem 4.5.1 to the second logarithm in the right member, we 
have 

log, sa = log, x — (log, y + log, z’) 

= log, x — log, y — 2 log, z 

(c) From Theorem 4.5.3 it follows that 

1X) Soe | xy? 
log, 5 73 = 5 08 Sar 

Applying Theorem 4.5.2 to the right member, we obtain 

bare a! 
log, i = 5 (log, xy? — log, z3) 

= = (log, x + log, y? — log, z3) 

= + (log, x + 2 log, y — 3 log, z) 

1 2 3 = 5 108 * + 5 1B Y — 5 108 2 



242 Exponential and Logarithmic Functions [Ch. 4 

EXAMPLE 2 
Write each of the following expres- 
sions as a single logarithm with a 
coefficient of 1. 

(a) log, x + 2 log, y — 3 log, z 

(b) L (log, 4 — log, 3 

+ 2 log, x — log, y) 

EXAMPLE 3 

Given log,)2 = 0.3010, log, 3 = 
0.4771, and log) 7 = 0.8451, use 
the properties of logarithms from 

Theorems 4.5.1, 4.5.2, and 4.5.3 to 

find the value of each of the follow- 

ing logarithms. 

(b) log, 28 (a) log,,) 5 : 

(d) log,) V4.2 (c) logy, 2100 

SOLUTION 

(a) log, x + 2 log, y — 3 log, z = (log, x + log, y?) — log, z° 

= log, xy? — log, z? 

Oya 
78 = log, 

(b) = (log, 4 — log, 3 + 2 log, x — log, y) 

= + (dog, 4 + log, x”) — (log, 3 + log, y)] 

SOLUTION 

In addition to the given logarithms we can easily determine the logarithm 

with base 10 of any integer power of 10; for instance, log; 10 = 1, 

log), 10? = 2 logs 10> — 3, les ;, 105) — 1) amdsso on: 

(pyplog;, 28 = los, 2 

= logy, 2? + logio 7 
= 2 logy) 2 + 10gi9 7 
= 2(0.3010) + 0.8451 
= 0.6020 + 0.8451 

1.4471 

(a) logyy 5 = logy) ¥ 
= log, 10 — logy, 2 
= | — 0.3010 

= 0.6990 

II 

(c) log, 2100 = log, 3+ 7+ 102 
= logy) 3 + logy 7 + logy, 10? 
= 0.4771 + 0.8451 +4 2 

S322, 

(A) logy V42 = logy, (2-3-7) 

= + (log, 2 + logig 3 + logig 7 — logyo 10) 

= + (0.3010 + 0.4771 + 0.8451 — 1) 

x + (0.6232) 

== 0.2077 
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EXAMPLE 4 

Use the values of log,, 2 and logy, 7 
given in Example 3 to find the value 
of each of the following. 

logio 7 

1logio 2 

7 

(a) logio > (b) 

EXAMPLE 5 

Find the solution set of each of the 

following equations. 

(a) logy) (x + 3) =2 
(b) log, (x + 4) — log, (x — 3) =3 

(c) log, x + log, (2x — 3) = 
4 — log, 3 

SOLUTION 

logig 7 _ 0.8451 

logiy2 0.3010 
~ 2.808 

Z 
(a) logy ae logig 7 — 10g 49 2 (b) 

= 0.8451 — 0.3010 

= 0.544] 

Compare the computations in parts (a) and (b) of Example 4. In part (a) 
we have the logarithm of a quotient, which, upon applying Theorem 4.5.2 is 
the difference of two logarithms. In part (b) we have the quotient of the 

logarithms of two numbers. The computation is performed by dividing 

0.8451 by 0.3010. 
In the next example we have equations involving logarithms. 

SOLUTION 

(a) logig (x + 3) =2 
The exponential form of this equation is 

godt 3 = 102 

Therefore, 

x = 100 — 3 

x = oF 

Thus the solution set is {97}. 
(b) log, (x + 4) — log, (x — 3) = 3 

Applying Theorem 4.5.2 to the left member, we have 

1 x4 _, 
(82. 3 

Writing this equation in the equivalent exponential form, we have 

X+4 _ 943 

i 7 

Therefore, 

x +4 = 8x — 3) 
x +4 = 8x — 24 
—7x = —28 
x=4 

Thus the solution set is {4}. 
(c) The given equation is equivalent to 

log, 3 + log, x + log, (2x — 3) =4 
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EXERCISES 4.5 

Applying Theorem 4.5.1 to the left member, we obtain 

log, 3x(2x — 3) = 4 

Writing the equation in the equivalent exponential form, we have 

6x2 9x = 134 
6x? — 9x — 81 =0 
D8 — 3X OTe 0 

(2x — 9)\(x + 3) =0 

DI ce 0) x+3=0 

y) epee 3 MS i, a 

Whenx = —3, neither log, x nor log, (2x — 3) exist; hence we reject the 
root —3. Therefore, the solution set is {3}. 

In Exercises 1 through 18, express the given logarithm in terms of logarithms of x, y, 

and z, where the variables represent positiv e numbers. 

1. log, (5xy) 2. log, (3xyz) 3. log, (~) 4. log, (2) 

5. log, ‘Ss 6. log, (x*y?) 7. log, (xy*) 8. log, Z5— 

9. log, Vxy 10. log, Vyz? LIF log, 7-2?) 12. log, (x2y3z) 

13. log, i ) 14. log, (a7) 15. loa 16. log, = 

17. log, (Vx? Vz) 18. log, (Vxy? Vz) 

In Exercises 19 through 24, write the given expression as a single logarithm with a 

coefficient of 1. 

19. 4log,)x + 4logioy 
21. #log, x — 6 log, y — #log, z 
23. Ing +Inh +21Inr —I1n3 

In Exercises 25 through 38, find the value 
log,) 3 = 0.4771, and log.) 7 = 0.8451. 

25. logy, 14 26. logy, 18 

30. log, 120 31. log, 140 

v49 14 
35. lo (——) 36. lo ( 810 362 810 ia 

20. 5 logyo x + Zlogio y — $1089 2 
22. log, x — 4log, y + log, z 

24. logo 2 + logyo 7m + 2 1logi9 t — 3 logs 8 

of the given quantity if log.) 2 = 0.3010, 

27. logy 15 28. logy, 42 29. logy 63 

32. logy, 0.21 33. logy) V/10.5 34. logy) V/126 

) 37, 0810 % 38, 08107 
logy, 3 log 2 
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In Exercises 39 through 44, find the solution set of the given equation. 

39. log.) x + 3 log.) 2 = 3 40. logig X + logy) (x + 15) =2 
41. log, (x + 6) — log,(x —2) =2 42. log, (11 — x) = log, (x + 1) +3 

43. log, (x + 1) + log, (3x — 5) = log, (5x — 3) 4+ 2 44. log, (2x — 1) — log, (5x + 2) = log, (x — 2) —2 

4.6 Common One application of logarithms is to facilitate certain numerical computa- 
Lo g arithms aN ah most convenient logarithms to use for this purpose are those with 

The function values of the logarithmic function with base 10 are called 

common logarithms. 

6. N Ae 
q 6 UENO The common logarithm of a positive number x can be written as logy, x. 

However, when writing common logarithms it is customary to omit the 

subscript 10. Thus, when we write log x, it is understood to represent the 

same number as log,,x, and the function Jog denotes the logarithmic 
function with base 10. Hence 

ILLUSTRATION 1 

log 10 = 1 becauses| 07 —s10 
log 100 = 2 because 10? = 100 

log 1000 = 3 because 10? = 1000 
log 10,000 = 4 because 104 = 10,000 

and so on. Furthermore, 

log 1 =0 because 10° 1 
log 0.1 = —1 becausenl O05 =— 0.1 

log 0.01 = —2 because 107? = 0.01 
log 0.001 = —3 because 107-3 = 0.001 

log 0.0001 = —4 because 10-4 = 0.0001 

and so on. e 

Common logarithms are useful because any positive number x can be 

written in the form 

Meas 106 where | <a < 10 and c is an integer (1) 

When a number is expressed in this form it is said to be written in scientific 

notation. 
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ILLUSTRATION 2. Each of the following numbers is written in scientific 
notation. 

582 = (5.82)102 
97,136 = (9.7136) 104 

485,000 = (4.85)10° 
0.627 = (6.27)10 

0.003916 = (3.916)10-3 
2.04 = (2.04)10° ° 

To write a number in scientific notation, the first factor is obtained by 

placing a decimal point after the first left-hand nonzero digit. The second 
factor is a power of 10, and the exponent is obtained by counting the number 
of digits that must be passed over to move from the new position of the 
decimal point to the original position of the decimal point; if the movement 
of the decimal point from the new position to the original position is to the 
right, then the exponent is positive; if the movement is to the left, then the 
exponent is negative. You should verify this rule by applying it to the 
numbers in Illustration 2. 

If a number is written in scientific notation, it can be written in standard 

form by moving the decimal point in the first factor the number of places 
indicated by the exponent of the power of 10; the decimal point is moved to 
the right if the exponent is positive and it is moved to the left if the exponent 
is negative. This rule is applied in the next illustration. 

[ILLUSTRATION 3 

(3.659)104 — 36,590 
(8.007)102 = 800.7 
(3.92)10-3 = 0.00392 

(4.018)10-1 = 0.4018 e 

From equation (1) it follows that if x is any positive number 

log x = log (a> 10°) 

where 1 <a < 10 and c is an integer. Applying Theorem 4.5.1 to the right 
member of this equation, we have 

log x = loga + log 10° 

or, equivalently, 

logx =loga+c  wherel1<a< 10 andcisanimteger (2) 

From equation (2) it follows that the common logarithm of any positive 
number x can be written as the sum of c, an integer and log a, the common 
logarithm of a number between | and 10. The integer c is called the charac- 
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teristic of the logarithm, and the number loga (1 < a < 10) is called the 

mantissa of the logarithm. 
The characteristic of the common logarithm of a number is the same as the 

exponent of 10 when the number is written in scientific notation; hence the 

characteristic is determined by the position of the decimal point in the 
number. 

ILLUSTRATION 4 

(a) The characteristic of log 281 is 2 because 281 = (2.81)10?. 

(b) The characteristic of log 0.00281 is —3 because 0.00281 = (2.81)107°. 

(c) The characteristic of log 2.81 is 0 because 2.81 = (2.81)10°. @ 

Because log is an increasing function and 

ia 10 

it follows that 

log 1 < log a < log 10 (3) 

But log 1 = 0 and log 10 = 1. Hence inequality (3) is equivalent to 

OEGloga-G 

Therefore, the mantissa of a logarithm is a nonnegative number less than 1. 
Table 2 in the Appendix gives approximations, to four decimal places, of 

common logarithms of numbers between 1.00 and 9.99. The entries in this 
table are computed by methods using advanced mathematics. A portion of 

Table 2 is given in Table 4.6.1. 

Table 4.6.1 

N 0 1 2 3 4 5 6 7 8 9 

S18 OSA O20 049 7657 1604. 7672, 7679-7686 7694 7701 

Smee Ome Ome 2S ur | mee sown 45. 192 A160 nII6t 1774 

COME) Cm Comme? (00m COS eed StOm 67818) 9.7825" 7832) 7839" (7846 

Gulu S 5 sumed SOU mmr S080. 76750811002) 1809" 7.7896, ~~ 1903 7910) 7917 

Com 2 Ate 3) eto 3 Samm 45am 95200-1959) 7906 9.71973 7980’ 71987 

6.3. .7993 .8000 .8007 .8014 .8021 .8028 .8035 .8041 .8048 .8055 

6.4 .8062 .8069 .8075 .8082 .8089 .8096 .8102 .8109 .8116 .8122 

6.5 .8129 .8136 .8142 .8149 .8156 .8162 .8169 .8176 .8182 .8189 

6 OM OO See C202 e209N 821598222 8228 8235 .8241 .8248 8254 

Gime Or 26) eo. (4 ame S280meeslo7 6293) 8299 8306" 8312 8319 

GiGmmeeO Sm) 30lmeer O35 6044 me ooo 63570) 8363 .83/0  .8376 .8382 

6.9 .8388 .8395 .8401 .8407 .8414 .8420 .8426 .8432 .8439 .8445 

7.0 .8451 .8457 .8463 .8470 .8476 .8482 .8488 .8494 .8500  .8506 

Tile851 308519 9.8525" 85318537 68543 8549 8555 «8561 «= 68567 
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EXAMPLE Il 

Find values, to four decimal places, 

of each of the following logarithms. 

(a) log 62.3 
(b) log 623 

(c) log 62,300 

When using the table to find log N(1 < N < 10), the first two digits of the 

numeral for N are located in the first column (headed N) and the third digit 
is located in the top row (containing NV). Then log Nis the number appearing 
in the same row as the first two digits of NV and in the same column as the 

third digit of N. 

ILLUSTRATION 5. We use Table 4.6.1 to find a value for log 6.23. It is the 
number appearing in the row containing 6.2 and in the column with head- 
ing 3. Hence 

log 6.23 = 0.7945 

In a similar way we find the following logarithms. 

log 5.98 = 0.7767 
log 6.60 = 0.8195 
log 6.00 = 0.7782 

and so on. r) 

SOLUTION 

We first write each of the numbers in scientific notation and then apply 

Theorem 4.5.4. The mantissa of the logarithm is found in the table. 

(a) log 62.3 = log (6.23 - 10") (b) log 623 = log (6.23 - 10?) 

= log 6.23 + log 10! = log 6.23 + log 10? 
= 0.7945 + 1 = 0.7945 +2 

1.7945 — bb) 

(c) log 62,300 = log (6.23 - 104) 
= log 6.23 + log 104 
= 0.7945 + 4 
= 4.7945 

Recall thatifb > 1,and0 < x < 1, then log, x is negative (refer to Figure 

4.4.1). Hence log x < 0 if 0 <x < 1. However, even though log x is nega- 
tive, it can still be written in the form given in equation (2), that is, as the sum 

of an integer c (the characteristic) and the logarithm of a number between | 
and 10 (the mantissa, which is a nonnegative number less than 1). For 

instance, 

log 0.00623 = log (6.23 + 10-8) 
= log 6.23 + log 107% 
70,7945 2h (= 3) 
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We do not add the numbers 0.7945 and (—3) in the third step of comput- 
ing the value for log 0.00623 because doing this gives log 0.00623 = —2.2055 
(note that —2.2055 = —2 — 0.2055, which is not in the form of the sum of 

an integer and a nonnegative mantissa). However, there is a convenient way 
of writing a negative logarithm so that the nonnegative mantissa is apparent. 
If we write 7 — 10 in place of —3, we have 

log 0.00623 = 0.7945 + (7 — 10) 

= 7.7945 — 10 

Observe that we could just as well write 

log 0.00623 = 0.7945 + (1 — 4) 

= 1.7945 — 4 

and 

log 0.00623 = 0.7945 + (6 — 9) 

= 6.7945 — 9 

However, the more conventional notation is 7.7945 — 10. In a similar way, 

107, 05623 — log (6-23 105") log 0.000623 = log (6.23 - 104) 

= log 6.23 + log 107? = log 6.23 + log 104 
= 0.7945 + (9 — 10) = 0.7945 + (6 — 10) 
= 9.7945 — 10 = 6.7945 — 10 

The next illustration shows how x can be found if log x is given. 

ILLUSTRATION 6 

(a) We wish to find x if log x = 1.7731. The sequence of digits in x is 
determined from the mantissa 0.7731. Refer to the body of Table 4.6.1 to 

find that the mantissa 0.7731 is associated with 5.93; that is, 

log 9 3r— 0,773.1 

Because the characteristic of log x is 1, 

logixs— log 6.93.- 10%) 
== 1099933 

Because log M = log N implies M = N, it follows that x = 59.3. 
(b) Iflog x = 8.7731 — 10, then because log 5.93 = 0.7731 and the charac- 

teristic of log x is —2, we have 

IO Seve — 102) (0293 2 10e2) 
= 1020,0593 

Therefore, x = 0.0593 e 
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4.6.2 DEFINITION 

EXAMPLE 2 

Find each of the following antiloga- 
rithms. 

(a) antilog 3.3892 
(b) antilog 0.9741 

(c) antilog (5.6946 — 10) 

The antilogarithm of a number y (written antilog y) is the number x such that 
log xf=S(y that is; 

In Illustration 6 we found that iflog x = 1.7731, then x = 59.3. Therefore, 
from Definition 4.6.2, it follows that 

antilog 1.7731 = 59.3 

Also, because log x = 8.7731 — 10 implies that x = 0.0593, then 

antilog (8.7731 — 10) = 0.0593 

SOLUTION 
We use Table 2 in the Appendix. 

(a) We locate the mantissa 0.3892 in the body of the table and we find that it 
is associated with the number 2.45. Hence 

antilog 0.3892 = 2.45 

Therefore, 

antilog 3.3892 = 2.45 + 103 
= 2450 

(b) From the table we find that the mantissa 0.9741 is associated with the 
number 9.42. Hence 

antilog 0.9741 = 9.42 

(c) Because the mantissa 0.6946 is associated with the number 4.95, 

antilog 0.6946 = 4.95 

Hence 

antilog (5.6946 — 10) = 4.95 - 10-5 
= 0.0000495 

In numerical computations we are often involved with approximations 
whose accuracy is indicated by the “significant digits” in the numerals 
representing the approximations. By the significant digits of a numeral we 
mean all the digits beginning with the first nonzero digit on the left and 
ending with the last digit on the right, unless otherwise stated. For instance, 
the numeral 325 has three significant digits, the numeral 0.005271 has four 
significant digits, and the numeral 864.00 has five significant digits (the 
reason for writing the two zeros after the decimal point is to indicate that the 
digits are significant). 
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0.8189 

log 6.583 

0.8182 

Figure 4.6.1 

Scientific notation affords a convenient way of indicating the significant 

digits in a numeral. If we write 83,200 as (8.32)104, then there are three 

significant digits. However, if we write (8.320) 104, then there are four sig- 
nificant digits. Similarly, if we write (8.3200) 10‘, there are five significant 
digits. 

From Table 2 we can determine the mantissa of the logarithm of any 
number having three significant digits. The mantissas in the table have been 

“rounded off to 4 significant digits.” A numeral is said to be rounded off to k 
significant digits if it is replaced by the number, having k significant digits, to 

which it is closest. For instance, the numeral 0.52368 is rounded off to four 

significant digits as 0.5237, while the numeral 0.78142 is rounded off to four 
significant digits as 0.7814. To round off to four significant digits a five-digit 
numeral whose fifth digit is 5, we adopt the following convention: if the fifth 
digit is 5 and the fourth digit is even, we round off to the fourth digit; if 
the fifth digit is 5 and the fourth digit is odd, we increase the fourth digit by 

one. Hence we round off 0.26185 to 0.2618, and 0.39235 is rounded off to 

0.3924. A similar convention is used to round off to any number of signifi- 
cant digits. 

An approximation of the logarithm of a number represented by a numeral 

having four significant digits can be found from Table 2 by using the method 
of linear interpolation. We demonstrate the method by the following illus- 
tration. 

ILLUSTRATION 7. We wish to find log 6.583 to four decimal places by using 
Table 2. Because log is an increasing function, 

log 6.580 < log 6.583 < log 6.590 

From Table 2 we find log 6.580 = 0.8182 and log 6.590 = 0.8189. Figure 

4.6.1 shows a portion of the graph of log from the point P (6.580, 0.8182) to 
the point O(6.590, 0.8189) where the units on the axes are magnified and the 

portion of the graph is distorted in order to demonstrate the procedure. In a 
more accurate figure, the line segment from P to Q would be much closer to 
the graph than it is in Figure 4.6.1. 

The point R on the graph has an abscissa (x coordinate) of 6.583, and the 

ordinate of R is the exact value of log 6.583. An approximation of the 
ordinate of R is the ordinate of the point S on the line segment from P to 0 
that has an abscissa of 6.583. The ordinate of S is represented by 0.8182 + d, 
where d units is the length of the line segment TS shown in Figure 4.6.1. To 
compute d, we use a property of similar triangles which states that the lengths 
of corresponding sides are proportional. Because triangle PTS is similar to 
triangle PUQ, we have 

its) 
0.0007 — 0.010 
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EXAMPLE 3 

Find 

log 30.46 

EXAMPLE 4 

Find 

antilog 0.7351 

Therefore, 
3 d = — (0.0007 io 

= 0.0002 

Thus 

log 6.583 = 0.8182 + 0.0002 

= 0.8184 8 

Henceforth, when performing the calculations involved in linear interpo- 

lation, we shall not draw a portion of the graph and show the similar 

triangles as we did in Illustration 7. Instead, we arrange the computation as 

shown in the following example. 

SOLUTION 

We use Table 2 of the Appendix to find the mantissas of log 30.40 and 

log 30.50. 

log 30.40 = 1.4829 
oe he 30.46 =? 4} 9.0014 0.10 

log 30.50 = 1.4843 

Then 

d_ _ 0.06 
0.0014 ~=0.10 

Therefore, 

abe -6-(0.0014) 

= 0.0008 

Hence 

log 30.46 = 1.4829 + 0.0008 
= 1.4837 

In the next example we use linear interpolation to find an antilogarithm. 

SOLUTION 

Let antilog 0.7351 = x. Then log x = 0.7351. The mantissa 0.7351 does not 

appear in the body of Table 2 of the Appendix. However, the mantissas 

0.7348 and 0.7356 do appear and they are associated with the numbers 5.43 

and 5.44, respectively. 

., { log 5.430 = 0.7348 
0.010)" \logx = 0.7351 

log 5.440 = 0.7356 

C0003, | enane 
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Compute each of the following by 

Compute each of the following by 

Thus 

n __ 09.0003 

0.010 0.0008 

Therefore, 

ee (0.010) 
8 

= 0.004 

Hence 

x = 5.430 + 0.004 

= 5.434 

One of the reasons for considering common logarithms is their use in 

simplifying numerical computations. Because of the present extensive use of 
various types of automatic calculators, the importance of this application of 
logarithms is not as great as it was in the past. However, there are certain 

operations, such as determining approximations to roots of numbers and 
calculating the value of exponentials like 2'73 (see Example 5(b)), that you 

should be able to perform by using logarithms. 

SOLUTION 

In each part we apply Theorem 4.5.3. 

(a) slog (5:38) — 6 log 5.38 (Dp los 22732 ia logs 2 
= 6(0.7308) == (173 (03010) 
= 4.3848 05207 

Hence Hence 
(5.38)® = (2.43)10# Des 3.32 

In part (a) of Example 5 the answer is written in scientific notation to 

indicate that there are three significant digits. 

SOLUTION 

In each part we apply Theorem 4.5.3. 

(ayrlova 12°65 log (72.65)/* (b) log 0.0349 = log (0.0349)1/3 

= 1hog 72.65 = hog 0.0349 
4 3 

= 7, (1-8612) = + (28.5428 — 30) 

= 0.4653 = 9.5143 — 10 
Therefore, Therefore, 

\/72.65 = 2.919 ¥/0.0349 = 0.327 
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EXAMPLE 7 

Find the value of 

Qv3 

to two decimal places. 

In part (b) of Example 6, log 0.0349 is written as 28.5428 — 30 instead of 
as 8.5428 — 10, so that the negative part of the characteristic is exactly 
divisible by 3, and we avoid decimals (remember, by definition, the charac- 

teristic must be an integer). 

SOLUTION 

Let 

x= 2v3 

Then 

logx = V3 log 2 
== 1.752(0 3010) 

= 0 S218 

Therefore, 

Le=eADtUOe Oyo 
= 3.322 

Thus, to two decimal places, 2v3 — 3.32. 

Logarithms are often useful in the computation involved in solving in- 
vestment problems pertaining to “compound interest.” Interest is called 

compound interest if, during the term of a loan or investment, the interest 
earned each period is added to the principal and then earns interest itself. 
The rate of interest is usually given as an annual rate, but often the interest is 
computed and then added to the principal more frequently than once a year. 
If the interest is compounded m times per year, then the annual rate must be 
divided by m to determine the interest for each period. For instance, if $200 
is deposited in a savings account that pays 8 per cent interest compounded 
quarterly, then the number of dollars in the account at the end of the first 
3-month period will be 

200 + 200 (2%) = 200(1 + 0.02) 

— 200(1.02) 

The number of dollars in the account at the end of the second 3-month 

period will be 

200(1.02) + 200(1.02)(0.02) = 200(1.02)(1 + 0.02) 
— 200(1.02)2 

and so forth. More generally, if P dollars is invested at an interest rate of 1007 
per cent, compounded m times per year and if A, is the number of dollars in 
the amount of the investment at the end of n interest periods, then 

(4) 
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EXAMPLE 8 SOLUTION 

Suppose that $1000 is invested in a| We use formula (4) where P = 1000, 7 = 0.8, m = 2, and n = 42. We have 

trust fund on the first New Year’s 42 
Day after a child is born. If the in- A4, = 1000 (: =e ey 
terest is 8 per cent compounded # 

semiannually, how much will be in = 1000(1.04)"* 

the trust fund on New Year’s Day! Then 
when the child is 21 years old? 

log Ay. = log 1000 + log (1.04)*” 
= 3 + 42 log 1.04 

= 3 + 42(0.0170) 

= 3.7 La 

Hence 

Age = 01/6 

Therefore, to the nearest hundred dollars there will be $5200 in the trust fund 

on New Year’s Day when the child is 21 years old. 

In Example 8 a four-place table of logarithms does not give an accuracy of 
four significant digits. The reason for this situation is that log 1.04 is given 
only to three significant digits and the third digit has been rounded off. 

Furthermore, log 1.04 is multiplied by 42, which affects the accuracy of the 
third digit. In fact, the correct value of A,, to four significant digits is 5193, 

which has only two digits that agree with the result obtained by using 

logarithms. 

EXERCISES 4.6 

In Exercises I through 10, write the given number in scientific notation. 

1. 52.60 2. 43851 3. 0.0061 4. 0.276 5. 172,000 (three significant digits) 

6. 172,000 (four significant digits) 7. 0.03960 8. 0.00006405 9. 0.0000080022 10. 0.0001030 

In Exercises I1 through 20, find the given logarithm. 

11. log 364 12. log 4.27 13. log 51.8 14, log 395 15. log 0.27 
16. log 0.0041 17. log 0.0913 18. log 62,400 19. log 348,000 20. log 0.256 

In Exercises 21 through 30, find the given antilogarithm. 

21. antilog 2.4014 22. antilog 1.6590 23. antilog 0.9258 24. antilog 3.7767 
25. antilog 8.4742 — 10 26. antilog 9.8014 — 10 27. antilog 6.2900 — 10 28. antilog 7.9004 — 10 
29. antilog 5.7642 30. antilog 6.8500 
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In Exercises 31 through 40, find the given logarithm. 

31. log 2.754 32. log 68.37 33. log 4589 34. log 0.1621 35. log 0.009262 
36. log 0.08596 37. log 0.00003333 38. log 534.5 39. log 779,800 40. log 20,040 

In Exercises 41 through 50, find the given antilogarithm. 

41. antilog 0.5471 42. antilog 2.8772 43. antilog 3.9690 44. antilog 4.3228 
45. antilog 9.7089 — 10 46. antilog 8.9670 — 10 47. antilog 7.1601 — 10 48. antilog 5.5608 — 10 

49. antilog 6.8690 50. antilog 1.0770 

In Exercises 51 through 60, use logarithms to perform the computation. 

51. (2.36)° 52. (78.1)4 53. (0.06100)3 54. (1.099)° 55. \/76.98 

56. \/2.677 57. »/0.003379 58. \/0.09700 59. \/0.05100 60. (0.4873)?/3 

In Exercises 61 through 64, find the value to two decimal places. 

61. 3v? 62. 4v® 63. V5 64. 37 

65. If T seconds is the time for one complete oscilla- a simple pendulum whose time for one complete 

tion of a simple pendulum of length / feet, then oscillation is 2 seconds. 
68. On his twenty-fifth birthday, a man inherited 

T =2 ve $5000. If he invested this amount at 8 per cent, 
Z compounded annually, how much would he re- 

ceive when he retires at the age of 65? 
where g = 32.16. Find the time for a complete 69. A man borrowed $10,000 at 9 per cent with the 
oscillation of a pendulum 2.18 feet long. understanding that interest was to be paid 

66. Use the formula of Exercise 65 to compute the monthly. However, the borrower did not make the 
value of g at a point on the surface of the earth monthly interest payments and so the principal 
where a pendulum 3.002 feet long requires 1.923 with interest at 9 per cent compounded monthly 
seconds for a complete oscillation. was due at the end of the year. What was the 

67. Use the formula of Exercise 65 to find the length of amount due at the end of the year? 

4.7 Exponential An exponential equation is one in which a variable occurs in an exponent. 
Sometimes an exponential equation can be solved by considering the equiv- 
alent equation obtained by equating the common logarithms of the two 

members and then solving the resulting equation. 

Equations 

ILLUSTRATION 1. In order to solve the equation 

3° = 16 (1) 
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EXAMPLE 1 

Find the solution set of the equation 

5s = 0.08 

we equate the common logarithms of the two members, and we have 

log 3” = log 16 

x log 3 = log 16 

log 16 
= 2 

i log 3 ©) 

We use Table 2 of the Appendix to find log 16 and log 3, and we obtain 

_ 1.2041 
~ 0.4771 

This quotient can be computed by logarithms. Because in Table 2 we can find 

only mantissas of logarithms of numbers represented by four-digit numerals, 
we round off the numerator to four significant digits. The computation by 
logarithms is as follows. 

log 1.204 = 10.0806 — 10 

log 0.4771 = 9.6786 — 10(—) 

log x = 0.4020 

xe 2.24 

Therefore, the solution set of equation (1) is {2.524}. Note that 2.524 is an 
approximation to three decimal places of the value of x. The exact value of 
x is given by equation (2), and the solution set can be expressed in logarith- 

log 16 
e 

log 3 
mic notation as | 

SOLUTION 
Equating the common logarithms of the two members of the given equation, 
we have 

log 5=2=" = log. 0.08 
(3x — 1) log 5 = log 0.08 

3x log 5 — log 5 = log 0.08 
3x log 5 = log 0.08 + log 5 

» 1080.08, log 5 

ns 3 log 5 

From Table 2 of the Appendix we find log 0.08 = 8.9031 — 10 and log5 = 

0.6990. Therefore, 

x — 8.9031 — 10 + 0.6990 
3(0.6990) 

me 05979 
~ 2.0970 
= —0.1897 

Thus the solution set is {—0.1897}. 
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EXAMPLE 2 

Find the value of log, 19. 

The logarithm of a number to any base can be found by solving an 
exponential equation. The next example shows the method. 

SOLUTION 

Let 

p= log Alo 

Writing this equation in exponential form, we have 

BD a) 

Therefore, 

log 4” = log 19 

y log 4 = log 19 

Welog 19 

log 4 

Hence 

_ 1.2788 
0.6021 

=12 124 

Thus to four significant digits, log, 19 = 2.124. 

The procedure applied in Example 2 can be used to obtain a formula 
relating log, x and log, x, that is, logarithms with different bases of a given 
number. Let 

VES NCLE 

Writing this equation in exponential form, we have 

at x 

Equating the logarithms, with base b, of each member of this equation, we 
have 

log, a” = log, x 

Vlog, = log. x 

log, x 

log, a 

Replacing y by log, x, we have 

(3) 
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If we are given a table of logarithms with base b, we can form a table of 
logarithms with base a by using equation (3); simply divide each entry in the 
given table by log, a. 

If in equation (3), a = e and b = 10, we have 

log. x 

logio e 

Using the notation In instead of log, and log instead of log,,, equation (4) can 
be written as 

(4) logs x= 

= log x 
(3) In x 

~ loge 

The value of e to four significant digits is 2.718 and log 2.718 = 0.4343. 
Therefore, if in equation (5) log e is replaced by 0.4343 (and we retain the 
symbol = instead of using =), we have 

(6) 

(7) 

Equation (7) gives a formula for computing the natural logarithm of a 
number if a table of common logarithms is available. 

ILLUSTRATION 2 

(a) Using formula (7), we have 

In 12.53 = (2.303) log 12.53 
= (2.303)(1.0980) 
29529 

(b) The value of In 12.53 can also be found by using the method of Ex- 
ample 2. Let 

a= ngi2e 53 

Writing this equation in exponential form, we have 

Cue 012 53 

Equating the common logarithms of each member of this equation, we 
have 

log e” = log 12:53 

y loge = log 12.53 

log 12.53 

i log e 
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EXAMPLE 3 
In Example 3 of Section 4.3 we ob- 
tained the equation 

A = 1000e°-06 (9) 

where A is the number of bacteria 
present in a certain culture at ¢ min- 
utes, when there are 1000 bacteria 

present initially. Determine how 
many minutes elapse until there are 
1350 bacteria present in the culture. 

Therefore, 

_ 1.0980 

0.4343 

Hence 

fn 2536 2,929 e 

If both members of equation (6) are multiplied by 0.4343, we obtain 

log x = 0.4343 In x (8) 

Equation (8) can be used to find the common logarithm of a number if the 
natural logarithm is known. 

The following example shows an application of exponential equations to 
the field of biology. 

SOLUTION 

Let T represent the number of minutes that elapse until there are 1350 

bacteria present. Then, in equation (9), we substitute 1350 for A and T for 1, 
and we have 

1350°= 1000e9:08% 

or, equivalently, 

| 35 eave). Ct (10) 

Because 1.35 does not appear in Table 4 of natural logarithms, we equate the 
common logarithms of each member of equation (10), and we have 

logs 55— logres cou 
= 0.067 log e 

Solving this equation for 7; we obtain 

ealog 1:35 

~ 0.06 loge 

Because log 1.35 = 0.1303 and log e = 0.4343, we have 

28001303 
~ 0.06(0.4343) 
==—5 000) 

Therefore, 5 minutes elapse until there are 1350 bacteria present. 
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EXAMPLE 4 
If $100 is deposited into a savings 
account that pays 6 per cent interest 

compounded semiannually, and no 
withdrawals or additional deposits 
are made, how long will it take until 
there is $150 on deposit? 

EXERCISES 4.7 

SOLUTION 

We use formula (4) of Section 4.6, which is 

ie (1 4 <)" 
m 

where A, dollars is the amount at the end of n interest periods of an 
investment of P dollars at an interest rate of 100i per cent compounded m 
times per year. In this problem, 4, = 150, P = 100,i = 0.06, andm = 2. We 
wish to find n. We have then 

ies 100(1 nm ove" 

15.03)" 

Thus 

log al 5s—oe.( 1.03) 

lope aloes! 03 

log 1.5 n= eae 

Because log 1.5 = 0.1761 and log 1.03 = 0.0128, we have 

phe 0.1761 

0.0128 

= Bike 

Because n is the number of interest periods, and interest is compounded 
semiannually, the number of years is $(13.76) = 6.88. Therefore, it will take 
seven years until there is $150 on deposit. 

In Exercises I through 12, find the solution set of the given equation. 

LAr PR Si cami he) Shoes =) 4, 100° =,65 

a Sie ae Gm 108s e137 da ies AEST AE Bi He pias hae iy 
Ol 02) a8 9) 10. (1.04)? = 0.932 Liesl 1210p 

In Exercises 13 through 20, find the value of the given logarithm to four significant 
digits. 

ISa logs 12 14. log, 200 15. log, 18 16. log, 54 
17. In 155 18. In 28 IO LOZ OG (2 20. log.) 100 
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21. 

22. 

23. 

[Ch. 4 

How long will it take $100 to triple itself if it is 

drawing interest at 6 per cent compounded semi- 

annually? 

The half-life of radium is 1690 years; that is, half 

of a given amount of radium will decay in 1690 

years. Suppose that A milligrams is the amount of 

radium present ¢ years from now and 

Ae AveX* 

where A, milligrams is the amount of radium pres- 

ent now and k is a constant. Find k. 

It is determined statistically that the population of 

a certain city ¢ years from now will be P, where 

P = 40,000e** 

and k is a constant. If the population increases 

REVIEW EXERCISES (CHAPTER 4) 

In Exercises 1 through 4, find the numerical value in simplest form of the given 

expression. 

1. ( os 64)2/3 
t \ 34 

2. (— (ss) 

24. 

25. 

26. 

3. (194 29-4 39 +:49%) 9”? 4. 

from 40,000 to 60,000 in 40 years, when will the 

population be 80,000? 

If A grams of a radioactive substance are present 

after ¢ seconds, then 

A = 100e~°-* 

How long will it be until only 50 grams of the 

substance are present? 

One kind of United States government bond is 

sold at $74 to be redeemed 12 years later at a 

maturity value of $100. What is the rate of interest 

earned on the investment under the assumption 

that interest is compounded annually? 

In a certain speculative investment a piece of real 

estate was purchased three years ago for $2000 and 

sold today for $10,000. What is the rate of interest, 

compounded monthly, that has been obtained? 

Pee ee 
2-2 

In Exercises 5 through 8, simplify the given expression. Express fractions in lowest 

terms with positive exponents only. All variables represent positive numbers. 

ay 

x-2y3 g4/3p-3 \ -3 

6 (“—) 7. 

sak a ys 

yet 
8. (s 4a2)64(s17 =e) 

In Exercises 9 and 10, simplify the given expression. Each variable can be any real 

number. 

9. (4x2y4z6)1/2 10. [(at + 1% — 19? 

In Exercises 11 through 18, simplify the given expression. All variables represent 

positive numbers. 

11. 2 15 

13. (V4 + V2)(-V4 — V2) 

13x IDX Il x8 
12. 3 zens Om ae 

14. (2V5 — 3 V2)(5 V5 + 2 V2) 
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15. (3x — 3 Vxy)(2 V3x + 4Vxy) qv 
6: 

x—y 4 

ee, rt Sere Ray 
17 

In Exercises 19 and 20, draw a sketch of the graph of the given exponential function. 

19. f= {(x,y)|y = 6} ANS = WOLD) So 

In Exercises 21 through 26, solve the equation for y, x, or b. 

21. log. x =4 22. log, 4 =4 23 108,16 7) 
24. log,, 81 = y 25. log, 256°= 4 26. logy x = 3 

In Exercises 27 and 28, express the given logarithm in terms of logarithms of x, y, and 
z, where the variables represent positive numbers. 

é 4,2 

27. log, 2 28. log, (3 

In Exercises 29 and 30, write the given expression as a single logarithm with a 
coefficient of 1. 

29. log, 4 + log, 7 + 2 log, r + log, h — log, 3 30. log, y — 4log, x — 4log, z 

In Exercises 31 through 34, find the solution set of the given equation. 

31. log, (2x + 3) — 2log,x =2 32. log, (2x — 3) + log,(x + 3) =4 
5:20) -= 6 SA ae -8 

In Exercises 35 and 36, use logarithms to perform the computation. 

35. \/0.09632 36. (2.743)°-8 

In Exercises 37 and 38, find the value to two decimal places. 

37; 27 38. av? 

In Exercises 39 and 40, find the value of the given logarithm to four significant digits. 

SU eras F/ 40. log, 10 
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41. 

42. 

43. 

[Ch. 4 

If V cubic units is the volume of a right circular 
cone of altitude A units and base radius r units, 

then 

—— darh 

Use logarithms to find to four significant digits the 
value of Vif h = 8.271 andi 345. 
If s = 8.60e72-5t, find ¢ when s = 0.570. 

How long will it take $100 to double itself if it is 
drawing interest at 6 per cent compounded annu- 
ally? 

44, 

45. 

An amount of $500 is deposited into a savings 
account and earns interest for 7 years at a rate of 6 
per cent compounded quarterly. If there are no 
withdrawals or additional deposits, how much is in 
the account after 7 years? 
If A milligrams of radium are present after ¢ years, 
then 

A = ke-0.0004t 

where k is a constant. If 60 milligrams of radium 
are present now, how much radium will be present 
100 years from now? 
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5.1.1 DEFINITION 

In Section 1.3 we gave a brief introduction to complex numbers. The set C 
of complex numbers was introduced as a set which has the set R of real 
numbers as a subset, and which contains numbers whose squares are nega- 
tive numbers. Set C was defined (Definition 1.3.4) as the set of all numbers of 
the form a + bi where a,b € R and i2 = —1. Using set notation, we have 

If we let z = a + bi, then a is called the real part of z and 5 is called the 
imaginary part of z. If the imaginary part of a complex number is zero, the 
number is real; that is, a + Oiis the real number a. Therefore, R is a subset of 
C. Another subset of C is the set J of imaginary numbers defined by 

The number 0 + bi can be written as bi and it is called a pure imaginary 
number. The set K of pure imaginary numbers is a subset of J and it is 
defined by 

ILLUSTRATION 1 

(a) The complex number —6 + 0/ is a real number, and it can be written as 
—6. 

(b) The complex number —4 + 7i is an imaginary number. 
(c) The complex number 0 + 2/ is a pure imaginary number, and it can be 

written as 2i. 
(d) The complex number 0 + Oj is a real number, and it can be written as 0. 

e 

Two complex numbers a + bi and c + di are said to be equal if and only if 
Clan bia. 

ILLUSTRATION 2 

(a) If 

ab) = — 10 27; 

then, by Definition 5.1.1, a = —10 and b = 7. 
(b) If 

Pier Oy 351 6F 
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5.1.2 DEFINITION 

EXAMPLE 1 

Prove that the set C is closed under 

the operation of addition. 

The Set of Complex Numbers 267 

then, by Definition 5.1.1 

—7x = 35 DR ens 

x= —5 eS @ 

We wish to define addition and multiplication of complex numbers so that 
the axioms for these operations on the set of real numbers are valid. To arrive 
at such definitions, we consider two complex numbers, a + biandc + di, as 
if they were polynomials in i and then simplify the result by letting i? = —1. 
Thus 

(a+ bi)+(c4+di)=a4+c+bi4+di 

=(a+c)+(b+d)i 
and 

(a + bic + di) = ac + adi + bei + bdi2 
= ac + (ad + bc)i + bd(—1) 

(ac — bd) + (ad + be)i 

We have then the following definition. 

If a + bi and c + di are complex numbers, then 

and 

By using Definition 5.1.2, it can be shown that the set C is closed under the 
operations of addition and multiplication. In the next example we prove this 
for the operation of addition and leave as an exercise the proof for the 
operation of multiplication (see Exercise 51 in Exercises 5.1). 

SOLUTION 
We must prove that the sum of any two complex numbers is a complex 
number. Let a + bi and c + di be complex numbers. Then, by Definition 
Del, 

(a+ bi)+(¢+di)=(a+c)+(6+4)i 

The numbers a, b, c,d € R, and the set R is closed under addition. Therefore, 
a + cand b + dare real numbers. Hence the number (a+c)+(b+d)iis 
a complex number. 

It also can be proved that addition and multiplication on C are commuta- 
tive and associative, and that multiplication is distributive over addition. 
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EXAMPLE 2 

Find the sum and product of the 
complex numbers 5—4i and 
—2 + 61. 

EXAMPLE 3 

Find the difference of the two com- 

plex numbers of Example 2. 

It is advised that you compute with complex numbers, as in the discussion 
preceding Definition 5.1.2, rather than memorize the definitions. 

SOLUTION 

(5; dit Ses = Gs 

(GeR4i (2161 eat 
210 feo 41) 
SOs as 
14 + 38: 

The additive identity element in the set of complex numbers is 0, which 
can be written as 0 + Oi. The additive inverse of the complex number a + bi 

1S —a@ — bi because 

‘(a + bi) + (—a — bi) = [a + (—a)] + [b + (—4)] 
=0 +0: 

Therefore, 

—(a + bi) = —a — bi 

As with real numbers, subtraction of complex numbers is defined in terms 

of addition; that is, 

(a + bi) —(c + di) = (a + bi) + [-(€ + di)] 
= (a + bi) + (-—c — di) 
=(a—c)+(b—-ad)i 

SOLUTION 

(5 — 41) —(—2 + 61) = (5 — 41) + Q — 61) 

i Oy 

= 7 — 10i 

Because 

CD OU 9 CON A Pe NS ope rad eg OU, 
=a+0i + bi + 07? 
=a-+bi 

it follows that the multiplicative identity in C is 1 + Oi, which is the real 
number 1. 

We consider an expression of the form 

S + ti d t eae (u and v are not both 0) (1) 

to indicate the quotient of (s + ti) + (u + vi) and assume that such an 

expression satisfies the same properties as a corresponding rational expres- 
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sion. To write expression (1) in the form a + bi, we multiply the numerator 
and denominator by u — vi, which is the conjugate of u + vi. 

ILLUSTRATION 3 

Al Yi & (4 — 7i)(5 — 27) 

5 oy 7 (GREE 2i)(5 — 2i) 

— 20 — 81 — 357 + 1472 

S010 42 

a 20 — 437 + 14(—1) 

a> 25 — 4(-1) 

_ 6 — 43i 

no 

= WL Ase 
~ 29 29 

The computation in Illustration 3 is similar to the method used to ration- 
alize the denominator of a fraction when the denominator is a binomial 
containing a radical. More generally, when u and v are not both 0, 

St+tti (s+ 1i)(u —vi) 

uti (u + vii(u — vi) 
_ su — svi + tui — tvi2? 

©? oi $ ai — 0272 

su + (tu — sv)i — tu(—1) 

2 ea 
(su + tv) + (tu — sv)i 

¥ u> + v2 

See tu — sv \. 

=(3+4)+(4=%). 

EXAMPLE 4 SOLUTION 

Find the quotient of the two com- 4 — 41)(— 2 — 67) 
plex numbers of Example 2. Se On (6) Oe 61) 

_ —10 — 307 + 81 + 247? 

4 + 12i — 12i — 36i? 

—10 — 227 + 24(—1) 

4 — 36(—1) 

—34 — 22i 
40 

APs ae 

20 20° 
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ILLUSTRATION 4. If a and b are not both zero, then 

GP (Far) | aera er 
(a + bia — bi) 

= az + Bb? 

27a abie Gb aie 
a2 + BP 

oD) 

a2 + be 

_ at +B 
~ qa? 4 b2 

1 @ 

From Illustration 4, we see that 

(a+ bi)| (45) _ (25); =1 (aand bare not bothO) (2) 

From this equality it follows that every complex number, except 0 + 07, has 
a multiplicative inverse, and if we denote the multiplicative inverse of a + bi 
by (a + bi)“, we have 

Rt NS a —b : 
(2 -+ DI) = (hs ae ) + (—.; Pe )i (a and 6 are not both 0) 

ILLUSTRATION 5. The multiplicative inverse (reciprocal) of 4 — 3i is 

(4 — 3i) + or, equivalently, en ae To find the standard form of this 

complex number, we multiply the numerator and denominator by 4 + 3i, 
which is the conjugate of 4 — 37. We have then 

Le geele Gee) 
437 GE 3) GS) 

4 eh ee 
Te Oe 
3 

16 9(=1) 

ie eee 
= 525 POLS 

Thus the multiplicative inverse of 4 — 3i is 4 + Si. e 
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EXAMPLE 5 

Find each of the following. 

(a) i° (b) [23 (c) i 

In summary, we have the following facts about the set C. 

1. The set C is closed under the operations of addition and multiplication. 
2. Addition and multiplication on C are commutative and associative: 

multiplication is distributive over addition. 
3. There is an identity element for addition and an identity element for 

multiplication. 
4. Every element in C has an additive inverse and every element in C, except 

0 + Oi, has a multiplicative inverse. 

Because of these facts, it follows that the set C is a field under the 
operations of addition and multiplication. Consequently, the laws of expo- 
nents apply to positive integer powers of i. 

ILLUSTRATION 6 

3 = [2 i4 = [2/2 D> = it i8 = j4j2 
=(—l)i = (—1)(—1) = (1)i = (1)(—1) 
aes, =] =] =) 

In [lustration 6 we see that we obtain the results Petal, ond ele By, 
noting that 4 = 1, we can find any positive integer power of i, and it will be 
one of these four numbers obtained in Illustration 6. ® 

SOLUTION 

One ae (b) 128 = 720;2; () iat 
= (4) = (i*)5(—1)i ; 
= (1) = (1)5(—1)i ele 

ASS = eg 

=(=1) 

In Section 1.3 we defined (Definition 1.3.6) the principal square root of a 
negative number as follows: If p > 0, then 

V—P =ivp 
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EXAMPLE 6 
Perform the indicated operations 
and express the result in the form 
a + bi. 

(ay V—5(V15 — V—5) 
(D) (Ze 9) Ory =) 

ILLUSTRATION 7 

V—4V—25 = (i V4) V25) 
(2i)(5i) 
10:2 

= 110; e 

Note in Illustration 7 that, before multiplying, we expressed \/ —4 and 
\/—25 as i\/4 and 1/25, respectively. We did not apply Theorem 4.2.1, 
which states that if a,b € R, then 

Va V/b = Wab (3) 

because the theorem further states that a > 0 and b > 0 when nis even. As 

a matter of fact, equality (3) is not valid ifa < 0 and b < 0 when nis even. If, 

in the first step of the solution of Illustration 7, we use equality (3), we obtain 

V(—4)(—25) = 100 
=a () 

which is an incorrect result for the product \/ —4\/ —25. To avoid making 

such an error, you should replace the symbol \/—p (when p > 0) by iVp 
before performing any multiplication or division. 

SOLUTION 

(a) V—5(V15 — V—5) iV5(V3+5 —i V5) 
= i V3 +52 — i252 

= 1 V5? V3 — (-1) V5? 
=5 4+ 5iV3 

(b) pies Vo (2 337) C37) 

Dean 29 OSs) ep) 

A= 61 — 62 + 972 
Ae 50cm 

A 127-201) Sto 

ee = bY: 
13 

See ele 
= 

13 KS) 

The next theorem gives some properties of the conjugates of complex 
numbers. We use the notation z to denote the conjugate of the complex 
number z. That is, 

eae then So = li 
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5.1.3 THEOREM higze2,. ze aCe then 

G) 2, + 22 = 2 + 29 

(il) 2) *Z, = 21° Zp 
(iii) z” = 2", for all positive integers n 

The proof of part (i) is given below and the proof of part (11) is left as an 

exercise (see Exercise 52 in Exercises 5.1). The proof of part (ili) requires 

mathematical induction which is discussed in Section 8.2 (see Exercise 19 in 

Exercises 8.2). 

PROOF OF PART (1): Let z, = a + biandz, = c + di. Thenz, = a — biand 

Zp = Co al, 

Z+%=(a—-b) + — di) 
=(@ 1c) — (b+ d)i (4) 

However, 

Zap Z = (ati) (c+ dt) 

=(a+c)+(0+4)i 

Thus 

AFR =(a+c)-(b + 4)i (5) 
From equations (4) and (5) and Definition 5.1.1 (equality of complex num- 

bers), it follows that 

Z, + Zo = 2, + Zo 

ILLUSTRATION 8. We verify Theorem 5.1.3 for particular complex numbers. 

(eee Ola 4)) = 6 = 1) 2 41) 
=5-i 

and 

(34+ 51) + (2 — 41) =(5 +7) 

— a 

Thus part (i) of Theorem 5.1.3 is verified if z, = 3 + 5iandz, = 2 — 4i. 

(b) @ +51) °2 — 41) =G — Si) (2 + 4i) 
a6 = Ii) 4 1 Ne 
= 26 + 2i 

and 

G+ 5i)-Q2 — 4i) =( + 10i — 121 — 20:2) 
= Gran) 
NR 1 oh 
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Therefore, part (ii) of Theorem 5.1.3 is verified if z; = 3 + 5i and 

Zo = 2 — Ai. 

(c) 2 + Si)? = [23 + 3+ 2751) + 3 > 2057)? + (51)? ] 

= [8 + 607 + 150i? + 125i3] 

= [Sea o0is—1 500 257) 

== A265 

—142 + 65i 

and 

hp AO aa 
= 23 — 3-22(5i) + 3+ 2(5i)? — (5i)3 
— 8 — 60i + 15012 — 12573 
58 = 601 ISOPTaI25: 
Sy any 

Therefore, part (iii) of Theorem 5.1.3 is verified ifz = 2 + Siandn = 3. 
® 

Parts (i) and (ii) of Theorem 5.1.3 can be extended to more than two 

complex numbers. For instance, if z,, Z., 23 € C, then 

2,42) +23 = 2, +22 ¥ 23 (6) 

and 

21 °29°2Z3 = 24° 29°23 (7) 

Formula (6) can be proved by applying part (i) of Theorem 5.1.3 as follows. 

A+%+R=Gth)+% 
= (21 + 22) + 23 
= (2; + 25) +23 

= 4% 4% 
Formula (7) can be proved in a similar way. 

More generally, we have the following formulas, where z,, Z,, --- ,Z, € C. 

Zy + 2g + se 2, = 2 Zo ee (8) 

and 

ZS Za rau (9) 
Formulas (8) and (9) can be proved by mathematical induction, and the 

proofs are omitted. 
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EXERCISES 5.1 

In Exercises I through 36, perform the indicated operations and express the result in the 
form a + bi. 

67 ea) Oe Aes (658i) Sh Oh ce Aas) eer) 

Amie (E77) Be (Gd ye (i272) Gee oy hy) 4) 
Te Ore yy 29) 4/25) $. Ger 82) = O = 62) OF (3 20) = (6.— WV 45) 
LOM Grey 2518) (2) =?) Tiny 29 295, 12h dew 216 
135 =? 28 14/5 V5 Sy 12/16 V7 
16m, 207 / 54 \/ 2163 AN 8G y= 9/8) 18) esd 8Gy= 9.9/7 18) 
199 Oe) 71) 205 (Ag =33i)\ (1p 291) 211A BRO 23) (2. 6h 23) 
20M (Cea, 22) 033-29) 235 (3a Oa = 3)? RAR Ces 2)? 
25 e527 265 Tei 7a ei) 

28.845 (641) DON (Gian) Oe) B0RCi-351).-= 3! 
SINGER Or) = 4 SA Ce= 60 Ol 3) 33 (Bee 4/2) 
649/25 — 3) 2 S53 + 4) 85. (Geer 36. (4 — 21)? 

In Exercises 37 through 46, simplify the given expression. 

Mh B8ir 39, 138 40. i 
41. 7° 42. 1-6 43, i-1 44, (i* + 13 — 72 + 1) 
45. (27 + 31? + 413 — 7%) 46. (i — 1)? —(-i — 1)? +74 

In Exercises 47 through 50, find the value of the given expression for the indicated value 
of x. 

Wika C52 ids seat Bae) tak cea lc aaa iV PD ASTM xe A) x =] 4/3 
ADS (4x2, 4x 4 3): x = 41 + 1/—2) Sh SO ee ay 

51. Prove that the set C is closed under the operation 52. Prove Theorem 5.1.3(ii). 

of multiplication. 

5.2 Geometric The set of complex numbers can be represented geometrically by points in P P § Dey 
. a rectangular coordinate system. The geometric representation of the com- 

Representation of plex number a + bi or, equivalently, (a, b) is the point P(a, b) ina rectangu- 
Complex Numbers lar coordinate system. Refer to Figure 5.2.1. 
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Figure 5.2.1 

EXAMPLE I SOLUTION 

Show the geometric representation | The points are shown in Figure 5.2.2. 
of each of the following complex % 
numbers as a point in a rectangular 

coordinate system: 3 + 57; —3 + Si; (-3 + 5ie 03 +5i) 
—3 — 5i;3 — 5i; i; —2i; 4; and —6. 

Figure 5.2.2 

Observe that the geometric representations of a complex number a + bi 
and its conjugate a — bi are points that are symmetric with respect to the x 
axis. Seé Figure 5.2.3. 

When a rectangular coordinate system is used to represent the set of 
complex numbers, the horizontal axis is called the axis of real numbers (or the 
real axis), and the vertical axis is called the axis of pure imaginary numbers 
(or the imaginary axis); furthermore, the entire plane, whose points are 
placed in one-to-one correspondence with the complex numbers, is called the 
complex plane. Observe that any real number is a complex number which is 
represented by a point on the real axis and any pure imaginary number is 
represented by a point on the imaginary axis. 

The sum of two complex numbers has an interesting geometric represen- 
tation. By definition 

(a+ bi)+(c+di)=(a+oco)4+(b4+a4)i 

Figure 5.2.3 
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Vy, (C(aetne) (bia ii) R 

ee 
7 —— 

(Godt) One — a 7 

Figure 5.2.4 

It can easily be shown that the point representing (a + c) + (b + d)i is the 
end point of the diagonal of the parallelogram having as sides the line 

segments from the origin to the points (a + bi) and (c + di). See Figure 
5.2.4, where P is the point representing (a + bi), Q is the point representing 

(c + di), and R is the point representing (a + c) + (b + d)i. If m, is the 

slope of the line through O and P, then 

b—0 
mM, = 

Gao) 

bea) 

ned 

Tie 

If m, is the slope of the line through P and R, then 

o Od) — 0 

Saa(d ome 
d 

ec) 

If m, is the slope of the line through Q and R, then 

Besa 
TT Gee te 

b 

mc 

Because m, = my, it follows that the line through O and P is parallel to the 
line through Q and R. Because m, = m,, it follows that the line through O 
and Q is parallel to the line through P and R. Because the quadrilateral 
OPRQ has opposite sides parallel, the quadrilateral is a parallelogram. 
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EXAMPLE 2 

Perform geometrically the following 

addition. 

Geen (seo) 

x 

Figure 5.2.6 

5.2.1 DEFINITION 

SOLUTION 

Refer to Figure 5.2.5. The points representing (3 + 4/) and (—5 + 6i) are 

labeled P and Q, respectively. We draw line segments OP and OQ, and then 

draw line segments PR, and QR parallel to OQ and OP, respectively. The 

point of intersection, R, is seen to be at (—2 + 107). Thus 

(3 + 4i) + (—5 + 6i) = —2 + 107 

(Goo eOnmex 

Fa N 
/ 

Figure 5.2.5 

Ifa + biis an arbitrary complex number, then the distance in the complex 
plane from the origin to the graph of a + bi is Va” + b°. Refer to Figure 
5.2.6. This number is called the “absolute value” or “modulus” of the 

number a + bi. 

The absolute value, or modulus, of the complex number a + bi, denoted by 

la + bil, is given by 

(1) 

If in equation (1), b = 0, we have 

which is consistent with Definition 1.7.1 (the absolute value of a real number) 

and equation (3) in Section 4.1. Furthermore, the absolute value of a real 

number a is the distance on the real axis from the origin to the graph of a; 
this geometric interpretation is consistent with the geometic interpretation of 
la + bil. 
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EXAMPLE 3 SOLUTION 

Write each of the following expres- (Chia TY (i) ee Sa et EES SOL 
sions without using absolute value 

bars. : = v37 = \/13 

(a) [6 — jj on) jeevewanyp cy ol AO Manse A a re ea (d) |5i] = V0? + 5? 
() |-4-34 —(d) [Si = v25 = v25 

Recall that the set R of real numbers is an ordered field. Even though the 
set C of complex numbers is a field, it is not an ordered field. The reason for 
this is that it is impossible to define an order relation (such as <) for the set 

C that has the properties of the order relation for the set R. Therefore, we do 
not refer to one complex number, with nonzero imaginary part, being greater 
than, or less than, another complex number. 

We can use the order relation with the absolute values of complex numbers 
because they are real numbers. If |z,| < |z,|, then the point in the complex 

plane representing z, is closer to the origin than the point representing Zp. 

Furthermore, if |z,| = |z,|, the points representing z, and z, are at the same 
distance from the origin of the complex plane. 

EXERCISES 5.2 

In Exercises I through 8, show the geometric representation of the given complex 
number as a point in the complex plane. 

ao I, 2 =O 3 a4! ab Oy A = 5 = Sy 

S51 G =I 4b ay I, SO =H S67 

In Exercises 9 through 18, perform geometrically the addition. 

9. (2 + 31) + (4 4+ 2%) 10. (3 + 7i) + (4 +7) 11. (—4 + 5i) + 1 + 37) 12. (—6 4+ 67) + (—2 — 5) 

13. (6 — 47) + (—3 + 27) 14. (—7 + Si) + (4 — 37) 15. (4 + 31) + 5i 16. (—4 4+ 47) +. 2 

17. (—7 — 3i) + (8 — 67) 18. (—2 — 8) + (—3 +4 Si) 

In Exercises 19 through 26, write the given expression without absolute value bars. 

19. |5 + 2i| 20. |8 — 3i| 21. |—1 +4 2i| 22. |—2 — 5i| 

REPAY 24. |7 +7 25. |—6 — 81 26. |—6i| 

In Exercises 27 through 31, prove the given equality if z, 24, Z. € C. 

al Re 
x IZ2| 

27. |—z| = |z| 285 Zn =. |2| 29 SZ aN) 2, 2 Sel zneet5 (ala) (Z| 31. 
29 
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5.3 Equations Having 

Complex Roots 

Equations having complex roots appeared in Chapter 2. We now give a 

review of some of the types of equations considered there, and then we 

extend our discussion to include other equations having complex roots. 

If k is a positive real number, then 

Vk? =i? Vk? and (i Vk)? = 2(— Vk)? 
=(—Dk (—1Dk 

Hence solutions of the equation 

x? = —k (1) 

where kvis a positive real number, are i Wie and —i Vk. We can show that 

these numbers are the only solutions because if z is any complex number in 

the solution set of equation (1), then 

ge AL ie == (0 

or, equivalently, 

(z —iVk\(z + iVk) =0 (2) 

Theorem 2.1.1 states that if r,s € C, then 

ky eoAl if and onlyif r=Oors=0 

Thus, from equation (2), it follows that either 

z—iVk =0 or z+ivk =0 

or, equivalently, 

nel Vk Or zZ=-i Vk 

Hence the solution set of equation (1) is fiv/k, =i k}. 

ILLUSTRATION 1. The equation 

x2 +50: = 0 

is equivalent to 

(x — i V5) +i V5) =0 
This equation gives a true statement if and only if 

x—i/5 =08 “or xX 411/5.=0 

or, equivalently, 

x =iV5 or x= —iV5 

Thus the solution set of the given equation is {i\/5, —i 5} e 
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Every quadratic equation with real coefficients has two complex numbers 
as solutions. The roots of the quadratic equation ax? + bx +c = Oare given 
by the quadratic formula and they are 

— Dien \/ D2 = Age d =/) = Wie = aie 
an 

2a 2a 

If b* — 4ac < 0, the two roots are imaginary numbers; observe that these 
numbers are conjugates of each other. 

ILLUSTRATION 2. To find the roots of the equation 2x? — 5x +4=0, we 
apply the quadratic formula where a is 2, b is —5, and c is 4. We obtain 

=) 22 Wir? = “ie 

ae 2a 

—(—5) + v(—5)? — 4-2-4 

3 2+2 
cee en 

= aie 

emay a 

=e 

The roots are, therefore, - JE nih and + _ Ba @ 

We have seen that every polynomial equation of the second degree in one 
variable has two solutions, and every polynomial equation of the first degree 
in one variable has one solution. These equations are illustrations of the 
theorem (Theorem 5.6.3) that guarantees that a polynomial equation of 
degree n in one variable has exactly n solutions, some of which may be 
repeated. Related to this theorem is the fact that if n is a positive integer, 
every nonzero real number has exactly n distinct nth roots, some or all of 
which may be imaginary. 

ILLUSTRATION 3. To find the four fourth roots of 81, we let x represent a 
fourth root of 81 and form the equation 

yo = 8 

Se Soll Sa) 

We factor the left member of this equation as the difference of two squares 
and obtain 

(x? — 9\(x2 + 9) =0 (3) 
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EXAMPLE 1 
Find the six sixth roots of 64. 

From Theorem 2.1.1, equation (3) gives a true statement if and only if 

x2 —9 =O0orx2 + 9 = 0. Hence we set each of the factors in equation (3) 

equal to zero and solve the equations. 

ee) x? 4+9=0 

x?=9 x2 = —9 

X= 23 x= 31 

Therefore, the four fourth roots of 81 are —3, 3, —3i, and 3i. We can verify 

these results by finding the fourth power of each of these numbers. 

(BUS Sh - (ae ase (3i)* = 3474 
= 81(i2)(i?) = 81 
= ei) 
= 81 @ 

In the following example we have an equation in which the left member is 

the product of four factors and the right member is zero. We use an extension 

of Theorem 2.1.1 to a product of more than two factors. 

SOLUTION 
Let x represent a sixth root of 64. Then 

x® = 64 (4) 

xo —=.64 = 0 

We factor the left member by first considering it as the difference of two 

squares (x%)? — 8, and we have 

(x3 — 8)(x* + 8) =0 (5) 

We now factor the first factor as the difference of two cubes and the second 

factor as the sum of two cubes. Recall that 

a? — b3 = (a — b)(a? + ab + b?) 

a? + b? = (a + b)(a? — ab + b?) 

Therefore, equation (5) is equivalent to 

(x — 2)(x2 + 2x + 4)(x + 2)(x? — 2x + 4) =0 

We set each factor equal to zero and solve the resulting equations. 

w= P?SO ae 0) 

oi a! 

x? 42x +4=0 

—2+ y2? — 4(1)(4) 

2(1) 
—2+ V4 —- 16 

2 

2 — 
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Seer = 12 
ee 

Sy) W438 —— 

2 B74 /3 > 

S| ys 

pe ee Se ee i) 

—(—2) + V(—2)? — 4(1)(4) 

2(1) 

Wes Vere 
o> ae 

ee ayn 

ie 2 
ae Vy CY 
Sa a 

2 21/3 

2 

(Vesey 3 

Hence the six cube roots of 64 are the numbers in the solution set of equation 
(Ayurchce fer tes) fe 3, 1 V3, 1 — 13}. 

D oe 

In Section 5.6 we prove a theorem (Theorem 5.6.4) which states that if f(x) 
is a polynomial of degree n with real coefficients and if z is a complex root of 

the equation f(x) = 0, then the conjugate 71s also a root of the equation. We 
apply this theorem in the following illustration and example. 

ILLUSTRATION 4. Suppose we wish to find an equation with real coefficients 
for which the complex number 3 — 2/isa root. Then3 + 2/ (the conjugate of 

3 — 27) must also be a root of the required equation. We know that the 
quadratic equation 

(x —r\(x —s)=0 

has the solution set {r,s}. Hence an equation having the given roots is 

[x =93 — 2x = 3 + 22)] = 0 
[(x — 3) + 2i][(x — 3) — 2] =0 

(x — 3)? — (27)? =0 
(x? — 6x + 9) —(—4) = 0 

x” — 6x.4 13 = 0 @ 
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EXAMPLE 2 

Find an equation with real coeffi- 

cients for which the numbers 3 and 

2+ iS are roots. 

EXAMPLE 3 

Find the solution set of the equation 

Die = OQ = ibs 

EXAMPLE 4 

Find the solution set of the equation 

BIN a) 

SOLUTION 

Because 2 + 11/5 is to be a root of the required equation, its conjugate, 

2 —i\/5 must also be a root. Thus an equation having the given roots is 

(x — 3)[x —(2 + 1V5)IIx — 2 —75)] = 0 
(x — 3)[(x — 2)?— G-V5)7] = 0 

(x — 3)[(x? — 4x + 4) —(—5)] =0 
(x — 3)(x? — 4x + 9) =0 

Xo aoe) ba a0) 

So far all of the equations we have discussed have had real coefficients. We 
now consider some equations having complex coefficients, and such equa- 
tions have solutions in the set of complex numbers. 

SOLUTION 

The given equation is equivalent to 

Dit xan) 

Thus 

3b? = 6 

6 
ee 

3i 

a ae 
i) 

Thus the solution set is {—2/}. 

The quadratic formula was derived to solve a quadratic equation having 
real coefficients. Because only properties of a field were used in the deriva- 
tion, and because the set of complex numbers is a field, it follows that the 

quadratic formula can be used to obtain the solutions of a quadratic equation 
having complex coefficients. 

SOLUTION 

Applying the quadratic formula where a is 37, b is 2, and c is —2i, we obtain 

—b + /b? —4ac ee 

=2 & V4 = 4Gi(=2i) 

Brena ode 
6i 
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~2 + V—20 

NO 
3 

4S 
3 

- 

ete 

EXERCISES 5.3 

In Exercises 1 through 10, find the solution set of the given equation. 

1. x7 +9 =>0 2, 4x27 425 =0 3. 3x*° +2=0 4.2x?+7=0 

5. x" 2x +6=0 6. x- — 4) 0 eae A 5 Oe 8. 9x2 12 4 13 = 0 

Or 3x 2x + T=0 100 5x? — 6x + 2= 0 

In Exercises 11 through 20, find an equation with real coefficients for which the given 
numbers (or number) are roots. 

Bea; arpa 3 
115 es) Py A 13. weed 14. a 15. 0,54 Si 

ca! ee 5 
16. 1,7 - 5 eh ove ay es 19, “apes Th Oh a are 

In Exercises 21 through 34, find the solution set of the given equation. Write the 
solutions in standard form. 

ee Oe 51 Wd, Sipe = 2) SS Dies IB he ah as A ox 

25, 1% — L)=i1(x + 1) 26. 44x — 1 +7) =i(x + 5) Is eae ey be Ihe [ke SY) SS = Be 

DO ie or = 0 S0 Mix = 0) Sy 2 et 4) ) 32) 3x7 Six + 3 = 0 

33. 5ix? + 4x = 31 = 0 34. 4ix? 4+ 8x +1=0 

35. Find the three cube roots of 1. 36. Find the three cube roots of —1. 

37. Find the three cube roots of —27. 38. Find the three cube roots of 64. 

39. Find the four fourth roots of 625. 40. Find the four fourth roots of 16. 

41. Find the four fourth roots of —4. 42. Find the six sixth roots of 1. 
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By The Remainder 

Theorem and the Factor 

Theorem 

5.4.1 DEFINITION 

A polynomial in a variable x with real coefficients was defined in Section 
1.3 as a sum of terms which are either a constant or the product of a constant 
and a positive integer power of x. Therefore, such a polynomial of degree n 

can be written in the form 

AyX™ + Gx") + anx™? + --- $a,_yx +4, 

where a, #0, n is a nonnegative integer, and dp, a,,..., a, are real 
numbers. In Section 3.2 we stated that a function fis called a polynomial 
function if f(x) is a polynomial of degree n. We now extend our definition of 
a polynomial function to allow the coefficients to be complex numbers. 

The function P defined by the equation 

P(X) = gx” + ax") +anx"? + --- +4, 4 +4, (1) 

and written 

P= ((x, P(x)) (Px) = aon" + ax" + ax 2 tt a oe, 

where a, 40, n is a nonnegative integer, and dp, a,,..., a, are complex 
numbers, is called a polynomial function of the nth degree with complex 
coefficients. If dp, ay, .. . , d, are real numbers, then P is called a polynomial 

function of the nth degree with real coefficients. 

The function value P(x) denotes a polynomial and the equation P(x) = 0 

denotes a polynomial equation. 

ILLUSTRATION 1. Consider the polynomial P(x) = 2x° — 5x? + 6x — 3, 
and divide P(x) by (x — 2). 

2x2— x +4 

2) 2x 2e 5x4 6x — 3 

Dee =P yee 

ee es SE Sye 

apg AE ihe 

4x — 3 

4x — 8 

2) 

Hence the quotient is 2x? — x + 4, and the remainder is 5. Therefore, we 

can write 

2x> — 5x* + 6% — 3 (e— 2)2x* — eA) tS © 
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5.4.2 THEOREM 

5.4.33 THEOREM 

EXAMPLE I 
Verify the remainder theorem if 
PX) = x* x? = 5 and’? = —2. 

Illustration | gives a special case of the following theorem, which we state 

without proof. 

If P(x) is a polynomial with complex coefficients, andr € C, then, when P(x) 

is divided by (x — r), we obtain as the quotient a unique polynomial Q(x) 
with complex coefficients, and as the remainder a complex number R, such 
that for all values of x 

P(x) = (x — r)Q(x) + RK 

ILLUSTRATION 2. For the polynomial P(x) in Illustration 1, 

P(2) = 2(2)3 — 5(2)? + 6(2) — 3 

— os) 

Observe that this value P(2) is the same number as the remainder obtained 

in Illustration 1 when P(x) is divided by (x — 2). ® 

In Illustration 2 we have a special case of the following theorem, known as 

the “remainder theorem.” 

The Remainder Theorem. If P(x) is a polynomial with complex coefficients, 
and r € C, then if P(x) is divided by (x — r), the remainder is P(r). 

Proof. From Theorem 5.4.2 it follows that when P(x) is divided by (x — r), 

we obtain a polynomial Q(x) as the quotient and a complex number R as the 
remainder such that for all values of x 

P(x) =(x —r)Q(x) +R (2) 

Because equation (2) is an identity (it is true for all values of x), it is satisfied 
when x= 7s [hus 

Pr) =F —r)Q7) + R 
Jala) 3 

and the theorem is proved. 

SOLUTION 
We wish to show that when P(x) is divided by [x — (—2)] or, equivalently, 

(x + 2), the remainder is P(—2). We first find P( —2) by substituting into the 

expression for P(x). 

P(—2) (2) => 
16-8 —5 
3 
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5.4.4 THEOREM 

We now divide P(x) by (x + 2). 

i ee 

Mea 2) Xa ex? Ox eee > 

eS 

Ne) SEO 

a 

2x % 

yee Pye 

—4x —5 

—4x — 8 

3 

The remainder is 3, which is P(—2). 

The next theorem is the “factor theorem”; it is a consequence of the 

remainder theorem. 

The Factor Theorem. If P(x) is a polynomial with complex coefficients and 

r € C, then P(x) has (x — r) as a factor if and only if P(r) = 0. 

Proof. Because the statement of the theorem has an “if and only if” 
qualification, there are two parts to be proved. Part 1: (x — r) is a factor of 
P(x)at P(r) = Os Part 2: (x-— r)is a2 factor of P@) onlyif P(r) — 0! 

PROOF OF PART 1: From Theorems 5.4.2 and 5.4.3 it follows that for the 
polynomial P(x) and the complex number r there exists a unique polyno- 
mial Q(x) such that 

P(x) = (x — r)Q(x) + P(r) 

[iePG yO then 

P(x) = (x — r)QO(x) 

Thus (x —r) is a factor of P(x). 

PROOF OF PART 2: We wish to prove that if (x — r) is a factor of P(x), then 

P(r) = 0. If (x — r) is a factor of P(x) then, when P(x) is divided by (x — r), 

the remainder must be zero. Thus, from the remainder theorem, it follows 

that P(r) = ©, 
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EXAMPLE 2 SOLUTION 

Show that (x — 4) is a factor of | If P(x) = 2x? — 6x? — 5x — 12, then 

De 6x12 PAy= 24) = 647 54) = 12 
= 2(64) — 6(16) — 20 — 12 

= 128 — 96 — 32 

=U) 

Therefore, by the factor theorem it follows that (x — 4) is a factor of P(x). 

EXAMPLE 3 SOLUTION 

Determine if (x — 3) is a factor of | Let P(x) = 2x* — 3x? + 6x? — 7x — 3. Then 

2x4 — 3x3 + 6x? — 7x — 3 PGC) = 26)* — 36)? + 63)? — 73) — 3 

81 37) 60) ol 
Pcs f8 al Ay ea (pa 
=i 

Because P(3) 4 0, we conclude from the factor theorem that (x — 3) is not 

a factor of P(x). 

EXAMPLE 4 SOLUTION 
Find a value of k so that (x + 3)isa | Let P(x) = 3x? + kx? — 7x + 6. By the factor theorem, (x + 3) is a factor 

factor of (3x? + kx? — 7x + 6). of P(x) if P(—3) = 0. Equating P(—3) to zero, we have 

3(—3)8 + k(—3)* — 7(—-3) + 6 = 0 

—6l + 9k +214 6=0 

9k = 54 
k= 6 

husvGcce.s)uista tactor of P(x) 1h) = 6: 

EXERCISES 5.4 

In Exercises 1 through 8, use long division to find the remainder when the given 
polynomial is divided by the given linear expression. Then find the remainder by the 

remainder theorem. 

1. (3x? — 4x + 5) + (x — 3) 2. (4x? + 7x — 5) + (x — 1) 
3. (3x4 + 7x? +x? +x 4+9) +(x + 1) 4. (x? — 4x? +5) +( + 3) 

5. (x? + 9) + (x + 2) 6. (x* — 8) + (x — 2) 
7. (3x° — 7x* — 5x3 — 4x? + 1) + (x — 3) 8. (8x° + 7x? — 3) + (x — 4) 

In Exercises 9 through 16, use the factor theorem to answer the question. 

9. Is (x — 3) a factor of Qx? — 6x? — 5x + 15)? 10. Is (x + 3) a factor of (3x? — x? — 22x — 24)? 

11. Is & + 2) a factor of (x* + 2x? — 12x? — 11x + 6)? 12. Is (x — 2) a factor of (x* — 128)? 
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13. 

15. 

17. 

18. 

19. 
20. 
21. 

22. 
23. 
24. 

25. 
26. 

Dike 

5. 
Division 

Polynomial Functions, the Theory of Polynomial Equations, and Complex Numbers [Ch. 5 

Is (x + 3) a factor of (x° + 243)? 14. Is (x — a) a factor of (x® + a8)? 

Is (x — 2i) a factor of (x® + 64)? 16. Is (x +7) a factor of (x* — 7)? 

Find a value of k so that (x + 2) is a factor of (3x3 + 5x? + kx — 10). 

Find a value of k so that (x — 5) is a factor of (kx* — 17x? — 4kx +4 5). 

Find a value of k so that (x — i) is a factor of (2kx* + 7x? + kx? + 7x — 1). 
Find a value of k so that (x + 3/) is a factor of (kx* — x3 + 28x? — 3kx + 18). 

Find values of k so that (x — 4) is a factor of (x° — k?x? — 8kx — 16). 

Find values of k so that (x + 1) is a factor of (5x° + k?x? + 2kx — 3). 

For what integer values of n is (x — y) a factor of (x” — y”)? 
For what integer values of n is (x + y) a factor of (x” — y")? 

For what integer values of n is (x + y) a factor of (x" + y")? 

For what integer values of n is (x — iy) a factor of (x” — y”)? 
For what integer values of n is (x — iy) a factor of (x” + y”)? 

5 Synthetic Applications of the remainder theorem and the factor theorem involve the 
division of a polynomial by linear expressions of the form (x — r). To 
simplify the computation of such divisions, we use a procedure called 

synthetic division, which we now explain. 
In Illustration 1 of Section 5.4 we used long division to divide 

(2x? — 5x? + 6x — 3) by (x — 2). The computation is as follows. 

2x7 — x +4 

x — 2)2x3 — 5x? + 6x —3 

2x3 — 4x? 

—x? + 6x 

—x* + 2x 

4x — 3 

4x — 8 

5 

The writing can be shortened by omitting the powers of x and recording only 
the coefficients. By doing this, the computation takes the following form. 

ot ely-4 
[2 eres hes 

2: aA 
Pye 
a) 
7 
Ap eg 
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In the divisor, x — 2, the coefficient of x is 1. Thus the coefficient of the first 
term in each remainder is the same as that of the succeeding term of the 
quotient. Furthermore, the first term of the next partial product is the same 
as the coefficient of the first term in each remainder. Hence we can omit the 
terms of the quotient, as well as the first terms of the partial products. With 
these terms omitted, we have 

1-2/2 -5 6 -3 
aA 
Tate 

2 
Pm? 23 

a 
5 

In synthetic division the divisor is a polynomial of the form x — r, and so 
the first coefficient in the divisor is always 1; thus we delete the coefficient 1. 

We can also move the numbers up so that they are arranged in three lines; 

doing this, we have 

S720 5° 6 = 3 
—4 2 —8 

—1 4 5 

We now write 2, the first coefficient in the dividend, in the first position in 

the bottom row, and we have 

Se Te tomes 
ee) 18 

ea Le ee 

We notice that the first three numbers in the bottom row are the coefficients 
2, —1, and 4 of the quotient; the last number in the bottom row is 5, and 5 

is the remainder. The numbers in the second row are obtained by multiplying 
the number in the bottom row of the preceding column by —2, and the 
numbers in the bottom row are found by subtracting the numbers in the 
second row from those of the top row. If the multiplier, —2, is replaced by 2, 
the numbers in the second row can then be added to those of the top row to 
obtain the numbers in the bottom row. We make this change and the work 

appears as follows. 

2/2 -5 6 -3 
4 -2 8 

2 -1 4+ 5 

This arrangement of the computation is the synthetic division of the poly- 
nomial (2x? — 5x? + 6x — 3) by (x — 2), with the quotient (2x? — x + 4) 
and the remainder 5. 
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EXAMPLE 1 

Use synthetic division to find the 
quotient and remainder when 

ie tae) Kae Oe oe OX ae asl a) 

is divided by (x — 2) 

EXAMPLE 2 

Use synthetic division to find the 

quotient and remainder when 
(2x* — 3x3 + x — 5) is divided by 
(x — i). 

In general, the following steps give the procedure for synthetic division of 

a polynomial P(x) by (x — r). 

1. Write P(x) in the form (ayx” + a,x"! + ax"? 4 --- + 4,_4x + @,) 

and insert a zero coefficient for any missing term. 

2. Write the coefficients of P(x) in order in a horizontal row. 

3. Bring down the first coefficient a) of P(x) to the bottom row. 

4. Multiply ay by r, and write the product in the second row below the coef- 

ficient a,; then add the product to a, and write the sum in the bottom row. 

5. Multiply this sum by r and write the product in the second row below the 

coefficient a,; add the product to a, and write the sum in the bottom row. 

6. Continue the process of steps 4 and 5 as long as possible. 
7. The last number in the bottom row is the remainder and the preceding 

numbers are the coefficients of the successive terms of the quotient. 

ILLUSTRATION 1. We use synthetic division to find the quotient and 
remainder when (x* — 7x? + 2x — 6) is divided by (x + 3). Because we are 

dividing by (x + 3) or, equivalently, [x — (—3)],r is —3. The coefficients of 
P(x) are 1, 0, —7, 2, —6 (we insert a zero coefficient for the missing term 

involving x°). The computation has the following form. 

—3 | 1 QO —7 2 —6 

—3 9 —6 12 

Les 2 —4 6 

Thus the quotient is (x? — 3x? + 2x — 4), and the remainder is 6. e 

SOLUTION 

2| 1°92) —5)9-6 =1. = 
2 8 6 QO —2 

1 4 3 0 —-1 3 

The quotient is x* + 4x? + 3x? — 1, and the remainder is 3. 

SOLUTION 

if2 -3 0 I —5 
23. -2-31 3-2 244i 

2 -342i -2-3) 4-2) -344i 

The quotient is [2x? + (—3 + 2i)x? + (—2 — 3i)x + (4 — 21)], and the 

remainder is (—3 + 4). 

The remainder theorem states that for a given polynomial P(x), the value 
of P(r) is the remainder when P(x) is divided by (x — r). Because synthetic 
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EXAMPLE 3 

Ti P Gs ea Ae 1x 0x 

=O sind) (0), P(— 1), PG), and 

P(—4). 

EXAMPLE 4 
Use synthetic division to determine 

if the linear expression is a factor of 
the given P(x). 

(A eCu 2) ch (x) = 
UR seine Te be pee #) 

(bce 3); PX) = 
sk? 2s Spe as iNbe a s 

EXAMPLE 5 

Show by synthetic division that 

(ee eissantactor of x° — x2 + 
4x — 4. 

division provides a fast way of obtaining this remainder, it is usually easier to 
compute P(r) by synthetic division than by direct substitution. 

SOLUTION 

We obtain P(0) and P(—1) by direct substitution. 

PO) =— 10 P(—1) = —2 + 4+ 10 + 20 — 10 

= 9) 

We obtain P(3) and P(—4) by synthetic division. 

ee 10 0 —20 —10 
6 30 60 §=180 480 

2 AO 20 60 160 470 

—4}2 4 —10 0 -—20 —10 

—8 16 —24 96 —304 

2 —4 6 —24 76 —314 

Thus P(3) = 470 and P(—4) = —314. 

SOLUTION 

(a) We use synthetic division to find P(2). 

2|4 -7 1 -2 
See ES 

fe 34 

Therefore, P(2) = 4. Because P(2) 4 0, we conclude from the factor 

theorem that (x — 2) is not a factor of P(x). 

(b) We compute P(—3) by synthetic division. 

So Ss Or er 
—6 3 -—9 —6 

2 —-1 3 2 0 

Because P(—3) = 0, it follows from the factor theorem that (x + 3) is a 

factor of P(x). 

SOLUTION 
Let P(x) = x3 — x? + 4x — 4. We use synthetic division to find P(—2i). 

Salhi e el 4 4 
= ea 

1 —l—2i 2i 0 

Hence P(—2i) = 0. Therefore, by the factor theorem it follows that (x + 2i) 

is a factor of P(X): 
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EXERCISES 5.5 

In Exercises 1 through 16, use synthetic division to find the quotient and remainder. 

Le 2 ee 12) 4) 2. (y3 + 4y? + 3y — 6) + (y —2) 
3. (2x4 + 5x8 — 2x —1)+(« + 4) 4, (x3 + 4x2 — 7) +(* + 3) 

5, (32° + z* — 422 + 7) + (z — 2) 6. (4x® + 21x5 — 26x3 + 27x) + (x + 5) 

7. (x®° — 5x* + 15x?) = ( —4) 8. (8x3 — 6x? + 5x — 3) +(* -—2) 

9. (6x3 — x2 + 2x +2) +(x +4) 10. (2x4 — x3 — 2x? — 4) + (x + 3) 

1 Ore) = Ofel) 12) Gi) 2G a) 
13. (x4 + 3ix? — 2x? + ix —3)+(« +21) 14. (x4 — ix? +1 +(%-—14+2) 

15. (x8 + 2x? +2) +(x + 1-27) 16. (x* — 2x3 + 5x — 2) + (x — 2%) 

In Exercises 17 through 26, use synthetic division. 

17. If P(x) = 4x2 — 5x? — 4, find P(2) and P(—3). 
18. If P(x) = 3x3 + 4x? — 9, find P(—2) and P(1). 

19. If P(x) = x4 + 3x3 — 5x? + 9, find P(—4) and P(3). 

20. If P(x) = 2x4 — 7x3 — 15x + 1, find P(4) and P(—2). 
21. If P(x) = 6x3 — x? — 7x + 2, find P(—4) and P(). 

22. If P(x) = x3 + 2x + 4, find P(—1.3) and P(2.1). 
23. If P(x) = 2x + 6x + 3, find P(2i) and P(—i). 

24. If P(x) = x* + 8x? 4 2x, find P(—3i) and P(2i). 

25, If P(x) = 3x3 — 3x2 + 10x — 5, find P(1 — 2) and P(1 + 2%). 
26. If P(x) = x? — 4x? — 2x +5, find PG + i) and P(3 — 3). 

In Exercises 27 through 34, show by synthetic division that the linear expression is a 

factor of P(x). 

DTS) PG) Ae Ce xe 8 28. (x + 5); P(x) = 2x3 + 9x? — 3x + 10 

29. (2x — 1); P(x) = 6x3 — 7x? + 4x — 1 (Hint: 2x —1 = 2(x — 4).) 

30. (3x + 2); P(x) = 12x? + 5x? — 11x —6 (Hink 3x2 =3Ge-- 4).) 

31. Ge 4°31). PO) = xs — 3x* ee 2 ts 32. Go 41); PC) = x8 = x3 1S Oa 

33) Gx — 2 — 1) 3 PO) = Ox = ix elie 34. (4x + 1 +1); P(x) = 8x? — 12x? — 7x —2 

In Exercises 35 through 38, use synthetic division to determine if the linear expression is 

a factor of P(x). 

35. (x — 4); P(x) = 2x* — 7x? — 14x + 8 36. (x — 3); P(x) = x* — 6x? — 5x — 12 

37. (2x + 3); P(x) = 4x3 — 4x? — 11x + 6 38. Gx 1) p P(X) = 9x? 413x275 1 
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5.6 Complex Zeros of 

Polynomial Functions 

5.6.1 THEOREM 

5.6.2 THEOREM 

The zeros of a polynomial function P are the roots of the corresponding 
polynomial equation P(x) = 0; that is, r is a zero of P if P(r) = 0. 

ILLUSTRATION 1. In Example 5, Section 5.5 we showed that if | Nee 
x3 — x? + 4x — 4, then P(—2i) = 0. Therefore, —2i is a zero of the poly- 
nomial function {(x, P(x))|P(x) = x3 — x? + 4x — 4}. e 

It is difficult to find the zeros of a polynomial function, except in special 
cases. For instance, the zeros of a quadratic function can be obtained by 
solving the corresponding polynomial equation by the quadratic formula (as 
shown in Section 3.4); however, for a polynomial function of degree three or 
four, the general method for obtaining the zeros is quite complicated. 
Furthermore, for the zeros of a polynomial function of degree greater than 
four, there is no general formula in terms of a finite number of operations on 
the coefficients. 

Even though there is difficulty in determining zeros of polynomial func- 
tions, there is a theorem, called the “fundamental theorem of algebra,” which 
guarantees that every polynomial function of nonzero degree has at least one 
complex zero. 

Fundamental Theorem of Algebra. Every polynomial function of degree 
greater than zero, with complex coefficients, has at least one complex zero. 

The proof of this theorem is omitted because it requires concepts beyond 
the level of this book. It should be noted that if the complex zero of a 
polynomial is a + bi, where b = 0, then the number is referred to as a real 
zero. 

Theorem 5.6.1 and the factor theorem are used to prove the next theorem. 

If P(x) is the polynomial with complex coefficients defined by 

P(X) = AgX™ + ax") + ayx™ 2 4... +a, x +4, 

where n > 1, then 

P(X) = Ao(x —1r4y)(X —7ry)--- (x —7,) a) #0 (1) 

Winete cachar «(J == 152...) 71) 1s a complex zero of P. 

Proof. From the fundamental theorem of algebra (Theorem 5.6.1), the 
polynomial function P has at least one complex zero, r,. That is, there exists 
a complex number r, such that P(r,) = 0. Therefore, by the factor theorem 
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5.6.3 THEOREM 

(Theorem 5.4.4), (x — 74) is a factor of P(x). Thus 

P(x) = =r JO) (2) 

where Q,(x) is the quotient obtained when P(x) is divided by (x — r,), and 

Q(x) is of degree n — 1. Applying the fundamental theorem of algebra, if 

n — | > 1, there exists a complex number, r, such that Q,(r,) = 0. Then by 

the factor theorem, 

Q(x) = (% = r)Qo(x) (3) 

where Q,(x) is the quotient obtained when Q,(x) is divided by (x — rp). 

Substituting from equation (3) into equation (2), we get 

P(x) = (x — 1y)(% — 72)Q2(*) 

Because Q,(r,) = 0, it follows from equation (2) that P(r.) = 0, and hence r, 

is a complex zero of P. We continue this procedure until the factoring has 

been performed n times; then we have 

P(x) =& — 1x — 7) --- & —7,)0,0) 

where each 7,(i = 1, 2,... , 2) is a complex zero of P. Because there are n 

factors of the form (x — r,), the polynomial Q,(x) must be a constant and 

that constant must be the coefficient of x" in the expansion. Thus 

Q,(x) = a, and therefore 

P(x) = a(x — 1x — 12) +++ (& — MH) 

where each r, is a complex zero of P. 

If in equation (1), a factor (x — r;) occurs k times, then r; is called a zero of 

multiplicity k. If a zero of multiplicity k is counted as k zeros, then it follows 

from Theorem 5.6.2 that a polynomial function P, for which P(x) is of degree 

n > 1,has at least n zeros (some of which may be repeated). However, we can 

prove that such a polynomial function has exactly n zeros, and this fact is 

stated as the next theorem. 

If P(x) is a polynomial of degree n > 1, with complex coefficients, then P has 

exactly n complex zeros. 

Proof, From Theorem 5.6.2, P has at least n complex zeros. If we now show 

that P can not have more than n zeros, then the theorem will be proved. 

Let r be any number other MENS vies, ttn, 5 1a the n complex zeros of P 

given by Theorem 5.6.2. Because equation (1) is an identity (it is true for all 

values of x), it follows that 

P(r) = ar —ry)r — re) >>: (r —1,) (4) 
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EXAMPLE 1 

Show that 3 is a zero of multiplicity 
two of the polynomial function 
HOR IH ea IV 268) — Pee = ibe ee 

11x? + 15x — 9}, and find the other 
two Zeros. 

None of the factors (r — r,) is zero because r 4 AU =) LOR re sh Pk ah 
thermore, a) # 0. Therefore, the right member of equation (4) is not zero, 
and so P(r) # 0. Thus r is not a zero of P. Hence P has exactly n complex 
Zeros. 

ILLUSTRATION 2. The function P defined by 

F(X Ji (Cc — 480 - 1)? — 3) 

has six zeros, and they are 4, 4, 4, —1, —1, and 3. The number 4 is a zero of 
multiplicity three, and —1 is a zero of multiplicity two. e 

SOLUTION 

To show that 3 is a zero of multiplicity two of the given polynomial function, 
we show that (x — 3)? is a factor of the polynomial P(x). We use synthetic 
division to divide P(x) by (x — 3). 

ieee ie male) 15 0 
SSS 

2 -5 -4 3 0 
Hence 

2K NI Fixe le 9 = (x 3)(2x? — 5x? — 4x + 3) (5) 

We now divide (2x? — 5x2 — 4x + 3) by (x — 3). 

Bile 8. Se 
6 —— 

2 ae | 0 

Therefore, 

2x7 = '5x? — 4x +3 = (x — 3)(2x?2? + x — 1) (6) 

Substituting from equation (6) into equation (5), we obtain 

2x* — 11x3 + 11x? + 15x — 9 = (x — 3)?9(2x2 +x — 1) 

The quadratic factor can now be factored into two linear factors, and we have 

2x" — lx? + Tix? + 15x —9 = (x — 3)?(2x — yee 8 1) 

Because (2x — 1) = 2(x — 4), it follows that 

a eel xe ox Oi 3)?(x —4A(x +1) 

Thus the zeros of the given polynomial function are 3, 3, 4, and —1. 

For each theorem relating to the zeros of a polynomial function, we have a 
statement regarding the roots of a polynomial equation. For instance, from 
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EXAMPLE 2 
Given that 3 is a root of the equation 

Kem Av tk — O.— O 

find the other two roots. 

EXAMPLE 3 

Given that —1 and 2/ are roots of 

the equation 

xe exe 3x2 (3b 21) x +l ee 0) 

find the other two roots. 

Theorem 5.6.3, we have the statement that a polynomial equation of degree 

n, with complex coefficients, has exactly n complex roots. 

ILLUSTRATION 3. The polynomial equation corresponding to the polyno- 

mial function of Illustration 2 is 

(= 4° 4 172 3) = 9 

This is an equation of the sixth degree, and the six roots are 4, 4,4, —1, —1, 

and 3. e 

SOLUTION 
Because 3 is a root of the given equation, 3 is a zero of the polynomial 

function {(x,P(x))|P(x) = x* — 4x? + 5x — 6}. Thus (x — 3) is a factor of 

the polynomial P(x), and another factor can be found by dividing P(x) by 

(x — 3). We use synthetic division. 

3)1NS4 bh i5526 
3 3 

Ie ero’ 
lon 

Therefore, 

xe — 4x2 15x — 6. (0 — 3x2 — x 2) 

Hence the given equation can be written as 

(x — 3)(x* —x +2) =0 

Equating each factor to zero, we have 
630) eee 0 

= bs V(—1)? — 4D) 
= 3 - (1) 

5 1ziv7 

% 2) 

Thus the other two roots are al and Ee 

SOLUTION 
Because —1 and 2i are roots of the given equation, —1 and 2i are zeros of 

the polynomial function 

{(x, P(x))|P(x) = x* + x? + 3x? + G + 2i)x + 27}. 

We use synthetic division to divide P(x) by (x + 1), and then we divide the 

quotient by (x — 2z/). 
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5.6.4 THEOREM 
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—1)1 3 3 + 2i 2i 

-1 0 -3 —2i 
A i Ms Ties) 180 

2i —4 —2i 

lp ein el 0 

Therefore, 

ee eo (O21 )x 4 2r = (x 1 x — 27)(x? + 2ix — 1) 

Thus the given equation can be written as 

(ii 21x? - 2ix — 1) =10 

Equating each factor to zero, we get 

xb lis 0 Oe 2x —1 = 0 

2) tery (21) 41M) 

2(1) 

area 
2 

_ —2i+0 

ad 2 

as 53 = = 

Therefore, the other two roots are —i and —i; that is, —i is a root of 

multiplicity two. 

From the results of Example 2, we see that the polynomial function 
{(x, P(x))| P(x) = x8 — 4x24 5x — 6} has the two zeros 4(1 + 11/7) and 

4(1 — i V7), and they are conjugates of each other. Furthermore, from the 
quadratic formula, it follows that if a quadratic function, having real coeffi- 
cients, has the complex zero a + bi, then the other zero is its conjugate 
a — bi. These two situations are special cases of the following theorem. 

If P(x) is a polynomial with real coefficients, and if z is a complex zero of P, 
then the conjugate z is also a zero of P. 

Proof. Let 

P(X) = agx™ + ax" + agx™ 2 4+... +a, 1x +4, 

where all the coefficients a; are real numbers. Because z is a zero of P, 
JAG) AO tno 

Az” + az" 4 az" 4+ .--- +a, 4z2+4a, =0 

Hence 

Opes eee ae 2 ta = 0 (7) 
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EXAMPLE 4 

Find a polynomial P(x) of the 
fourth degree with real coefficients if 
P has | —i and —2zi as zeros. 

EXAMPLE 5 

Given that / is a root of the equation 

DX ie OKO te OX oe OE Lo 0 

find the solution set of the equation. 

From equation (8) in Section 5.1 (the conjugate of the sum of complex 
numbers equals the sum of the conjugates of the numbers) and the fact that 

= 0, we have from equation (7) 

AgZ" + 4,2" 1 + ayz™ 2 4 we A, 42 + a, =0 

Applying Theorem 5.1.3(ii) in each term of the left member of this equation, 
we have 

Cis Up aome ieee, wate yp SE = (8) 

Because each a, is a real number a; = a, (i = 1, 2,..., 1); furthermore, 
from Theorem 5.1.3(iii), z' = Z'. Thus equation (8) can be written as 

Agz” + az”) 4+ ayz™ 4% 4 «+. ta y+ C=O (9) 

The left member of equation (9) is P(Z). Therefore, P(Z) = 0, and hence 7 
1S.4 Zero OtLP. 

SOLUTION 

From Theorem 5.6.4, if 1 — i and —2i are zeros of P, then their conjugates, 
1 +7 and 2), are also zeros. Hence 

P(x) = [x — (1 — i)]lx — (1 + )lx — (—2%) [x — 27] 
= (x? — 2x + 2)(x? + 4) 
= x* — 2x3 + 6x? — 8x + 8 

SOLUTION 

Because / is a root of the given equation with real coefficients, it follows from 
Theorem 5.6.4 that its conjugate, —i, is also a root. We use synthetic division 
to divide the polynomial (2x4 — 5x3 + 3x? — 5x + 1) by (x — i), and then 
we divide the quotient by [x — (—)]. 

i) Be 3 =5 1 
2i —2—5i 5 +i —1 

—i}2 -—5 +2i 1—Si i 0 
—2i Si —i 

2 —S5 1 0 

Therefore, the given equation can be written as 

(x — i)(x + i)(2x? — 5x + 1) =0 

Equating each factor to zero, we obtain 

67 S10) x+i=0 2x7 — 5x +1 =0 

eo VER 8 = 

Scena AD 
a eA 

Sy x = —2 
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Thus the solution set of the given equation is 

See sect 
i, , ; 

4 4 

Observe that if P(x) is a polynomial with complex coefficients, the con- 

clusion of Theorem 5.6.4 is not necessarily true. For instance, in Example 3 

IM68)) = gee de seh ate Bhyecs te (eyes Di) pe 26 D1 

and the zeros of P are —1, 2i, —i, and —i. The coefficient of x and the 

constant term in the polynomial are complex numbers but not real numbers; 

even though 2/ and —/ are zeros of P, their conjugates are not. 

We now state two interesting theorems that are immediate consequences of 

Theorem 5.6.4, Their proofs are left as exercises (see Exercises 37 and 38 in 

Exercises 5.6). 

5.6.5 THEOREM — If P(x) is a polynomial with real coefficients and the degree of P is an odd 

number, then P has at least one real zero. 

5.6.6 THEOREM — If P(x) isa polynomial with real coefficients, then P(x) can be expressed as 

a product of factors which are either linear or quadratic. 

EXERCISES 5.6 

In Exercises 1 through 8, find the zeros of the given polynomial function. State the 
multiplicity of each zero. 

Deter xe) ) L(x) ee (X — 4)-(X" — 4)} Ce) ea nei (hem) 2Z. { 
3. {(x, P(x))| P(x) = x%(x + 1)%(x? + 1} 4, {(x, P(x))| P(x) = (x? — 25)?} 
5, {(x, P(x))| P(x) = (x + 7)(x2 — 7)?} 6. {(x, P(x))| P(x) = (x? + 2)%(x? — 2)(2x + 1)} 
7. {(x, P(x))| P(x) = (8x + 4)8(4x? — 9)7(4x? 4 9)} 8. {(x, P(x))| P(x) = (x? — 9)2(5x? — 17x + 6)?} 

9. Show that —2 and 3 are zeros of the polynomial function 

{(x, P(x))| P(x) = x4 — 4x3 — 7x? 4+ 22x + 24} 

and find the other two zeros. 

10. Show that 5 and —1I are zeros of the polynomial function 

{(x, P(x))|P(x) = x4 + x? — 31x? — x + 30} 

and find the other two zeros. 
Il. Show that —4 is a zero of multiplicity two of the polynomial function 

{(x, P(x))|P(x) = x4 + 9x3 + 23x? + 8x — 16} 

and find the other two zeros. 
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12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 

Show that 2 is a zero of multiplicity three of the polynomial function 

{(x, P(x))|P(x) = 3x° — 18x4 + 38x3 — 36x? + 24x — 16} 

and find the other two zeros. 

Show that both 7 and —i are zeros of multiplicity two of the polynomial 
function 

{(&%, P(x))| PG) = xe 4x] 4 5x2 —6 2} 

and find the other two zeros. 

Show that 2 is a zero and 2/ is a zero of multiplicity two of the polyno- 
mial function 

{xs P@&)) | P(e) SP 2x44 8x? — 16x24 16x — 32} 

and find the other two zeros. . 
Show that 2 + 3i and 2 — 3i are zeros of the polynomial function 

{(x, P(x))|P(x) = 2x4 — 7x3 + 21x? 4 17x — 13} 

and find the other two zeros. 

Show that 1 + /.\/2 and 1 — i\/2 are zeros of the polynomial function 

{(x, P(x))|P(x) = x* — 2x? + 8x — 3} 

and find the other two zeros. 

Given that —2 is a root of the equation 

xe oe — oe 4 0 

find the other two roots. 
Given that $ is a root of the equation 

Bx 116% eo or 

find the other two roots. 

Given that $ and —% are roots of the equation 

6x7 255? 8x 

find the other two roots. 

Given that 3 and — V3 are roots of the equation 

XT Bx? 9x eo 

find the other two roots. 

Given that i\/2 and —i2 are roots of the equation 

x* — 3x? + 4x" — 6x +4 =0 

find the other two roots. 

[Ch. 5 
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22. 

23. 

24. 

Rational Zeros of Polynomial Functions 303 

Given that —3i is a root of the equation 

fer a Ab ae = be EGY aD) 

find the other two roots. 
Given that 1 — i is a root of the equation 

eo 62 (2) 1) 3 — 31 = 0 

find the other two roots. 

Given that —2 + i and —i are roots of the equation 

eee aL  () 

find the other two roots. 

In Exercises 25 through 32, find a polynomial P(x) of the stated degree with real 

coefficients for which the given numbers are zeros of P. 

25. 

27. 

29. 
30. 

31. 

32. 

Second degree; 4 + 3/ is a zero of P. 26. Second degree; 3 — i is a zero of P. 
Third degree; 2 — i\/5 and —4 are zeros of P. 28. Third degree; 5 + i\/3 and 2 are zeros of P. 

Fourth degree; —3/ is a zero of multiplicity two of P. 
Fourth degree; 2 + i and 1 — i\/2 are zeros of P. 
Fifth degree; 3,3 + 1\/2 and —i\/2 are zeros of P. 
Fifth degree; 3 — 7 (multiplicity two) and | are zeros of P. 

In Exercises 33 through 36, find the solution set of the given equation if the given 
number is a root. 

33% 
34. 
35: 

36. 

896 

Bite D9 XA Sx 40 = 10; 27 1S a root: 

Sy ON 46x" — 18x + 9 = 0 — 57 is A root. 

Di ON oe 50x a0 = 0.2 = Ai 1S 4 TOOt. 

3x4 4+ 4x3 4+ 9x2 — 6x +4=0; —1 + i¥V3 is a root. 

Prove Theorem 5.6.5. 38. Prove Theorem 5.6.6. 

5.7 Rational Zeros Of — We stated in Section 5.6 that it is difficult to find the zeros of a polynomial 

Polynomial Functions function, except in special cases. One of these special cases occurs when the 
coefficients are integers; in such a situation, if there are any rational zeros, 
they can be found by applying the following theorem. 

5.7.1 THEOREM Suppose that 

Poi be de abe aX! fe wes ob OX + GO, 
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ig where dp, 4, dy, +--+, 4, are integers. If —, in lowest terms, is a rational 
q 

number and a zero of P, then p is an integer factor of a, and q is an integer 

factor of dp. 

Proof. Because li is a zero of P, it is a solution of the equation P(x) = 0. 
a 

Therefore, 

n n—-1 =) EY ru Oy sa (EP rea ea ee q fl d a 

Multiplying each member of this equation by g", we obtain 

dy P™ ea pg aap 2g” RA Ta, SPI aT (1) 
We now add —a,q" to each member of equation (1) and factor p from each 
term in the resulting left member. Thus we have the equivalent equation 

plagp") ayp" aq" ia, p' ig? + 26 4G, 4g" 2) ages @) 

Because a; (i = 1, 2, ---,n), p, and q are integers, and the set of integers is 

closed with respect to addition and multiplication, the expression in paren- 

theses in the left member of equation (2) is an integer, which we represent by 
t. Therefore, equation (2) can be written as 

pt = —a,q" (3) 

The left member of equation (3) is an integer having p as a factor. Therefore, 

p must be a factor of the right member, —a,q”. Because P is in lowest terms, 
q 

p has no factor in common with g. Thus p must be a factor of a,. 
Equation (1) is also equivalent to the equation 

q(ay p= GPG ee pgs Gf) 

Now, the left member of equation (4) is an integer having g as a factor; hence 
q must be a factor of the right member, —d)p". Because q has no factor in 
common with p, it follows that g must be a factor of do. 

ILLUSTRATION 1. If 

Pc) 4x 14x 4 0x — 3 

then by Theorem 5.7.1, any rational zero P of P must be such that p is an 
q 

integer factor of —3 and q is an integer factor of 4. Thus the possible values 
of p are 1, —1, 3, and —3; and the possible values of g are 1, —1, 2, —2, 4, 
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and —4. Hence the set of possible rational zeros of P is 

| Ik 8 
l am L3, — 3,—, SS Low 
| ee 

peea 
2 2 ’ 

It should be noted that Theorem 5.7.1 does not guarantee that a polyno- 
mial function with integer coefficients has a rational zero; however, the 
theorem provides the means of locating the numbers that could be rational 
zeros. We can then use synthetic division to determine if any of the possible 
zeros are indeed actual zeros. 

ILLUSTRATION 2. In Illustration 1 we found the set of all possible rational 
zeros of the polynomial 

Pix 452 -— 14x2 + 10x —3 

Because the polynomial is of the third degree, not more than three of the 
possibilities can be zeros. We now use synthetic division to ascertain which of 
them, if any, are zeros. 

WA ae aay -1/4 14 10 —-3 
4 4 18 28 —4 —10 0 
Joie 28 85 4 10 0 -—3 

po tdaeetl4- a 10, 3 —3/4 14 10 ~-3 
Leas a e64 —12  -6 —12 

4 26 88 261 4 2 4 —15 

| = Ze AVL Baars ese) a WS work dently 3 

es 9 —2 -6 ~-2 
Ae 169 8 6 4 12 4  —5 

So far, we have seen that P(1) = 25, P(—1)\"=—3, P33) = 261 
P(—3) = —15, P(4) = 6, and P(—4) = —5. We continue. 

3 3 
5 4 14 10 —3 ~s 4 14 10 —3 

Ga 50.5) 60 —6 —12 3 

Ae ea) 285 | 4 8 —2 0 

Because P(—3) = 0, it follows that —3is a zero of P. Furthermore, (x + 3) is 
a factor of P(x), and 

PO) t= (x aie 3) (4x? + 8x — 2) 

=2(x +3) Qxt + 4x - 1) 
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EXAMPLE Il 

Find all the rational zeros of the 

polynomial function P for which 

P(x) = x®° + 4x4 — 4x3 — 34x? — 

45x — 18 

The other two zeros of P can be found by setting the quadratic factor equal to 

zero and solving the equation. 

We de Abe = || = © 

—4= 1/16 +8 

4 
46 = 

—-4+2V6 
4 

_-2+ V6 

rf 2 

ta 6 Ey = 

Therefore, the three zeros of P are == eee and eens e 

A special case of Theorem 5.7.1 occurs when dy (the coefficient of x”) Isak 

Then 

P(x) = x" + a,x™* + ayx™? +--+ +4,_4% +4, 

where dj, d5,. . ., 4, are integers. For such a polynomial, any rational zero of 

P must be an integer and, furthermore, must be an integer factor of a,. 

This follows from the fact that if P js a rational zero of P, then p must be a 

factor of a, and q must be a factor of 1 (the coefficient of x”). 

SOLUTION 

The possible rational zeros are integer factors of — 18. These numbers are i 

—1, 2, —2, 3, —3, 6, —6, 9, —9, 18, and —18. We use synthetic division to 

determine which of them, if any, are zeros. 

elude Ae 4 Ae 45o8 18 
1 5 lea ae 

il 5 E33 7896 

= al 4 eA 34 7 45a 18 
= eens [ans 

1 pe ee eat 0 

Because P(—1) = 0, it follows that —1 is a zero of P, and 

P(x) = (x + 1)(x* + 3x3 — 7x? — 27x — 18) 

Any other rational zeros of P must be zeros of the second factor. Because — 1 
is a possible zero of the second factor (and if it is, then —1 is a multiple zero 
of P), we divide that factor by (x + 1) to determine if the remainder is zero. 
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5.7.2 DEFINITION 
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—1]1 3. -—7 —27 —18 

—-l -2 9 18 

] 2 -9 —18 0 

Therefore, 

ea ix —— ix 18 = (x + Lee + 2x? — 9x — 18) 

so that 

Pye Cort ol) (X91) (x2 x? — 9x — 18) 

Continuing, we check for further rational zeros of P by considering the 
polynomial (x? + 2x? — 9x — 18). 

-1]1 2 -9 —18 a1 2 —9 -—18 
-1 -1 10 2 8 —2 

1 1 —10 -8 1 4 —-1 —20 

—2|1 ap BOE 18 
=2 Ora 18 

I 0 -9 0 

Thus 

x8 + 2x? — 9x — 18 = (x + 2)(x? — 9) 

and so 

P(x) = (x + I(x + I) 4 2)(x? — 9) 

Factoring the fourth factor, we obtain 

P(x) = (x + 1)°(x + 2) — 3) + 3) 

PIeEnCem NcaZeLOssOteeeatcr— ne lke 3 and —3- 

In searching for the zeros of a polynomial function with real coefficients, 

the procedure can often be shortened if “upper and lower bounds” of the 
zeros can be determined. 

If P is polynomial function, an upper bound of the real zeros of P is any 
number that is greater than or equal to the largest real zero. A ower bound of 
the real zeros of P is any number that is less than or equal to the smallest real 
Zero. 

ILLUSTRATION 3. In Example | the zeros of the given function are —3, —2, 
—1, —1, and 3. The number 4 is an upper bound of these zeros. Another 
upper bound is 3. Actually, any number that is greater than or equal to 3 is 
an upper bound of these zeros. The number —3 is a lower bound of these 
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5.7.3 THEOREM 

zeros; the numbers —$ and — 10 are also lower bounds. Any number that is 

less than or equal to —3 will serve as a lower bound. e 

The following theorem states that upper and lower bounds of the real zeros 

of a polynomial function P with real coefficients can be determined by 

observing the behavior of the signs of the numbers in the bottom row of the 

synthetic division of P. 

Suppose that 

P(x) = gx” 4 ayx™2 4 ax"? + +> + ay 4X + 4, 
WiETC! 0p, Gy, (doy es) Gn ate real numbers and a, > 0. In the synthetic 

division of P(x) by (x — 1), 

(i) If r > 0, and there are no negative numbers in the bottom row, then r 

is an upper bound of the real zeros of P. 

(ii) If r <0, and the signs of the numbers in the bottom row are alternately 

plus and minus (where zero can be appropriately denoted by either +0 

or —0), then r is a lower bound of the real zeros of P. 

Proof. To prove part (i), we consider the quotient Q(x) and the remainder 

R when P(x) is divided by (x — r), and we have 

P(x) = (x — r)Q(x) + R (5) 

By hypothesis, the numbers in the bottom row of the synthetic division of 

P(x) by (x — r) are nonnegative. Therefore, R and the coefficients in Q(x) 

are positive or zero. Furthermore, we are given that the coefficient ay Of Xaas 

in Q(x) is positive. 

To show that r is an upper bound of the real zeros of P, we shall show that 

if s is any positive number for which s > r, then P(s) 4 0. Ifin equation (5), 

s is substituted for x, we have 

P(s) = (s — r)Q(s) + R (6) 

Because s > r, then (s — r) > 0. Furthermore, s > 0 and hence Q(s) > 0 

(remember, the first coefficient in Q(x) is positive and all the other coeffi- 

cients are nonnegative). Also, R > 0. Thus, from equation (6), it follows that 

P(s) > 0. Therefore, P(s) 4 0, and hence r is an upper bound of the real 

zeros of P. 

The proof of part (ii) is similar by considering 

P(—x) =(—x —r)Q(—x) + R 

However, here we must discuss separately the case when n is odd and the 

case when n is even. This proof is omitted. 
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EXAMPLE 2 

Find the rational roots of the equa- 
tion 

5 
Ba * 
If possible, find all of the roots. 

2 8-H tars —3 

ILLUSTRATION 4. Suppose that P(x) = 2x3 — x2 + 4x — 2. Then, ifwe use 
synthetic division to divide P(x) by (x — 1), we have 

2eF= 1p 4 2 
TS 

Peel 65) 63 

Because all the numbers in the bottom row are positive, it follows from 
Theorem 5.7.3(i) that | is an upper bound of the real zeros of P. If we divide 
P(x) by (x + 1), we have 

aes 4) 
gst Vd aah 

Dk Se 

Because the signs of the numbers in the bottom row are alternately plus and 
minus, it follows from Theorem 5.7.3(ii) that —1 is a lower bound of the real 
ZELOS Ol, P. ® 

Because finding the zeros of a polynomial function P is equivalent to 
finding the solutions of the polynomial equation P(x) = 0, we can apply 
Theorem 5.7.1 to find the rational roots of a polynomial equation. If all but 
two of the roots of a polynomial equation are rational, then the nonrational 
roots can be found by the quadratic formula; this was demonstrated in 
Illustration 2. 

SOLUTION 
We first multiply each member of the given equation by 6 in order that the 
coefficients are integers (recall that to apply Theorem 5.7.1 the coefficients 
must be integers). We obtain the equivalent equation 

NOt 425 a een 1D 9 — 0) 

Reh x= sl0x 4s ant 1x2eel2x 49. If P is a rational root of the 
q 

equation P(x) = 0, then p must be an integer factor of 9 and g must be an 

integer factor of 10. Therefore, the possible values of p are 1, —1, 3, —3, 9, 

and —9; the possible values of gare 1) —1) 2, —2) 5, —5, 10, and — 10: 
The set of possible rational roots of the equation is, therefore, 

l 8 3 8 Al ile 33} ae ie Oa ae ne ae Se 2 SZ Pe ek 
(1 el, She) 5° Die Dé Oye ole esis Sues 

<P Se Wwe pe | 
pmo 10-910 10° ~~ ~10° 10" 10 
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We apply synthetic division to test these possible roots one by one. 

1j/10 -4 -l 122 9 —1|10 -4 -ll 12 9 
10 6 —S 7 —10 14 —-—3 -9 

10 6 —5 7 16 10 —14 3 9 0 

Therefore, P(—1) = 0, and so —1 is a root of the equation P(x) = 0; 

furthermore, (x + 1) is a factor of P(x). We now apply synthetic division to 
the quotient Q(x) = 10x* — 14x? + 3x + 9. We test —1 by dividing O(x) by 

(x + 1). 

-1]/10 —14 3 9 
—10 24 —27 

10 —24 27 —18 

Because the signs of the numbers in the bottom row are alternately plus and 
minus, it follows from Theorem 5.7.3(ii) that — 1 is a lower bound of the real 

zeros of Q (and hence, of P). Thus —9, —$, —3, —2 and —3 are eliminated as 
possible roots of the given equation. We test 3. 

3/10 —14 3 9 
30 AS 153 

LOT N16 a R62 

Because all the numbers in the bottom row are positive, it follows from 
Theorem 5.7.3(i) that 3 is an upper bound of the real zeros of Q (and hence, 

of P). Therefore, we eliminate 9 and $ as possible roots of the given equation. 
We now test 4. 

l 
—|10 —14 3 9 i: 

9 

Lay 
10 —9 stop 

The notation “stop” is indicated because once a fraction has appeared in the 
second row, each successive entry in the bottom row will also be a fraction. 
Thus the last number in the bottom row cannot be zero. A similar situation 
occurs when we test —4, 3, +4, and 2. We now test —2. 

5 
as 5 10 —14 3 o) 

—6 12 —-9 

10 —20 Ie) 0 

Thus Q(—#) = 0; consequently, (x + 2) is a factor of Q(x), and therefore, 

also a factor of P(x). Hence —32 is a root of the equation P(x) = 0. The 
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equation P(x) = 0 can be written as 

(x +1) (x fs 2) cox? m0 15) 20 

or, equivalently (dividing both members by 5), 

Gee D(x + 2) ax 4x +3) =0 

We can find the other two roots by solving the quadratic equation 

De A =) 

_ 4 vi6 — 24 
4 

_ ea 
¥ 4 

ee iv2 

7 2 

S02 at V2 
The roots of the given equation are, therefore, —l, ai zeae and 

ea ND 

2 

EXAMPLE 3 SOLUTION 

A Cas Poe rate Let P(x) = 2x3 — 2x? — 4x 4 1. If P is a rational root of the equation 
no rational roots. q 

ee Le eSNG P(x) = 0, then p must be an integer factor of 1 and q must be an integer 

factor of 2. The possible values of p are, therefore, 1 and —1; the possible 

values of g are 1, —1, 2, and —2. Thus the set of possible rational roots of 

the equation is {1, —1,4, —4}. We test each of these possible roots by 

synthetic division. 

I a ee a1 =e Sal 
2 o -—4 =a 40 

2 0 =4 -3 ee ey 

1 1 22 Se ed wie) yy ee eer an Fel 

_1 3 
if a2 sh) 

2 —1 stop 2 —3 stop 

Therefore, P(1) 40, P(—1) 40, PG) #0, and P(—3z) 4 0. Hence the 

equation has no rational roots. 
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EXERCISES 5.7 

In Exercises 1 through 12, find all the rational zeros of the given polynomial function. If 

possible, find all the zeros of the function. 

if 

3. 

>: 
vis 
9. {(RPE)) PP GctSOxs 3708 63x" 3 ES} 

11. 

{cn P(x) LP) =? 0 

{(x, P(x)) | P(x) = x? — 7x — 6} 
{(x, P(&)) |P@ ya oe = 124 lo 
(x, PO) P(x) 3p 8x2 — aT; 

{(x, P(x) | P(x) = xt — 2x? — 9x2 + 20x — 4} 

2 

4. 

6. 
8. 

10. 
12. 

P(x) = x3 — 4x? + x + 6} 
P(x) = x3 — x? — 8x + 12} 

{(x, P(x)) 
{(x, P(x) 
{(%,P(X)) | Py = x — 3x3 ae? Te 13 0F 

{(x, P(x)) | P(x) = 4x3 — 31x + 15} 
(PO) TP) = 8x4 + Ox? — 13x77 — x 48 

{ (PG) (PO) = 20% — x? 2 ts 

In Exercises 13 through 24, find all the rational roots of the given equation. If possible, 

find all the roots. 

13. 

15. 

17. 

19. 

21. 

23: 

x? + 2x? — 7x +4=.0 

DS = Bye 26 Vise = Mss 0 

eo Ds 138x214 eee 240 

phe = Spe = shpat e's bye rea) 

x3 + Hx? —3x¥ +2=0 
gyxt + 2x8 —$° —2r +1=0 

él, oc? = Syee = Ose t=O 

169 oa 

18. 

20. 

22. 

24. 

Ox® 3x2 2 xt 3x — 2 = 0 

2x3 — 2x? + fx —3 = 0 
3x Ss es Leo — ot — 

18x OF Oxo = D5 x* 4 1x2 = 15x72 = 

In Exercises 25 through 28, prove that the given equation has no rational roots. 

25. 

27. 

29. 

30. 

5.8 Graphs of 

Polynomial Functions 

7 = Oe =H =O 

Be a x  —() 

A rectangular box is to be made from a piece of 
cardboard, 6 centimeters wide and 14 centimeters 

long, by cutting equal squares from the four cor- 
ners and turning up the sides. If the volume of the 
box is to be 40 cubic centimeters, what should be 

the length of the side of the square to be cut out? 
The area of a right triangle is 6 square centimeters. 

26. 
28. 

31. 

2X? = OK tne 0 

Yo dx 160 

Find the lengths of the sides of the triangle if the 
length of one of the sides is 2 centimeters shorter 

than the length of the hypotenuse. 
A slice of thickness 1 centimeter is cut off from one 
side of a cube. If the volume of the remaining 
figure is 180 cubic centimeters, how long is the 
edge of the original cube? 

Before discussing the general polynomial fuction, we consider the power 

function defined by 

LCG) axe 

where nis a positive integer. Sketches of the graphs of the power function for 
a = | andn having values 1, 2, 3, 4, 5, and 6 are shown in Figures 5.8.1(a) 

through (f), respectively. Sketches of the graphs of the power function for 

a = —1 and n having values | through 6 are shown in Figures 5.8.2(a) 
through (f), respectively. They are mirror images in the x axis of the corre- 
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fa)=x? 

os 
f(x) =x° 

(e) 

Figure 5.8.1 

F@) ==x* 
(b) 

fo) = =x f(x) =—x° f(x) =—x® 

(d) (e) (f) 

Figure 5.8.2 
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sponding graphs in Figures 5.8.1(a) through (f). Let us suppose that a > 0 
and note that the graph of the function for a < 0 is the mirror image in the 
x axis of the corresponding graph for a > 0. All of the graphs contain the 
origin, and this is the only intersection of the curve with either axis. Ifn > 1, 
the x axis is tangent to the graph at the origin. If n is a positive even integer, 
the graph is in the first and second quadrants and is symmetric with respect 
to the y axis. If m is a positive odd integer, the graph is in the first and third 
quadrants and is symmetric with respect to the origin. There are no asymp- 

totes. As |x| increases without bound, so does | f(x)|. 
A polynomial function of the nth degree with real coefficients is defined by 

P(x) = agx™ + a,x" 1 + agx™? 4+ --- +4, (1) 

where a, # 0, nis a positive integer, and do, a,,..., a, are real numbers. 

When n = I, we have 

PO) =a, 44, 

which is a linear function, and its graph is a straight line. When n = 2, we 

have 

P(X). = agx? 4.4, + az 

which is a quadratic function, and its graph is a parabola. 
We now consider graphs of polynomial functions for which n > 3. If the 

right-hand side of equation (1) is considered as a fraction with a denominator 
of 1, we can conclude that there are no vertical asymptotes. As |x| increases 

without bound, |a,x”| increases without bound and will become larger than 
the sum of all the other terms in the polynomial. Therefore, the form of the 
graph for large values of |x| will be determined by the values of the term 
a,x". We can conclude then that the shape of the graph for large values of |x| 
will be that of the graph of the power function of degree n. There are no 

horizontal asymptotes. If a, > 0, the function will be increasing for large 
values of x, so the graph will be going up to the right as in Figures 5.8.3(a) 
and (b). If a4, < 0, the function will be decreasing for large values of x, and 

the graph will be going down to the right as in Figures 5.8.3(c) and (d). If 
a, > 0 and n is even, the graph goes up to the left as in Figure 5.8.3(a); 

VV AV V\ And) 
dn> 0, n is even dn > 0, n is odd dyn <0, n is odd ay, <0, n is even 

(a) (b) (c) 

Figure 5.8.3 
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5.8.1 THEOREM 

EXAMPLE I 
Draw a sketch of the graph of the 
function P defined by 

P(x) = x? — 6x? + 9x —4 
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whereas if n is odd, the graph goes down to the left as in Figure 5.8.3(b). If 

a, <0 and n is even, the graph goes down to the left as in Figure 5.8.3(d), 
and if n is odd, the graph goes up to the left as in Figure 5.8.3(c). 

An important aid in drawing a sketch of the graph of a polynomial 

function is to determine any “relative extrema” of the function. A precise 
definition of relative extrema and the method of determining them require 
concepts of the calculus. However, it is worthwhile here to give an intuitive 
discussion. Relative extrema of a function consist of relative minimum and 

relative maximum values of the function. For a polynomial function, the 

graph will have a horizontal tangent line at a point where there is a relative 
extremum. In Figure 5.8.3(a) the function has one relative maximum value at 

the point B and two relative minimum values at the points A and C. Observe 
that there are horizontal tangent lines at these three points. In Figure 5.8.3(b) 

there are two relative extrema, a relative maximum value at A and a relative 

minimum value at B. There are also two relative extrema in Figure 5.8.3(c); 

there is a relative minimum value at A and a relative maximum value at B. 
There are three relative extrema for the function of Figure 5.8.3(d); relative 

maximum values occur at points A and D, and a relative minimum value is 

at C. For the function of Figure 5.8.3(d), note that there is a horizontal 

tangent line at point B, but there is no relative extremum there. We state 
without proof a theorem giving the number of possible relative extrema for a 

polynomial function. 

A polynomial function of the nth degree with real coefficients has at most 

n — | relative extrema. 

From Theorem 5.8.1 it follows that a polynomial function of the fourth 

degree with real coefficients has at most three reiative extrema. Therefore, 

the graph in Figure 5.8.3(a) could be that of a fourth-degree polynomial. The 
graph in Figure 5.8.3(b) could be that of a polynomial of the third degree 
with real coefficients because such a polynomial has at most two relative 
extrema. 

In the following examples we apply the above concepts to draw a sketch of 

the graph of a polynomial. When finding some arbitrary points on the graph 
by preparing a table of values of x and P(x), it is usually easier to compute 
P(x) by synthetic division. 

SOLUTION 
Because P(x) is a third-degree polynomial, there are at most two relative 
extrema. Furthermore, because the degree of the polynomial is odd and the 
coefficient of x* is positive, the graph goes up to the right and down to the 
left. Therefore, the graph is probably similar to that shown in Figure 5.8.3(b). 
We prepare Table 5.8.1 by using synthetic division. The computations for 
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P(—2) = —54, P(—1) = —20, and P(1) =0 are shown, and the other 

computations are similar. 

= | demas 6.uth tte 4 rane Ll 6,0 9p cee 4 Stell Nee Oe Om 
=2 6m 50 = eee ae 

peegsm 54 1 —7 16 —20 Pose & 

Table 5.8.1 

x ae Oe 2 eS 
(Ga) —54 —20 —4 0 —2 —4 0 16 

In Figure 5.8.4 we have plotted the points (—2, —54),(—1, —20), (0, —4), 

(1, 0), (2, —2), (3, —4), (4, 0), and (5, 16) given from Table 5.8.1. We have 

chosen different size units on the y axis than on the x axis. With these points 
and the previous information, we draw the sketch shown in Figure 5.8.5. 

VY 
y 

A A 

SOF SOF 

—sob —50- 

Figure 5.8.4 Figure 5.8.5 

In Example 1, with our limited knowledge (that is, without using concepts 

of calculus) we cannot be absolutely sure that the relative extrema occur at 
(1, 0) and (3, —4), but we can assume that the graph has the general ap- 
pearance given in Figure 5.8.5. A similar comment holds for the graph in 
Example 2. 
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EXAMPLE 2 

Draw a sketch of the graph of the 
function P defined by 

PO a= Bx ax 1x7 + 12 

5.8.2 THEOREM 

SOLUTION 

There are at most three relative extrema because P(x) is a fourth-degree 

polynomial. The degree of the polynomial is even and the coefficient of x is 

positive; therefore, the graph goes up to the right and up to the left. Because 
P(O) = 12, the graph intersects the y axis at 12. Values of P(x) are computed 
by synthetic division for some values of x and these are given in Table 5.8.2. 

Table 5.8.2 

DG =) al 0 1 » 3 

1258) 44 i] 1 =| =—7)(() 39 

In Figure 5.8.6 we have plotted the points (—2, 44), (—1, 7), (0, 12), (1, —1), 

(2, —20), and (3, 39) given from Table 5.8.2. Observe that we have chosen 

different size units on the y axis than on the x axis. With these points and the 
information found above, we draw the sketch of the graph shown in Figure 
50n1, 

L 

5 05 105 

bee! a eS 

Rl 
ie e 

Figure 5.8.6 Figure 5.8.7 

The following theorem gives us information about the real roots of a 
polynomial equation. We apply it in Section 5.9. 

Let P(x) be a polynomial with real coefficients. If a,b € Randa < b, then if 

P(a) and P(b) are opposite in sign, there is a real number c between a and b 

sucuMthater(6)i—) 0) 

The proof of Theorem 5.8.2 is omitted. However, because the graph of a 
polynomial function is a continuous unbroken curve, the truth of the theorem 



318 Polynomial Functions, the Theory of Polynomial Equations, and Complex Numbers [Ch. 5 

EXERCISES 5.8 

should be intuitive to you because of the following reasoning: If P(a) and 

P(b) are opposite in sign, then the points (a, P(a)) and (6, P(b)) are on 

opposite sides of the x-axis; thus the graph of y = P(x) must intersect the 

x-axis in at least one point (c, 0), where c is between a and b. 

We show this geometrically in Figures 5.8.8 and 5.8.9. In Figure 5.8.8 we 

have a portion of the graph of a polynomial function P from the point 

(a, P(a)) to (b, P(b)), where P(a) < 0 and P(b) > 0. The graph intersects the 

x axis at the point (c, 0), where a << c <b. Figure 5.8.9 shows the situation 

when P(a) >0 and P(b) <0. 

(a, P(a)) 

Figure 5.8.8 Figure 5.8.9 

In Exercises 1 through 24, draw a sketch of the graph of the given polynomial function. 

1K 

3. 
eh 

Ib 

oh 

11. 
13. 
15: 

17. 
19. 

21. 
23. 

f@) ee 

h(x) = —4(x — 2)? 

GC) =n (0 2)? 
fx) =(« — 28 
h(x) = (x + 1)° 

POG) = x8 — 2x? 5x46 

FOO) = x2° — 8x2 3 

P(x) = 3x3 — 4x2 —5x +2 

SQ) =x — Sx? = 2x 8x 
P(x) = x* + x? — 7x? — x +16 
G(x) = 3x* + 5x3 — 5x2 —5x +42 

F(x) = x° + 3x4 + 3x3 4+ x? 

5.9 Real Roots of 

Polynomial Equations 

2 (0) = sr 1)? 
4. F(x) = —3x3 
6H) = Ox = 12 
8. g(x) = —(x + 2)* 

10. f(x) = —(« — 1) 
12. Pay = x* = 6x* 9x —4 

14. G(x) = x3 + 4x? + 4x 
16. H(x) = 6x3 + 29x2 +x —6 

18. g(x) =x* — 5x2 +4 

20. P(x) = x4 — 6x3 + Ilx? — 6x 
22. H(x) = 2x* — x* — 6x? —x +2 

24. ix) = xX® = 3X° 3x2 x 

In Example 3 of Section 5.7 we showed that the equation 

2x3 — 2x2 —4x +1=0 (1) 

has no rational roots. Thus any real roots of this equation must be irrational. 

The equation is of the third degree and hence has three roots. However, 

because the imaginary roots must occur in pairs (as a result of Theorem 
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5.9.1 THEOREM 

5.6.4), it follows that equation (1) has either three real roots, all of which are 

irrational, or two imaginary roots and one real root, which is irrational. 
Additional information regarding the real roots of a polynomial equation 
with real coefficients can be obtained by Descartes’ rule of signs. Theorem 

5.9.1 gives this rule, which involves the concept of “variation in sign” of a 
polynomial. 

If the terms of a polynomial with real coefficients are written in descending 

powers of the variable (the terms having zero coefficients are omitted), then 

a variation in sign occurs if two successive coefficients are opposite in sign. 
For example, if 

Pei = 2x02 dy 

the coefficients have, successively, the signs +, —, —, +; thus there are two 

variations in sign. 

ILLUSTRATION 1. If Q(x) = x* — 6x? — 2x — 1, then Q(x) has one 

variation in sign. Furthermore, Q(—x) = x* — 6x? + 2x — l, and Q(—x) 

has three variations in sign. If R(x) = x? + 2x + 5, then R(x) has no 

variations in sign. e 

Descartes’ Rule of Signs. If P(x) is a polynomial having real coefficients, the 
number of positive roots of the equation P(x) = 0 either is equal to the 
number of variations in sign of P(x), or is less than this number by an even 
natural number. Furthermore, the number of negative roots of the equation 

is equal to the number of variations in sign of P(—x), or is less than this 
number by an even natural number. 

The proof of Descartes’ rule of signs is omitted because it is beyond the 
scope of this book. 

ILLUSTRATION 2. We apply Descartes’ rule of signs to equation (1). If 
P(x) = 2x? — 2x? — 4x + 1, then P(x) has two variations in sign. There- 

fore, by Descartes’ rule of signs the number of positive roots of equation (1) 
isveithetsuwo.otezero, Furthermore, P(—x) = —2x? — 2x7 4+ 4x + 1, and 

P(— x) has one variation in sign. Thus equation (1) has one negative root. 
e 

From Illustration 2 and the discussion in the first paragraph of this section 
it follows that the three roots of equation (1) are such that either two are 

positive irrational numbers and one is a negative irrational number, or else 

two are imaginary numbers and one is a negative irrational number. 
Observe that Descartes’ rule of signs states that if a polynomial P(x) has 

an odd number of variations in sign, then the equation P(x) = 0 has an odd 

number of positive roots; thus we are certain of at least one positive root in 
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EXAMPLE 1 

From Descartes’ rule of signs deter- 

mine information concerning the 
number of positive, negative, and 

imaginary roots of each of the fol- 

lowing equations. 

(a) x8 + 6x —2 =0 

(b) x4 + 2x2 —5 =0 
(c) 6x4 — x3 4+ 2x —3 =0 

such a case. Similarly, if P(—x) has an odd number of variations in sign, 

then there is at least one negative root of the equation P(x) = 0. 

SOLUTION 

(a) Let P(x) = x? + 6x — 2. Because P(x) has one variation in sign, there is 

one positive root of the equation. P(—x) = —x% — 6x — 2. Because 

P(—x) has no variations in sign, there are no negative roots of the 

equation. Because the equation is of the third degree, it has three roots, 

and hence there are two imaginary roots. 

(b) Let O(x) = x* + 2x? — 5. There is one positive root of the equation 

because O(x) has one variation in sign. O(—x) = x* + 2x? — 5. Thus 

Q(—x) has one variation in sign; consequently, there is one negative root 

of the equation. The equation has four roots, and hence there are two 

imaginary roots. 

(c) Let R(x) = 6x4 — x3 + 2x — 3. Because R(x) has three variations in 

sign, the number of positive roots of the equation is either three or one. 

R(—x) = 6x4 + x3 — 2x — 3, and R(—x) has one variation in sign. 

Therefore, the equation has one negative root. Thus the equation has 

either three positive roots, one negative root, and no imaginary roots; or 

else it has one positive root, one negative root, and two imaginary roots. 

ILLUSTRATION 3. We have learned that the three roots of equation (1) are 

such that either two are positive irrational numbers and one is a negative 

irrational number, or else two are imaginary numbers and one is a negative 

irrational number. With P(x) = 2x? — 2x? — 4x + 1, we compute P(1) and 

P(2) by synthetic division. 

1j2 -2 -4 1 2)2 -2 -4 #1 
2 0 -4 a! 

2 0 -4 -3 DO Ty 

Therefore, P(1) = —3 and P(2) = 1. Because P(1) and P(2) are opposite in 

sign, it follows from Theorem 5.8.2 that there is a real number c between | 

and 2 such that P(c) = 0; therefore, equation (1) has a positive root between 

1 and 2. Thus we are certain that equation (1) has two positive irrational 

roots and one negative irrational root. 
We can apply Theorem 5.8.2 to locate integers between which the other 

two roots lie. Because P(0) = 1, it follows that P(0) and P(1) are opposite in 

sign, and hence the equation has a positive root between 0 and 1. We 
compute P(—1) and P(—2) by synthetic division. 

=) | 2. 24 4 l —2/2 2° —4 1 
—2 4 0 —4 12 —16 

2 —4 0 2 —6 8 —15 
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EXAMPLE 2 

Determine all the information you 

can concerning the number of posi- 

tive, negative, and imaginary roots 

of each of the following equations. 

(a) 3x* +x? + 7x + 1 = 0 

(b) x5 + 5x? —-4 =0 

EXAMPLE 3 
Find the approximate value, to the 
nearest hundredth, of the smallest 

positive root of equation (1). 

Thus P(—1) and P(—2) are opposite in sign, and consequently a negative 

root is between —2 and —1. e 

SOLUTION 
(a) Let P(x) = 3x4 + x? + 7x + 1. Because P(x) has no variations in sign, 

there is no positive root. P(—x) = 3x* + x? — 7x 4+ 1. Because P(—x) 
has two variations in sign, there are either two negative roots or no 
negative roots. Furthermore, P(0) = 1 and P(—1) = —2. Because P(0) 
and P(—1) have opposite signs, it follows from Theorem 5.8.2 that there 
is a number c between 0 and —1 such that P(c) = 0; therefore, the 
number c is a negative root of the equation. Thus the equation has two 
negative roots and two imaginary roots. 

(b) Let O(x) = x° + 5x? — 4. Because Q(x) has one variation in sign, there 
is One positive root. O(—x) = —x> + 5x? — 4, and Q(—x) has two 
variations in sign. Therefore, there are either two negative roots or no 
negative roots. We compute Q(—1) by synthetic division 

ines 0) —4 
—] 1 —-1l —4 4 

1 —l | 4 -4 0 

Therefore, Q(—1) = 0 and thus —1 is a root of the equation. Hence the 
equation has one positive root, two negative roots, and two imaginary 
roots. 

We have seen that there are polynomial equations having integer coeffi- 
cients that have no rational roots. Equation (1) is such an equation. It has 
three irrational roots, and we have located these roots between —2 and —1, 

between 0 and 1, and between | and 2. These irrational roots can be 

approximated to any degree of accuracy by various techniques and using 

automatic computers. A standard procedure that is often used is the one 
called “Newton’s method of approximation,” which involves concepts of the 

calculus. Horner’s and Graeffe’s methods are two other procedures that 
appear in texts on the theory of equations. There is a graphical way of 
approximating roots of polynomial equations. This process involves finding 
the zeros of the corresponding polynomial function by approximating the x 
intercepts of the graph of the function. Obviously, this procedure is not very 
accurate. There is an elementary method that involves repeated use of 
Theorem 5.8.2, and the following example demonstrates it. 

SOLUTION 
The equation is 

2x xa 4% + | = 0 
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EXAMPLE 4 

Prove that \/3 is irrational. 

and we know from Illustration 3 that the smallest positive root is between 0 
and 1. Let P(x) = 2x? — 2x? — 4x + 1. The interval between 0 and 1 is 

divided into ten equal subintervals to give the numbers 0, 0.1, 0.2, 0.3,..., 

0.9, 1. We use synthetic division to find P(x) at each of these numbers until 

we have a change in sign. 

0.1}2 —2 —4 l 0.2}2 —2 at 1 

0.2 —0.18 —0.418 0.4.5 —0:329s= 01804 

2 -18 -—4.18 0.582 20S 1614/32 Cree 

0:3.) 2) q=2eieh = 4 1 
0.6 —0.42 —1.326 

2 -—-14 —4.42 —0.326 

Because P(0.2) = 0.136 and P(0.3) = —0.326, the root lies between 0.2 and 

0.3. We now divide the interval between 0.2 and 0.3 into ten equal subinter- 

vals to give the numbers 0.2, 0.21, 0.22, 0.23,.. . , 0.29, 0.3. We use synthetic 

division to find P(x) at each of these numbers until we have a change in sign. 

O22 2 —4 1 

0.44 —0.3432 —0.9555 

2 —156 —4.3432 0.0445 

0.23|2 —2 —4 1 

0.46 —0.3542 —1.0015 

2 —1.54 —4.3542 —0.0015 

Thus P(0.22) = 0.443 and P(0.23) = —0.0015, and hence the root lies 

between 0.22 and 0.23. To obtain the root accurate to the nearest hundredth, 

we find P(0.225). 

02255} 22 V2 —4 1 
0.45 —0.349 —0.9785 

2 —155 —4.349 0.0215 

Therefore, P(0.225) = 0.0215. It follows that the root is greater than 0.225, 

and hence it is closer to 0.23 than to 0.22. Thus the smallest positive root to 
the nearest hundredth is 0.23. 

We conclude by giving an example showing how Descartes’ rule of signs is 
used to prove that certain numbers are irrational. 

SOLUTION 
Let x = V3. Then x? = 3 or, equivalently, 

XP = 33 ==) (2) 

If P(x) = x? — 3, then P(x) has one variation in sign. Therefore, by 
Descartes’ rule of signs there is one positive root of equation (2). From 
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Theorem 5.7.1 the only possible positive rational roots are | and 3. By 

synthetic division we show that neither of these numbers is a root. Thus the 
positive root is an irrational number, and it is \/3. 

EXERCISES 5.9 

In Exercises 1 through 12, use Descartes’ rule of signs to determine information 

concerning the number of positive, negative, and imaginary roots of the given equation. 

ee ge 0) 2, 5x° — 3x —7 = 0 

Bo 4x2 46x? = 3x +45 = 0 AP xe eX ote 1 = 0 

Boge = 4x" 2e = 5 = 0 65.%° + 2x? 3x 451 = 0 

ie eH a SiO) Se okte= io He 8x X — 7 = 0 

9. 6xt + 8x2 +x =0 10. 5x* = 3x? —2 =0 

Mo 0 le () L2xo =e 3x® 2x? — Axa 2x35 10 

In Exercises 13 through 20, determine all the information you can concerning the 

number of positive, negative, and imaginary roots of the given equation. Determine any 

rational roots and locate any irrational roots between two consecutive integers. 

1S Oe ree 145 x? 6 93x7 — 20.0 

AS ee 1G xo xt —. 2h, — 5" =. 0 

17. 4x2 = 3x52 5 = 0 18. 2x* —. lax? + 24x? + x —4=0 

19, 3x2 — 21x? -b 36x44 2x — 8 = 0 20, x 2x2 — 9x? — 8x + 14-= 0 

In Exercises 21 through 26, use the method of Example 3 to find the approximate value, 

to the nearest hundredth, of the indicated root. 

22. x3 — 2x + 7 = 0; the negative root 
24. xt — 10x +5 =0; the largest positive root 

26. x4 + x — 3x? — x — 4 = 0; the positive root 

21. x? — 4x — 8 = 0; the positive root 
23. xt — 10x + 5 = 0; the smallest positive root 
25. 2x* — 2x3 + x? -+ 3x — 4 = 0; the negative root 

In Exercises 27 through 32, prove that the given number is irrational. 

AS 28. 24/7. 29. \/10 30. V8 Sane \/5: Blister in / 5 

REVIEW EXERCISES (CHAPTER 5) 

In Exercises I through 10, perform the indicated operations and express the result in the 

form a + bi. 

AOS 031) C10" —2)) 

. &-1)—- G=—4) 
VV = Sine 49. 

~ (—4 + 2i)(-—3 +1) 
(ote —4 37) Coram Ww 

De eer een = S54 67) 

4, (3 +3) +(-1-/) 
Gen —8 04 4) — 48 
$e 3eei1)2 

10. i + (—6 — i) 
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In Exercises II and 12, perform geometrically the addition. 

11. (4 + 5i) + (6 — 33) 12. (—3 + 27) + (—7 — i) 

In Exercises 13 and 14, write the given expression without absolute value bars. 

13. |4 — 3i| 14. | —6 + 2i| 

In Exercises 15 and 16, find an equation with real coefficients for which the given 

numbers are roots. 

16, 3, =, =A 16. 1 + 7,4 —3i 

In Exercises 17 and 18, find the solution set of the given equation, and write the 

solutions in standard form. 

Ws ix? — 5x0 18.3162 = 4 = 7 00 

19. Find the three cube roots of —8. 20. Find the four fourth roots of 81. 

In Exercises 21 and 22, use the remainder theorem to find the remainder for the 

indicated division. 

21. (3x? + 4x* — 3x —='5)/= (+ 2) 22. (2x* — 5x? — 2x + 1) +(« — 1) 

In Exercises 23 and 24, use the factor theorem to answer the question. 

23.15) (a—3) a factor ofpe > lo 07, 24. Is (x + 4) a factor of 2x? + 9x? + 6x + 8? 

25. Find a value of k so that (x — 7) is a factor of 26. Find a value of k so that (x + 2) is a factor of 

2kx* — 5x? + 3kx. 2x* + 2kx? — x? — 3kx — 8. 

In Exercises 27 through 30, use synthetic division to find the quotient and remainder. 

27. (2x* + Ix? — 4x + 5) + (& + 3) 28. (x3 — 6x? + 8x — 5) + (x — 4) 
29. (x® — 64) + (x — 2) 30. (x° + 243) + (x + 3) 

In Exercises 31 and 32, find the indicated function values by synthetic division. 

31. P(x) = 2x* — 8x? — 10x — 3; P(—2) and P(3) 
32. P(x) = 3x4 + 10x? — 6x? + 1; P(—4) and P(—4) 

In Exercises 33 and 34, find the zeros of the given polynomial function. State the 
multiplicity of each zero. 

33. {(x, P(x))|P@) = (x? — 9)(x? + 4)?(6x? + x — 15)} 34. {(%, P&))|P(x) = & — 52x? + 5)? + 2x — 1} 

35. Show that —1 +i is a zero of the polynomial 36. Find the solution set of the equation 
function {(x, P(x))|P(x) = x* + 3x3 + 3x? — 2} and 2x* — x3 + 33x? — 16x + 16 =0 
find the other three zeros. given that 47 is a root. 
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In Exercises 37 and 38, find a ploynomial P(x) of the stated degree with real coefficients 

for which the given numbers are zeros of P. 

37. Fourth degree; 1 — i and 1 + i\/3 are zeros of P. 
38. Fifth degree; \/2 + 7 (multiplicity two) and —1 

are zeros of P. 

In Exercises 39 and 40, find all the rational zeros of the given polynomial function. If 

possible, find all the zeros of the function. 

39. {(x, P(x))|P(x) = x4 + x3 — 4x? + 2x — 12} 
40. {(x, P(x))|P(x) = 2x* + 3x3 — 4x? + 13x — 6} 

In Exercises 41 through 44, find all the rational roots of the given equation. If possible, 
find all the roots. 

410 x? — 2x7 —9 =0 AD Xs LO 8x 16 = 0 

ASO Xe eo 0) Ad. 3x? — x* + 16x + 12 =0 

In Exercises 45 through 48, draw a sketch of the graph of the polynomial function. 

45. f(x) = (x — 3)! 46. (x) = (x + 4) 
OGL, JCS) Bo ae as yy SENS) ASS C—O 

In Exercises 49 and 50, prove that the given equation has no rational roots. Then use 
Descartes’ rule of signs to determine information concerning the number of positive, 
negative, and imaginary roots. 

OW SEs Ga ae SE Sa) 50.04 4 x 6x, — 3 = 0 

In Exercises 51 and 52, determine all the information you can concerning the number of 

positive, negative, and imaginary roots of the given equation. Determine any rational 

roots and locate any irrational roots between two consecutive integers. 

Slee ye eo 14.1) Sse al cos ix 4x 1 () 

In Exercises 53 and 54, use the method of Example 3 in Section 5.9 to find the 

approximate value, to the nearest hundredth, of the indicated root. 

53. x3 — 3x? — 6x + 2 = 0; the negative root 54. x3 + 9x? + 15x — 21 = 0; the positive root 
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6 
Systems of Equations 
and Inequalities 



6.1 Systems of 

Linear Equations 

in Two Variables 

Figure 6.1.1 

328 

Figure 6.1.2 

It is often necessary to deal with more than one equation in several 
variables. In such situations the given equations are called a system of 
equations. By the solution set of a system of equations we mean the set of 
solutions that are common to the equations in the system. 

We write a system of equations by using a left brace. In particular, a system 

of two linear equations in two variables x and y can be written as 

fa + byy=ey 
a,x + boy = Cy 

Where a, D,, €,,1@5,0b>, and cs are real mumbers: 

ILLUSTRATION 1. The following pair of equations is a system of two linear 
equations in two variables. 

(1) Bee 5) 

The solution set of each of the two equations in system (I) is an infinite set of 
ordered pairs of real numbers, and the graphs of these sets are straight lines. 
Figure 6.1.1 shows on the same coordinate system sketches of the graphs of 
the equations. From the figure it is apparent that the two lines intersect at 
one and only one point. This is the point (—1, 5), which can be verified by 

substituting into the equations. Doing this, we have 

2(—-1) +5 =3 

and 

5(—1) + 3(5) = 10 

We conclude that the ordered pair (—1, 5) is the only ordered pair that is 
common to the solution sets of the two equations. Hence the solution set of 
system (I) is {(—1,5)}. Using symbols, we may write 

{(x, y)|2x + y = 3} 9 {(x, y)|5x + 3y = 10} = {(-1, 5)} ® 

ILLUSTRATION 2. Consider the system 

gb ae, 
at) 2x- y=4 

In Figure 6.1.2 we have a sketch of the lines having the equations in system 
(II); the lines seem to be parallel. It can easily be proved that the lines are 

indeed parallel by writing the equation of each of the lines in the slope- 
intercept form. Solving for y in the first equation, we have 

2) = yea Bf x 3 
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and solving for y in the second equation, we obtain 

Via) aa 

We see that each line has a slope 2. Therefore, the lines are parallel. They are 
not the same line because the y intercepts, —3 and —4, are not equal. It 
follows that the two lines have no point in common and so the system (II) has 
no solution. Using symbols, we may write 

| 

Figure 6.1.3 

{(x, y)|6x — 3y = 5} 9 {x y)|2x -y=4} =o e 

ILLUSTRATION 3. For the system 

3x +2y =4 (ID) he meee 

the graphs of the two equations are the same line (see Figure 6.1.3). This fact 
is evident when the equations are written in the slope-intercept form. Solving 
each of the equations for y, we obtain 

yps-sx42 

The solution sets of the two equations are equal, and their intersection 
consists of all the ordered pairs in either one of the two solution sets. It is an 
infinite set. ® 

If we are given a system of two linear equations in two variables, three 
possibilities arise. 

POSSIBILITY 1: The solution sets of the two equations are equal. This occurs 
in Illustration 3 with system (III). The graphs are the same line. The equations 
are said to be dependent. 

POSSIBILITY 2: The intersection of the two solution sets is the empty set. This 
occurs in Illustration 2 with system (II). The graphs are distinct parallel lines. 
The equations are said to be inconsistent. 

POSSIBILITY 3: The intersection of the two solution sets contains one and 
only one ordered pair. This occurs in Illustration 1 with system (I). The 
graphs intersect in one and only one point. The equations are said to be 
consistent and independent. 

When two linear equations in two variables are consistent and independ- 
ent, the solution obtained from the graphs (as in Illustration 1) is generally 
only an approximation because drawing the graphs depends upon measuring 
devices. To obtain exact solutions of systems of linear equations, we must use 
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6.1.1 DEFINITION 

algebraic methods. These methods consist of replacing the given system by 

another system that has exactly the same solution set. 

Two systems of equations that have the same solution set are said to be 

equivalent systems. 

If any equation in a given system is replaced by an equivalent equation, 

the resulting system is equivalent to the given system. Furthermore, if any 

two equations of a given system are interchanged the resulting system is 

equivalent to the given system. 

One method for finding the solution set of a system of two linear equations 

in two variables is called the substitution method. For any ordered pair (x, y) 

in the solution set of a system of equations, the variables x and y in one 

equation represent the same numbers as the variables x and y in the other 

equation. Therefore, if we apply the substitution axiom and replace one of 

the variables in one of the equations by its equal from the other equation, we 

have an equivalent system. The next illustration shows the procedure. 

ILLUSTRATION 4. We apply the method of substitution to find the solution 

set of system (I), which is 

eae ee) 

Die VE LO 

If we replace the first equation by the equivalent equation y = —2x + 3, we 

obtain the equivalent system 

| y= —2x +3 

We apply the substitution axiom and replace y in the second equation by its 

equal (—2x + 3) from the first equation, and we have the equivalent system 

a ec 3) 10 

Simplifying the second equation, we obtain 

| y= —2x +3 

=~ 4D = Il@ 

Solving the second equation for x, we have 

fF = —2x +3 
x=-—l 

Substituting the value of x from the second equation into the first equation, 

we have 

eee a 
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This latter system is equivalent to the given system; therefore, the solution set 
is {(—1, 5)}, which agrees with the result of Illustration 1. ® 

EXAMPLE 1 SOLUTION 
Use the substitution method to find | We replace the second equation by the equivalent equation obtained by 
the solution set of the system solving for y, and we have the equivalent system 

(IV) ee J3y = 7 fe +3y=7 
4x + y=3 y=3 -—4x 

We apply the substitution axiom and replace y in the first equation by its 
equal (3 — 4x) from the second equation, and we have the equivalent system 

hes + 3(3 — 4x) =7 

y=3-—4x 

Simplifying the first equation, we have 

° —4x =7 

y=3-—4x 

Solving the first equation for x, we have 

l 
Sf SS 

2 

Vie = AX 

We substitute the value of x from the first equation into the second equation, 
and we have 

1 
Sf Ss 

(V) 2 
y=! 

System (V) is equivalent to system (IV ). Hence the solution set of system (IV) 
is {(, 1}. 

The solution (g, 1) can be checked by substituting into the equations of the 
given system. Doing this, we have 

8(Z) +30) =4 43 
2) 

aii 

and 

4(t)41=241 
Z 

=s 

The next theorem gives another method for obtaining a system of two 
linear equations in two variables equivalent to a given one. 
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6.1.2 THEOREM The system of equations 

a,x+by=cy 
(VI) ie fey ere, 

is equivalent to the system 

(vIn { ik ci tae 
ky(ayx + byy) + Ky(aox + boy) = kyey + Kole 

where k, and k, are real numbers and k, F 0. 
Furthermore, system (VI) is equivalent to the system 

(VIII) [anes + byy) + kx(aox + boy) = kyey + Kole 

a,x + boy = Cy 

where k, and k, are real numbers and k, # 0. 

Proof. We prove that the system (VI) is equivalent to system (VII). To do 

this, we must show that any solution of system (VI) is a solution of system 

(VII) and, conversely, that any solution of system (VII) is a solution of system 

(VI). 
If the ordered pair (r,s) is a solution of system (VI), then 

ar-+bs =¢, 

and 

aor + bos = Co 

Therefore, by the substitution axiom, 

k,(ayr + bys) + ko(agr + bys) = kycy + KgCy 

Thus any solution of system (VI) is a solution of system (VII). 
If the ordered pair (r,s) is a solution of system (VII), then 

ar+b,s=c, 

and 

k(ayr + bys) + ko(agr + bos) = kycy + kgCo 

Substituting c, for a,r + b,s in the second equation, we have 

kc, + k(agr + bos) = kycy + Kole 
ko(dor + by5) = koC» 

or, equivalently (because k, # 0), 

aot + bos = Ce, 

Thus any solution of system (VII) is a solution of system (VI). 
The proof that system (VI) is equivalent to system (VIII) is identical. 
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When applying Theorem 6.1.2 to obtain the second equation of system 
(VII) from the equations of system (VI), we use the terminology “multiply 
the equation a,x + b,y =c, by k,, multiply the equation aX + boy = C5 
by k,, and add the resulting equations.” It is understood that “to multiply an 
equation by a number” means to multiply each member of the equation by 
that number and “to add two equations” means to add corresponding 
members of the equations. 

ILLUSTRATION 5. We apply Theorem 6.1.2 to find the solution set of 
system (1), which is 

(ee v3 

2% te Sy i= 10 

When applying Theorem 6.1.2 we wish to choose the multipliers of the 
equations in such a way that we eliminate one of the variables. Because the 
coefficient of y in the first equation is 1 and the coefficient of y in the sec- 
ond equation is 3 to obtain an equation not involving y we replace the second 
equation by the sum of —3 times the first equation and | times the sec- 
ond equation. We then have the equivalent system 

—~3(2x + y) + 15x + 3y) = (—3)(3) + (1)(10) 
Simplifying the second equation, we obtain 

— Xa | 

Solving the second equation for x, we have 

aaa 

We substitute the value of x from the second equation into the first equation 
and obtain 

aa +y=3 

eS] 

or, equivalently, 

fea —— a 

Therefore, the solution set of the given system is {(—1, 5)}, which agrees with 
the results of Illustrations 1 and 4. ® 
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EXAMPLE 

Find the solution set of the system 

| 

2 

4x+3y= 6 

3x + Sy = -1 

SOLUTION 

Because the coefficient of x in the first equation is 4 and in the second 

equation it is 3, we can obtain an equation not involving x by replacing the 

second equation by the sum of 3 times the first equation and —4 times the 

second equation. We then have the equivalent system 

3(4x + 3y) — 43x + Sy) = 3(6) + (-4)(-)) 

Simplifying the second equation, we obtain 

hat +3y=6 

Solving the second equation for y, we have 

Fe +3y =6 

ee 

Substituting the value of y from the second equation into the first equation, 

we have 

(és + 3(—2) =6 
y= -2 

or, equivalently, 

fore 

y= -2 

Hence the solution set of the given system is {(3, —2)}. 

We check the solution by substituting into the original equations, and we 

have 

AG) 1 3( 2) = 1 oete 

and 

a(ayie S02) = 9. 110 
= 

In the next two illustrations we show what happens when Theorem 6.1.2 is 

used to find the solution set of a system where the two equations are either 

inconsistent or dependent. 

ILLUSTRATION 6. System (II) of Illustration 2 is 

arenes 

2x — Ve 
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EXAMPLE 3 

Find the solution set of the system 

(IX) 

XE 
Er) Sky, 
5) 

Ax —y)—y=5 

If we replace the second equation by the sum of | times the first equation and 
—3 times the second equation, we have the equivalent system 

6x —3y=5 
I(6x — 3y) — 3(2x — y) = 1(5) + (—3)(4) 

Simplifying the second equation, we obtain 

Oa, 

The solution set of this latter system is the empty set, @, because there is no 
ordered pair (x, y) for which the second equation is a true statement. Hence 
the solution set of the given system (II) is @. The two equations are incon- 
sistent. 8 

ILLUSTRATION 7. System (III) of Illustration 3 is 

ae 
6x +4y =8 

Replacing the second equation by the sum of —2 times the first equation and 
I times the second equation, we have the equivalent system 

| 3x + 2y = 4 

—2(3x + 2y) + 1(6x + 4y) = (—2)(4) + (1\(8) 

Simplifying the second equation, we obtain 

a0) 

The second equation of this latter system is an identity, that is, it is a true 
statement for any ordered pair (x,y). Therefore, the solution set of the 
system is the same as the solution set of the first equation. The solution set 
can be written as {(x, y)|3x + 2y = 4}. The equations are dependent. ® 

SOLUTION 
We first replace each equation by an equivalent equation. We multiply each 
member of the first equation by 6 and obtain 2x + 3ys—112> The second 
equation is equivalent to the equation 2x — 3y = 5. Hence system (IX) is 
equivalent to the system 

DX OVD xX 
vs (ete ene 

Replacing the second equation by the sum of | times the first equation and | 
times the second equation, we have the equivalent system 

a + 3y = 12 

AN == 19/ 
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EXAMPLE 4 

Find the solution set of the system 

“we 
y 

ai0 
y 

=o 

ee 

We solve the second equation for x and obtain 

2x + 3y = 12 

(XI) ine 

Siaiend 

Another system of equations that is equivalent to system (X) is obtained by 

replacing the first equation by the sum of | times the first equation and —1 

times the second equation; this system is 

We solve the first equation for y and obtain 

ou oll 
(XID) 6 

2x —3y =5 

From systems (XI) and (XII) we see that the solution set of system (IX) is 

{(42, 2)}. The solution can be checked by substituting into the equations of 
system (IX). 

Note in Example 3 that after obtaining system (XI), the value of y can be 

found by substituting 17 for x into the first equation of system (XI). In the 
solution shown, the use of system (XII) gives an alternative procedure for 

finding the value of y. 

SOLUTION 
We replace the first equation by the sum of | times the first equation and —2 
times the second equation, and we have the equivalent system 

(2 +3) -2(2 -$) = 1 + -2x-9) 
ae 

CELTS 
pS Ng 

Simplifying the first equation, we get 

1) = 10 
4 

2 nA) 
eer 

Solving the first equation for Ly we have 
a 
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ab aay 
yan 

es LS Se 
x Vy 

In the second equation we substitute 2 for ” and we have 
Uy 

12 
aes 

ee ene 
xX 

or equivalently, 

ieee 
eee 
2-4) 
% 

or, equivalently, 

ened 
cae 

xe) 

Therefore, the solution set of the given system is {(2, $)}. 

In Example 4 we treated the variables as u and = If we multiply each of 
ws 

the given equations by xy (the LCD), we obtain the system 

( + 3x = 4xy 
2y — 6x = —3xy 

Note that each of the equations in this system is of the second degree (the 
terms 4xy and —3xy are second-degree terms). To solve this system for x and 
y requires a more complicated procedure than that used in Example 4. 

EXERCISES 6.1 

In Exercises 1 through 10, draw a sketch of the graph of the system of equations. 
Classify the equations as (i) consistent and independent, (ii) consistent and dependent, or 
(iii) inconsistent. I If the equations are consistent and independent, determine the solution 
set of the system from the graphs. 

nabs et ci za pe 8 BS ee 
mlx sy 1 " lox + 3y = 0 : ox = Oye 9 
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ox Sy, 

4. ) a By x 5) 

4x —2y —7=0 

IE i 
== 2) x ean 

y= 3x0 

a le: — 2y = 10 

In Exercises 11 through 26, find the solution set of the given system by using either 

5s y=2x —4 

6x —3y — 12 =0 

Pe Ves) 

6x) + Syi=)2 

Theorem 6.1.2 or the method of substitution. 

7 eae 
' 3x + y —3=0 

8x —3y =5 
14. 

ee ee 

a ae ee 
17 

6x —2y —3 =0 

an fe = ae 
5x + 3y = —6 

23. 

26. 

6.2 Systems of 

Linear Equations in 

Three Variables 

12. 

15 

18. 

21. 

24. 

'° 

3x +4y —4=0 

5x + 2y —8 =0 

SX + 3y= 3 

18x + 3y — 10 = 0 

2x —2y—5 =0 oe eee = 

+ II 

— 

—=—=_—_—"_———— 

TSS Shek 

a II Nw 

Slo e]o wl = wl 
— 

——— ee 

Consider the equation 

2x —y + 4z = 10 

[Ch. 6 

6. pe KE =| 

13. 

16 

19 

nN XY 

25. 

Sx —4y =8 

eta = 
4x —3y = -2 

4x +3y+6=0 

5x + 6y = —5 

15x 3y = 13 

7x +3y=-—-7 

— 

S29 SIS TINS GAINS 

II | 
+ 

a wl wl x 

I| — iS 

x(n & lw 
ae lI | =} 

— 

(1) 

for which the replacement set of each of the three variables x, y, and z, is R. 

Equation (1) is a linear (first-degree) equation in the three variables, and a 

solution of this equation is an ordered triple of real numbers. An ordered 
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Figure 6.2.1 

EXAMPLE 1 
Find the solution set of the system 

x— y—4z=3 
2x — 3y + 2z =0 
Die ay Dei 2 

by the method of substitution. 
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triple of numbers (7, s, ¢) is a solution of equation (1) if, when x is replaced by 
r, y is replaced by s, and z is replaced by ¢, the resulting statement is true; in 
such a case the ordered triple is said to satisfy the equation. The set of all 
solutions is the solution set of the equation. 

The ordered triple (3, 4, 2) is a solution of equation (1) because 

2(3) = (4) 4 42) = 10 

Some other ordered triples that satisfy equation (1) are (1,0, 2), (0, 2, 3), 
(5, 4, 1), (2, 2, 2), (—3, —4, 3), and (—1, 4, 4). It appears that the solution set 

of equation (1) is an infinite set. 

The graph of an equation in three variables is a set of points represented 

by ordered triples of real numbers; such points involve a three-dimensional 
coordinate system which we do not discuss in this book. However, it should 

be mentioned that the graph of a linear equation in three variables is a plane. 

Suppose that we have the following system of linear equations in the 

variables x, y, and z. 

AX + byy + 42 = dy 
(1) A,X + boy + Coz = a, 

a,x + bsy + C3z = d, 

The solution set of system (I) is the intersection of the solution sets of the 

three equations. Because the graph of each of the equations in system (I) is 
a plane, the solution set can be interpreted graphically as the intersection of 
three planes. When this intersection consists of a single point, the equations 
of the system are said to be consistent and independent. Refer to Figure 6.2.1, 
which shows three planes whose intersection is a single point. As we proceed 

with the discussion,we shall show other possible relative positions of three 
planes. 

Algebraic methods for finding the solution set of a system of three linear 
equations in three variables are analogous to those used to solve systems of 

linear equations in two variables. 

SOLUTION 
We solve the first equation for x and substitute the resulting expression for x 

in the second and third equations; doing this, we have the equivalent system 

x=y+4z+4+3 

2(y + 42 + 3) = 3y + 2z =0 

2(y + 4z2+3)-— y+2z=2 

or, equivalently, 

y + 10z = —6 
x=y+4z4+3 

4 per Lz 
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Solving the second equation for y and substituting the resulting expression 
for y in the third equation, we have the equivalent system 

x=y+4z43 

y= 102 +6 

(10z + 6) + 10z = —4 

or equivalently, 

y= 102 +6 

x=y+4z4+3 

20z = —10 

or, equivalently, 

x=y+4z+4+3 

y= 102 +6 

poe 
2 

Substituting the value of z from the third equation into the second equation, 
we have 

x=y+4z243 

nya==t | 

parma 
2 

Substituting the values of y and z from the second and third equations into 
the first equation, we have 

wl 

This latter system is equivalent to the given system. Hence the solution set of 
the given system is {(2, 1, —4)}. 

The solution can be checked by substituting into each of the given equa- 
tions. Doing this, we have 

4—3-1=0 

4—1]—1=2 

The equations of the given system are consistent and independent. 
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EXAMPLE 2 

Find the solution set of the system 

4x — 2y — 3z = 8 

(II) 5x + 3y —4z =4 

6x — 4y —5z = 12 

SOLUTION 

We first obtain an equivalent system in which the second and third equations 
do not involve the variable x. To eliminate x between the first two equations, 

we observe that the coefficient of x in the first equation is 4 and it is 5 in the 
second equation. Therefore, we replace the second equation by the sum of 5 

times the first equation and —4 times the second equation. To eliminate x 
between the first and third equations we replace the third equation by the sum 
of 6 times the first equation and —4 times the third equation. We have the 
equivalent system 

4x — 2y — 3z = 8 
S(4x — 2y — 3z) — 4(5x + 3y — 4z) = 5(8) + (—4)(4) 
6(4x — 2y — 3z) — 4(6x — 4y — 5z) = 6(8) + (—4)(12) 

or, equivalently, 

—22y + z=24 

4x — 2y —3z=8 

4y + 2z =0 

We now wish to obtain an equivalent system in which we have an equation 
containing only one variable. Because the coefficient of y in the second 

equation is —22 and in the third equation it is 4, we can obtain an equation 

not involving y by replacing the third equation by the sum of 2 times the 
second equation and 1] times the third equation. We have 

4x — 2y —3z =8 

—22y+ z=24 

2(—22y + z) + IN(4y + 2z) = 2(24) + (11)(0) 

or, equivalently, 

(II) hy By yn 
4x — 2y —3z=8 

bpd) 

Substituting the value of z from the third equation into the second equation, 
we have 

Vesa 
es 

ae 

Substituting the values of y and z from the second and third equations of this 
latter system into the first equation, we have 

a 

(IV) y= -l 
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System (IV) is equivalent to system (II). Hence the solution set of system (II) 

is {(3, —1, 2)}. 

The solution set of system (II) can be found by working with combinations 

of equations other than those used in Example 2. The procedure followed in 

Example 2 is a methodical one, and it consists of obtaining an equivalent 

system in what is called triangular form, which is of the form of system (III). 

When a system is in triangular form, it is a simple matter to obtain an 

equivalent system like system (IV), which is the eventual goal. 

In the next illustration we have a system of three linear equations in three 

variables where the equations are inconsistent. We show what happens when 

we try to solve such a system. 

ILLUSTRATION 1. Suppose that we have the system 

2x+ y-— z=2 

(Vv) 4+ Oy adel 
5x + y—7z=4 

We can replace this system by an equivalent one for which two of the 

equations do not involve x. Because the coefficient of x in the first equation is 

2 and it is 1 in the second equation, we replace the second equation by the 

sum of | times the first equation and —2 times the second equation. To 
eliminate x between the first and third equations, we replace the third 
equation by the sum of 5 times the first equation and —2 times the third 
equation. We obtain the following system equivalent to system (V). 

2x+y—-z=2 

\(2x +y—z) —2( x + 2y + 4z) = 122) + (—2)()) 

5(2x +y —z)— 26x + y —7z) = 52) + (-—2)4) 

or, equivalently, 

2x + Va ee S12 

ey 92 = 2 

Replacing the third equation by the sum of the second equation and the third 
equation, we have the equivalent system 

2x ++y— z=2 

(<3 yr 92) ery + 92) = 0-42 
or, equivalently, 

(VI) —3y —9z =0 
2x+y- z=2 

O=2 
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Ute ie 
(a) (b) 

NN e 
(c) (d) 

Figure 6.2.2 

We see that the solution set of system (VI) is the empty set, @, because there 
is no ordered triple (x, y, z) for which the third equation is a true statement. 
Therefore, the solution set of system (V) is @, and the three equations are 
inconsistent. e 

In Section 6.1, it was shown that when we have a system of two inconsistent 

linear equations in two variables, the graphs of the two equations are parallel 

lines. For a system of three inconsistent linear equations in three variables, 
the graphs of the three equations are planes that have no common intersec- 
tion. The various possibilities for such a situation are shown in Figure 6.2.2 

(a), (b), (c), and (d). In (a), the three planes are parallel. In (b), two of the 

planes are the same plane, and the third plane is parallel to it. In (c), two of 
the planes are parallel, the intersection of each of these planes with the third 
plane is a line, and the lines are parallel. In (d), no two planes are parallel, 

but two of the planes intersect in a line that is parallel to the third plane. 

ILLUSTRATION 2. Consider the system 

2x+2y— z=4 

(VII) 6x + 8y —5z =6 
4x + 5y —3z =5 

Replacing the second equation by the sum of 3 times the first equation and 
— | times the second equation, and replacing the third equation by the sum 
of 2 times the first equation and —1 times the third equation, we have the 

equivalent system 

2x+2y—-— z =4 

3(2x + 2y — z) — 1(6x + 8y — Sz) = 3(4) + (—1)(6) 

2(2x + 2y — z) — 1(4x + 5y — 3z) = 2(4) + (—1)(5) 

or, equivalently, 

2x +2y— z=4 

—2y +2z =6 

=Voqr 2 3 

We now replace the third equation by the sum of | times the second equation 

and —2 times the third equation, and we obtain the equivalent system 

2x +2y—z=4 

I(—2y + 2z) — 2(—y +z) = 1(6) + (—2)(3) 

or, equivalently, 

(VIII) wz = —3 
== 

Or 70 
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The third equation of system (VIII) is an identity because it is a true 

statement for any ordered triple (x,y,z). In particular, it is true for the 

ordered triple (0, 0, 7) where ¢ is any real number. Therefore, if in system 

(VIII) we replace the third equation 0 = 0 by the equation z = #, we will 

have an equivalent system in triangular form. We have then the system 

2x +2y—z=4 

(IX) y-z=-3 

ah 

We substitute the value of z from the third equation into the second equation, 

and we obtain 

y=t-—3 

Zee 

eaaeee 

We now substitute the values of y and z from the second and third equations 

into the first equation, and we have 

ee ule anew 
y=t-—3 

ZO 

or, equivalently, 

y=t— 3 

gS 

Po yet 

or, equivalently, 

x = —4$145 
Y= 13 

Zama 

Therefore, any ordered triple of the form (—4¢ + 5, ¢ — 3, 4) is a solution of 

system (IX), or, equivalently, system (VII). Therefore, the solution set of 

system (VII) is 

{(—41 + 5,¢ —3,0|t € R} 

This is an infinite set and by assigning an arbitrary value to ¢ we get an 

ordered triple in the set. Assigning to 7 the values 0, 1, 2, 4, —1, —2, andi—4 

we obtain, respectively, these ordered triples: (5, —3, 0), (3, —2, 1), 

(4, —1, 2), (3, 1,4), @, —4, —1), (6, —5, —2), and (7, —7, —4). e 

The solution set of system (VII) is an infinite set because the equations are 

dependent. Notice that the sum of 2 times the third equation and —1 times 
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EXERCISES 6.2 
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(a) (b) (c) 

Figure 6.2.3 

the first equation gives the equation 

2(4x + 5y — 3z) — 1(2x 4+ 2y — z) = 2(5) + (—1)(4) 

6x + 8y —5z =6 

which is the second equation. 
For a system of three dependent linear equations in three variables, the 

graphs of the three equations are either three planes having a line in 

common, or else they are the same plane. The various possibilities are shown 
in Figures 6.2.3 (a), (b), and (c). In (a), the graphs are three distinct planes 

having a line in common. In (b), two of the planes are identical, and the third 

plane intersects them in a line. In (c), the three planes are identical. 

In Exercises 1 through 12, find the solution set of the given system of equations. If the 
equations are either inconsistent or dependent, then so indicate. 

IE = Wes SAB a 

4x +3y4+ z= 15 

1 

2x —2y+ z=4 

3x + yt 3z 

3x +2y— z=4 

4 = 

6x — 3y — 2z = —6 

x +7y + 6z = —7 

2x — 3y —5z =4 
7 

7x —2y —9z =6 

2x+3y+ z2=8 Xe yy 132 = 2 

2. ;9x + 2y — 3z = —13 Sra 2) ee 

ey + 52 = 15 Ge a 

x+5( y—2) =I 
; 3x —2y +42 =4 

5. Netty ica ao 6 j7x +5y-— z=9 

x+9y—9z=1 

z= TQx — nape 

3x —5y +2z = —2 x— y+5z=2 

8 2x + 3z = —3 ES GLE oO ND aera os) 
4y —3z =8 3x —2y+4z=1 
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Aijeth lay atl gall Jw lee 

5x —4y + 5z=6 : : F ‘ ; 

fore oo aes I. j>-—+5=12 Diss coe 
4x — 9y + 12z =5 5 % ; i 

—4++4—=9 —4+=4—=5 
ea gS 2 x ny wee 

In Exercises 13 and 14, show that the given system has an infinite number of solutions in 

the solution set and use the variable t to express the solution set as an infinite set of 
ordered pairs. Then assign the values 0, 1, 2, —1, and —2 to t and find five ordered 

triples in the solution set. 

B ae alee ar 14 are Conn 
3x8 Sy--iz 1h ey 47 = 3 

In Exercises 15 through 18, determine if the equations are consistent or inconsistent. To 
show they are inconsistent, solve a system of three of the equations and show that no 
member of the solution Set satisfies the fourth equation. To show that they are consistent, 
find the solution set. 

2x + y+3z= —4 

x —4y —2z =3 

fe: 4x —2y+ z=4 

5x + 3y + 42 =5 

2x + 4y + 3z =5 

17. x —4y —2z=7 

4x —3y+5z=2 

2x +3y— z=5 

4x — 3y + 3z =5 
ke 3x + y+4z=2 

x—2y4+ z=1 

x— y—4z=0 
1s. | ~~ y+2z=6 

3x + y—5z= -1 

3x + 2y + 4z =8 Pee) ae ee) 

6.3 Word Problems In our previous discussions of word problems it was necessary to represent 
each of the unknown numbers by symbols using only one variable. We now 
can apply systems of equations to solving word problems and represent each 
of the unknown numbers by a different variable. You will see that some 
problems which can be solved by using a system of linear equations in two 
or more variables can also be solved by using a single linear equation in one 
variable. By assigning a separate variable to represent each unknown num- 
ber, it is usually easier to form an equation. However, remember that it is 
necessary to have as many independent equations as there are variables. 
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EXAMPLE 1 

Three pounds of tea and 8 pounds of 
coffee cost $26, and 5 pounds of tea 

and 6 pounds of coffee cost $27.20. 
What is the cost of 1 pound of tea 
and what is the cost of 1 pound of 
coffee? 

EXAMPLE 2 

A college rowing team can row 2 

miles downstream in 8 minutes, but 

SOLUTION 

Let x represent the number of cents in the cost of 1 pound of tea and y 
represent the number of cents in the cost of 1 pound of coffee. 

Because the number of cents in the cost of 3 pounds of tea plus the number 
of cents in the cost of 8 pounds of coffee is 2600, we have the equation 
3x + 8y = 2600. Because the number of cents in the cost of 5 pounds of tea 

plus the number of cents in the cost of 6 pounds of coffee is 2720, we have the 
equation 5x + 6y = 2720. Thus we have the system of equations 

lee + 8y = 2600 

5x + 6y = 2720 

Replacing the second equation by the sum of 5 times the first equation and 
—3 times the second equation, we have the equivalent system 

3x + 8y = 2600 

5(3x + 8y) — 3(5x + 6y) = 5(2600) + (—3)(2720) 

Simplifying the second equation, we obtain 

ee + 8y = 2600 
22y = 4840 

Solving the second equation for y, we have 

tie + 8y = 2600 

Substituting 220 for y in the first equation, we have 

ie + 1760 = 2600 

Solving the first equation for x, we obtain 

(* = 30) 

Therefore, (x, y) = (280,220). Hence the price per pound of tea is $2.80 and 

the price per pound of coffee is $2.20. 

CHECK: The value of 3 pounds of tea at 280 cents per pound is 840 cents, 
and the value of 8 pounds of coffee at 220 cents per pound is 1760 cents; 

840 + 1760 = 2600. The value of 5 pounds of tea at 280 cents per pound is 
1400 cents, and the value of 6 pounds of coffee at 220 cents per pound is 1320 
cents; 1400 + 1320 = 2720. 

SOLUTION 

Let x represent the number of miles per hour in the rate of rowing in still 

water, and let y represent the number of miles per hour in the rate of the 
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it takes 12 minutes for the team to 

row the same distance upstream. 

How fast can the team row in still 

water, and what is the rate of the 

current? 

Table 6.3.1 

Number of Hours Number of Miles per _ Number of Miles 

in Time Hour in Effective Rate ~~ in Distance 

Downstream % x+y #&(x + y) 

Upstream 4 x—y 4(x% = y) 

current. Table 6.3.1 gives expressions involving x and y for the number of 

miles in the distance each way. 

The number of miles in the distance traveled each way can be represented 

by either 2 or one of the entries in the last column of Table 6.3.1. Therefore, 

we have the system of equations 

2 = 
mia: + y) =2 

F(x = y) — 

or, equivalently, 

x — y= 10 

We replace the first equation by the sum of the first equation and the second 

equation. Also, we replace the second equation by the sum of the first 

equation and —1 times the second equation. We have then the equivalent 

system 

ears 

yt 

or, equivalently, 

Thus the team can row 124 miles per hour in still water, and the rate of the 

current is 24 miles per hour. 

CHECK: The effective rate downstream is 15 miles per hour, and therefore 
the team can row 2 miles down the river in 8 minutes. The effective rate 
upstream is 10 miles per hour, and therefore the team can row 2 miles up the 

river in 12 minutes. 
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EXAMPLE 3 

Two people began a certain job on 

Monday and the work was to be 
completed on Tuesday. On Monday 
the first person worked for 10 hours 

and the second person worked for 8 
hours, and one-half of the job was 

done. On Tuesday the first person 
had to stop working after only 5 
hours, and the second person had to 
work a total of 12 hours to complete 

the job. How long would it have 
taken each person alone to do the 

whole job? 

SOLUTION 
Let x represent the number of hours it would have taken the first person 
alone to do the whole job, and y represent the number of hours it would have 

taken the second person alone to do the whole job. The rate of work of the 

first person is au of the job per hour, and the rate of work of the second 
Bx; 

person is ue of the job per hour. In Table 6.3.2 we obtain the fractional part of 
y 

the work done by each person on each day. 

Table 6.3.2 

Number of Fractional Part 
Rate of Work x = 

Hours Worked of Job Done 

First person ah 10 10 
on Monday % x 

Second person a 8 o. 

on Monday y y 

First person al 5 = 

on Tuesday x x 

Second person a 12 4d 
on Tuesday y 

Because the two people do one-half of the job on Monday, the sum of the 

entries in the last column and the first two rows is 4. Also, the two people do 

one-half of the job on Tuesday, and therefore the sum of the entries in the 
last column and the last two rows is also 4. Hence we have the system of 

equations 

10 oh ale 

ee Wien 

iy ee 
ea 

To solve this system, we treat the variables as J and a as we did in Example 
x 

4 of Section 6.1. We replace the first equation by the sum of | times the first 

equation and —2 times the second equation, and we have the equivalent 

system 

(+8) 2 +B) =1@) rea) 
viens 
ed 
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Simplifying the first equation, we have 

or, equivalently, 

or, equivalently, 

or, equivalently, 

or, equivalently, 

en) 

Thus the first person can do the whole job alone in 40 hours, and the second 

person can do the whole job alone in 32 hours. 

CHECK: On Monday the fractional part of the job done by the first person 

is 42 or 4, and the fractional part of the job done by the second person is + 

or 4; and 4 + 4 =4. On Tuesday the fractional part of the job done by the 
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EXAMPLE 4 

A man has a total of $15,000 in three 

investments. One of the investments 

consists of bonds that pay 6 per cent 
annual interest, another is a savings 

account that pays 5 per cent annual 
interest, and the third is a business. 

Two years ago the business lost 3 per 
cent and his net income from the 

three investments was $550. Last 

year the business earned 9 per cent 
and his net income from the three 

investments was $910. How much 

does he have in each of the invest- 

ments? 
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first person is 2, or 4, and the fractional part of the job done by the second 

person is #2 or 3; and 3 + 3 = 3. 

SOLUTION 
Let x represent the number of dollars invested in bonds, let y represent the 

number of dollars invested in the savings account, and let z represent the 

number of dollars invested in the business. 
Because there is a total of $15,000 invested, we have the equation 

x + y +z = 15,000. Each year the sum of the income from the bonds and 

the savings account is given by 0.06x + 0.05y. However, because two years 

ago the business lost 3 per cent and the net income was $550, we have 

the equation 0.06x + 0.05y — 0.03z = 550. Furthermore, because last year 
the business earned 9 per cent and the net income was $910, we have the 
equation 0.06x + 0.05y + 0.09z = 910. We have then the following system 
of equations, where the second and third equations are obtained by multi- 

plying both members of each of the corresponding equations by 100. 

x+y +z = 15,000 
6x + 5y — 3z = 55,000 
6x + 5y + 9z = 91,000 

Replacing the third equation by the sum of | times the third equation and 

—1 times the second equation, we have the equivalent system 

x+ y+ z= 15,000 

6x + Sy — 3z = 55,000 
122-="30,000 

Replacing the second equation by the sum of 6 times the first equation and 
— 1 times the second equation, and solving the third equation for z, we have 

the equivalent system 

x+y +4+z = 15,000 

6(x + y +z) — 1(6x + S5y — 3z) = 6(15,000) + (—1)(55,000) 
Ze 3000 

or, equivalently, 

y + 9z = 35,000 
x+y+ z= 15,000 

Z = 3000 

Substituting 3000 for z in the second equation and solving for y, we have the 

equivalent system 

x +y +z = 15,000 

z = 3000 
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EXAMPLE 5 
A group of 14 people spent $28 for 
admission tickets to Cinema One, 

charging $2.50 for adults, $1.50 for 
students, and $1 for children. If they 
had attended Cinema Two, charging 
$4 for adults, $2 for students, and $1 

for children, they would have spent 
$42 for admission tickets. How many 
adults, how many students, and how 

many children were in the group? 

Substituting 8000 for y and 3000 for z in the first equation, and solving for x, 

we have the equivalent system 

x = 4000 

y = 8000 

Za O00 

Therefore, $4000 is invested in bonds, $8000 is in the savings account, and 

$3000 is invested in the business. 

CHECK: $4000 + $8000 + $3000 = $15,000. Two years ago the income 

from the bonds was $240, the income from the savings account was $400 and 

the loss from the business was $90; hence the net income was 

$240 + $400 — $90 = $550. Last year the income from the bonds was 

$240, the income from the savings account was $400, and the income 

from the business was $270; therefore, the net income was 

$240 + $400 + $270 = $910. 

SOLUTION 
Let a, s, and c represent, respectively, the number of adults, the number of 

students, and the number of children in the group. Then because there were 

14 people in the group, a + s + c = 14. Because Cinema One charges $2.50 

for adults, $1.50 for students, and $1 for children, and the total for admission 

tickets to Cinema One was $28, we have the equation 2.5a + 1.5s +c = 28 

or, equivalently (if we multiply by 2 to eliminate the decimals), 

5a + 3s + 2c = 56. Because Cinema Two charges $4 for adults, $2 for 

students, and $1 for children, and the total for admission tickets to Cinema 

Two was $42, we have the equation 4a + 2s + c = 42. We have then the 

system of equations 

5a) fs 4126 = 56 

4a+2s+ c= 42 

a+ s+ c=14 

(I) 

Replacing the second equation by the sum of 5 times the first equation and 

—1 times the second equation, and replacing the third equation by the sum 

of 4 times the first equation and —1 times the third equation, we have the 

equivalent system 

a+ s+ c=14 

Dy te she = Me! 

Dg tb Be = Ie! 

Replacing the third equation by the sum of | times the second equation and 
—1 times the third equation, we have the equivalent system 

“its Gb Cs IV! 

(II) 2s +3c = 14 
OF=20 



6.3] Word Problems 353 

The third equation of this system is an identity because it is a true statement 

for any ordered triple (a, s, c). In particular it is true for the ordered triple 
(0, 0, 7) and so in system (II) we replace the third equation by the equation 
c =¢ and we have the equivalent system 

“es gds eS iia 

Ds ts Be 14 

Caaf 

Substituting the value of c from the third equation into the second, and 
solving for s, we have 

— 3 
Ss = ol 

a+s+c=14 

Cae 

We now substitute into the first equation the values of s and c, and we have 

a+(7—3t)+t=14 
s=7 —3t 

Cai) 

or, equivalently, 

(IIT) | 

System (III) is equivalent to system (I), and so the equations of system (I) are 

dependent. It follows that a solution of system (I) is an ordered triple of the 
form (7 + 31, 7 — 3t, t). Becase a, s, and c must represent nonnegative 
integers, each of the numbers ¢, 7 — 3, and 7 + 4¢ must be nonnegative 

integers. If¢ = 0,7 —3¢ =7,and7 + 4t = 7. Hence (7, 7, 0) is a solution. If 

t= 1,7 —$t =Yand7 + 4t = ¥; thust = 1 doesnot give a solution to the 
problem. If ¢ = 2, 7 —31=4, and 7 +41 = 8. Therefore, (8, 4,2) is a 
solution. If ¢ = 3, both 7 — 3 and 7 + 4¢ are not integers and so rt = 3 does 
not give a solution. If ¢ = 4,7 — 3 = 1, and7 + 4¢ = 9. Hence (9, 1, 4) isa 

solution. If ¢ is an integer greater than 4, 7 — 3r is a negative number. 
Therefore, the solution set is {(7, 7, 0), (8, 4, 2), (9, 1, 4)}. Thus there are three 

possible combinations of people in the group: seven adults, seven students, 
and no children; eight adults, four students, and two children; or nine 

adults, one student, and four children. 

™ 

Sa 

lI 

~~ 

+ 

bolto Dole 
~ 

CHECK: If seven adults, seven students, and no children are in the group, 

the number of dollars in the total cost of admission tickets to Cinema One is 

(2.5)(7) + (1.5)7 = 28, and the number of dollars in the total cost of admis- 

sion tickets to Cinema Two is (4)(7) + (2)(7) = 42. If eight adults, four 

students, and two children are in the group, the number of dollars in the total 
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cost of admission tickets to Cinema One is (2.5)(8) + (1.5)(4) + (DQ) = 28, 

and the number of dollars in the total cost of admission tickets to Cinema 

Two is (4)(8) + (2)(4) + (1)(2) = 42. If nine adults, one student, and four 

children are in the group, the number of dollars in the total cost of admission 

tickets to Cinema One is (2.5)(9) + (1.5)(1) + (1)(4) = 28, and the number 

of dollars in the total cost of admission tickets to Cinema Two iS 

(4)(9) + (2)) + (A) = 42. 

EXERCISES 6.3 

1 Two pounds of India tea and 5 pounds of China 

tea can be purchased for $16.72, and 3 pounds of 

India tea and 4 pounds of China tea cost $16.96. 

What is the price per pound of each kind of tea? 

. The cost of sending a telegram is based on a flat 

rate for the first 10 words and a fixed charge for 

each additional word. If a telegram of 15 words 

costs $4 and a telegram of 19 words cost $5.08, 

what is the flat rate and what is the fixed charge for 

each additional word? 

. A group of women decided to contribute equal 

amounts toward obtaining a speaker for a book 

review. If there were ten more women, each would 

have paid $2 less. However, if there were five less 

women, each would have paid $2 more. How many 

women were in the group and how much was the 

speaker paid? 

. A woman has a certain amount of money invested. 

If she had $6000 more invested at a rate of | per 

cent lower, she would have the same yearly income 

from the investment. Furthermore, if she had 

$4500 less invested at a rate 1 per cent higher, her 

yearly income from the investment would also be 

the same. How much does she have invested, and 

at what rate is it invested? 

. An airplane flying at its normal speed in still air 

against a wind of 40 kilometers per hour covers a 

certain distance in 1 hour and 30 minutes. On the 

return trip the plane flies at its normal speed in still 

air, but with the aid of a tail wind of 30 kilometers 

per hour, the plane covers the same distance in | 

hour and 20 minutes. What is the normal speed of 

the plane in still air and what is the distance trav- 

eled each way? 

10. 

11. 

12. 

_ If the numerator and denominator of a fraction are 

each increased by 3, the resulting fraction is equiv- 

alent to 3. However, if the numerator and denomi- 

nator are each decreased by 3, the resulting frac- 

tion is equivalent to 3. What is the fraction? 

. If either 4 is added to the denominator of a frac- 

tion or 2 is subtracted from the numerator of the 

fraction, the resulting fraction is equivalent to 3. 

What is the fraction? 

. A rowing team can row 4 kilometers down a river 

in 8 minutes, but it takes the team 12 minutes to 

row the same distance up the river. How fast can 

the team row in still water and what is the rate of 

the current? 

. It takes a man 23 minutes longer to jog 5 miles 

than it takes his son to run the same distance. 

However, if the man doubles his speed, he can run 

the distance in 1 minute less than his son. What is 

the man’s rate of jogging and what is the son’s rate 

of running? 

The distance between two automobiles is 140 kilo- 

meters. If the cars are driven toward each other, 

they will meet in 48 minutes. However, if they are 

driven in the same direction they will meet in 4 

hours. What is the rate at which each car is driven? 

If a girl works for 8 minutes and her brother works 

for 15 minutes, they can wash the front windows of 

their house. Also, if the girl works for 12 minutes 

and her brother works for 10 minutes, they can 

wash the same windows. How long will it take each 

person working alone to wash the windows? 

A large pipe and a small pipe are used to fill a tank 
and a third pipe is used to drain the tank. If all 
three pipes are open, it takes 2 hours to fill the 
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13. 

14. 

6. 
Quadratic Equations 

EXAMPLE Il 

Find the solution set of the system 

(1) 
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tank. If the large pipe and the drain are open and 
the small pipe is closed, it takes 4 hours to fill the 

tank. If the small pipe and the drain are open and 
the large pipe is closed, it takes 6 hours to fill the 
tank. How long will it take each pipe to fill the tank 
alone if the drain is closed, and how long will it 
take the drain to empty a full tank? 
One alloy contains 6 grams of copper, 4 grams of 
zinc, and 10 grams of lead. A second alloy contains 
12 grams of copper, 5 grams of zinc, and 3 grams 
of lead. A third alloy contains 8 grams of copper, 6 
grams of zinc, and 6 grams of lead. How many 
grams of each alloy should be combined in order 
to make a new alloy containing 34 grams of cop- 
per, 17 grams of zinc, and 19 grams of lead? 

Part of $25,000 is invested at 5 per cent, another 

part is invested at 6 per cent, and a third part is 
invested at 8 per cent. The total yearly income 
from the three investments is $1600. Furthermore, 

the income from the 8 per cent investment yields 
the same amount as the sum of the incomes from 

a Systems Involving 

15: 

16. 

17. 

the other two investments. How much is invested 

at each rate? 

An equation of a parabola, whose axis is parallel to 
the y axis, has the form y = ax? + bx +c. Find 

an equation of such a parabola if it contains the 
points (1, —1), (2, 3), and (3, 15). 

An equation of a circle is of the form x? + y? + 
ax + by +c =0. Find an equation of the circle 
that contains the points (—2, 8), (2, 6), and (—7, 3). 

On a store counter, there was a supply of three 

sizes of Christmas cards. The large cards cost 25 
cents each; the medium cards cost 20 cents each; 

and the small cards cost 15 cents each. A woman 

purchased ten cards, which consisted of one-fourth 
of the available large cards, one-third of the avail- 
able medium cards, and one-half of the available 

small cards. The total cost of her cards was $2.05. 

If there were 21 cards remaining on the counter 
after her purchase, how many of each kind of card 

did she buy? 

Until now, our discussion of systems of equations has been confined to 
systems of linear equations. Here we consider systems of two equations in 

two variables in which at least one of the equations is quadratic. Perhaps the 
simplest such system is one that contains a linear equation and a quadratic 
equation. In this case the system can be solved by the method of substitution. 
The linear equation can be solved for one variable in terms of the other and 
the resulting expression can be substituted into the quadratic equation, as 
shown in the following example. 

SOLUTION 

{ent eates2 

x—3y=-1 

We solve the second equation for y, and we obtain the equivalent system 

x2? —2y =2 

=x 1 

oT SS 
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Figure 6.4.1 

Replacing y in the first equation by its equal from the second equation, we 

have the equivalent system 

Dye 45D ope a ey 
3 

x 

or, equivalently, 

at = De = BS SO 

(II) 1 
y a 

We now solve the first equation. 

(3x + 4)(x — 2) =0 
Se oh 4b =O a0) 

4 
=-— = D x 3 a 

Because the first equation of system (II) is equivalent to the two equations, 

x = —4#and x = 2, system (II) is equivalent to the two systems 

x= it a ae 
3 
ey and racy 

— x _ 

ic ee: 

In each of the latter two systems we substitute into the second equation the 

value of x from the first equation, and we have 

4 
x= x II tv 

(II) and 
—_ 

ery 

pgs I 

System (I) is equivalent to systems (III). Thus the solution set of system (I) is 

{(—§, —4), 2, D}. 

Figure 6.4.1 shows sketches of the graphs of the two equations of system (1) 
on the same coordinate system. The graph of the first equation is a parabola, 
and the graph of the second equation is a line. The graphs intersect at the 
points (—#, —4) and (2, 1). 
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EXAMPLE 2 SOLUTION 

Find the solution set of the system | Solving the second equation for y and replacing y in the first equation by the 

24 y2 = 25 IV a aw 

Draw sketches of the graphs of the 
two equations on the same coordi- 
nate system. 

resulting expression, we have the equivalent system 

2 

x2 4 (==) = 
V 
Oy 25 — 3x 

ve 4 

We solve the first equation by first multiplying each member by 16. 

16x? + (625 — 150x + 9x?) = 400 

2o%71— 150x £225 = 0 

x? —6x+9=0 

(x —3)27=0 

Hence the roots of this quadratic equation are 3 and 3; that is, 3 is a double 
root. Therefore, system (V) is equivalent to the system 

oe 

235 — 3x 

mnt 4 
Substituting 3 for x in the second equation, we obtain 

aa, 

lL 
Thus the solution set of the given system (IV) is {(3, 4)}. 

Sketches of the graphs of the two equations of system (IV) are shown in 
Figure 6.4.2. We see that the line is tangent to the circle at the point (3, 4); 
this is the geometric significance of the double root. The point of tangency 
can be considered as two intersections of the line and the circle. 

Figure 6.4.2 
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EXAMPLE 3 
Find the solution set of the system 

Xe ys ee 

Draw sketches of the graphs of the 

two equations on the same coordi- 

nate system. 

SS iy 
5 

Figure 6.4.3 

SOLUTION 
Solving the second equation for x and replacing x in the first equation by the 

resulting expression, we have the equivalent system 

(y+ 4 +y? =2 
(VID x=y+4 

We solve the first equation for y. 

y? + 8y + 16+ y? =2 
2y? + 8y + 14=0 
y>+4v4+7=0 

_— =4= V4 = 4) 

le x1) 
—4+ yV-12 

2 

—4+2iV3 
2D, 

—2 +iV3 

Hence the first equation of system (VII) is equivalent to the two equations 
y = —2 +iV3andy = —2 — i V3. Therefore, system (VII) is equivalent to 

the two systems 

fae teaee ata Parte 
x=y+4 x=y+4 

In each of these two systems we substitute the value of y from the first 

equation into the second equation and we have 

(VIII) (Aree and Das eal 
x=2+ ny ey Ke iV3 

System (VI) is equivalent to systems (VIII). Thus the solution set of system 

(Vijis {19302 13) a) 3 ny 3) ). 
Sketches of the graphs of the two equations of system (VI) are shown in 

Figure 6.4.3. The line and the circle have no points of intersection. 

As in Example 3, when the solutions of a system of equations are ordered 
pairs of imaginary numbers, there are no points of intersection of the graphs 
that correspond to such solutions. This situation occurs because the coordi- 
nates of points in the real plane are real numbers. 
Theorem 6.1.2 provides us with a method for solving a system of linear 

equations. There is a corresponding theorem for systems of higher-degree 
equations, for which the proof is similar, but the theorem is not stated here. 
However, we apply this theorem in the following example, involving a system 

of two quadratic equations. 
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EXAMPLE 4 

Find the solution set of the system 

26 

OX eae 56 cs) alle 
Draw sketches of the graphs of the 
two equations on the same coordi- 
nate system. 

Figure 6.4.4 

SOLUTION 

We wish to replace the given system (IX) by one that has an equation 
containing only one variable. Because the coefficients of y? are —3 in the first 
equation and | in the second equation, we obtain an equation not involving 
y by replacing the second equation by the sum of | times the first equation 
and 3 times the second equation. We have the equivalent system 

2X77 3p" = 6 
1(2x? — 3y?) + 3(6x? + y?) = (1)(6) + (3)(58) 

Simplifying the second equation, we obtain 

(ae = 3)" == 6 
2x1 80) 

or, equivalently, 

DX 
(X) x2 = 9 

The second equation of system (X) is equivalent to the two equations x = 3 
and x = —3. Therefore, system (X) is equivalent to the two systems 

Pie BUS Ne ih oa Fe Sy = 6 pee tie yan 
i tea wS x = —3 

In each of these two systems we substitute into the first equation the value of 
x from the second equation, and we have 

mene. eh aes 
oS 3 a 

or, equivalently, 

yea 4 p a 
(XI) fF as and si Sta 

The first equation in each of systems (XI) is equivalent to the two equations 
y =2 and y = —2. Hence the two systems (XI) are equivalent to the four 
systems 

a=) y= 2 yea 2 ee 
Gul) 4 =5 iB == $3 fe =i5=3 x = —3 

The given system (IX) is equivalent to systems (XII). Therefore, the solution 
Sell system) (1X)iis.{(3, 2), G, —2), (—3, 2), (—3, —2)}. 

Sketches of the graphs of the two equations of system (IX) are shown in 
Figure 6.4.4. The graph of the first equation is a hyperbola and the graph of 
the second equation is an ellipse. The two graphs intersect at the four points 
G,2), (3, —2), (—3, 2), and (—3, —2). 
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In the next example we have a system of two quadratic equations in which 

the second equation involves three second-degree terms. Because the right 
member of the second equation is zero and the left member can be factored, 
the second equation is equivalent to two linear equations. Therefore, the 
given system is equivalent to two systems each consisting of a quadratic 
equation and a linear equation. 

EXAMPLE 5 SOLUTION 
Find the solution set of the system | We factor the left member of the second equation, and we obtain the 

x24 2 = 16 equivalent system 

—3xy+y?=0 x* py? = 16 

(2x — y)(x —y) =0 

Because the second equation is equivalent to the two equations 2x — y = 0 

and x — y = 0, the given system is equivalent to the two systems 

(paige 
2x —y=0 

(XIII) | ao 

x? +y — 16 
and | 

Xe), 

or, equivalently, 

Fe +y* = 16 ati (" +y? = 16 
es ee i 

In each of the latter two systems we substitute into the first equation the 
value of y from the second equation, and we have 

fas + 4x? = 16 es 4x? == 16 
and 

eS 28 YS 

or, equivalently, 

x? = 2 x= 8 

(XIV) Ne 

Vase X Vs 

The equation x? = 18 is equivalent to the two equations x = 41/5 and 

x = —#\/5. The equation x2 = 8 is equivalent to the two equations 
x =2\/2andx = —2,/2. Therefore, the two systems (XIV) are equivalent 

to the four systems 

x= iv5 x= —2V5 x=2\V2 x= —2y2 

ex Vaux. y=x y=x 
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EXAMPLE 6 

Find the solution set of the system 

(XV) 
2X2 xy 16 

12x? —y = By 

In each of these latter systems we substitute the value of x from the first 
equation into the second equation, and we have 

vais ~ V5 x = 2/2) Xe = 2/2 

pays -5V5 psy ib Soave S l| 

The solution set of the given system (XIII) is 

(E505) (45 $05) (v2.22) (-205--209] 
The system in the next example consists of two quadratic equations in 

which all the terms containing variables are of the second degree; that is, 
there are no first-degree terms. If one of the equations is replaced by a 
combination of the two equations in which no constant term appears, the 
system that results can be solved by the method used in Example 5. 

SOLUTION 
We replace the second equation by the sum of —2 times the first equation 
and | times the second equation, and we have the equivalent system 

| 2x? + xy = 16 
—2(2x? + xy) + 1(12x? — y*) = (—2)(16) + (1)2) 

Simplifying the second equation, we have 

2x2 + xy = 16 
8x? — Ixy — y? =0 

Factoring the left member of the second equation, we have 

2% xy — 16 

(2x — y)(4x + y) =0 

The second equation is equivalent to the two equations 2x — Va=i0eand 
4x + y = 0. Hence this latter system is equivalent to the two systems 

ee +xy = 16 ar ie +xy = 16 
2x = y= 0 4x +y=0 

or, equivalently, 

2 a i‘ + xy = 16 eae en + xy = 16 

i 2x y= —4x 
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EXERCISES 6.4 

In each of these two systems, if we substitute into the first equation the value 

of y from the second equation, we have 

Fos + 2x? = 16 fea — 4x? = 16 
and 

y= DX Y= aX, 

or, equivalently, 

x7 = 4 a 
(XVI) ’ | yee: and | ete 

The equation x? = 4 is equivalent to the two equations x = 2 and x = —2, 

and the equation x? = —8 is equivalent to the two equations x = 2i \/2 and 

x = —2i V2. Thus the two systems (XVI) are equivalent to the four systems 

esas ee ea eon 

P= IN VS yo —4x yo —4x 

If in each of these systems we substitute in the second equation the value of 

x from the first equation, we have the equivalent systems 

52 ey ee x =2iV2 x= —2iV2 

eS FF ey B neta F Eas E = giv2 

The given system (XV) is equivalent to systems (XVII). Therefore, the 

solution set of system (XV) is {(2,4), (—2, —4), (2iV2, —8i V2), 

(—2i V2, 81 V2)}. 

In Exercises 1 through 24, find the solution set of the given system of equations. In 

Exercises 1 through 8 and 11 through 14, draw sketches of the graphs of the equations 

and obtain approximate values for the coordinates of the points of intersection. 

1 | Ky 5 
x—-y+1=0 

4. Laer ot 
2x+y=6 

7 jouer, 

“(lx-y-—3=0 

10 ear ae 
: x+y+1=0 

x? — 2 = 15 
13. aie 

, a mee 3 (ee a 

" |x —2y = -2 “|x -2y=-1 

al x2 —y2=9 6. | 4x? + y? = 25 

“|lx+y—-5=0 "(2x +y+1=0 

: eae aa F lena eae 
: 8x +y —-7=0 x +2y=2 

xe+y=4 4x2 + y? = 17 un (Stes 2 Are! 
xeee y= 25 ean ey 

14. | Sp = x? + 4y? = 64 
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Pee + 2y? = 59 7 te Sy 9 18 pc apt! 6 
2x? + A J ye as SSO Ope a= Ay? = 36 

x? —xy +4=0 xy ay = 0 10x? — xy + 4y? = 28 
12: tee By ae 20. van 21. is =o =e 

Ed hi slecth ra 
y ee — 5xy + 3y? = 24 aa yu Me ee 

" (2x? — 3xy + 2y? = 16 ba | ee? i eee 
ae oo a oe a8 y x y 

25. The sum of the reciprocals of two numbers is 4 29. A cyclist traveled a certain distance at his usual 

26. 

27. 

28. 

6 
Inequalities and 

and their product is 60. Find the numbers. 
The sum of the squares of two numbers is & and 
the sum of 6 times the smaller number and 4 times 
the larger number is 3. Find the numbers. 
A group of students planned a field trip and agreed 
to contribute equal amounts toward the transpor- 

tation costs of $150. Later five more students de- 
cided to go on the trip and the transportation cost 
for each student was reduced by $1.50. Find the 
number of students who actually made the trip and 
the amount each paid for transportation. 
Find the dimensions of a rectangle whose perime- 
ter is 40 centimeters and whose area is 96 square 
centimeters. 

me) Systems of 

Introduction to Linear 

Programming 

speed. If his speed had been 2 miles per hour 
faster, he would have traveled the distance in 1 

hour less time. If his speed had been 2 miles 
per hour slower, he would have taken 2 hours 

longer. Find the distance traveled and his usual 
speed. 

. A piece of tin is in the form of a rectangle whose 
area is 486 square centimeters. A square of side 3 
centimeters is cut from each corner, and an open 
box is made by turning up the ends and sides. If 
the volume of the box is 504 cubic centimeters, 
what are the dimensions of the piece of tin? 

Two intersecting lines divide the points of the plane into four regions. Each 
of these regions is the intersection of two half planes and is defined by a pair 
of linear inequalities. 

ILLUSTRATION 1. The two inequalities 

6x —y—5>0 and 4x +3y —7>0 

define the region that is the intersection of the half plane below the line 
y = 6x — 5 and the half plane above the line y = —4x + 4 This region is 
shaded in Figure 6.5.1. 
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EXAMPLE 1 
Draw a sketch of the region defined 

by the following inequalities. 

2x —y+6>0 

Key Oy 300 
Sey) 

y 64 =) 10 

4x + 3y—7=0 

Figure 6.5.1 

The next example gives a region defined by a system of three linear 

inequalities. 

SOLUTION 
Each of the inequalities defines a half plane, two of which are closed. Let L, 
be the line having the equation 2x — y + 6 = 0, L, be the line having the 
equation x +6y—23=0, and L, the line having the equation 
5x — 9y +2 = 0. The lines L, and L, intersect at the point P(—1, 4), L, and 
L, intersect at Q(—4, —2), and L, and L, intersect at R(5, 3). Refer to Figure 
6.5.2. The first inequality y < 2x + 6 defines the half plane below line L, 
together with L,. The inequality y << —4x + #3 defines the half plane below 

L,, and the inequality y > 3x + 2 defines the half plane above L, together 
with L,. The region, whose points satisfy all three inequalities, consists of the 
interior of the triangle POR and the points on the line segments OP and QR, 

excluding the points P and R. 

Figure 6.5.2 
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EXAMPLE 2 
Draw a sketch of the region defined 
by the following system of inequali- 
ties. 

x?-~5<y<5—-—? 

ea) 

EXAMPLE 3 

When flying economy class from the 
United States to Europe, a passenger 
is allowed to check, without addi- 

tional cost, two pieces of luggage 
with the following restrictions: the 
sum of the three dimensions (length, 

width, and height) of the larger piece 
of luggage must not exceed 62 
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In the following example we have a region defined by a system of four 
inequalities in which two of the inequalities are quadratic and two are linear. 

SOLUTION 
The given system of inequalities is equivalent to the system of the following 
four inequalities. 

Ae ey 5 Xe eal Ke — | 

The graph of the inequality x* — 5 <y consists of the points on the 
parabola y = x? — 5 and the points above the parabola. The graph of the 
inequality y < 5 — x? consists of the points on the parabola y = 5 — x? and 

the points below the parabola. The graph of the inequality x > | is the half 
plane lying to the right of the line x = 1, and the graph of the inequality 
x < —1is the half plane lying to the left of the line x = —1. The graph of 
each of these inequalities is shaded in Figure 6.5.3, and the triple-shaded 
region in the figure is the one required. 

Figure 6.5.3 

SOLUTION 
(a) Both x and y must be positive, and x must be greater than y and less than 

or equal to 2y. Therefore, we have the inequalities 

x 0 (1) 

ye 0 (2) 

ay (3) 

x < dy (4) 
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inches, and the total dimensions of Because x + y + 20 must be less than or equal to 62, we have the 

the two pieces must not exceed 106 inequality 

inches. (a) Suppose that the height < 42 5 
of the larger piece of luggage is 20 — 0) 

inches, and the length is greater than The lines associated with inequalities (1) through (5) are designated by 

the width but not more than twice L,, L», Lz, Ly and L;, respectively. These lines have the equations 

the width. If the length is x inches 
and the width is y inches, what are 

the inequalities involving x and y? 

(bes Vee) Loe ay = (be ow Se 5) 

Mg» ex es Lee ye 42 

Show on a graph the region of per- Lines L,, Ly, Ls, and L, intersect at the origin. The x intercept of L; is 

missible values of x and y. (b) Sup- 42 and the y intercept of L, is also 42. If we solve simultaneously the 

pose that the sum of the three di- equations for L, and L;, we obtain the point of intersection P12 

mensions of the larger piece of The point of intersection of L, and L, is Q(28, 14). Figure 6.5.4 shows the 

luggage is 58 inches. Furthermore, five lines. 

the height of the smaller piece is 12 Inequality (3) defines the half plane below line L, and inequality (4) 

inches and the length is to be greater defines the closed half plane above line Ly. The inequality y < 42 — x, 

than the width but not more than 10 which is equivalent to inequality (5), defines the closed half plane below 

inches greater. If x inches is the L;. The region, whose points satisfy all five inequalities, consists of the 

length and y inches is the width, interior of the triangle OPQ and the points on the line segments OQ and 

what are the inequalities involving x OP excluding the origin and the point P. 

and y? Show on a graph the region 
of permissible values of x and y. y 

Figure 6.5.4 Figure 6.5.5 

(b) The length and width must be positive, x must be greater than y, and x 
must be less than or equal to y + 10. We have then the inequalities 

x6 SO) (6) 

pee al (7) 

x > y (8) 

x < prhelo (9) 
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EXAMPLE 4 

Find the region, if there is one, 

whose points satisfy each of the fol- 

lowing inequalities. 

xa (11) 

y>o (12) 
4x —3y —12 <0 (13) 

2x —y—4<0 (14) 

x+y-7<0 (15) 
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Because the sum of the three dimensions of the larger piece of luggage is 
58 inches and the height of the smaller piece is 12 inches, it follows that 
x + y must be less than or equal to 106 — (58 + 12). Therefore, we have 
the inequality 

Bete 30 (10) 

The lines Lg, L;, Ly, Lo, and Ly, are associated with inequalities (6) 
through (10), respectively, and they have the equations 

1584 DHA Le iy = 9 De). 

Le x= y +10 ee VO 

Lines L,, L,, and L, intersect at the origin and lines L, and L,, intersect 

at the point R(18, 18). Lines Ly and L,, intersect at the point $(23, 13). 
Line Ly intersects the x axis at the point 7(10, 0). See Figure 6.5.5. 
Inequality (8) defines the half plane below line Lg. Inequality (9) defines 
the closed half plane above line Ly. Inequality (10) defines the closed half 

plane below line L,). The region whose points satisfy the five inequalities 

(6) through (10) is the interior of the trapezoid ORST and the points on 
the line segments SR and TS excluding the points R and T. 

The following example demonstrates a procedure that can be extended to 
an arbitrary number of linear inequalities. 

SOLUTION 
Let lines L,, L,, Lz, L4, and L; have the following equations, which are 
obtained from inequalities (11) through (15), respectively. 

el 

Le ve= 0 

La: 4x = 3y — 12 =0 
[,: 2x —y—-4=0 

Ls: x +y—7=0 

We now determine if there are any points that satisfy all five of the 

inequalities. Solving simultaneously the equations for L, and L., we obtain 

the point of intersection P(1, 0). We check to see if the coordinates of this 

point satisfy inequalities (13), (14), and (15), and we see that they do. The 

coordinates of P then satisfy each of the five inequalities, and therefore P is 

in the required region. We find the point of intersection of L, and L, to be 
Q(1, —§). The coordinates of Q satisfy inequality (15) but not (14) and (12). 
Hence the point Q is not in the required region. 

Continuing, we see that L, and L, intersect at the point R(1, —2), and the 

coordinates of R satisfy inequalities (13) and (15) but not (12). Lines L, and L; 

intersect at the point S(1, 6) and the coordinates of this point satisfy the three 
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inequalities (12), (13), and (14). Therefore, the point S' is in the required 

region. Taking the equations in pairs, we have ten points of intersection. We 
see that the point of intersection of L, and L,, which is 7(2, 0), and the point 
of intersection of L, and L;, which is U(44, 4?) are in the required region. 
The remaining four points are not. Therefore, we have four points P, S, 7, 

and U, whose coordinates satisfy all five inequalities. We plot these four 

points and the five lines, as shown in Figure 6.5.6. Inequalities (11) through 
(15) define half planes, and the interior and sides of the quadrilateral PSTU 

give us all the points whose coordinates satisfy the given system. 

y 

Ls 

Figure 6.5.6 

Systems of linear inequalities, like the one in Example 4, occur in the fields 
of economics, business, statistics, science, and engineering, among others. In 

practice, many unknowns are usually involved, as well as a large number of 
inequalities, and electronic computers perform most of the computation. 
Before discussing an application of a system of linear inequalities, we define 
what is meant by a convex region. 

A region is said to be convex if and only if for every pair of points P and Q 
in the region, the line segment PQ lies entirely in the region. 

ILLUSTRATION 2. The shaded region in Figure 6.5.6 is convex. The region 
in Figure 6.5.7 is not convex because every point of the line segment AB 

shown in the figure is not in the region. e 

Suppose a merchant has a fixed amount of floor space available and a 

certain amount of money to invest in two different kinds of merchandise. 
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Figure 6.5.7 
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Knowing the cost and profit per unit of each kind of merchandise and the 
amount of floor space required for each unit, the dealer would be interested 
in determining the number of units of each kind he should stock, in order for 

his profit to be a maximum. Or suppose three customers, each having specific 
requirements, are to be serviced with goods from two warehouses whose 
capacities are fixed. Knowing the costs per unit of servicing each customer 

from each warehouse, it is desired to determine the amount of goods to be 

shipped to each customer from each warehouse, in order for the total cost of 

servicing to be a minimum. These are two decision problems that can be 
solved by methods referred to as mathematical programming. The independ- 
ent variables in such decision problems are called primary variables, and they 

are subject to restrictions which are called constraints. The problem involves 
maximizing Or minimizing a value of an algebraic expression involving the 
primary variables. When the constraints can be expressed as a system of 

linear inequalities, and the algebraic expression is linear, we have a problem 
in linear programming. 

We can solve a problem in linear programming involving two primary 
variables by geometric methods. We shall demonstrate this geometric method 
by an example because this will appeal to your intuition and aid you in 
understanding more complicated techniques. The geometric method involves 
first finding the set of all feasible solutions to the problem. By a feasible 
solution, we mean one which satisfies all the constraints. Each of the con- 

straints is an inequality, and the region common to the graphs of these 
inequalities is the set of all feasible solutions. In the case of two primary 

variables, this region is a polygon. To determine which feasible solution is the 
optimum (the “best”) solution, we make use of the following theorem, which 
we state without proof. 

In? Gb, @ E IR axial 

z=ax+by+c 

where (x, y) corresponds to a point in a closed convex polygonal region, then 
the values of x and y which maximize and minimize z occur at the vertices of 
the polygon. 

ILLUSTRATION 3. Suppose 

z= 9x — 3y + 10 

where x and y satisfy the five inequalities of Example 4. The set of all feasible 

solutions to the system of inequalities (11) through (15) consists of the points 
that are either in the interior or on the sides of the quadrilateral PSTU in 
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EXAMPLE 5 
A company manufactures two prod- 
ucts, A and B, and each of these 

products must be processed on two 
different machines. Product A re- 
quires 1 minute of work time per 
unit on machine | and 4 minutes of 
work time per unit on machine 2. 
Product B requires 2 minutes of 
work time per unit on machine | and 

3 minutes of work time per unit on 
machine 2. Each day 100 minutes 
are available on machine | and 200 

minutes are available on machine 2. 
To satisfy certain customers, the 
company must produce at least 6 
units per day of product A and at 
least 12 units per day of product B. 
If the profit of each unit of product 
A is $5 and the profit of each unit of 
product B is $6, how many units of 
each product should be produced 
daily in order to maximize the com- 
pany’s profits? 

Figure 6.5.6. By Theorem 6.5.2 the maximum and minimum values of z must 
occur at a vertex. We compute the value of z at each vertex. 

At (0, 1), z = 9(0) — 3d) + 10 At (1, 6), z = 9(1) — 3(6) + 10 

1 wi = 

At (2,0), z = 92) — 3(0) + 10 At (2.2), ye 9(2) ane (2) +10 
apes) 3 3 028 

: 33 

The maximum value of z occurs at (+, 42), and it is 33. The minimum 
value of z occurs at (1,6), and it is 1. e 

SOLUTION 
Let x represent the number of units of product A to be produced daily, and 

let y represent the number of units of product B to be produced daily. If P 
dollars is the company’s daily profit, then 

ae 6y 

We wish to maximize P subject to the following constraints. 

x 2) < 100 ae ee 00" x 6 Oy 12 (6) 

The set of all feasible solutions to the system of inequalities (6) consists of the 
points that are either in the interior or on the sides of the quadrilateral shown 
in Figure 6.5.8. The vertices of this quadrilateral are at the points (6, 12), 
(41, 12), (20, 40), and (6, 47). The maximum solution must occur at one of the 

vertices. We compute the value of P at each vertex. 

At (6, 12), P = 5(6) + 6(12) At (41, 12), P = 541) ae 6c 
a) 7G 

At (20, 40), P = 5(20) + 6(40) At (6,47), P = 5(6) + 6(47) 
— 340 5p 

S0}— (6, 47) 

(20, 40) 

(41, 12) 
(6, 12) 

Figure 6.5.8 
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Hence the maximum solution occurs at (20,40). The company should 

manufacture 20 units of product A and 40 units of product B daily to realize 
a maximum daily profit of $340. 

EXERCISES 6.5 

In Exercises 1 through 18, draw a sketch of the region (if any) defined by the given 
system of inequalities. 

20. 

21. 

22. 

~-y—2x<42x+y<4 

~2x+y>4y—2x>4 

~3+ycx<y-—4 
Meee ai yer 16 

~x—-y—-1<0x+y4+1>0,x-y+t1I>0x+y—-—1<0 
ux ye A 11s 6x < y, 4x + 5y < 29 

~xX?-y4+1<0x+y—-—4>0 

~x?-A<cy<4—y? 
wplOue art ye 30). |x| > 3 

If z = 4x + 3y, maximize z subject to the follow- 
ing constraints. 

x +2y <6 3x +y <8 ye aly) va. 0 

A company manufactures two products, A and B, 

and it requires three different machines to process 

each product. Product A requires 10 hours of time 
on machine M,, 6 hours of time on machine M,, 

and 12 hours of time on machine M,. Product B 
requires 10 hours of time on M,, 12 hours on Mg, 

and 4 hours on M,. If the profit of each unit of 
product A is $200 and the profit of each unit of 
product B is $360, how many units of each product 
should be produced in each two-week period if 
there are 240 hours of time available on each 
machine and the company wishes to maximize the 
profit? 

A wholesaler has 24,000 square feet of storage 
space available and $20,000 that can be spent for 

2. 

4. 

6. 

8. 

11. 

13. 

15. 

23. 

4x +y > 6, 6x —2y <7 

4x +3y —7>0, 6x —-y-5 <0 
—-l<x-y<2 

UR ie REGO ee We Ye 

x27—y+4>0,x-y<4 
Ae yee 8X < oy 

Aah eye <9 |x| | 

merchandise of types A and B. Each unit of type A 
costs $4 and requires 6 square feet of storage space, 

and each unit of type B costs $8 and requires 8 
square feet of storage space. If the wholesaler ex- 

pects a profit of $2 per unit on type A and $4.50 
per unit on type B, how many units of each should 
be bought and stocked in order to maximize the 
profit? 
A distributor of refrigerators has two warehouses 
which supply three different retailers. To deliver a 
refrigerator to retailer R, costs $27 from ware- 
house W, and $36 from warehouse W,. It costs $9 
to deliver a refrigerator from warehouse W, to 
retailer R, and $6 to deliver one from W, to R,. For 

retailer R;, it costs $15 if the refrigerator comes 
from W,, and $30 if it comes from W,. Suppose 
that retailer R, orders three refrigerators, retailer 
R, orders four refrigerators, and two refrigerators 
are ordered from retailer R;. If the distributor has 
five refrigerators in stock in warehouse W, and 
four in warehouse W,, how many refrigerators 

should be shipped from each warehouse to each 
retailer in order for the distributor to minimize the 
delivery costs? 

eaves Ue exe Vy — << 0x + ye — 8 < 0 

~x>0yr>0,y—x4+15>0,x+y—-—5<0,x+3y-—8<0 

. If z = 2x + 3.5y, maximize z subject to the fol- 
lowing constraints. 

x20) eA x+y<6 

3x + 5y < 20 x-—y>l 
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REVIEW EXERCISES (CHAPTER 6) 

In Exercises I through 4, draw a sketch of the graph of the system of equations. Classify 
tle equations as (i) consistent and independent, (ii) consistent and dependent, or (iii) 
inconsistent. If the equations are consistent and independent, determine the solution set 
of the system from the graphs. 

i | ait a freee (ae 

2x re yo 4 " (9x — 6y = 8 OX = 3 yi 9 

In Exercises 5 through 12, classify the equations of the given system as (i) consistent and 
independent, (ii) consistent and dependent, or (iii) inconsistent. If the equations are 
consistent, find the solution set of the given system. 

sean ie 6, 2% —~w+7=0 
" (3x +2y+4=0 S23 8 0 

Een ees 
ca Hie x+2y+2z=1 

8. 9.) x —3y—2z=4 
eG ees Ox Y= al 
x 

4x —3y —6z =7 3x + 3y —5z =4 
11. p= a=) 12. \6x + 2y — 3z =7 

3x — 2y — 5z = 5 3X Vet 9Z = 5 

In Exercises 13 and 14, determine if the equations are consistent or inconsistent. To 
show they are inconsistent, solve a system of three of the equations and show that no 
member of the solution set satisfies the fourth equation. To show that they are consistent, 
find the solution set. 

2x + 4y + 3z =8 4x —4y4+ z=5 
B x —2y+3z=1 14 2x + y+3z=6 

* |2x — 6y — 6z =9 " 16x + 3y + 4z =8 
x+2y—6z=9 3x —2y + 3z=5 

15. Show that the following system has an infinite number of solutions in the 
solution set and use the variable ¢ to express the solution set as an infinite set of 
ordered pairs. Then assign the values 0, 1, 2, —1, and —2 to ¢ and find five 
ordered triples in the solution set. 

2X BD ye2z a — 1 

bebe fi Gees 

In Exercises 16 through 19, find the solution set of the given system of equations. 

Tipps oe eee 4x? — 3y? = —8 
AN inde a th Sx yee rs rene 

4 | 

DG 7. | a 

4x — 3y— z=2 
6x + 4y 4 5z 

10. 
14x — 10y — 9z 

19. 

[Ch. 6 

Se 2 ie) 

— 5sy=7 

14 

10 

2x? —xy + y? =8 

4x? + xy + y? =6 
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In Exercises 20 through 23, draw a sketch of the region (if any) defined by the given 
system of inequalities. 

20. 
22. 

24. 

25. 

26. 

cet Oey Axe 3 
Axe Ey? 16 

If z =x + 4y, minimize z subject to the following 
constraints: 

x+4y>8 x—-y<4 35 

A pilot makes a check flight in an airplane. The 
pilot flies a distance of 80 kilometers against the 
wind in 10 minutes, and then flies back the same 
distance with the wind in 8 minutes. If the plane’s 
speed in still air is the same in both directions, 
what is the rate of the wind and what is the plane’s 
speed in still air? 
A drain at the bottom of a tank is always open, and 
there are two identical pipes that bring water into 
the tank. If only one pipe is open, it takes 12 hours 

21. 

23. 

27. 

28. 

xe ID y = 4 x, x > 0 
ay AMI 25 

to fill the tank, but if both pipes are open, it only 
takes 3 hours to fill the tank. How long does it take 
the drain to empty a full tank? 
An investment yields an annual interest of $750. If 
$500 more is invested and the rate is 1 per cent 
less, the annual interest is $650. What is the 
amount of the investment and the rate of interest? 
A woman bought 100 stamps in denominations of 
10, 15, and 31 cents, and the number of 15-cent 
stamps purchased was 10 less than the combined 
total of the other two denominations. If she paid 
$17.50 for the stamps, how many stamps of each 
denomination did she buy? 
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376 

In Example 2 of Section 6.2 we have the system of equations 

4x —2y —3z =8 

(1) 5x + 3y —4z2 =4 
6x — 4y —5z = 12 

We solved this system by obtaining the equivalent system in triangular form 

4x — 2y —3z = 8 

7 

By using a zero as the coefficient of a variable that does not appear in an 
equation, this latter system can be written as 

4x — 2y —3z=8 

(II) Ox —22y + z=24 

Ox + Oy + z=2 

The procedure used to obtain system (II) involves operations on the 
equations of system (I) and a series of equivalent systems until an equivalent 
system in triangular form is found. These operations cause changes in the 
coefficients of the variables and changes in the constant terms in the right 
members of the equations. Thus we are concerned essentially with these 
numbers (the coefficients and the constant terms) that appear in each of the 
equivalent systems. Therefore, to simplify the calculations, we introduce a 
notation for recording the coefficients and constant terms so that the varia- 
bles do not have to be written. The numbers involved in system (I) are listed 

in the following way. 

Ey 0) a 
(III) ce eee 

Gap 4 5 12, 

and the numbers in system (II) are listed as 

a ay 3 8 
(IV) Oe? i) 224 

ee 0 1 2 

Each of the arrays, (III) and (IV), is called a matrix. The numbers in the 

matrix are called the elements of the matrix. The elements that appear next to 

each other horizontally form a row, and the elements that appear vertically 

form a column. Hence in matrix (III), the elements in the first row are 4, —2, 

—3, and 8, and the elements in the second column are —2, 3, and —4. The 

number of rows and the number of columns in a matrix determine the order 

of a matrix. If there are m rows and n columns, then the matrix is of order 
m Xn (read “m by n”). Matrices (III) and (IV) are of order 3 x 4 (read 
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“three by four”). Ifm 4 n, the matrix is called a rectangular matrix, and if 
m =n, the matrix is referred to as a square matrix of order n. 

We use a double subscript notation for the elements of a matrix. The 
symbol a;, denotes the element appearing in the ‘th row and jth column. The 

symbol 7 is called the row subscript and j is called the column subscript of a;;. 
Then if m and n are positive integers, the matrix of order m X nis an array of 
the form 

Chay Chen Gig 992 Gi, 

G5, 459 G93 +++ Aon 

hes Elegy hey 0 8 Ela, 

ant An2 an3 ny 

where each a,; represents a real number. 
Suppose that we have a system of linear equations where the terms 

involving the variables are in the left member and the constants are in the 
right member. Such a system of three linear equations is system (I). The 
matrix whose only elements are the coefficients of the variables, listed as they 
appear in the equations, is called the coefficient matrix. For example, the 
coefficient matrix of system (I) is 

eee) es 
sues 4 
(eA 25 

which is a square matrix of order three. The matrix obtained from the 
coefficient matrix by listing the constants in an additional column on the 
right is called the augmented matrix. For system (I) the augmented matrix is 
matrix (III). 

To solve a system of equations by using matrices, we start with the 
augmented matrix and perform operations on the rows to obtain a matrix of 

an equivalent system. We continue the process until we obtain a matrix of a 
system in triangular form. The rules for performing the operations are called 

elementary row operations, and they are given in the following theorem. 

If we have an augmented matrix of a system of linear equations, each of the 

following operations produces a matrix of an equivalent system of linear 
equations: 

(i) Interchanging any two rows. 

(11) Multiplying each element of a row by the same nonzero number. 

(iii) Replacing a given row by a new row whose elements are the sum of k, 

times the elements of the given row and k, times the corresponding 
elements of any other row, where k, and k, are real numbers, andk, # 0. 
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The proof of Theorem 7.1.1 utilizes the corresponding operations on the 

equations of the system and it is omitted. 

When applying Theorem 7.1.1 (ai) we indicate that we are multiplying a 

row by a certain real number, it being understood that to multiply a row by 

a number means to multiply each element of the row by the number. In a 

similar manner, when applying Theorem 7.1.1 (iii), we state that we are 

adding one row to another row which means that we are adding corre- 

sponding elements of the two rows. 

The following illustration shows how Theorem 7.1.1 is used to solve system 

(I). You should compare the computation with that of Example 2 in Section 

6.2, which involves the same system of equations. 

ILLUSTRATION 1. System (I) is 

4x —2y —3z =8 

5x +3y —4z2 =4 

6x. — 4y — 5z = 12 

and the augmented matrix is 

ie) ss ES 
outa ia As aed 
juss, we eno 

We replace the second row by the sum of 5 times the first row and —4 times 

the second row, and we replace the third row by the sum of 6 times the first 

row and —4 times the third row. Thus we have the matrix 

4 -2 -3 8 

0 —22 1 24 
0 4 2 0 

In the latter matrix we replace the third row by the sum of 2 times the second 

row and 11 times the third row, and we obtain 

4 —-2 -3 8 

0 —22 1 24 

0 0 24 48 

We now multiply the third row by 3; and we get 

Se ee) 8 
(Nee? ie ee 
0 0 1 2 

which is matrix (IV), the augmented matrix for the system of equations (11). 

System (II) is in triangular form and is equivalent to the given system (I). The 

solution set is then found as in Example 2, Section 6.2. e 
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EXAMPLE 1 

Use matrices to find the solution set 

of the system 

3 1 5 ee) ls" +a? 4 
2 I i 
ef ae clare 

SOLUTION 

We first replace each equation by an equivalent equation in which the 

coefficients and constants are integers and the constants are in the right 

members. We multiply each member of the first equation by 24 and each 

member of the second equaton by 6; we obtain the equivalent system 

es + 2y = 30 

4x -— y=2 

The augmented matrix of this system is 

9 Z 30 
4 -1l 2 

Replacing the second row by the sum of 4 times the first row and —9 times 

the second row, we obtain 

k 2 >| 

Oval de LO2 

We now multiply the second row by 7; and we have 

lo 2 oh 

Oe sh 

which is the augmented matrix of the system 

tke Se, 

y=6 

Substituting into the first equation the value of y from the second equation, 

we have the system 

t* i) 

ieee 

which is equivalent to the given system. Hence, the solution set of the given 

system is {(2, 6)}. 

In the next example we solve a system of four linear equations in four 

variables by the matrix method. By a solution of the system we mean an 

ordered four-tuple (r, s, /, v) such that each of the equations of the system is 

satisfied if w is replaced by r, x is replaced by s, y is replaced by ¢, and z is 

replaced by uw. 
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EXAMPLE 2 

Use matrices to find the solution set 

of the system 

w+x+y+z=5 

ay Is xe = 7 > W 

2x + 2y =3w+2 
yaw eZ 

SOLUTION 
We replace each equation by an equivalent equation in which the terms 
involving variables are in the left member and the constant terms are in the 
right member. We have the following equivalent system in which the 
equations are written so that terms involving the same variable are in a 

vertical column. 

w+tx+ y+ z=5 
= 4b a 

—3w + 2x + 2y ay 
—w + y-— z=0 

The augmented matrix of this system is 

1 l 1 | 5 
—1 1 0 3-2 
—3 2 2 0 2 
—] 0 1 —-l 0 

We replace the second row by the sum of the first and second rows; we 
replace the third row by the sum of the third row and 3 times the first row; we 

replace the fourth row by the sum of the first and fourth rows. We have then 

the matrix 

Le ee ae ere) 

OUTS” Sra ee 
UPR. eels 

Onde 2a ORES 

We now interchange the second and fourth rows because then we will have 1 
as an element in the second row and second column; this will make it easier 

to obtain 0’s in the third and fourth rows of the second column. We have then 

the matrix 

[el ae Lele 

ee ee Oe. 

Sh ey Be eh 

ot PAE) ee ae a 

We replace the third row by the sum of the third row and —5 times the 

second row, and we replace the fourth row by the sum of the fourth row and 
—2 times the second row. We obtain the matrix 

1 1 1 1 © 

0 2 0 5 

0 0 —5 3 -—8 
0 0 —3 4 -7 
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EXAMPLE 3 

Use matrices to find the solution set 

of the system 

(V) 
2x + y—3z=0 

3x + 2y — 42 

x— yp—3z 
Z 

—6 

Matrices 381 

Replacing the fourth row by the sum of 3 times the third row and —5 times 
the fourth row, we have the matrix 

| l l » 

0 2 0 5 

0 0 —5 3 -8 

0 0 0 —ll 11 

We now multiply the fourth row by — 5 and we have the matrix 

l l | l > 

0 ] D 0 5 
0 0 —5 3. —8 

0 0 0 1 -1 

This latter matrix is the augmented matrix of the system in triangular form 

wtx+ y+ z=5 

x + 2y a) 

= SS) ap ass ee 

=|) bs Zz I| 

We substitute into the third equation the value of z from the fourth equation, 
and we obtain y = 1; then substituting | for y in the second equation, we 

have x = 3; by substituting in the first equation 3 for x, 1 for y, and —1 for 
z, we obtain w = 2. We have then the following system, which is equivalent 

to the given system 

y SS 

\| 

m— Wd II 

56 

ay 

aa 

Thus the solution set of the given system is {(2, 3, 1, —1)}. 

SOLUTION 

The augmented matrix of the system is 

2 1 —3 0 

3 2 —4 Z 

1 -—-l -3 —6 

Replacing the second row by the sum of 3 times the first row and —2 times 

the second row, and replacing the third row by the sum of the first row and 

—2 times the third row, we obtain 

I Ya eth 
‘pace’, aye! 
iy Oe ae 



382 Matrices and Determinants Ken. 7 

We replace the third row by the sum of 3 times the second row and the third 

row, and we have 

> ealed baby 6 bade 
OU ete. fees 
(eee ne Oe 

This matrix is the augmented matrix of the system 

2x+ y—3z=0 

(V) —y-— z=-4 

O10 

particular for (0, 0, 1). So we replace the equation 0 = 0 by the equation 

z = t, and we have the equivalent system 

| 

: third equation is an identity for any ordered triple (x, y, Z) and in 

ie th 

en y =—3z=0 

| System (VI) is equivalent to system (V), and the equations of system (V) are 

dependent. In system (VI) we substitute the value of z from the third 

equation into the second and solve for y; we have the equivalent system 

2x yi soe 0 
y= 4-—ft 

== 

Substituting the values of y and z from the second and third equations into 

the first, we obtain 

y=4-t 

rial j 

fees oe 

or equivalently, 

06 == ip = 

y= 4—-ft 

aa 

Therefore, the solution set of system (V) is (2¢ — 2, 4 — t,t). 

EXERCISES 7.1 

Use matrices to find the solution set of the given system. 

ll 

ee — 3y 5 4x + 3y =2 
6x + 2y 

x 

2D 

| 5x +4y = 1 ellie 

4 
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w+3x+y+z=3 

—w —3y—z=0 
—2w + 3x —4y+z=0 

—w — 6x —2y +2z = —4 

10. 

oo 

2w + 3x —4y — z=3 
Bw + x+ y+2z=1 

w—2x+3y-— z=0 

w—2x— y—9z=5 

13. 

Tope Properties of 

Matrices 

x—2’y—z=3 

>: x+yt+z=4 

x—3y-—z=4 

| 

Bln wln w|n 

wo] & 
at 

tad — WS | | 
+ 

| a A|< | 
+ 

+ 
lon clu oO 

1 

8 

4 II 

x+2y4+z= -3 
a 

Sw—y+z= —-—6 

11. 

4w+ x—2y+ z=4 

2w + 3x + 4y — 3z = —2 

3w — 2x + 5y + 3z =2 

w+4x4+3y+ z2=5 

14. 

Ee 
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Sige dk 2y =4 

ae 

6 

Dip, Ea sae 2: 

x +2y —5z =6 

2x +3y—4z= 
9 

4x + 5y —2z =0 

2w —4x +y —2x =3 

2 3w +x 4+2y +32 = 12 

")w— 4x 4+ 2y —6z = 1 

Sw +x + llz = 16 

In Section 7.1 we showed how matrices can be used to solve a system of 
linear equations. We defined a matrix of order m X n as one having m rows 
and n columns, where the number of rows is stated first. If m = n, we have a 

square matrix of order n. If a matrix has only one column it is called a column 
matrix, and if it has only one row it is called a row matrix. 

ILLUSTRATION 1. The following matrices have the order indicated below 

the matrix. 

‘ i 7 —4 |e ee} 

Apel; 2 i ‘ =o 02 a= | Ope a2 acl! 
aie \gie 10. = ; ere a 

Row matrix Bes) 
Dae 2x3 4x1 Square matrix 

Column matrix © 
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7.2.1 DEFINITION Two matrices are said to be equal if and only if their orders are equal and the 

7.2.2 DEFINITION 

7.2.3 DEFINITION 

corresponding elements are equal; that is, 

FARES 
if and only if 

ILLUSTRATION 2. If 

2x0) 3 Eee nee = 7 ap 3 7 scl e 
i | liao ee? TAR RS OG mall eae) ed 

Phe Al 

then A+B and) BC, but A= "CC e 

We now define addition of two matrices that have the same number of 

rows and columns. 

If A and B are two matrices having the same order, the sum of A and B, 

denoted by A + B, is the matrix for which each of its elements is the sum of 
the corresponding elements of A and B. 

ILLUSTRATION 3. If 

Tie =a io Fee 
a poral ae j=l dana 

then 

A+B =| poe ay) Te Y ace 

3+(-l) 0+8 -4+(-3) 

ea e 5 ie 
2 8 —7 € 

Observe that addition of matrices having different orders is not defined. 
There is an “identity element” associated with the operation of addition of 

matrices. It is called a “zero matrix.” 

A zero matrix is one whose elements are all zeros. It is denoted by 0. 

ILLUSTRATION 4. The following matrices are zero matrices. 

0 0 : 
oO) Do oO oO 3 | 
0 0 
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7.2.4 THEOREM 

7.2.5 DEFINITION 

7.2.6 THEOREM 

7.2.7 DEFINITION 

If A is any matrix and 0 is the zero matrix of the same order as A, then 

Att Oi—7A 

and 

0+A=A 

The proof of Theorem 7.2.4 follows immediately from the definitions of the 
zero matrix and the addition of matrices. For instance, if A is a matrix of 
order 2 < 3, then 

[= er Rela 0 alee eo) oe 
45, Ao9  Ao3 i 45, x9 Ao 

If A is any matrix, then the negative of A, denoted by —A, is the matrix for 

which each of the elements is the negative of the corresponding element of A. 

ILLUSTRATION 5. If 

Sen uct =e oe 
A= —A = 

E 0 E| BE ls 0 Hl 

The sum of a matrix A and the negative of A is a zero matrix; that is, if A 
is any matrix, then 

The proof of Theorem 7.2.6 is left as an exercise (see Exercise 41). 
Subtraction of matrices can be defined in terms of addition. 

If A and B are matrices of the same order, then the difference of A and B, 
denoted by A — B, is defined by 

A—B=A4+4(—B) 

ILLUSTRATION 6 

3 =) (pe Ae) 
YD Wea bas hel ae cee 

—6 = 0 oe = Gi O =e 

je ea 
=a laee fel 
=O ® 

Matrix addition is commutative and associative, as given in the next 
theorem. 
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7.2.8 THEOREM If A, B, and C are matrices of the same order, then 

(i) A+B=B+A 

(jij) A+(B+Q=(A4+B)4+C 

The proof of Theorem 7.2.8 follows from the definition of matrix addition 
and the commutativity and associativity of addition of real numbers. 

EXAMPLE lI SOLUTION 

If on 3s earl 

cals a °| ae Fe Pale 0 i 
Be 4a 2 -[?+ eee 3) ead ie el 

Baile 5 | ~ {3+(-6) 4+4+0 -—242 

07 Ones asia 1 4 ' 

cai eh Fs 8 aorta lade S 
find ) B+C=|7 6 0 sles “ “| 
(a) A+B = eee —-3+ 1 54(-4 14(- a 

(b) B+C (PE PNc8)) Whee ee Dieae 

(c) (A+ B)+C 5 

(d) A+ (B+ C) =|5 9 zs 

II 
= deel 1 —4 —35 

(C) A+ Br Cc aa A sl+|_3 —1| | 

eeu 48 (Aye ee a 
a(S) Ghee) Wee 

(4) 4+(B+O= f = =) a3 ie e a 
Dat (e)) coe | eae 
34+(-9) 44+(-l) -2+ 9 

0 ze 
3 fi 

We define multiplication of a matrix by a scalar, where in this book a 

scalar denotes a real number. 

7.2.9 DEFINITION — The product of a scalar k and a matrix A, denoted by kA, is the matrix in 
which each element is obtained by multiplying k times the corresponding 

element of A. 
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7.2.10 DEFINITION 

ILLUSTRATION 7 

eee 

7 ee oe 10 oI 
2 

Gi qen 5 9 
Sy a(n =) 

Oe 4 oe s 

The next definition involves the product of two matrices A and B where it 
is necessary that the number of columns of A is the same as the number of 
rows of B. 

and 

l| 

Suppose that A is a matrix of order m x p and B is a matrix of order p X n. 
Then the product of A and B, denoted by AB, is the m x n matrix for which 
the element in the ith row and jth column is the sum of the products formed 
by multiplying each element in the ith row of A by the corresponding 
element in the jth column of B. 

ILLUSTRATION 8. If 

eee 
[5 eile end belo 0 = 

, 5 2) aa 

then 

2 38) 
7 er $e 

come “il[ 3 ») a4 | 

(2)(G)EF (= 3)(— 2) (2)(0) + (—3)(2) + 2)\—4) + (-3 1) 
= |()G3) + (-1)(-2) 40) + (-DQ) 4 (-4 + (-1(-1) 

(eee 2) DO) +) 62) (D4 + 6-1) 

Via —5 

=|) 1 = 15 

257) 10 a9 

and 

B4=(\y, y “4)): il 
(sam te, 

bas + (0)(4) + (—4)1) 3-3) + (0-1) + = 
(—2)(2) + (2)(4) +(—1)0)  (—2)(—3) + (2(-D + (— D5) 

ay : 
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EXAMPLE 2 

If 

D2 =) 
A= few 

4 3 Be 25 

=3 0 

G= 2 1 

3 =? 

find 

(a) AB (b) BA (c) CA 

(d) C(AB) 

Observe in Illustration 8 that AB is not equal to BA; that is, matrix 

multiplication is not commutative. 

If A is a matrix of order r x s and B is a matrix of order u X v, then in 

order for AB to be defined, s must equal u, and then the order of AB isr Xv. 

For instance, in Illustration 8, AB is the product of a 3 x 2 matrix and a 

2 x 3 matrix and the order of the product is 3 x 3. Furthermore, BA is 

formed by multiplying a 2 x 3 matrix by a 3 x 2 matrix from which we 

obtain a 2 X 2 matrix. 

If A is a square matrix, then A? denotes the product AA, A® denotes the 

product (AA)4A, and so on. 

SOLUTION 

@ as=[? ][4 3] 

fl QG) 4 (=DEe DEORE Ve =| 
(14) + GX-1l) (G)+ G2) 

4 3]/2 —-1 i alli “| 
_f42) + @2Q @-)D + eae 
DO Oe ea 210) 

2)2) + (1) @(-)D + WO) 
(= 2) 2 (OL) (3 1) 00) 

(32) +(-2)0) GY-D) + (—2)3) 

38 0 9 8 (@eCtAB ||. 2m gl 
| 3 Alt =| 

=| (0), 4, CG) (2X8) CSS) 
ee (O\1) (—3)(8) + (0-3) 

(3)@)— i 2D GS) SF (ZK 3) 
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EXAMPLE 3 

If 

7.2.11 THEOREM 

4=(75 Gl 
Zee | 
sien 

show that 

(a) A(BC) = (AB)C 

(b) A(B + C) = AB + AC 

—27 

19 

PRS 

24 
13 
30 

Even though matrix multiplication is not commutative, it is associative and 

distributive for square matrices of the same order (recall that a square matrix 

of order 7 is one having n rows and n columns). The following theorem gives 

these properties. 

If A, B, and C are square matrices of order n, then 

(i) A(BC) 
(ii) AB + C) 
(iii) (B + C)\A = BA + CA 

= (AB)C 

The proof of Theorem 7.2.11 is omitted; however, in the following example 
we verify parts (i) and (ii) for three particular square matrices of order two. 

You are asked to verify part (iii) in Exercise 33 in Exercises 7.2. 

SOLUTION 

(a) A(BC) = 

(AB)C 

Therefore, A(BC) 

B 
F 
i 
| 
Is 
( 
F 
[- 
| 
Ls 

ave a me 

51 + 28 
Use 3o 

Lo 
—3 — 

0 — 

7 

8 

+ 

+ 

7+ 72 
8 + 48 

Ls “3a a) 
3h -0 431 
vee 

rime 
Ome 28 

| 
Ase Ed 
oo are Peal 

calc 
3 ie a 

eA (ee, 

| 

—28 

= (AB)C 
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mae+o=[ {La 3+ a a) 
=[9 ale a] 
= [silane 
=[5 6! 

ap+ac=[~) fo 3]+lo aa a 3 
0 

3-4 124 4 laa 8 See 

0-8 0412 0 + 16 0+4 

7 
8 

18 ih = = =113} 

5 es Li i 

Hence A(B + C) = AB + AC. 

EXERCISES 7.2 

1. Given the matrices 

ay 3° ye) MO 
4=|) sheed | =| 3 

(a) What is the order of matrix A? 

(b) What is the order of matrix B? 

(c) What is the element in the first row and second column of matrix A? 

(d) What is the negative of matrix A? 
(e) What is the negative of matrix B? 
(f) What is the product of 3 and matrix A? 
(g) What is the product of —2 and matrix B? 

2. Given the matrices 

Sep (i ees 
oe al owt A=) 5) ee) 5 1a 2) 

4 -l ff 2 
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(a) What is the order of matrix A? 

(b) What is the order of matrix B? 

(c) What is the element in the third row and second column of matrix A? 

(d) What is the negative of matrix A? 

(e) What is the negative of matrix B? 
(f) What is the product of 2 and matrix A? 
(g) What is the product of —3 and matrix B? 

3. Given the matrices 

ho es 
etka 

Ae |p 0 
ij 

(a) What is the order of matrix A? 

(b) What is the order of matrix B? 

—| 

0 

—5 

—] 

(c) What is the element in the second row and third column of matrix A? 

(d) What is the zero matrix of the same order as matrix A? 

(e) What is the zero matrix of the same order as matrix B? 

(f) What is the product of —4 and matrix A? 

(g) What is the product of 6 and matrix B? 

4. Given the matrices 

a 

AS  — 

=f =2 

(a) What is the order of matrix A? 

(b) What is the order of matrix B? 

10 

—3 

Oi 6 

ps 3 

—3 1 

(c) What is the element in the third row and first column of matrix A? 

(d) What is the zero matrix of the same order as matrix A? 

(e) What is the zero matrix of the same order as matrix B? 

(f) What is the product of —1 and matrix A? 
(g) What is the negative of matrix B? 

In Exercises 5 through 10, perform the indicated operations on the matrices. 

ll AF eed 

“1 EE 3 ale j= 1 
pom tees ae | a4 57 | 23 

hy Sil 5 
Seen 

ih =) =) 

AES ALe a 
ee el 
0 6 —7 

=| 
—6 
9) 

abe HyEe eS 
50) 407 0 

a7 6, t4 
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Z 6 —2 —7 —6 2 
9 —10 —3 —6 aie )4[ 4 | [2 ~9]-[-3 5) 

=5 =7/ 2D 0 DM == 3 

11. Find a, b, c, and d so that 

12. Find a, b, c, d, e, and f so that 

a b 2 oy ail 

¢ d\+ 5 Ti = \—s 3 

(ee 5) 0 —§ —3 

In Exercises 13 through 16, find the product of the scalar and the matrix. 

= (a 
1384 oe 14. -3| 74 4 

=6an) 

3 Gael 
153) ed ee 0 16. ah 3 = al 

=5 iy es 

In Exercises 17 through 24, find the product of the two matrices. 

Malls a) 18 || eee 

19. Li : | ; iq 20. (2 n|5 | 

Tan S | 1 22: Ble 1] 
l 

2 2 0 

23. 1\{1 2 —3] 24.[—-1 3 —2]} 1 4 
=| —l —-2 

In Exercises 25 through 36, the matrices are as follows: 

amemebe sr ol te awh B= 1 
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25. Verify that A + B=B+A. 
26. Verify thatB+4+C=C+B. 

27. Verify that A + (B + C) =(A+8B)+C. 
28. Verify that A + 0 =A and A + (—A) = 0. 
29. Verify that 40 = 0 and 04 = 0. 

30. Verify that AJ = A and [A =A. 
31. Verify that AB F BA. 
32. Verify that A(B + C) = AB + AC. 

33. Verify that (B + C)A = BA + CA. 
34. Verify that A(BC) = (AB)C. 

35. Verify that DA = DB even though D £0 and A F B. 

36. Verify that (B + C)(B — C) # B? — C?. 

In Exercises 37 through 40, find the matrix X that satisfies the given equation. 

py) ii alf Os 
37. — 3) ‘hea 1 ‘| 

—4 a ; 0 —5 10 3 —6 
38.02 De 
p> P ale | 1 =] TI | 

—2 6 

39. 0} —4xX = 4 4 

—5 Oa 

6 —9 

3) —6 
40. —3X —4 i= 7 

Z ] 

41. Prove Theorem 7.2.6. 

va 3 Determinants Associated with each square matrix is a number called the determinant of 
the matrix. In Section 7.6 we apply determinants to solve systems of linear 

equations. But in this and the next section we discuss methods of computing 
the value of a determinant. 

7.3.1 DEFINITION If A is the square matrix of order two, 

au “2 

fo th 

then the determinant of A, denoted by “det A,” is defined by 

det A = dy4dy9 — Gyo, (1) 
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7.3.2 DEFINITION 

The determinant of a square matrix of order two is called a second-order 

determinant. 

The usual notation for the determinant of a matrix is to write the elements 

of the matrix and replace the brackets by vertical lines. Thus the second- 

order determinant of the matrix of Definition 7.3.1 is written 

a4, U2 

5, Ag 

and equation (1) is equivalent to 

‘44, Ay2 = 444499 — 442491 (2) 
Ao, 49 

Observe that a determinant is a number and the determinant notation in 

the left member of equation (2) is simply a way of denoting the number in 

the right member. The two products in the right member of equation (2) can 

be remembered as the products of the elements in the diagonals in the 

determinant notation in the left member. 

ILLUSTRATION 1. If 

bu Ss 
om a4 

then 

det A = (5)(—4) — (—3)(2) 
eA ) 

We now define a “third-order determinant.” 

If A is the square matrix of order three, 

G44 AyQ 443 

45, p29 Ao3 

431 432 433 

then the determinant of A, denoted by det A, is defined by 

det A = 441499433 — 441493439 + 442423431 — 442991433 
+ 443491439 — 44349043, (3) 

The determinant of a square matrix of order three is called a third-order 

determinant. 
As with second-order determinants, a third-order determinant is a number. 

It also can be represented by writing the elements of the matrix and replacing 
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7.3.3 DEFINITION 

the brackets by vertical lines. Hence equation (3) can be written as 

444 42 443 

45, 452 Ao 

43, A359 433 

= 4 4Ay9M33 — A44A93039 + Ay9M93031 — 449491433 

+ 434914439 — 44349043, (4) 

In the right member of equation (4) observe that there are six terms and 
each term is a product of three factors. Also note that each product consists of 
one element from each row and one element from each column such that no 

two factors in any one term are elements of the same row or column; 

furthermore, all such possible products appear. 
Before computing a third-order determinant, we define what is meant by 

the “minor” and the “cofactor” of an element in a matrix. 

If a;; is an element of a square matrix A of order three, then the minor of a;,, 

denoted by M,,, is the determinant of the matrix of order two, obtained by 
deleting row 7 and column /. 

ILLUSTRATION 2. Suppose that A is the matrix 

2, 3-1 
—4 1 —2 

5 Q —3 

The elements of the first row are a,, = 2, a,, = 3, and a,, = —1. M,, is the 
minor of 2 and is obtained by deleting the first row and first column of A. 

1 —2 
My, = i. eel 

= (1)(—3) — (—2)(0) 
=a 

M,, is the minor of 3 and is obtained by deleting the first row and second 

column of A. 

ies Nor a 
= (—4)(—3) — (—2)(5) 
= 22 

M,, 1s the minor of —1 and is obtained by deleting the first row and third 
column of A. 

wh 
Mis = | 5 A 

= (—4)(0) — (15) 
£5 % 
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ILLUSTRATION 3. Suppose that A is the matrix 

Giqanais | G73 

Coie Gso 5 G33 

ORS CESS SLES) 

The minor of day. is My. and 

Mawes eat) 413 
22 y 

sie 1258) 

MSE) = Cin, 

The minor of a, is Mj, and 

(Gicc (ea Cae 
23 4 

G31 32 
e 

7.3.4 DEFINITION 

= 441439 — 442431 

If a;, is an element of a square matrix A of order three, and M,, is the minor 

of a,,, then the cofactor of the element a;,, denoted by 4;;, is defined by 
4p? 

Ay =(-DitiM, 

A mnemonic device for determining whether (—1)'* is +1 or —1 is the 

so-called “checkerboard rule,” which alternates + and — signs over the 
determinant starting with a + in the upper left corner as follows: 

+ — + 
—- + — 

+ — + 

ILLUSTRATION 4. Suppose that A is the matrix of Illustration 2 and 

consider the cofactors of the elements of the first row. The cofactor of 2 is A,, 

and 

1 ie 
Ome 

(—1)7(3) 
=o 

Ay, = (-1)"1 

The cofactor of 3 is A,, and 

=4ie =o es CA oe 
2 =(-)) ame 

= (—1)7(22) 
— 
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The cofactor of —1 is A,, and 

Ai3 — (S13 —4 | 

ee) 

= (—1)*(—5) 
— —5 t 

ILLUSTRATION 5. Suppose that A is the matrix 

41, Ay 443 

45, Ao Ao3 

43, 439 33 

The product of a,, and its cofactor is a,,°A,,, and 

: pa -(—1)141 [422 423 
Q4,° Ay, = 4,,°(—1) 

35 33 

a a = dy, ee Be 

32 433 

The product of a,, and its cofactor is a,,° Aj, and 

4 as . 142 [421 493 
Ay2* Ayo = 442° (—1) 

a3; 433 

a a = —a,, |721 423 

43, 33 

The product of a,, and its cofactor is a,,°A,3, and 

A as »(—1)143 |421 22 G43 °Ay3 = 443° (—1) . os 
31 432 

(the GE = 4; sie ace , 

31 430 

Referring back to equation (4) which gives a formula for computing a 
third-order determinant, we group pairs of terms in the right member and we 
see that equation (4) is equivalent to the equation 

44, 42 A438 

Az, Ay, yg) = A44(Ay9433 — Ag3430) — Ayo(421433 — 493431) 

dz, 439 33 + 43(491439 — Ay9431) (5) 

Each of the expressions in parentheses in the right member of equation (5) is 

a second-order determinant. Hence by using determinant notation, equation 

(5) can be written as 

44, Ug 443 

45, 499 493) = ayy 

431 439 433 

45, Ao 

43, 430 

49, 493 

3, 433 

A59 Ao 

435 433 
+ 443 
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7.3.5 THEOREM 

or, equivalently, 

det A = 44,441 + Qyodiy + 43413 (6) 

Notice in the right member of equation (6) that the terms are the products of 

the elements of the first row and their cofactors (refer to Illustration 5). 

Equation (6) is a special case of the following theorem. 

Let A be a square matrix of order three. Then det A is the sum of the three 

products obtained by multiplying each element in any row or column by its 

cofactor. 

We omit the proof of Theorem 7.3.5. However, we derived equation (6) 

from Definition 7.3.2. Equation (6) is the special case of Theorem 7.3.5, 

where the elements are those in the first row of the matrix A of Definition 

eons 
We now verify Theorem 7.3.5 for another special case. If in the right 

member of equation (4), we group together the first two terms, the fourth and 

fifth terms, and the third and sixth terms, we see that equation (4) is 

equivalent to the equation 

Q4, Ao N43 

Ao, 490 423 

43; G39 433 

= Ay4(Ay9433 — 423439) — 4p1(442433 — 43439) 

+ 34(449493 — 443429) 

which, by using determinant notation, is equivalent to the equation 

Ge, <din) a (ue i2ee ors 
y oe Peres ae Ayo 443 A eee ee) 

gi C72 e223 | ae eee, 2 | pe 8 | Osa ie 
azn 33 32 433 eouaes 

ere hey WEES) 

or, equivalently, 

det A = 44,4y, + p14n1 + 431451 (7) 

In the right member of equation (7) the terms are the products of the 

elements of the first column and their cofactors. Thus equation (7) is another 

special case of Theorem 7.3.5. In Exercises 29 and 30 of Exercises 7.3 you are 
asked to verify Theorem 7.3.5 for two other special cases. 
When Theorem 7.3.5 is used to find the value of a determinant, we say that 

the determinant is evaluated by the cofactors of the elements of the row or 

column in which the elements appear. 
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EXAMPLE 1 

If A is the matrix of Illustration 2, 

evaluate det A in two ways: (a) by 
the cofactors of the elements of the 

first row; and (b) by the cofactors of 

the elements of the second column. 
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SOLUTION 

2 3-1 

es =2}=2-(-1 [1 72] f1ise2 | -4 2 (a) 4 l Dead (1) pees ise) Bo oe 

5 0 —3 ees as 4 + (=) +(=8 |7E O 
= 2(1(—3 — 0) + 3(— 112 + 10) + (10 — 5) 
Bw (2 3) 93022) — 1(—5) 
Si 

2 3. —1 

sf =) <baees |= peta yy) 02 ices es Vial 

ie: Pied) eqn eyes) 

= 3(—1)(12 + 10) + 101)(—6 + 5) + 0 
= —3(22) + 1(—1) 

= —67 

Observe in the solution of Example | that because 0 is an element in the 

second column, the computation involved in part (b) is less than that 
involved in part (a). It is apparent, then, that if any elements are zero, the 

determinant should be evaluated by the cofactors of the row or column 

containing the most zeros. 
Because we have defined a third order determinant, we may define the 

minor and cofactor of an element in a square matrix of order four just as we 
did in Definitions 7.3.3 and 7.3.4 for a square matrix of order three. However, 
the minors are now third order determinants. 

ILLUSTRATION 6. Suppose that A is the matrix 

5 -—2 -4 —-l 

4 ] 2. = 2 
0 Siem ah 0 

1 -1l 0 —3 

ihe elements oi the second row are d,,;= 4. 4,, = 1,a,, = 2,anda,, = —2. 

The minor of a3, denoted by M,,, is the third order determinant obtained by 
deleting the second row and third column of matrix A. Therefore, 

5 -—2 -1l 

0 8) 0 

1 —l —3 
M,; = 
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The cofactor of ay, is denoted by 4,3, and 

Ao = —1)°*3M,., 

5 =—2 =!) 

= (—1)]0 3 0 

a 

We evaluate the third order determinant by the cofactors of the elements of 
the second row because there are two zeros there. We have then 

Any = (D0 + Gx? fF 73] +0] 
= (-1)(3(-15 + 0) 
= (~1)3(-14) 
= 42 @ 

The determinant of a square matrix of order four can be evaluated by 
cofactors in a manner similar to the way third order determinants are 
evaluated. The method is based on an extension of Theorem 7.3.5 to fourth 
order determinants. The following example shows the procedure. 

EXAMPLE 2 SOLUTION 
Find det A if Because there are three zeros in the third column, we expand by the cofactors 

of the elements of that column. 
2 4 0 ] 

Eres —3 0 3 2. 2 4 0 i 

J 5 i 0 —-l ERE: —3 0 3 

—4 0 0 ] al 1 0 —1 

—4 0 0 l 

= 0°A;, +3+(—1)7*? + Ag3 + 0° Agg + 0° Ags 

» 4 1 
=)(—3),| 5 1 —-l 

—4 0 1 

We expand this third-order determinant by the cofactors of the elements of 

the third row and we obtain 

2 ‘| | 
bi! 

det A = (—3) }(-4y—" 

=) 4S) es) 
(29h 208) 
= 6 

4 1 

1 
_i| #04 @-p* 

We showed how third order determinants can be evaluated by using 
cofactors that are second order determinants and then we expressed fourth 

order determinants in terms of third order cofactors. We use this pattern to 
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7.3.6 DEFINITION 

7.3.7 THEOREM 

Evaluate the determinant 

oN Ore =O GS OS 

define the determinant of a matrix of order n. Such a determinant is said to 

be of the nth order. 

If A is a square matrix of order n, then det A is the sum of the n products 
obtained by multiplying each element of the first row by its cofactor. 

Following is an important theorem that allows us to evaluate an nth order 
determinant by using the cofactors of the elements of any row or column. It 

is an extension of Theorem 7.3.5. 

If A is a square matrix of order n then det A is the sum of the n products 
obtained by multiplying each element of any row or column by its cofactor. 

The proof of Theorem 7.3.7 is complicated and is omitted. 
In the next example we show how Theorem 7.3.7 is used to evaluate a fifth 

order determinant. We purposely use a determinant having some zeros as 

elements in order to facilitate the computation. 

SOLUTION 
There are four zeros in the third row. Therefore, we expand by the cofactors 

of the elements of that row. 

Ce geet OMe 0 Aug awe cs flea 
1p Spr ee ete: hems abd ievind 
OR eed Ol U0, = C= 2)G-4 1872 ee 
rn oe | Pairs iy 2 oF 

i ee 7 - 

In the resulting fourth order determinant, the first row has three zeros, and so 

we expand by the cofactors of the elements of that row. We have 

0 0 3 0 , , 3 

l ] 4 3 
(—2)(—1) =e (en) 2 —1 

2 2 -3 -1 ; 0 0 

—1 0 —4 0 ui 

Because there are two zeros in the third row, we expand the third order 
determinant by the cofactors of the elements of that row. We have 

Wal 3 
] 3 

Sip ieee a 5 Al 

—-1 0 0 

6f(—1(-) 

61h .0) 
210) 
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EXERCISES 7.3 

In Exercises 1 through 4, let 

—3 
A 1 

—] 

1. Find the following minors of elements of A: M,,, 

My3, M3». 
2. Find the following minors of elements of A: M,,, 

My», M33. 

In Exercises 5 through 8, let 

: 
—1 

A Alem 

1 

5. Find the following minors of elements of A: M,,, 

My», M32, M4p. 
6. Find the following minors of elements of A: M,,, 

Mo, M34, M4, 

In Exercises 9 through 20, evaluate the given determinant. 

2 —3 —3 7 
9. 10. 
r | y 6-2 

1 2 0 —6 —3 
13. |2 —1 3 14. 3 

1 5 —4 4 

py) 0 —2 2 
6 Oe. 0 0 Ost 2 

US 1 -—l1 —4 2, ae Oe 
OZ 3 4 OF 080 

1 3 0 —1 0 
—2 —-1 3 2 —3 

19. Ce 0 4 0 
—| 1 0 3. —2 
0 — 0 0 

In Exercises 21 through 28, solve for x. 

7 2 4 —2 20 Ne les =a 7) = 
—1 5 x 3 : 

=) 
4 

—1 

3 

4 0 

2 —5 

3 6 

3. Find the following cofactors of elements of A: Ay,, 

A3,, A,3. 

4. Find the following cofactors of elements of A: A,,, 

Ay3, Azo. 

0 

—1| 

6 
4 

7. Find the following cofactors of elements of A: A3,, 

A39, A33, Aza 
8. Find the following cofactors of elements of A: Ay), 

Ay», Ag3, Ay4. 

—- ON W 

ee - ¢ 11. 12. Bs | lis 2 
5 ep etikee od fC 

Om eee 
wil 15-06 meee eee 

aie a 5 

4 N= 20 
3 00 y 0 
2 13. OMROmOmee 
| ay foe 

oeiehs omes 5 
Saerae te pg fon 

ee Oh Woe al ow 
ipo an le Bee 
cmv Mreerk Ai 

23; E alee 74 eh eee eee 
5 BG EG 1 
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x 0 0 x 1 0 x 2 5 x 0 —-l 

25.|3 —1 | ars 26. By I) PA We 0 4) = 3 28. |3 x A= 10 

2 2 —6 —4 4 5 x2 —] 2 2 2 l 

29. Use equation (4) to verify Theorem 7.3.5 where 30. Use equation (4) to verify Theorem 7.3.5 where 

det A is the sum of the products of the elements of det A is the sum of the products of the elements of 

the third row and their cofactors. the second column and their cofactors. 

In Exercises 31 through 34, let 

Qi, Uo 433 G14 415 

41 422 423 24 45 

A= ]d31 32 433 G34 435 

G4, 2 43 444 [45 

Gs, 459 453 454 455 

31. Find all of the terms of det A that contain the three 33. Find all of the terms of det A that contain the two 

factors G14, Ago, and dzp. factors dj, and G,,. 

32. Find all of the terms of det A that contain the three 34. Find all of the terms of det A that contain the two 

factOrs Ayo, A35, aNd A453. factors a,, and a,,. 

74 Properties of When applying Theorem 7.3.7 to evaluate the determinant of a matrix of 

order n if nis large, the numerical computation is usually quite tedious. For 

instance, if the matrix is of order five, then, when evaluating the determinant 

by the cofactors of any row or column, a sum of five terms is obtained and 

each term contains the determinant of a matrix of order four; to evaluate 

each of these determinants, we obtain a sum of four terms each of which 

contains the determinant of a matrix of order three. Therefore, there are 5 - 4, 

or 20, determinants of matrices of order three to be evaluated. If the deter- 

minant of a matrix of order six is evaluated by Theorem 7.3.7, a sum of six 

terms, each containing the determinant of a matrix of order five, is obtained; 

thus, there are 6 - 20, or 120, determinants of matrices of order three to be 

evaluated. Of course, the computation is simplified if many of the elements 

of the original matrix are zero. 

We now discuss some properties of determinants that are useful to reduce 

the amount of computation involved in their evaluation. These properties 

enable us to obtain one matrix from another, having the same determinant, 

and in which some of the elements are zero. 

Determinants 

7.4.1 THEOREM If A is a matrix such that every element of a row or column is zero, then 

detA = 0: 

Proof, We apply Theorem 7.3.7 and evaluate det A by the cofactors of the 

elements of the row or column in which the zeros appear. Hence det A is the 

sum of n products, each of which has a factor of zero. Therefore, det A = 0. 
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7.4.2 THEOREM 

ILLUSTRATION 1. Each of the following results is a consequence of Theo- 
rem 7.4.1. 

6A ee 
aye | begear d 

1 0 Og £4 nC aa 
|; | =9 irs 3 v 4 lasts ees SE ea 

Obed) Ieee e 

We do not give a general proof for the next three theorems. Instead we 

follow the statement of each theorem with an illustration which demonstrates 

the theorem for a matrix of order three. 

If a matrix B is obtained from a matrix A by interchanging two rows (or 
columns), then det B = —det A. 

ILLUSTRATION 2 

(a) Suppose that 

Ole eta Te 
A= [491 4x9 3 

Cesk eee CaS 

and B is the matrix obtained from A by interchanging the second and 
third rows. That is, 

toe aie ORs 
B= |43, 39 33 

Coie 22m: 

If det A is evaluated by the cofactors of the elements of the second row, 
then 

a4, Ae 

3, 39 

44, 443 

431 433 

G42 443 

A359 33 
== (@ det A = —a,, (1) + Ag9 

If det B is evaluated by the cofactors of the elements of the third row, 
then 

det B =a,, si, | USI i a4, 43 Ape 44, Ax (2) 

A350 433 a3; 433 431 439 

Comparing equations (1) and (2), we see that det B = —det A. 

(b) Let A be the matrix defined in part (a) and let C be the matrix obtained 
from A by interchanging the first and third columns. Then 

443 Ayn Aq, 

C=]|d93 dg2 Any 

433 Azo 34 
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If det A is evaluated by the cofactors of the elements of the first column, 
then 

A553 G49 Ay a43 det A = A141 — 454 
> 

35 38 A359 33 2 493 

or, equivalently, 

det A = 4y4(Gy9433 — Ap3439) — Ag4(4y9433 — 443439) 

+ 34(449493 — A349) (3) 

If det Cis evaluated by the cofactors of the elements of the third column, 
then 

413 Ayo 443 Ayo 

433 Azo 

a a 
deiGa—wa 230 22) _ q +a 11 1 31 

433 Azo Q53 4992 

or, equivalently, 

det C = ay 4(4y3439 — Ay933) — Ap4(4 43432 — 442433) 
+ 433(413499 — 442493) 

or, equivalently, 

det C = —4y4(dy9433 — 4y3439) + Ay4(4y2433 — 443439) 

= 3\(Ay2423 — A435) (A) 

From Equations (3) and (4) it follows that det C = —det A. e 

If a matrix B is obtained from a matrix A by multiplying every element of 

one row (or column) by a real number k, then det B = k(det A). 

ILLUSTRATION 3. Let A be the matrix defined in part (a) of Illustration 2 

and let B be the matrix obtained from A by multiplying the elements of the 
second column by k; then 

Ay, Kay ays 

B= |4,, kag, ays 
3, Kd gs 

If det A is evaluated by the cofactors of the elements of the second column, 
then 

Reig) AI 

Comes 

G4, 443 

43, 433 
det A = —a,, [921 923) + a,, a) (5) 

431 433 

If det B is evaluated by the cofactors of the elements of the second column, 
then 

ath 22g} 
Aoi 223 

G4, 44 

43, 433 

O23 

Osta @33 

Comparing equations (5) and (6), we see that det B = k(det A). e 

det B = —ka,, + kag, — kay, (6) 
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7.4.4 THEOREM If a matrix B is obtained from a matrix A by replacing any row (or column) 
of A by the sum of that row (or column) and k times another row (or 

column), then det B = det A. 

ILLUSTRATION 4. Suppose that A is the matrix defined in part (a) of 
Illustration 2, and let B be the matrix obtained from A by adding to the third 
row the product of & times the first row. Therefore, 

2a C12 IE 
Bo Gor G2 203 

dz) + Kay, 39 + kayy 33 + kay, 

If det B is evaluated by the cofactors of the elements of the third row, then 

ie ie Opp 
det B = (a3) + kay) 1? 18) + (gq + kayp) (- Bee a ype ae Coin 23 

ai, 2 
+ (G35 + Kays) | 

Dl Ps: 

Because the cofactors A,,, Az, and As, are defined by 

of ee ees ee ERY ee: and Ae eC he ote 
ie. D ear D 33 

Ogee 2a teal be. eis. oy 

it follows from equation (7) that 

det B = (a3, + kay1)A3, + (Ag9 + kAy2)A39 + (433 + kay3)A33 

or, equivalently, 

det B = (43,A31 + Ag9A39 + 433433) + K(G41431 + 442432 + 443433) (8) 

We compute the second expression in parentheses in the right member of 
equation (8). 

A1;A31 + GypA39 + 443433 = 444(Gy9G03 — Ay3Qg9) — Gy9(444493 — 44341) 

+ 43(44 1499 — 49491) 

= 44440493 — 441443499 — 249444493 + 442443001 

H+ 43041499 — Gy30404o4 

Therefore, 

414431 + 442459 + 443433 = 0 (9) 

From Theorem 7.3.5 it follows that the first expression in parentheses in the 
right member of equation (8) is det A; that is, 

31A31 + G32A39 + 433433 = det A (10) 

Substituting from equations (9) and (10) into equation (8), we obtain 

det B = det A + (0) 
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or, equivalently, 

det B = det A r) 

—3 5 —l 

Ah 0 —3 

—2 4 | 

We evaluate det A by the cofactors of the elements of the second row. 

= ons det A = (121 : ba ; 

=(—-1)5 + 4) + 0 + 3(—12 + 10) 

(—DQ) + 3(—2) 
= —15 

(a) Let B be the matrix obtained from A by interchanging the first and third 

columns. Then by Theorem 7.4.2, det B = —det A. We verify this fact 
and evaluate det B by the cofactors of the elements of the second row. 

ILLUSTRATION 5. Let 

+0 + (—3)(—1)?*8 

—1 5 —3 

det Bi=ah—-3 0 1 

| 4 —-2 

ay gee 2] \2s8 5 = | __ 1)2+3 —]1 | =(=3(-I4 73h 40+ MaDe |T TF 
Se tar ye (14 = 5) 
30a =29} 
ses 1M 

em 

(b) Let C be the matrix obtained from A by multiplying every element of the 
third row by 3. Then by Theorem 7.4.3, det C = 3(det A). We verify this 

fact and evaluate det C by the cofactors of the elements of the second 
row. 

—3 5 —1 

det C = | @ =3 

—6 12 3 

SP eee | A 3 —1)243 —3 Hy 
= I(—1) D 3 + 0-4 (—3)(— 1) Bee 

II (15 et 2) 30-336 4: 30) 
27) + (6) 
—45 

= det A ) 



408 Matrices and Determinants [Ch. 7 

EXAMPLE 1 

Evaluate the determinant 

2 6 5) 

5 -—3 —-7 

3 4 —2 

by first obtaining two zeros in a row 
or column. 

(c) Let D be the matrix obtained from A by replacing the third column by 
the sum of the third column and 3 times the first column. Then by 
Theorem 7.4.4, det D = det A. We verify this fact and evaluate det D by 
the cofactors of the elements of the second row. 

i 5S =I 

det D = ] 0 0 

=) 4 a) 

ea\()) 
=| (Gl) ca OR =O (1) fe aes 

= (—1)(—25 + 40) 

ey 

= dew e 

Theorem 7.4.4 is used to obtain a row (or column) for which all but one of 
the elements is zero. If there is an element of the matrix that is | or — 1, then 
the procedure is similar to that used in part (c) of Illustration 5. If there is no 
element that is 1 or —1 in the given matrix, then the number 1 can be 
obtained by first applying Theorem 7.4.4 or Theorem 7.4.3 in some manner 
(see the next example). 

SOLUTION 
There is no | or —1 appearing as an element; however, if we replace the 
second column by the sum of the second column and —1 times the third 
column, we have 

2 6 5 2 I ) 

See a | =| 5 4 —-7 

3 4 —2 3 6 —2 

0 1 0 (replacing the first column by 
= |-3 4 —27 the sum of the first column and 

—9 6 —32 —2 times the second column; 

and replacing the third column 
by the sum of the third column 
and —S times the second 
column) 

S11 —3 —27 (evaluating by the minors of 
—9 —32 the elements of the first row) 

= (—1)(96 — 243) 
447 
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EXAMPLE 2 SOLUTION 
Evaluate the determinant by first | Because 2 is a factor of each element of the third row, it follows from 

obtaining three zeros in a row or | Theorem 7.4.3 that 

oe aie. or a Se ne ee 
Seo es 5 -1 8 -3 8|_,/-l1 8 -3 8 

jp) Fy ee hh 2 "9 > L7\\ ued iy Cn Pp) 
iy Way Ota gees 6 Ved De eae 
2 6 —1 4 

We now apply Theorem 7.4.4 and obtain three zeros in the third row. We 
replace the first column by the sum of the first column and —2 times the 
third column; we replace the second column by the sum of the second 
column and the third column; and we replace the fourth column by the sum 
of the fourth column and 2 times the third column. Hence 

5 —3 3 —5 —]l 0 3 

—l 8 —3 8 5 5 —3 2 

ee eee a oe tO 
2 6 —1 4 4 5 —1l 2 

—!l 0 1 (evaluating by 
Oe yo mn | the minors of the 

a) elements of the 

third row) 

—1 0 0 (replacing the 
3) (Brees third column by 

(aN De Tes the sum of the 

third column and 

the first column) 

eel (evaluating by 

SE 0 the minors of the 

= —2(30 — 35) elements of the 

— 10 first row) 

7.45 THEOREM If A is a square matrix having two identical rows (or columns), then 
GdeiwAr—a0) 

Proof. Let B be the matrix obtained from A by interchanging the two 
identical rows (or columns). Then A and B are the same matrix and so 

det B = det A (11) 

Furthermore, from Theorem 7.4.2, it follows that 

det B = —det A (12) 
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Substituting from equation (11) into equation (12), we obtai 

CeuAl——ccms 

PrdetAs—)) 

det.A = 0 

ILLUSTRATION 6. If 

2 —3 2 
A |i 

—] 5 —-1l 

n 

then because the first and third columns are identical, it follows from 

Theorem 7.4.5 that det A = 0. 

EXERCISES 7.4 

In Exercises 1 through 14, give the reason that the equation is true. 

Np be Gah ce pees 
ik oy Sete 5ai| thee waves deste 

Dee <6 rei 

(iezgemnys © 3 Meee 5 ae 
Gest Bach 6 a; ht @ « 

Sis lane essai) 11S atte are al) 
hake BRT ang fy. 9, ge | 

ol Cael a et (eo haere 
ah) EA OE | as 610 wo en eee eee 
as 342 a Ong ae AG eo 

et eae) ope is? 10 a. See 3 
Puli vumcmee® —4 | ee merece mh oer pee 

a 4 05 tla |e rr Moree eee he 
en eee Se (ieee ro 0 

ee ce jo es 
Gi) AAR NO es | ea, See 10. | ; ‘|= Re ; 

(Ge ep) oe Oral a3 7 > 

st s ie 3° = 
3 9 I 095 y) 11. E a 

3 2 I, 3 te eiOL a3 © Ga eG 
4 (as m4 

i 0 4% “(letra 7 aays ee 
Lise) 0 | ee 142|F il, “Oop es | e eee 

He cee ae ae a Ps eee Ae a 

—2 

—l1 

NWR © 

@ 

1 —2 

6 1 

0 3 

2 l 

1 0} 

0 5 

2 1 

0 3j 
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In Exercises 15 through 18, evaluate the given determinant by first obtaining two zeros 
in a row or column. 

—1 6 4 1 —1 5 4 -—3 3 —5 9 
ey ih 16. | 2 4 3 17. 6 —4 5 18. 3 2 

—2 7 4 4 l a —3 3 —2 ] 6 

In Exercises 19 through 22, evaluate the given determinant by first obtaining three zeros 
in a row or column. 

iy oy epee, oma 0) 23 
seen (ane | Ae (Oh ees me coy ee) OR ig 4 
ls Se eS oe 300 4 9% 
Ae a ee Ate rye 5S 
oe ee 4 ee) eee we 

ed OL ene ee Die ee er 
ny i ee Gl ee ye Been 

In Exercises 23 and 24, evaluate the given determinant by first obtaining four zeros in 
a row or column. 

—1 0 —3 0 D 1 4 4 -—2 l 

2 -—2 0 1 -l l 1 Z ] 

23. 0 0 0 8 24. |-1 -1 —3 1 -l 

0 2 1 -1l 4 —2 -4 —6 4 -1l 

—1l -l 0 2 0 1 ] 3 Z 

25. Prove that an equation of the line through the two points P,(x,,y,) and P,(x,, y.) 1s 

je gp | 

xX; yy 1] =0 

Xp yo 1 

In Exercises 26 and 27, use the result of Exercise 25 to find an equation of the line 
through the two given points. 

26. (4, — 1) and (—3, 2) 27. (—2,.5) and (3, —4) 

ak Yay Mt 

28. Show that |a” 56? 1| = ab(b — a\(a — 1)(b — 1). 

Gap! 

ee gon 

29. Show that |b? b 1) =(a —b)(a —c)(b — c). 

Coc 
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7.5 The Inverse of a 

Square Matrix 

7.5.1 DEFINITION 

7.5.2 DEFINITION 

[Ch. 7 

In the discussion in this section we need the concept of “transpose of 

a matrix,” which we now define. 

The transpose of a matrix A, denoted by A‘, is the matrix for which the ith 
row of A! is the ith column of A and the jth column of A’ is the jth row of A; 
that is, corresponding rows and columns are interchanged. 

ILLUSTRATION 1. If 

3 1 Bis 

0 5 

then 

3 4 0 tl a) et ies A =, 5 3 and B =|} 5 = ) 

In Section 1.2 we had Axiom 1.2.5, which states the existence of the 

number | such that for any real number a, 

Go || = @ 

The number | is the multiplicative identity for multiplication of real 
numbers. Does the set of matrices of a given order have a multiplicative 
identity? The answer, in general, is no. However, there is a multiplicative 

identity for the set of all square matrices of a given order. The definition uses 
the terminology main diagonal, which is the diagonal of elements from the 

upper left corner of the matrix to the lower right corner. 

The multiplicative identity for the set of square matrices of order n, denoted 

by J, is the square matrix of order n whose elements on the main diagonal are 
ones and whose other elements are all zeros. 

ILLUSTRATION 2. The identity matrix for multiplication for the set of 
square matrices of order three is the matrix J, defined by 

it) @ 
ie 7) Oe aeO 

OO mal 

If A is any square matrix of order three; that is 

G4, U2 43 

A= |do1 Ag2  Ag3 

3, 439 Az 
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7.5.3 THEOREM 

then 

44, 4p 4y3}|/1 0 0 1 0 O}) 411 Gyo ay3 
AU! =e Gh Ch CoN) VW 2a ese l O11 G58 O55 | Gos 

Ge Gaon Gss|\0) Ot OR ORL 2s Ganue as. 

44, U2 443 44, 2 43 

== Mean Cips bys Eee ee ae 
43; G39 33 43; 439 433 

—A/A — A e 

If M is a square matrix of order n and if J is the multiplicative identity of 
order n, then 

MI=M and IM=M 

The proof of this theorem for square matrices of order three appears in 
Illustration 2. A similar proof can be given for square matrices of any order. 

We know that for every real number a, except 0, there exists a real number 
called the multiplicative inverse of a, denoted by a“!, such that 

Gime | and Ca Get 

Does every square matrix A have a multiplicative inverse A~! such that 

UAW Speed EN AES ye) 

Before answering this question we give an illustration that shows there is a 
multiplicative inverse for a particular square matrix of order two. 

ILLUSTRATION 3. Suppose that 

5 —2 il 2 

then 

4p =[OW + (—2)(2) (5)(2) +26) 
ih OO yor. Ve) 

0 Sh | 

ae = 1(2)(5) + (6M —2) (2-2) + (5) 

1 

| 
I 

Arba aiiian dim =e) (1)(— Ree ars | 

[0 
if 
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7.5.4 THEOREM 

Because AB = J and BA = IJ, B is the multiplicative inverse of A and A is 

the multiplicative inverse of B. @ 

The answer to the question posed before Illustration 3 is yes, provided that 
det A ~ 0. The next theorem states this fact and gives a method for comput- 
ing the multiplicative inverse of a square matrix when it exists. 

Suppose that A is the square matrix of order n 

abe espe Cate SUSI 
451 G99 og, °° Aon 

A =|43, G39 433 *** ay 

any ane ang ot Ann 

and that A,, is the cofactor of the element a;,. Then if det A F 0, 

t 

Ay Ajo Ais Tee Ain 

et Ay, Ag. Azz *** Aon 
det A | 43; Az. Azz °° Asn 

Any Ang Ang NE Ann, 

with 

AAS at and Al4 =] 

The proof of Theorem 7.5.4 for the general case is beyond the scope of this 

book. However, following is the proof that AA~! = J for square matrices of 
order two. If 

vis | 2:2 then eae ook be peal 
Cpa LD det A 1A,, Ago 

Because A;, is the cofactor of a,,, we have 

Ay = 499 Ayn = yy Ax, = —Qp Ann = yy 

Substituting these values into the matrix for A~1, we have 

aa} 
Orr 

ol | Qo9 “aia | 
det A L—a,, ay, 

=1 das 1 | Ao 

det A L—a, 
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EXAMPLE Il 

If 

i =f 3. —5 

find A~! and show that 

AA t= 

and 

ADA =] 

We wish to show that AA! = J. We have 

Cop Ea 
Fae fe | detA detA 

Lda, ayy — 41 Qy4 

det A detA 

444499 — 44249, yyy 4+ Ay00y1 

det A det A 

7 491499 — 9049,  —Ag14y9 4+ Ago), 

det A det A 

det A 0 

det A det A 

Othe det A 

detA det A 

ee 
= // 

In a similar way we can show that A~14 = J (see Exercise 18). Observe 

that because AA“! = J and A~'4 = J, the commutative property for multi- 
plication of matrices holds for matrices A and A~! even though it does not 
hold in general for square matrices of the same order. 

The existence of A~! depends upon det A ¥ 0. If a matrix A has an inverse, 
A is said to be nonsingular. If a matrix A does not have an inverse (that is, if 
det A = 0), then A is said to be singular. 

SOLUTION 

det A = 2(—5) — 3(—4) 

=) 

Because det A 4 0, A~! exists and 

det AlAs, As5 

ies 3 
Pec Ape) 

“21-3 2. ~ 21-3 
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EXAMPLE 2 

If 

eee 

A =) | eee ee) 

4 0 2 

find A! and show that AA-! = J. 

Therefore, 

5 5 ee) 3 9) 
py aad 2 2 ctl ee ons =f) = 

a =|; =| i ae A oe 3 = 
D1 D 

-| —5+ 6 ce =| 08 pete 
2515. wel — L338) 6 = 35 
ae ae 

=| A = a 
Oma Ske 

=] =] 

SOLUTION 

We first compute det A. We expand by elements of the third column, and 
we have 

12 me 2 
oo F | + i ;| 

Speen 
—10 

Because det A # 0, A“! exists. We now compute the cofactors of the elements 
of A. 

Ais = Aun = |j 2 et » |, | \ | 
—6 — —2 — eae 

A,, =(—1) Fe ,) Le Hl A; = (—1) I 

| Laer Lee, 
Az, = | | Az =(—1) | | As; = | | 

1 O 

Therefore, 

lI | 
a S 

[Sa Se Pe 

| NW le! NB 

| 

m UW 

SS 
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#3. Z ah 
ee 75 

“See is 
Sea rr 

i 
ease 616 

Thus 

Sopp | 3h 
5 5 

weg ee 1 
AAg e—s ble Sun( — aS eae Pak 

lM he Eee 

OAR Ao lh 
5 = Slama 

5 4.28 9 
esas § 5 58.10, 0.0 
3 3 2 3 5 Ss a eS ie SS 8. gee See sia wm © 
12 2D 8 g 12 2 ee Net Ba eh ayy ee ees ASAE T eam Sh one 

1 0 0 
ial) ae) 

001 

ei 

It is apparent that computation of the inverse of a matrix having an order 
greater than three is rather cumbersome. There are other systematic and 
more efficient methods for computing the inverse of a matrix but they 
involve concepts that we do not discuss in this book. 

A very important application of the multiplicative inverse of a square 
matrix is its use in solving a system of linear equations. In the following 
illustration we show the method for a system of two linear equations. 

ILLUSTRATION 4. Suppose that we have the system of equations 

Ee es 
3x — v= 6 

This system can be written in matrix form as 

bal Gl-(el @ 
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Let A= 3 a? Then equation (1) can be written as 

so | RA) 
We multiply on the left both sides of this equation by A~', because det A # 0, 

and we have 

- aay ee a 

an(alt |) =a] 

(2) 

We compute A471. 

bape <2! 
oy 11 

ee 
1] 1] 

We substitute the matrix A~! in equation (2) and we obtain 

eee 
[j= 1] 1] ig! 

VAR ete a LG 
11 11 

I 12 
ie Te 10 
ee Sm 

iM l 

ae —3 

Therefore, = land y= "3, 
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Use the matrix method of Illustra- 
tion 4 to solve the following system 

SOLUTION 
We write the given system in matrix form. 

eee x 2 
1 3 Olfy/=] 1 (3) 
a Weal Wa 

Let 

Lees t 
Aga lel Ge 3 me) 

ae ADE 9) 

Then equation (3) can be written as 

x 2 
ZAM Ye (4) 

iz —4 

Because A is the matrix of Example 2, A~! exists. Therefore, we can multiply 
on the left, both sides of equation (4) by A}, and we have 

> 
1 

oy, IN SS es 

l| aN uf 

We use the result of Example 2 for 4~! and we have 

ENA re Re 
5 5 10 ° 

vte|| 2 
J a 

eae 
5 5 10 

6 y, 6 

seas 
al, dee, 
A ames 

1 4 2 

eegng 

l| 

| 

NK 
SU 

Therefore, x = —2, 5) 3 Ah, eye — 



420 Matrices and Determinants [Chez 

EXERCISES 7.5 

In Exercises 1 through 4, find the transpose of the given matrix. 

4 3 <COunnip Ei Ik Ob ask 6 ee ee 
[3 73 | 21 7 5! | Papi 7 oe 

aera) S 

In Exercises 5 through 14, the given matrix is A. Find A“, if it exists, and show that 
AA1+=I. If A is singular (that is, A~1 does not exist), then state this fact. 

sE] _~ <[ 3Ssmenanbegecgla Sareea 
a al 2 3 8 0 1 2, 

9. |-3 “| 105) 2 0 —2 1H. al 2b Tl 12. | —3 4 

i | 3 ] 5 an 8 Oe) a 

i l it © ¢ 

1s 2 | 14. |\2 1 0 

l l 0 a ee 

In Exercises 15 and 16, find A“ for the given matrix A without using Theorem 7.5.4. 

(dint Ler As — b a and from the fact AA~' = I, obtain four equations in a, b, c, 

and d.) 

4 8) 1 eed ele 
17. If J is the multiplicative identity for the set of 18. Prove that if A is a square matrix of order two, 

square matrices of order two, prove that [J = J. then AA. 

In Exercises 19 through 28, let 

31 —2 | 4 = |i) sad) gee ee 

19. Show that (AB)! = B-1471, 20. Show that (BA)"! = A“1B71. 
21. Show that (A?) * =A. 22, show that (Brt)e) = 8. 

23. Show that (A)? = (4")+4. | 24 —Showsthat (32) s—= (Bo ass 

25. Show that (Aw )> = (4-\e" 26. Show that (Bu)? = (B87). 
1 

det A- 
28. Show that det (B-) = —! 27. Show that det (A~4) = qcees 

e 
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In Exercises 29 through 36, use the matrix method of Illustration 4 and Example 3 to 

solve the system of equations. In Exercises 29 and 30, use the result that 

lee 
and in Exercises 33 and 34, use the result that 

2x — y= -2 

2. ere, = 7 

6x —6y = 1 

4x +2y+4+3z= 4 

35. }5x — y+4z= 12 

xX —3y+2z= 0 

7.6 Cramer’s Rule 

1 0 2 3-6 —2 
0 —-!l 1 ale 2 | 

3 0 —| 3 | 

3 2x— y= 1 fon oe 

—5x + 3y = —5 “(44 +3y= 0 

x 22 = of ai ee 
33. j;-y+ z2=3 34. ;-y+ z= 7 

x+3y=0 x+3y= —4 

2x+y+3z= 5 
36 xXx+y+ z= 0 

4x +y —2z = —15 

Consider the system of two linear equations in two variables 

(1) eee + 4ypy=k, 
Ay1X + Ay y = ky 

where in each equation at least one of the coefficients of the variables is 
nonzero. Without loss of generality, we assume in the first equation that the 
coefficient of x is nonzero; because if the coefficient of x is zero, then the 
coefficient of y is nonzero and we can interchange the variables. To solve 
system (I), we use the matrix method to find an equivalent system in 
triangular form. The augmented matrix of system (I) is 

Ee dy, k | 
Az, Ago Ky 

We obtain a matrix of an equivalent system by replacing the second row with 
the sum of —a,, times the first row and a,, times the second row (here we are 
applying Theorem 7.1.1(iii) in which it is necessary that a,, 4 0). We have 
then 

ie A49 ky 

O (44492 — 442491) (Ayykg — Ay4ky) 
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EXAMPLE 1 

Use Cramet’s rule to find the solu- 

tion set of the system 

fe +3y =6 
2x — Sy = 16 

which is the augmented matrix of the system 

| AyyX + 4y =k, 

(444499 — Ay24o1)V = Ayyky — Agyky 

In the second equation of this system, the coefficient of y and the right 

member can be written as determinants; that is, the system is 

Ay4X + ayy =k, 

(ID) 44, 442 ay, ky 

451 429 Ay, ke 

If 

a4, 12 £0 

45, Ago 

we can solve the second equation for y, and we have 

ay, ky 
a k a a : 2 y = 21 2 if ist 1 f 0 (1) 

G4, Ay 5, Ao 

451 Ag9 

The value of x can be found by substituting the value of y from equation (1) 

into the first equation of system (II); or, alternatively, we can solve for x by 

using the same procedure as we used to solve for y. We obtain 

ky yo 
[ee a he : 12 —_ 2 22 if 11 A 0 (2) 

44, 2 45, 429 

451 42 

Formulas (1) and (2) are known as Cramer’s rule for the solution of a 

system of two linear equations in two variables. Note that in each of the 
denominators, we have the determinant of the coefficient matrix of the given 
system. In the numerator for the value of x, we have the determinant of the 
matrix obtained from the coefficient matrix by replacing the coefficients, a,, 
and a,,, of x by the numbers k, and k,, respectively; and in the numerator 
for the value of y we have the determinant of the matrix obtained from the 
coefficient matrix by replacing the coefficients, a, and do, of y by k, and k, 
respectively. 

SOLUTION 
The determinant of the coefficient matrix is 

4 3 
= —20 —6 se 
6) 
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7.6.1 THEOREM 

From formulas (2) and (1), we have, respectively, 

| 6 ; : 6 
‘6 = y 16 

ie eere96 ae 6 
30 43 oa 

=DG 2G 
73 i @ 
= Saya ai 

Therefore, the solution set is {(3, —2)}. 

When applying formulas (1) and (2) to solve system (I), it is necessary that 
the determinant of the coefficient matrix is not zero. If the determinant of the 

coefficient matrix is zero, then system (II) is 

Ay4X + apy=k, 

(III) he Ve 
0= 

Ay, ky 

If 

ay, ky 0 

Ax, ke - 

then there is no ordered pair (x, y) for which the second equation of system 
(IH) is a true statement, and thus the equations of system (I) are inconsistent. 

ine 

ay, ky 

A, ky 

then system (III) is 

es + dy =k, 
0=0 

and hence the equations of system (I) are dependent. 
The results of the preceding discussion are summarized in the following 

theorem. 

Suppose that we have the system of two linear equations in two variables 

fase +ayoy =k, 

Ay1X + Ag y = ky 

where either a,, 4 0 or a,, # 0, and either a,, 4 0 or a., £0. 
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(i) If 

a4, 2 

Ax, Ao 
#0 

then the system has a unique solution given by 

ky apo ay, ky 
ke a \a k 
a dnd. vis —?i 2 (3) 

44, Ay2 Ay, 442 

45, Ag Qo, a2 

(ii) If 

SSA ag 1) Wee 0 and ay, i £0 

45, 40 U5, Ko 

then the equations of the system are inconsistent. 

(iii) If 

Cra. | 0 aad ay ek 0 

U5, Ag9 An, ky 

then the equations of the system are dependent. 
In parts (i1) and (iii), the determinant 

ay, ky 
Ay, Ky 

can be repiaced by the determinant 

ky yo 

Ky Ago 

ILLUSTRATION 1. If we attempt to use Cramer’s rule to solve the system 

fe a 3y is) 

eG _ y = 4 

we first find the determinant of the coefficient matrix. It is 

o> 
= =6 4: 6 k a a 

Therefore, the system does not have a unique solution. Because 

; ; = 240 
DA. \ ae 

== fl 
#0 

it follows from Theorem 7.6.1 (ii) that the equations of the given system are 
inconsistent. 
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7.6.2 THEOREM 

Note that the given system is the same as the one in Illustrations 2 and 6 
of Section 6.1. e 

ILLUSTRATION 2. Consider the system 

pe onaree 

The determinant of the coefficient matrix is 

a 2 
= 2 = 2 Lal 
=a) 

Furthermore, 

3 al 
= 24 — 24 be 
tll) 

Therefore, from Theorem 7.6.1 (iii) we conclude that the equations of the 

given system are dependent. 
The given system is the same as the one in Illustrations 3 and 7 of Sec- 

tion 6.1. e 

The following theorem is a generalization of Cramer’s rule to a system of 
n linear equations in n variables. 

Suppose that we have the system 

AyyX1 + AypXp + + Ay_@Xy, = Ky 
AgiXy + Ao9X%o + °-> + G5,X%, = ky 

Ani ats A,2X Re ie Dann = k,, 

with 

Bin Bag 99° Chi, 
a a p00 (Gh 

Ame ey ene ee, 20 and det A 40 

any ane mi Gan 

then 

Age iy ky tt Oy, 

Go, Agg °° Ky *** oy 

C= Ant ane aes k,, =e ann 

ss det A 

where the 7th column is the one containing k,, k.,..., k,. 
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The proof of Theorem 7.6.2 for the general case is omitted. However, we 
use the matrix method of Section 7.5 to prove it for n = 3. We have then a 
system of three linear equations in three variables x,, x5, and x3, which can 

be written as 
on is 

A Xo = les (4) 

x3 ks 

where 

G4, Ayn 43 

A= |do1 Ag Ap3 

43, 39 33 

We multiply, on both sides of equation (4) by A~ and obtain 

xy ky 
Xo| = Al ky 

X3 ks 

Replacing A“! by its equivalent from Theorem 7.5.4, we have 

“| 1 Ay, Ayo Ay3]' [kx 

Xo| = = 7ZI|4e1 Ae Aes) | Ke 

Xs ee Az, Ago Agz3) LK 

1 Ay, As, Azy| [Ay 

= ewe A1s ae e ky 

13 23 

kyAyy + Kodo + kg day 
det A 

- k4Ay. + KoAgo + k3A30 (5) 
det A 

kyAy3 + kodog + k 3433 
det A 

In matrix (5) the elements are the evaluations of det A by the cofactors of 

the elements of the first, second, and third columns, respectively; except that 

the elements in the columns involved in each evaluation are replaced by k,, 
k,, and k;. Therefore, 

(6) 
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EXAMPLE 2 

Use Cramer’s rule to find the solu- 

tion set of the system 

4x — y+2z=8 

2x + 3y + 2z = —4 

3x + y—2z=6 

Formulas (6) are known as Cramer’s rule for the solution of a system of 
three linear equations in three variables. They are similar to formulas (3) 
because in each of the denominators we have the determinant of the coefti- 
cient matrix of the given system; furthermore, in each of the numerators we 
have the determinant of the matrix obtained from the coefficient matrix by 
substituting the numbers k,, k,, and k, for the coefficients of the variable for 
which we are solving. 

SOLUTION 

We first evaluate the determinant of the coefficient matrix. 

4 —-1 2 a 0 0} (replacing the first row by the sum of the 
2 3 2 3 2| first row and the third row) 
3 1 —2 5) 1 —2 

_4 } 4 (evaluating by the minors of the ele- 
= = ments of the first row) 

= —56 

From formulas (6), we have 

8 = 2) 4 8 2 Al =| 8 
=4 3 2 2 =a 2 2 3 = Al 

6 a), 3 G =) 3 1 6 
= =O = Tl : =% ee cl e =i ) 

We evaluate each of the determinants in the numerators. 

8 ll ?) 14 0 0 4 8 2 4 0 D 
= 3 D) a =4 3 a Dil 2\ = 2" =8 2) 
6 2) 6 | =? 3 O =2 3 @ =2 

3 2 4 2 
= 1 =1—'§ jie ea 
= iil) ally 

a4 | 8 AL || 0 

2 3 —4|/ =/2 3 = 8 

3 1 6 3 1 0 

40 || 
aS 
E ‘| 

— oO 

Substituting into formulas (5), we get 

_ —112 = uw Poe 56 

mme= 5681 2 56 NG 

Therefore, the solution set is {(2, —2, —1)}. 
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EXERCISES 7.6 

Even though Cramer’s rule can be used to solve a system of n equations in 
n unknowns, it is tedious to apply for a system of more than three equations 

because of the many determinants that have to be evaluated. However, 
Cramer’s rule as well as the matrix methods of Sections 7.1 and 7.5 can be 
programmed so that electronic computers do the calculations. In Exercises 13 
through 18 in Exercises 7.6, you are asked to apply Cramer’s rule to solve a 
system of four linear equations in four variables. 

Find the solution set of the given system by Cramer’s rule. If the equations of the system 

are either inconsistent or dependent, so indicate. , 

1 pees ee 

: 3x y=) 

A ee vi 6 
DN Dy = —5 

2x — 4y — 3z =0 

4x +3y +5z=0 

Wf 

6x —2y4+ z2=0 

x-—- y-— z=0 

8x —2y + z=0 

x + 3y +5z=0 
10. 

2w+2x —3y—-— z= 

—w+ x+2y4+3z= 

x—2€y+ z=0 

w — 2x + y-2z= 

13. 

aA 
aT 
5 

w—2x— yp+2z=4 

= 68 

= —2 

3w — 3x + 2y — 2z 
2w+2x —3y+4+ Zz 

4w+7x — y—6z —5 

eee 3. ee ee 

Peete eee 

2x —2y+ z=0 x+4+4+ z=5 

5.) XV = a= 3 2x + y—4z=0 

x— y—3z=-7 3x —3y+ z= -1 

3x + y+2z=2 6x + y—2x=0 

8. a AN 2x+3y-— z=0 
x— y-2z= 4x +2y —3z=2 

peat es pi $e: 
11. peat i=3 W282) ae 

3x — y+2z= 10 ps3 = 

w—- x- y—- z=2 4w +2x+3y=5 

2w + 4x —3y=6 DO a 

3x — 4y —2z = -1 Bw dk Spe Dy e= 3 

2w + 4y + 3z =5 4x +3y +6z=1 

2w —3x + y—8zZ= -2 4w—2x + yp— z=3 
w+3x+2y—- z=5 18 2w—4x + y+ z=-1 

—w+2x+ y+3z=3 ; AW 230 

3w + 2x + 3y — 7z = 5 Bw + x- yp=2 

REVIEW EXERCISES (CHAPTER 7) 

In Exercises I through 6, use the matrix method of Section 7.1 to find the solution set 

of the given system of equations. 

en as 

2x + 3y = 19 

3x —5y 4+ 2z =4 3y =0 Zsa as 3. 414x.4 Oy ae 
ve 5x = 9y = 37 d 
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= = » - pon ONE ies obs Si a ae ee ae [ 2v 44x + 2y— 32 =0 
AD +6x 4 3z =3 5 4w — 3x + 6y + 3z = 3 6 —4w + 2x + y+3z=4 
er, ee Ds, | [2w — 5x — 3y + 42 = 3 w + 3x — 2y — 6z =6 ae ae 8w + 4x + 9y — 22 =5 Bie ee eaynno = 6 

In Exercises 7 through 20, perform the indicated operations with matrices. 

3. —4 —6 7 ] 2 8 5 —6 y Ls ’ = 
ke leas z| i E —4 | [ 7 ie | 

—4 0 —2 2 
OM wig Ihe is | 5 10. || al A 

8 —2 —l -3 * 

l | 0 —2 1 —1 d = 12. —4 3 Ue ae! fal E oop 3 0 A 
I 2 1 3 i nen 1 1 : rele: a ee le 
be =F 91-1 any [3 ; [ d : Cm 

ase ie! 3) =) Oi? 
1 Oe I 18. | —2 ] 2 

22050 0 —3 4 

—2 ag) | 
19> [15 2) 20] 0 —-1 1 20. 2102 1) 

3 Ome —3 

In Exercises 21 through 24, find the matrix X that satisfies the given equation. 

1 — 1 —7 
21. 2x + 3/2 ele = iy, CNG, il) aes a 

3 2 9 7 
] —3 

23. 5|—2] — 4X = |— 24.[—5 4 9 —4)=3X—2[1 -—2 0 5] 
—| 7 

In Exercises 25 through 30, evaluate the given determinant. In Exercises 25 and 26, first 
obtain two zeros in a row or column; and in Exercises 27 and 26, first obtain three zeros 
in a row or column. 

2 3 —1 25, ? os 26. | : a 27a ema 5 
=~ oe a 4 
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1 1 \ Ae eS oeAweS 2 5 4 1 

* ee ] 2) 3 2 
28. ; ; i 29. iv BC aes 30. a4 5 5 

. % ad al “ 1 oer 

In Exercises 31 and 32, verify the given equality. 

Cad ome biva a b| _ ja b+ka 

ee ele 3 \ 7d || alomaenere 

In Exercises 33 and 34, find A and show that AA~* = I. 

5 \ | 0 l 

sage a, | 34,4 =H 2 0 

f 3 0 oO -1 

In Exercises 35 and 36, solve the system of equations by using the matrix method of 

Illustration 4 and Example 3 in Section 7.5. 

X= y= 2=0 
ad 

35. bs" pta= 
26, ie eae 

In Exercises 37 through 39, use Cramer’s rule to find the solution set of the given system 

of equations. 

3x — Sy —6z =2 
2x + 2y + 5z = —2 

5x +3y-—- z=3 

4x — 4y —5z =2 

2x —3y —4z =8 39: 
ae aes, 

6x —5y —2z =6 

dx + 2y —32 = 10 
Bx yaa af 
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Series 

432 

8.1.1 DEFINITION 

“Sequences” of numbers are often encountered in mathematics. For 
instance, the numbers 

2, 4, 6,8, 10 (1) 

form a sequence. This sequence is said to be finite because there is a first and 
last number. If the set of numbers which forms a sequence does not have 
both a first and last number, the sequence is said to be infinite. For instance, 
the sequence 

Lae (2) 
Ion 4 19 16 

is infinite-because the three dots with no number following indicate that there 
is no last number. 

We now give a formal definition of a “sequence function.” 

(i) A finite sequence function is a function whose domain is the set 

{li 2.3; eeu} 

of the first n positive integers. 
(ii) An infinite sequence function is a function whose domain is the set 

GL 2.Oe erie 

of all positive integers. 

The numbers in the range of a sequence function are called elements. We 
refer to the elements of a sequence function, listed in order, as the sequence. 

ILLUSTRATION 1. Let f be the function defined by 

sa) = 2n, nme 1 1,2,3;4, 5} 

Then fis a finite sequence function, and 

f=2 f@=4 fG@=6 fA =8 $6)=10 
The elements of the sequence defined by fare then 2, 4, 6, 8, and 10, and the 
sequence is 

2s O48.0L0 

which is sequence (1). The ordered pairs in fare (1, 2), (2, 4), (3, 6), (4, 8), and 
(5510); e 

ILLUSTRATION 2. Let g be the function defined by 

g(n) = ae ey ce oes) 
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The function g is an infinite sequence function. The elements of g are 

a ws) ol Bis 40) — i 22) = 4 20). = 5 g(4) = 16 

and so on. The sequence defined by g is, therefore, 

IL) eke 
eee 16. 

which is sequence (2). Some of the ordered pairs in g are (1, 1), (2, 3), (3, 2) 
(4, 35), and (5, 2). 

b] 

The nth element of a sequence is called the general element of the se- 
quence. We use the notation a, to denote the general element of a sequence. 
For sequence (1),a, = 2nand, therefore,a, = 2,a) = 4,a, = 6, Gio 7a0d 

2n — | 3 a; = 10. For sequence (2), a, a, 7 
l 

, and hence a, =—, a = 

5 ‘ ad, = —, and so on. Often the general element of a sequence is stated when 3 9 g q 

the elements are listed in order. Thus, for the elements of sequence (2) we 
would write 

‘- Vj als 
I elgg ay? Yo] n 

2 
> Zl 

You should distinguish between the elements of a sequence and the 
: 4 : : sequence itself. For instance, the sequence, for which a, = —, has as its 

n 

elements the reciprocals of the positive integers, and the sequence is 

| ee 
De ae Ge cet 3 

> p) a 3 > 4 n ( ) 

The sequence for which 

il. if n is odd 

bh 

ia 2 ; if n is even 
i 2 2 

has as its elements 

1 | l 
a, = 1 Wales Gail 35 Getz a5 =e 

and so on. The sequence is 

1 | l 
L A? Ihe AW? iF Wiis 4 

2 3 4 @) 
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EXAMPLE I 
Write the first five elements of each 
of the following sequences for which 

the general element is given 

wi 2 

eae Clete) 

(b) a, a (es 7a 

(c) a, = (CD age 

The elements of sequences (3) and (4) are the same; however, the sequences 

are different. 

You should realize that knowing several elements of a sequence does not 

determine a unique general element, as shown in the following illustration. 

ILLUSTRATION 3 

(a) The sequence, for which a, = 2n, is 

204. 6..8, LU ple, eae ee (5) 

(b) The sequence for which 

oe if n is odd 
a, = : ; 
© laa if n is even 

is 

eA Ope lidan 1 Open Oy emarase Ces ceueas (6) 

(c) The sequence, for which a, = 2n + (n — I)(n — 2)(n — 3), is 

) 6, 14.34,.72...0n, 2+ (1 — In — 2) — 3), Oe 

Observe in Illustration 3 that sequences (5), (6), and (7) all have 2, 4, and 6 

as the first three elements but the general element for each sequence is 

different. Therefore, to uniquely determine a sequence either the general 

element must be known or we must have a method for obtaining any element 

from the preceding one. It is not always possible that an equation can be 

given to determine the general element of a sequence. For instance, the 

sequence of prime numbers can be written as 

24305, Tell Sd 3al To eee meee 

where a, is the nth prime number. For this sequence we cannot write an 

equation which defines a,; however, a, can be determined for every positive 

integer n. 

SOLUTION 

ce aes mets wane 7 
(2) 41 =7-> gntinee Jaap ga end 5 ee 

a eens aos ess De. 
2 3 a) ae 335 
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EXAMPLE 2 

Write the first twelve elements of the 

sequence for which 

n, if n is odd 

n, if nis even and not exactly 
divisible by 4 

z(n + da,_,), ifn is even and 

exactly divisible by 4 

l ih OA EV @=CW gs; 4=(-14, 
a= (--1)° = Therefore, the first five elements are 

as 
ny 81 

(GC), = 1) 0x25 Gp): GaN) Gg = yx 
a; = (—1)*x". Thus the first five elements are 

1 l ol ee 

x3, —x5, x7, —x9, x11 

SOLUTION 
C—O — 2 Od, — 3(4 4 2): Oe Se Gh 6 els IS 
ag = 3(8 + 6), dg = 9; dy) = 10; a,, = 11; a,, = 4(12 + 10). Therefore, the 
first twelve elements are 

eee Oe ei 9 Onl lel I 

The indicated sum of the elements of a sequence is called a series. Because 
the familiar operation of addition applies only to a finite set of numbers, we 
restrict the series (with one exception) in this text to those associated with 
finite sequences. The one exception, which is discussed intuitively in Section 
8.5, is an infinite geometric series. The formal definition of the “sum” of an 
infinite series requires the concept of “limit,” which is studied in the calculus. 

Associated with the finite sequence 

Deg Us ORR Gee 

is the series 

a, +4,+4;+ +++ +4, (8) 

ILLUSTRATION 4 

(a) Associated with the sequence 1, 3, 5, 7, 9 is the series 

14+3454749 (9) 

b) The sequence having ten elements and whose general element is i - & § 
(arate 1s 

x7, = x4, x8, — x8 x10 x12, x14 _ 16 18 _ 20 
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The series associated with this sequence is 

x2 = x4 aie x6 p= x8 ale x10 oa x12 aie x4 = x16 ae x18 = x20 ®@ (10) 

The terms in a series are the same as the corresponding elements in the 

associated sequence. Hence we refer to the general term of a series just as we 

refer to the general element of the associated sequence. 

A notation called the sigma notation is now introduced to facilitate writing 

a series whose general term is known. This notation involves the use of the 

symbol ©, the capital sigma of the Greek alphabet, which corresponds to our 

letter S. The following illustration gives some examples of the sigma notation. 

ILLUSTRATION 5 

t 

(a) Or ae mC! ick aCe aie 7 
= 

5 

(b) Sy (2i + 3) = [2(2) + 3] + [2() 4+ 3] + (244) + 3] + 2G) + 3] 

j=? v 

=7494114 13 

a a 1 ie i 1 1 Bek is fa, oy AN a, hy eel aE DS e Oh: sete we hes 

The sigma notation can be defined by the equation 

n 

Si F@ = Fm) + Fm +1) + Fm 4+24+---+F@) (1D 
=m 

where m and n are integers and m <n. 

The right side of formula (11) consists of the sum of (n — m + 1) terms, the 

first of which is obtained by replacing i by m in F(i), the second by replacing 

i by (m + 1) in F(i), and so on, until the last term is obtained by replacing 7 

by nin F(i). The number m is called the lower limit of the sum, and nis called 

the upper limit. The symbol i is called the index of summation. It is a 

“dummy” symbol because any other symbol can be used. For example, 

6 
pe i" 6 

im4 

can be written also as 

6 

Dy er a a 

j=4 
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Sometimes, the terms of the sum involve subscripts, as in series (8), for 

which we write 

n 

D4 =H 4, $n +a, +--- 
=n 

EXAMPLE 3 SOLUTION 

Write series (9) and (10) with sigma | Series (9) is 

notation. 
eg se fe ae) 

With sigma notation, this series is 

5 

S' Qi - 1) 
a1 

Series (10) is 

Kot oe yO x8 te l0) — 12 lt = 18 4 8 — 2220 

With sigma notation, this series is 

10 

»: ( ee eee 

t=! 

EXERCISES 8.1 

In Exercises 1 through 16, write the first eight elements of the sequence whose general 

element is given. 

l 
4. == 

On je 22) 

(= es 

Oe 
nhs) 

1 1 
12. —— 

On 2n 3n 

2) 

2 n 

ip ae I : an 

5S) = = 1 ens is = (— (Cori! 2 —(—]|)y" 

r¥ 2n — | B59 is} MP Tae, a 1 4+ 2” 

Ey (Ae “4 (iy Ars : 

9. a, —s n ee me 10. a, = Bete i 11. a, =n 4+ (—1) n 

2 : if n is odd Ik, if n is odd 

13. a, = n + l 
14. d, aH 4 " . 

oF, if m is even 
(n fi 2)? > Lesa Vieim 

Nn, if n is odd 

i Se Mo : 

2a PRESSES tse if n is even and not exactly 

a4 if n is even 
divisible by 4 

5 (4-9 +d,_,), if n is even and exactly divisible by 4. 
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In Exercises 17 through 28, write the given series. In Exercises 17 through 24, find the 

sum of the series. 

5 7 6 i =e 
2 alae a 17. Ds (4i — 3) 18. » (i + 1) 19. BS Tl 20. 3! 

(esal t= j=2 

100 8 5 1] 3 hil a 

21. oe 2 23. ie 24. >s 

i=1 i=1 k=0 j=0 

8 5 n n 

hs SS (eye 26.. > 2x" 27. Si f%) 28. S? f(x;_)h 
sil =i vn i 

In Exercises 29 through 36, write the given series with sigma notation (there is no unique 

solution). 

29.14+3454749411 30.2+4+4+6+48 +4 10 31. 4-7 +4 10 — 13 + 16 

lignes! l 1 1 5a 7 9 11 1 l 1 
al —+—-4+=> 1 — += 34. 1-—+—-—> 

phe ARTE IG) gah IT Fore deer U3) incl SOLS ETS 4+ 16 64 

A Dee Yea es ids eae eee are le 35. 5 Tia Gace ef 10) 36. x ye wate ae ea 

37. Write the general element and the first six elements 38. Write the general element of a sequence whose first 
of three different sequences each having as the first three elements are 2, 4, and 6, and whose fourth 
three elements 1, 3, and 5. element is x, where x can be any real number. 

3. 2 Mathematical Mathematical induction is a certain general technique of proof in mathe- 

Induction matics. This technique is used to prove that a theorem involving a variable is 
true for all positive-integer values of the variable. A proof by mathematical 
induction is based upon the following theorem. 

8.2.1 THEOREM Principle of Mathematical Induction. Suppose that P, is a statement involv- 
ing the positive integer n. Furthermore, suppose that the following two 
conditions are satisfied: 

(i) P, is true (that is, the statement is true for n = 1). 

(ii) If A is an arbitrary positive integer for which P,, is true, then P,,,, is also 
true (that is, whenever the statement is true for n = k, it is also true for 

n =k + 1, where k is an arbitrary positive integer). 

Then the statement P,, is true for all positive-integer values of n. 
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Proof. Assume that conditions (1) and (11) are satisfied but that the state- 

ment is not true for some positive-integer value of n. We shall show that this 
assumption leads to a contradiction. Let M + 1 be the smallest positive- 
integer value of n for which the statement is not true. That is, we are 
assuming that the statement is true for n = 1,n =2,n =3,...,n=M, 

where M is a positive integer; and we are assuming that the statement is not 
true for n = M + 1. By condition (i) we know that the statement is true for 

n = 1. Therefore, M > 1. However, from condition (ii), because the state- 

ment is true forn = M, the statement must also be true form = M + 1. Thus 

we have a contradiction to our assumption that there is some positive-integer 
value of n for which the statement is not true. Hence the statement must be 

true for all positive-integer values of n. 

ILLUSTRATION 1. We shall prove by mathematical induction that the sum 

of the first n positive odd integers is equal to n*. That is, we shall prove that 

eee ere Oe |.) rte (1) 

for all positive-integer values of n. The proof consists of part | (verifying 
condition (i) of Theorem 8.2.1), part 2 (verifying condition (11) of Theorem 

8.2.1), and conclusion. 

PART 1: We first verify that formula (1) is true form = 1. Ifn = 1, formula 

(1) becomes 

lea? 

which is true. 

PART 2: We now show that if formula (1) is true for n = k, it is also true for 

n =k +1, where k is an arbitrary positive integer. That is, we assume 

ha Cae i oan ONG = 10a (2) 

We wish to prove that if equation (2) is true, then the equation 

1434+5+4---+@2k—1)+2( + 1)—-l]=4 +1) (3) 

is also true. The last term in the left member of equation (3) can be written as 
2k +2 — 1; hence, (2(k + 1) — 1] = (2k 4+ 1). We add [2(k + 1) — 1] to 

the left member of equation (2) and its equivalent (2k + 1) to the right 

member, and we obtain 

143454 :--+(@k —1) + [2k + 1) — 1) = 4? + Qk + 1) 

or, equivalently, 

14345 +.-.- + Qk— 1) + (2K 4+ 1) — 1] = + 1) 

which is equation (3). 
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EXAMPLE | 

Prove the following formula by 
mathematical induction. 

n 

Delete 
al 

n(n + 1)(2n + 1) 

6 
(4) 

CONCLUSION: From part 1 we know that formula (1) is true for n = 1. 
Because it is true for n = 1, it follows from part 2 that the formula is true for 

n= 1+ 1 or 2; because it is true for n = 2, it is true form = 2 + 1 or 3; 

because it is true for n = 3, it is true for n = 3 + | or 4; and so on. By the 

principle of mathematical induction the formula is true for all positive- 

integer values of n. e 

Observe in part | of Illustration | that it is only necessary to verify that the 
theorem is true for the smallest positive-integer value of n(n = 1). However, 
often we verify a theorem for other successive values of n (for instance, 

n = 2, n =3, and n = 4) to convince us of a theorem’s validity before 

proceeding to part 2. Verifying formula (1) for n = 2,n = 3, and n = 4, we 

have 

ic —s2, = 3.) thats. 4 — 4 

tiene Poe) 28 oy ere ipiey Va) 

fin 4 (ees ee Waa anes Ip ara) 

SOLUTION 

PART 1: First formula (4) is verified form = 1. Whenn = | the left side of 

formula (4) is 

1 
Si? =1 
4=1 

and the right side of formula (4) is 

ees Osa ay tees 
6 Pics 

= 

Hence formula (4) is true when n = 1. 

PART 2: We assume that formula (4) is true when n = k, where k is any 

positive integer; and with this assumption we wish to prove that the formula 
is also true when n = k + 1. If the formula is true when n = k, then 

k k Se (k + a + 1) 6) 

=) 

When n = k + 1, we have 

k+1 

Be search cp oem apie tends pe 

eal 
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EXAMPLE 2 

Prove the following statement by 
mathematical induction. 
(x — y) is a factor of (x” — y") for 

all positive-integer values of n. 

k 

= Sa + (k + 1)? 
ee) 

ey ey pplyine equstenG)) 6 

_ kk + 1)(2k + 1) + 6(k + 1 

+ 6 

a> WWI se eR Us ae 
a 6 

_ ese DOKE 25 e215) 

™ 6 

Oe) 
e 6 

_ e+ DIK +) + NRA +) +1 
6 

Therefore, formula (4) is true when n =k + 1. 

CONCLUSION: We have proved that the formula is true when n = I, and we 

have also proved that when the formula is true for n = k, it is also true for 

n =k + 1. Therefore, by the principle of mathematical induction, formula 
(4) is true when n is any positive integer. 

SOLUTION 
PART 1: When 7 = 1, (x” — y") becomes (x — y) which certainly has 

(x — y) as a factor. 

PART 2: We assume that (x — y) is a factor of (x* — y*), where k is any 
positive integer; and with this assumption we wish to prove that (x — y) is 

also a factor of (x**1! — y**1). If we subtract and add xy* to (x*t+! — yt), 
we obtain 

xkt1 — y+ See te xyk + xyk — yktl 

or, equivalently, 

xkt1 — ykrl = xOc™ — yk) + yk (x — y) (6) 

We have assumed that (x — y) is a factor of x* — y*; furthermore, (x — y) is 
a factor of y* (x — y). Hence (x — y) is a factor of each of the two terms in 

the right member of equation (6). Therefore, (x — y) is a factor of 
(xk+1 — yk+1y, 
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8.2.2 DEFINITION 

EXAMPLE 3 

Prove Theorem 4.1.1(i): If m and n 

are positive integers anda € R, then 

q™ ° qq” — qn (7) 

CONCLUSION We have proved that the statement is true when n = 1, and 
we have also proved that when the statement is true for n = kK, it is also true 
for n =k + 1. Therefore, by the principle of mathematical induction, the 

statement is true for all positive-integer values of n. 

In Section 4.1 we stated that certain laws of exponents can be proved by 
mathematical induction. In Example 3 we prove Theorem 4.1.1(i) by 
mathematical induction and the following definition of positive-integer 

exponents. 

Let a be any real number. Then 

(i) (jpoh 

(ii) If k is any positive integer such that a* is defined, let a*t! = ak «a. 

SOLUTION 
Let m be an arbitrary positive integer. We wish to prove that the formula (7) 
is true for all positive integers n. 

PART 1: We verify that the formula is true when n = 1. From part (i) of 
Definition 8.2.2 it follows that 

Cad =a" 6 

Applying Definition 8.2.2(ii) in the right member of this equation, we have 

g™-qi = qmti 

Hence formula (7) is true when nv = 1. 

PART 2: We assume that formula (7) is true when n = k, where k is any 

positive integer; that is, we assume that 

a eva e (8) 

With this assumption we wish to prove that 

qm + qkt+1 — gqmtk+) (9) 

To prove this, we start with the left member of equation (9) and replace a**! 
by a* + a (which follows from Definition 8.2.2(ii)). Thus 

a” + gk+1 — qm. (gk -q) (i) 

Applying the associative law for 
multiplication in the right member of 
equation (i), we obtain 

a ah T= (asa) cee a 
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Substituting from equation (8) into 

the right member of equation (11), we 
have 

We apply Definition 8.2.2(ii) in the 
right member of equation (111) and we 

get 

In the exponent of the right member 
of equation (iv), we use the associa- 

tive law for addition, and we obtain 

which is equation (9) that we wished 

to prove. 

q”™ 

m 
a 

GHES 

‘ qkt1 = qutk “a (iil) 

ogiiarll qimtk)+1 (iv) 

qkti — qnrk+) 

CONCLUSION: From part | we know that formula (7) is true when n = 1. 
From part 2 we know that when formula (7) is true for n = k, it is also true 

for n = k + 1, where k is any positive integer. Hence, by the principle of 
mathematical induction, formula (7) is true when n is any positive integer. 

In Exercises 1 through 14, use mathematical induction to prove that the given formula 

is true for all positive-integer values of n. 

10. 

yo Se 

_ n(n + 1) # 1) 

pemeal as i) 

01) 
=a 

2) (21) 
(al 

2 S12 = nln + 1) a a ome 

5 SED. wees 6 Sai 1p = THCY 

8. SH eae 9. eee 

i Fes) — D Soa ee 
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] n 

se > Cr=CHE Ca) 

15. Prove by mathematical induction Theorem 
4.1.1(ii): If m and n are positive integers and 
a GR, then (@”)" =a. 

16. Prove by mathematical induction Theorem 

4.1.1(iii): If m is a positive integer and a, DE R, 

then ab) a= aro 

6.3 Arithmetic 

Sequences and Series 

The sequence 

[Ch. 8 

a a ee 
14. »> ar = 2 isis 

17. Prove by mathematical induction that (x + y) isa 

factor of (x2" — y?”) for all positive-integer values 
of n. 

18. Prove by mathematical induction that (x + y) is a 
factor of (x2"-1 + y?n—1) for all positive-integer 
values of n. 

Jp onomul 4. 17,20 (1) 

is one for which each element, except the first, can be obtained by adding 3 

to the preceding element. This sequence is an example of an “arithmetic 
sequence,” which we now define. 

8.3.1 DEFINITION An arithmetic sequence is a sequence for which any element, except the first, 

can be obtained by adding to the preceding element a constant addend. 

An arithmetic sequence is sometimes called an arithmetic progression. 
We can ascertain if a given sequence is an arithmetic sequence by sub- 

tracting each element from the succeeding one, and determine if there is a 
“common difference.” Hence the constant addend in an arithmetic sequence 
is called the common difference, and it is denoted by d. 

ILLUSTRATION 1. For the sequence 

9,5, 1, —3, —7, —1l (2) 

—1l1 —(—7) = —4. Therefore, sequence (2) is an arithmetic sequence where 

the common difference d is —4. e 

In an arithmetic sequence, the number of elements is denoted by N, the 
first element is denoted by a,, and the last element is denoted by ay. In 
sequence (2), N = 6, a, = 9, and a, = —11. 

The definition of an arithmetic sequence can be stated symbolically by 
giving the value of the first element a,, the number of elements N, and the 

formula 

Gn44 = a, + d (3) 
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8.3.2 THEOREM 

from which every element after the first can be obtained from the preceding 

one. 

ILLUSTRATION 2. If a, = 4, N = 8, and 

ao.4=—4, +3 

the arithmetic sequence is 

Avip LOIS glOn 1 9,22,.25 e 

Formula (3) is called a recursive formula. From this formula we can write 

the general arithmetic sequence, for which the first element is a,, the com- 

mon difference is d, and the number of elements is NV. We start with the 

element a, and each successive element is obtained from the preceding one 
by adding d to it. Hence we have 

a,,4, + d,a, + 2d, a, + 3d,a, + 4d,...,ay 

Refer to the first five elements and observe that each element is a, plus a 
multiple of d, where the coefficient of d is one less than the number of the 

element. Intuitively, it appears that ay = a, + (N — l1)d. We state this 
formally as a theorem and prove it by mathematical induction. 

The Mth element of an arithmetic sequence is given by 

dy =a, + (N — l)d (4) 

Proof. We first show that formula (4) is true if N = | by substituting 1 for 

N in (4). We have 

a,=a,4+(1 — ld 

That is, 

Gy Sas 

We now assume that formula (4) is true if N = k; thus we assume 

a, =a,+(k — lod (5) 

We wish to show that formula (4) is true if NV = k +4 1. By the definition of 

an arithmetic sequence 
Gaia a, +d (6) 

Substituting the value of a, from equation (5) into equation (6), we obtain 

hao 2a ls eae! 
Oea1 = 4, +kd—d+d 

Qa = 4, + (CK + 1) — ld @) 
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EXAMPLE 1 

Find the thirtieth element of the 

arithmetic sequence for which the 
first element is 5 and the second 

element is 9. 

EXAMPLE 2 

Find the first element of an arithme- 
tic sequence whose common differ- 
ence is —5 and whose eighteenth 
element is —21. 

EXAMPLE 3 

If the twelfth element of an arithme- 

tic sequence is —21 and the 
twenty-fifth element is 18, what is 
the fourth element? 

Equation (7) is formula (4) with N replaced by k + 1. We have shown that 
whenever equation (5) is true, then equation (7) is true. Therefore, by the 

principle of mathematical induction, formula (4) is valid for all natural 
numbers. 

SOLUTION 

Let a3) be the thirtieth element of the arithmetic sequence 

Dye Gag 

Then d = 9 — 5 or 4; a, = 5, and N = 30. From formula (4) we have 

dg = a, + (30 — 1)d 
=5429+4 
= 121 

SOLUTION 

From formula (4) with VN = 18, we have 

a4, = a, + (18 — l)d 

Substituting —21 for a,, and —5 for d, we have 

—21 =a, + (17)(—5) 

a, = 64 

SOLUTION 

We can consider the arithmetic sequence consisting of the first twenty-five 
elements; it is 

O55 avian gee Da dos (8) 

Using formula (4) with N = 25 and a,, = 18, we have 

18 =a, + (25 — l)d 

18 =a, + 24d (9) 

Sera ee 

The first twelve elements of sequence (8) also form an arithmetic sequence 

with N = 12 and a,, = —21. Using formula (4) with these values of N and 
ayo, we have 

—21 =a, + (12 — ld 

—21=a,+1ld (10) 

We solve the system of equations (9) and (10) by replacing equation (10) by 

the sum of | times (9) and —1 times (10), and we have the system 

Be = a, + 24d 
a0r=vidd 
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8.3.3 DEFINITION 

EXAMPLE 4 

Insert three arithmetic means be- 

tween 11 and 14. 

which is equivalent to the system 

es 

adi=3 

Again using formula (4), with NV = 4, a, = —54, and d = 3, we have 

ad, = —54 4+ (4 — 1)(3) 

a, = —45 

In any arithmetic sequence, the elements between the first and last elements 

are called the arithmetic means between these two elements. 

ILLUSTRATION 3. Arithmetic sequence (1) is 

Zoro Ula. Lie20 

Hence from Definition 8.3.3, it follows that 5, 8, 11, 14, and 17 are five 

arithmetic means between 2 and 20. @ 

SOLUTION 

If ay, dz, and a, are the three arithmetic means, then we have the arithmetic 
sequence 

BE Gis Chiye 

With N = 5 in formula (4), we obtain 

a; =a,+(5 — l)d 

Because a, = I] and a; = 14, we have 

14 = 11 + 4d 

fad 

Therefore, 

(py 510 - 3 Ga HS44 a o+5 

=114 = 124 =134 

The three arithmetic means are, therefore, 11, 124, and 134. 

ILLUSTRATION 4. To insert one arithmetic mean between the numbers x 
and y, we let M be the arithmetic mean and we have the arithmetic sequence 

x, M, y 

The common difference can be represented by either M—x or y — M. 



448 Sequences, Series, and Mathematical Induction [Ch. 8 

8.3.4 DEFINITION 

EXAMPLE 5 

On five separate examinations, a 

student received the following test 
scores: 78, 89, 62, 75, and 84. Find 

the arithmetic mean of these scores. 

Therefore, 
Vie exs =y = Ni 

2M=x+y 

25 ae 
Vie ® 

2 

The number M obtained in Illustration 4 is called “the arithmetic mean” 

(or “average”) of the numbers x and y. We can generalize this concept and 

refer to “the arithmetic mean” of a set of numbers. We have the following 

formal definition. 

(i) The arithmetic mean (or average) of the numbers x and y is the number 

x+y 

2 

(ii) The arithmetic mean (or average) of a set of numbers x4, Xp, X3,- + + + Xy 

is the number 

Xy Xa tb X3 ty Ty 

n 

SOLUTION 

Let M be the arithmetic mean. Then from Definition 8.3.4(ii), 

Eee Verne 
M 

5 

_ 388 
soe 

= 1:6 

An arithmetic series is the indicated sum of the elements of an arithmetic 

sequence. 

ILLUSTRATION 5. The arithmetic series associated with the arithmetic 

sequence of Illustration 2 is 

4+74+10+4 13+ 16+ 19 + 22 425 

This arithmetic series can be written with the sigma notation as 

8 

Cia!) rs 

(Sen | 

The arithmetic series associated with the general arithmetic sequence is 

ay 4 (ater dtalay weed [a 2) ee 
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EXAMPLE 6 
Find the sum of the positive even 

integers less than 100. 

To obtain a formula for the sum of N terms of an arithmetic series, we 

denote the sum by Sy and equate it to series (11). Hence 

Sy=@,+(@,+4)+(@,+2d)+---+[a,+(V-1)d] (12) 

The series on the right side of equation (12) can be written in the reverse 

order with the Mth term being written as ay, the (NV — 1)th term being written 

as (dy — d), and so on, and the first term being written as dy — (n — 1)d. 

Therefore, we have the equation 

Sy = Gy + (dy — 4) + (ay — 2d) + --- + [ay —(N—1)d]_ (13) 

If we add the equations (12) and (13) term-by-term, it follows that 

Sy Sy = (Gy ay) Gy ay) + Gy tidy) + ret G + ay) C14) 

where on the right side the term (a, + dy) occurs N times. Hence equation 

(14) is equivalent to 

2Sx_ = NG, + Gy) 

Sy = (a, + ay) (15) 

Formula (15) can be written as 

S= n(S5*) 

from which it follows that S, is the product of the number of terms and the 

arithmetic mean of the first and last terms. 

If we substitute the value of ay from equation (4) into formula (15), we 

have 

Sy = Fla, + [a, +N - Dd) 

Sy = Za, + (W — Dd] (16) 

SOLUTION 
The positive even integers less than 100 form the arithmetic sequence 

DED og Coss 

We wish to find the sum of the associated arithmetic series, which is 

24+44+64+--- +96 + 98 



450 Sequences, Series, and Mathematical Induction [Chee 

For this series, ay = 2, d =2, N='49, a,, = 98. From formula (15) 

_ 49 
S49 = > (41 + 449) 

= ee + 98) 

= 2450 

EXAMPLE 7 SOLUTION 
Which of the following salary sched- | According to schedule I, the number of dollars received by the employee over 

ules offers more money to the em- | a period of 10 years is the sum of the following arithmetic series of ten terms. 
ployee over a 10-year period and 13,0008 12/900 4: era 3 (17) 
how much more? 
Schedule I: The starting salary is 

$12,000 per year and there is an OD ile) thy 
annual increase of $900 thereafter. ib elias + yea 

Schedule I: The starting salary is | For series (17), a, = 12,000 and d = 900; hence 
$12,000 per year and there is a semi- 
annual increase of $225 thereafter. Sto = 5[2(12,000) + 9(900)] 

= 160,500 

According to schedule II, the number of dollars received by the employee 
over a period of 10 years is the sum of the following arithmetic series of 
twenty terms. 

Let S,) bé this sum, and from formula (16), we have 

6000 + 6225 + 6450 + --- + dy, (18) 
Denoting this sum by Sj) and using formula (16) with a, = 6000 and 
d = 225, we have 

sae 2 2a, + (20 — 1)d] 

10[2(6000) + 19(225)} 
162,750 

Therefore, schedule II offers the employee $2250 more money over a 10-year 
period. 

EXERCISES 8.3 

In Exercises I through 8, write the first five elements of an arithmetic sequence whose 
first element is a and whose common difference is d. 

iy @ = 5? gi = 3 L003 0 350 — 104d) 4 4 .—"| 00 — a 
NS) (eps uy due li) Oa — 20 a — a0 DG mK pd ay, 8 a@=u +l d= —30 

In Exercises 9 through 16, determine if the given elements form an arithmetic sequence. 
If they do, write the next two elements of the arithmetic sequence. 

9. 3, —1, —5, —9 10. 12, 7,2, —3 11. 2, —6, 10, —14 12. —1, -4,4,1 
13. 4,444 14.4,3,3,28 15. x, (2x + y), (3x + 2y) 16. s,t, (2¢ — s) 
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17. Find the twelfth element of an arithmetic sequence and the twenty-first element is 100. What is the 
whose first element is 2 and whose second element 15th element? 
is 5. 21. The first three elements of an arithmetic sequence 

18. Find the tenth element of an arithmetic sequence are 20, 16, and 12. Which element is —96? 

whose first element is 8 and whose third element is 22. In the arithmetic sequence whose first three ele- 
a ments are 4, $, and 4, which element is 4? 

19. Find the first element of an arithmetic sequence 23. Insert four arithmetic means between 5 and 6. 

whose eighth element is 2 and whose common 24. Insert seven arithmetic means between 3 and 9. 
difference is —2. 25. Find the arithmetic mean of the following set of 

20. The ninth element of an arithmetic sequence is 28 testescores: 72,53, 85, 74, 62, 83. 

In Exercises 26 through 31, find the sum of the given arithmetic series. 

8 18 i on 1 12 

26. 3i — 1 27. 28. (8 — 2i 
= . 2 3 2 

50 20 12 l 

29. - ! f — F ~i — De Ss ap) 30 >» (Sj — 1) 31 e (5 5} 
k=) j=1 i=3 

32. Find the sum of all the positive integers less than 37. A contractor who does not meet the deadline on 
100. the construction of a building is fined $100 per day 

33. Find the sum of all the positive even integers for each of the first 10 days of extra time, and for 
consisting of two digits. each additional day thereafter the fine is increased 

34. Find the sum of all the integer multiples of 8 by $20 each day. If the contractor is fined $2520, 
between 9 and 199. by how many extra days was the construction time 

35. The sum of $1000 is distributed among four people extended? 
so that each person after the first receives $20 less 38. It is desired to pile some logs in layers so that the 
than the preceding person. How much does each top layer contains one log, the next layer contains 

person receive? two logs, the next layer contains three logs, and so 

36. To dig a well a company charges $10 for the first on; each layer containing one more log than the 
foot, $12.50 for the second foot, $15 for the third layer on top of it. If there are 190 logs, determine if 

foot, and so on; the cost of each foot is $2.50 more all the logs can be used in such a grouping, and if 
than the cost of the preceding foot. What is the so how many logs are in the bottom layer? 
depth of a well that costs $2925 to dig? 

3.4 Geometric The sequence 

Sequences and Series pds 16982504128 (1) 

is an example of a “geometric sequence.” Each element, except the first, can 
be obtained by multiplying the preceding element by 2. 

8.4.1 DEFINITION A geometric sequence is a sequence such that any element after the first can 
be obtained by multiplying the preceding element by a constant multiplier. 
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8.4.2 THEOREM 

A geometric sequence is also called a geometric progression. 
Because each element in a geometric sequence is obtained by multiplying 

the preceding element by a constant multiplier, there is a “common ratio” of 
two successive elements. For this reason the constant multiplier is called the 
common ratio, and we denote it by r. We may compute r by dividing any term 
by the preceding one. 

ILLUSTRATION 1. In geometric sequence (1), we have 

8 16 3 64 128 

2: 2 2 8 ? 16 e 32 64 

The common ratio r 1s 2. e 

As with an arithmetic sequence, the number of elements in a geometric 

sequence is denoted by N, the first element is denoted by a,, and the last 

element is denoted by ay. In sequence (1), N = 8, a, ='1, and a, — 123: 

A geometric sequence can be defined by giving the values of a, and N and 
a recursive formula 

ig ER (2) 

from which every element after the first can be obtained from the preceding 
one. 

ILLUSTRATION 2. If a, = 128, N =5, and a,,, = a,(—}) the geometric 
sequence is 

128, —32, 8 2,5 e 

The general geometric sequence, for which the first element is a,, the 
common ratio is r, and the number of elements is N, can be obtained by 
applying formula (2). Starting with the element a,, we obtain each successive 

element by multiplying the preceding element by r. Doing this, we have 

2 3 4 By fO47, Oyler nQs ls 03.55 Gy (3) 

In the first five elements we observe that each element is the product of a, 
and a power of r, where the exponent of r is one less than the number of the 
element. Therefore, our intuition suggests that the Nth (last) element is given 
Dyid, = 0.7 ee 

The Mth element of a geometric sequence is given by 

Cy = ar (4) 

The proof of Theorem 8.4.2 is by mathematical induction and is left as an 
exercise (see Exercise 41 in Exercises 8.4). 
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EXAMPLE 1 

Find the tenth element of the geo- 
metric sequence for which the first 

element is 3 and the second element 
is —5. 

EXAMPLE 2 
A city has a population of 100,000. If 
the population increases 10 per cent 
every 5 years, what will be the pop- 
ulation at the end of 40 years? 

SOLUTION 

Let ay, be the tenth element of the geometric sequence 

5 
pute ct wee i0 

Then 

5 
>) ee) ae 5 

2 (oy (5) 
= —2 

From formula (4) with a, = 3 and N = 10, we have 

Ga = CBee 

>) (0? 7! ) 

= —5(2)8 
— 1280 

SOLUTION 

The population at the end of 5 years will be 100,000 + 0.10(100,000) = 

(1.10)(100,000). The population at the end of each successive 5-year period is 
1.10 times the population at the end of the preceding 5-year period. Hence 
we have the geometric sequence of nine elements 

100,000, (1.10)(100,000), (1.10)?(100,000), ... , dg 

where dg is the population at the end of 40 years. From formula (4) with 
Ni) 10 —. LO0,000 and 7 — 1.10. we have 

= oa Ag = Ayr 

= 100,000(1.10)8 (5) 

We perform the computation by using logarithms. Equating the common 
logarithms of each member of equation (5), we get 

log dg = log [100,000(1.10)8} 
= log 100,000 + log (1.10)8 
= 5 + 8 log 1.10 

Using Table 2, we find log 1.10 = 0.0414. Therefore, 

log dg = 5 + 8(0.0414) 
IOs 12 

Thus 

ag = antilog 5.3312 
= (2.144)10° 



454 Sequences, Series, and Mathematical Induction [Ch. 8 

Hence, to four significant digits, the population at the end of 40 years will be 
214,400. 

8.4.3 DEFINITION _ In any geometric sequence the elements between the first and last elements 

are a set of geometric means between these two elements. 

ILLUSTRATION 3. The sequence 

2,6, 18,3545, 162 

is a geometric sequence with r = 3. Therefore, it follows from Definition 
8.4.3, that the numbers 6, 18, and 54 form a set of three geometric means 

between 2.and 162. 
Because the sequence 

2, — 6, 18, — 54, 162 

is also a geometric sequence (r = —3), the numbers —6, 18, and —54 form 

another set of three geometric means between 2 and 162. e 

EXAMPLE 3 SOLUTION 
Insert two geometric means between | We consider the geometric sequence 
1000 and 64. 1000! aed 

where a, and a, are the required geometric means. In this geometric se- 
quence, N = 4, a, = 1000, and a, = 64. From formula (4) we have 

= 4-1 a4, =a,r 

Therefore, 

64 = 1000r3 

Soe ¥e 
150m 

aa ae 
= 4 105 

2 
5 

Therefore, the geometric sequence is 1000, 400, 160, 64. Thus 400 and 160 are 
two geometric means between 1000 and 64. 

Ifm is a geometric mean between two numbers x and y, then we have the 
geometric sequence 

x, mM, y 
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EXAMPLE 4 

Find the geometric mean of each of 

8.4.4 DEFINITION 

the following sets of numbers. 

(a) 4 and 9 (b) —jh and —§ 

and hence 

my 

on. 

m* = xy 
This equation has two solutions: m = \/xy and m = — xy. Because we 
want the geometric mean to be between the numbers x and y, we choose for 
the value of m the number having the same sign as x and y. We have then the 
following definition. 

The geometric mean of the numbers x and y is 

Vxy if x and y are positive 

and 

—\Vxy if x and y are negative 

SOLUTION 

In each part, we let m be the geometric mean and we compute m by applying 
Definition 8.4.4. 

ie = VEO Oia any SSE 
— a) 

60 

=16 = ae 
1 
2 

II S fo II 

By generalizing Definition 8.4.4, we define a geometric mean of a set of 
n numbers x1, Xo, X3,..., X, to be the number V/x,xX_x3 --- X,. 

ILLUSTRATION 4. A geometric mean of the numbers 4, 10, and 25 is 

V(4)(10)(25) = ¥/1000 
0) ® 

With any geometric sequence we have an associated geometric series, 
which is the indicated sum of the elements of the geometric sequence. 

ILLUSTRATION 5. The geometric sequence of Illustration 2 is 

128, —32, 8, —2, — 
Z 

Associated with this sequence is the geometric series 

128 — 3248-245 
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which can be written with the sigma notation as 

> 128 (- x) Ss 8 

If Sy is the sum of N terms of a geometric series, we can obtain a formula 

for Sy by first writing Sy as the sum of the elements of sequence (3). 

Sy=a,+Qr+aqar?t+ar+--. + ar Ea ee (6) 

If we multiply both members of equation (6) by r, we have 

rSy = Gyr + ayr? + ayr? + ayr4 + --- tay" 14+ ant (7) 

The sum of | times equation (6) and —1 times equation (7) gives 

=. N S,, —7Sy = 4, — ar 

(1 —r)Sy =a, — ar 

Ifr — 1 4 0, we can divide each member of this equation by (1 — r), and we 

obtain 

= N 

gue “L = ifr £1 (8) 

1 cae a ifr 41 (9) 

If r = 1, we have the rather trivial geometric series 

a, +a, +, + o-= Fa, (N terms of a) 

For this series, Sy = Nay. 
A formula for Sy in terms of a,, r, and dy can be obtained by first 

expressing a,r% as r(a,r‘~1) in formula (8). Doing this, we have 

Cay) oh 1 Sy =—————_ 
I iP 

From formula (4) it follows that we can replace a,r¥~! by ay. Thus 

if Pet (10) 
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EXAMPLE 5 

Find the sum of the geometric series 

5 i-1 

2(5) = 3 
i=t 

EXAMPLE 6 

Find the sum of the geometric series 
associated with the sequence of Ex- 
ample 1. 

Geometric Sequences and Series 457 

SOLUTION 
For the given series, a, = 2,r = 4 and N = 5. Hence, from formula (9), we 
obtain 

Sa 
l—r 

2 GP a 3 

i eae 
3 

(1-35) a 243 

a 2 
3 

l =A cy ee 
81 

= 8 
81 

SOLUTION 

The sequence of Example 1, consisting of 10 elements, is 

5 =, —5,..., —1280 
2 

Hence the associated geometric series is 

25+ 10-—---— 1280 (10 terms) 

Using formula (10) with a,) = —1280, r = —2, and a, = 3, we have 

a,—ra So = 1 10 

i l-—r 

5 ee) 

=>) 
5 2 — 2560 

ae 
i520 
eT 

E apue 
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EXAMPLE 7 

In order to create a sinking fund that 
will provide capital to build a new 
plant, a company deposits $25,000 
into an account on January | every 
year for 10 years. If the account 

earns 6 per cent interest, com- 
pounded annually, how much is in 
the sinking fund immediately after 
the tenth deposit is made? 

In the next example we use formula (4) of Section 4.6, which states that if 

P dollars is invested at an interest rate of 1007 per cent compounded m times 
per year and if A, is the number of dollars in the amount of the investment at 

the end of n interest periods, then 

i \" A, = P(1 +=) (11) 
m 

SOLUTION 

Immediately after the tenth deposit is made, the tenth payment has earned 
no interest; the ninth payment has earned interest for 1 year; the eighth 
payment has earned interest for 2 years; and so on; and the first payment 

has earned interest for 9 years. To find the number of dollars in the 
fund immediately after the tenth payment, we apply formula (11) (with 

P = 25,000, i = 0.06, and m = 1) to find the dollar amount of each payment. 

The results are as follows: 

10th payment: 25,000 (no interest) 
9th payment: 25,000(1.06)! (interest for 1 year; n = 1) 
8th payment: 25,000(1.06)° (interest for 2 years; n = 2) 

Ist payment: 25,000(1.06)° (interest for 9 years; n = 9) 

If x dollars is the total amount in the sinking fund immediately after the 
tenth deposit is made, then 

x = 25,000 + 25,000(1.06)! + 25,000(1.06)? + --- + 25,000(1.06)9 

Therefore, x is the sum of a geometric series for which N = 10, r = 1.06, and 

a, = 25,000. Applying formula (9), we have 

25,000[1 — (1.06)!°] 
xX = —-—— Oo 

1 — 1.06 (12) 

We compute (1.06)!° by logarithms. We have 

log (1.06)1° = 10 log 1.06 
10(0.0253) 

==1():253 

Hence 

(1.06)!° = antilog 0.253 
= 19 

Substituting this value into equation (12), we obtain 

ae 25,000(1 — 1.79) 

—0.06 

= (3:29)10? 
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Hence the amount in the sinking fund, immediately after the tenth deposit is 
made, is $329,000, to three significant digits. 

EXERCISES 8.4 

In Exercises 1 through 8, write the first five elements of a geometric sequence whose first 
element is a and whose common ratio is r. 

a7 3 29Ge= 37) oh esti 4.a=2;r= v2 
= ORs _— 

ee 
Colbo 6.50. — — 8157 — 4 1h Gp eA ee 8 a= 

y 

In Exercises 9 through 16, determine if the given elements form a geometric sequence. If 
they do, write the next two elements of the geometric sequence. 

9. 1, 3,9 10. 2, —4, 8 Lie 22 6,.3/2 12. 44,4 
135 3302221 14. 3-2, 3° 32 15. —6,2, —2 165/73, 4/301 
17. Find the third element of a geometric sequence 21. In the geometric sequence whose first element is whose fifth element is 81 and whose ninth element 0.0003 and whose common ratio is 10, which ele- SEG: ment is 3,000,000? 
18. Ifthe first element of a geometric sequence is ¢ and 22. In the geometric sequence whose first three ele- the eighth element is — 16, find the sixth element. ments are 27, — 18, and 12, which element is — 342? 19. Find the common ratio of a geometric sequence 23. Insert five geometric means between | and 64. whose third element is —2 and whose sixth ele- 24. Insert three geometric means between 162 and 2. ment is 54. 25. Insert two geometric means between \/3 and 3. 20. If the first element of a geometric sequence is | and 26. Find the geometric mean of 16 and 25. 

the common ratio is 3, find the smallest four-digit 27. Find the geometric mean of —Zand —6. 
numeral that represents an element of this geo- 28. Find a geometric mean of the numbers 9, 21, and metric sequence. 49. 

In Exercises 29 through 34, find the sum of the given geometric series. 

7 9 l j-3 6 2 k 10 12 29. > Dh 30. SS (—3) 31. > 5 (=) a4, > (=) 33. Ds (1.02)' 34, COD) ist 
1=2 j=3 

=i C==al 

ih 
k=1 

35. Find a sequence of four numbers, the first of which 3, and the third number is increased by 5, the is 6 and the fourth of which is 16, if the first three resulting numbers form a geometric sequence. numbers form an arithmetic sequence, and the last Find the original numbers. 
three numbers form a geometric sequence. 37. From a barrel containing 1 gallon of wine, | pint is 36. Three numbers form an arithmetic sequence hay- withdrawn and then the barrel is filled with water. ing a common difference of 4. If the first number is If this procedure is followed six times, what frac- increased by 2, the second number is increased by tional part of the original contents is in the barrel? 
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38. If a town having a population of 5000 in 1971 has much is in the fund immediately after the twenti- 

a 20 per cent increase every 5 years, what is its eth payment is made? 

expected population in the year 2001? 40. Three numbers, whose sum is 3, form an arithme- 

39. Payments of $1000 are deposited into a sinking tic sequence, and their squares form a geometric 

fund every 6 months and the account earns 4 per sequence. What are the numbers? 

cent interest, compounded semiannually. How 41. Prove Theorem 8.4.2. 

$.5 Infinite 
Geometric Series 

Our discussion of series has so far been restricted to those associated with 

finite sequences. The series associated with the infinite sequence 

PUES ORS 3 6 ae ae 

is denoted by 

Gy te Og ah tee ot Oy “Eo (1) 

and is called an infinite series. But what is the meaning of expression (1)? 

That is, what do we mean by the “sum” of an infinite number of terms, and 

under what circumstances does such a “sum” exist? As stated in Section 8.1, 

the answers to these questions depend upon the concept of “limit” which is 

studied in a course in the calculus. However, for some particular infinite 

series we can give an intuitive idea of the concept of “sum.” 

Consider an infinite arithmetic sequence of positive elements, for instance, 

the sequence 

35 ee se — CN 

whose associated arithmetic series is 

Bie pier. taco Cbs eG dC Misys (2) 

We can obtain a number that is greater than any preassigned positive 

number by finding the sum of a sufficient number of terms of series (2). 

Hence no finite number, representing the “sum” of infinite series (2), can 

exist. A similar argument holds for any infinite arithmetic series of positive 

terms. 
Suppose that we have an infinite geometric series. If |r| > 1, then the 

absolute value of each term is greater than the absolute value of the preced- 

ing term, and therefore such an infinite series cannot have a finite “sum.” 

Observe that this is the situation with the infinite geometric series 

2+64+18+54+.--.-4+23)"1+.-:: 

for which r = 3, and the infinite geometric series 

1 — 5/4525 25 eet es ait 
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for which |r| = 5. Furthermore, an infinite geometric series for which |r| = | 

cannot have a finite “sum” because the absolute value of each term is the 

same, and hence the sum of the absolute values of the terms can again be 

made greater than any preassigned positive number by taking a sufficient 

number of terms of the series, 

But an infinite geometric series for which |r| < | provides us with a 

different situation. For instance, consider the series 

a oo (3) 

To\— 

seal eee ees ae sae AY 

where r = 4, From formula (9) of Section 8.4, if Sy is the sum of N terms of 

a geometric series, 

= (4) 

Therefore, for a finite number N of terms of series (3) with a, = Landr = 4, 

we have 

or, equivalently, 

, . L\ 

Applying formula (5) to successive values of N, we oblun 

. i\? 
S = 2 | ee Vey 

| (;) 
| 3 (3) (;) 

Sy =2 , 
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eee. wis 
a) pic =) 

=i ih ae), 
Tih ae 

3 7 == = |— 
el 8 

i oO WW 

Come 

ee liys: 
2 

l 

Pal 

511 
= jf S== 

512 

and so on. From these values, it follows that 

Ora Seal 

2 Bl- gl— ele Ale NI 

De Ss 

S) NN S) | | | Ae. 2 A 
| II II 

NS) an 
| 

Nw are: i) 
an (=) 

II 
N — i) 
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8.5.1 DEFINITION 

and so on. We intuitively see that we can make the value of S, as close to 2 
as we please by taking N large enough. In other words, we can make the 

difference betwen 2 and Sy, as small as we please by taking N sufficiently 
large. Therefore, we state that the limiting value of Sy, as N increases without 
bound, is 2, and we write 

Sis eer) (6) 
N->o 

Equation (6) is read “the limit of S, as N increases without bound is 2.” 
Observe that “N increases without bound” is written ““N— oo,” where oo is 

the symbol for infinity. We emphasize again that equation (6) has not been 
defined precisely in this intuitive discussion. 

Consider now the general infinite geometric series 

Q,+ar+ar +ar+---f-art+--. |r <i 

The sum of the first N terms of this series is given by formula (4) or, 
equivalently, by 

oA See eer") (7) 
ll = 

Because |r| < 1, as N increases the absolute value of r¥ decreases, and the 
absolute value of 7’ can be made as small as we please by taking N suffi- 
ciently large. (Note that when r = 4, we have (4)! = 4, (4)? =4, (4)? =4, 
Gta, GP=s,. @P=a -..-., = ate, and so on.) Hence 
lim rY = 0, and thus from formula (7), we have 
N-co 

fins 
No Naas ] —f 

We therefore have the following definition. 

The sum S of an infinite geometric series, for which |r| < 1, is given by 

Sa 
17 

ILLUSTRATION 1. For series (3), a, = 1 and r = 3. Therefore, from Defi- 

nition 8.5.1, if S is the sum of this series, 

This result agrees with the discussion leading to equation (6). ® 
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EXAMPLE | SOLUTION 

Find the sum of the infinite geomet- | Applying Definition 8.5.1 with a, = 6 and r = %, we have 

ric series 
crete 

8 2 \ oe ame | eat: 644-2 ee 46 (2) 9 oe 
3 3 6 

12 
3 

ey. 6: 
i 
3 

= 18 

An important application of Definition 8.5.1 is to express a nonterminating 

repeating decimal as a fraction, thus showing that such a decimal numeral is 

a representation of a rational number. To indicate a nonterminating repeat- 

ing decimal, we write a bar over the repeated digits. Then 0.333 indicates 

O38883ee and 4.0242424 indicates 4.024242424.... 

ILLUSTRATION 2. The nonterminating repeating decimal 0.333 can be 

written as 

0.3 + 0.03 + 0.003 + 0.0003 + --- 

or, equivalently, 

3) 3 3 3 3 

to +t 100 +t 7000 * 10,000 * °° * 10 
+ .:-- 

which is an infinite geometric series with a, = 7} and r = 7h. Denoting the 

sum of this series by S, we have from Definition 8.5.1, 
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EXAMPLE 2 
Express the nonterminating repeat- 

ing decimal 4.0242424 as a fraction. 

EXAMPLE 3 
A ball is dropped from a height of 36 
meters and each time it strikes the 

ground it rebounds to a height of 
two-thirds of the distance from 

which it fell. Find the total distance 
traveled by the ball before it comes 

to rest. 

Therefore, the nonterminating repeating decimal 0.333 and the fraction 4 are 
representations for the same rational number. e 

SOLUTION 
The given decimal can be written as 

24 24 24 24 Oi, ofts \f Ps i SS ce al a a 
a Fea * 700,000 * 10,000,000 + Joza t | 

The series in brackets is an infinite geometric series with a, = 74> and 
r = zo. If S is the sum of this series, then 

a 
S=—t 

l—r 

_24 
1000 

Beck 
100 

ase 
1000 

oo 
100 

_ 24 
~ 990 

_ 4 
~ 165 

Thus 

4.0242424 — 4 4 4_ 
165 

_ 664 
males 

SOLUTION 
Let d meters be the total distance traveled by the ball. Then 

36 (36) (2) + (36) (2) + (36) (2)" + (36) (2)° rie | 

= 36 + 2| (36) (=) + (36) (2) + +++ + (36) (=)’ a | 

The series in brackets is an infinite geometric series with a, = (36)(4) and 
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r = %. If S is the sum of this series, then 

Therefore, 

d = 36 + 2(72) 
= 180 

Thus the ball travels 180 meters before coming to rest. 

EXERCISES 8.5 

In Exercises I through 10, find the sum of the given infinite geometric series. 

1 WG se 4P se il Se oor 

4.4-—16+4+0.64—.-. 

74—-14+3-..-. 

10. (2+ V3) +14+(2— V3)4+--- 

2. 5 bie ee 

Sic8 seid teat t age 
8. —2-4-4-... 

24 G0) = 6 42 OH = occ 

6. 1 + (1.04)1 + (1.04)? +... 

9, psa any Seater A ae 

In Exercises I] through 22, express the given nonterminating repeating decimal as a 

fraction. 

11. 0.666 1260072707 

15. 2.999 16. 3.141614161416 

19. 0.465346534653 20. 2.045045045 

23. Express the nonterminating repeating decimal 
2.464646 as a fraction by two methods: (a) 

Consider 2.464646 as 2 + 0.46 + 0.0046 + 
0.000046 + ---; and (b) consider 2.464646 as 
2.4 + 0.064 + 0.00064 + 0.0000064 + -.--. 

24, Express the nonterminating repeating decimal 
5.1696969 as a fraction by two methods: (a) Con- 

sider 5.1696969 as 5.1 + 0.069 + 0.00069 + 

13. 0.818181 14. 0.252252252 

17. 1.234234234 18. 7.999 

21. 3.225444 22565070 

0.0000069 + ---; and (b) consider 5.1696969 as 
5.16 + 0.0096 + 0.000096 + 0.00000096 + .... 

25. A ball is dropped from a height of 12 meters. Each 
time it strikes the ground it bounces back to a 
height of three-fourths of the distance from which 
it fell. Find the total distance traveled by the ball 
before it comes to rest. 

26. What is the total distance traveled by a tennis ball 



before coming to rest if it is dropped from a height 

of 100 meters and if, after each fall, it rebounds 44 
of the distance from which it fell? 

27. The path of each swing, after the first, of a pendu- 
lum bob is 0.93 as long as the path of the previous 
swing (from one side to the other side). If the path 

REVIEW EXERCISES (CHAPTER 8) 

1. Write the first six elements of the sequence whose 
general element is 

ae (-1r tat 

3. Write the following series with sigma notation. 

In Exercises 4 through 7, find the sum of the given series. 

4 53 (4) GG SSG sen a — i + 

Be apes 

28. 
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of the first swing is 28 centimeters long, and air 
resistance eventually brings the pendulum to rest, 
how far does the bob travel before it comes to rest? 
Find an infinite geometric series whose sum is 6 
and such that each term is four times the sum of all 
the terms that follow it. 

. Write the series and find the sum of the series. 

7 pee) 

ret 
oe 

20 1 ; 10 : 

Cr S (4: A, 3) 7. > aon 

In Exercises 8 through 11, use mathematical induction to prove that the given formula 
is true for all positive-integer values of n. 

8. S (4i + 1) =n(2n + 3) 
4=4 

us ] n 
10. a ee 

»> Guero) ware 

12. Find x so that the numbers 25, x, and 9 form a 

geometric sequence. 
13. Find x so that the numbers 34, 4, and x form an 

arithmetic sequence. 
14. Find the sum of the positive odd integers between 

10 and 100. 
15. Find the first element of a geometric sequence 

whose fourth element is —3 and whose eighth 
element is —243. 

11. 

16. 

17. 

18. 

19. 

A, eS 

n 3 2 s (Os Acie 4n? + a + 5n 

t= 

Insert five geometric means between 192 and 3. 
In the arithmetic sequence whose first three ele- 
ments are —8, —5, and —2, which element is 52? 

Find the thirtieth element of the arithmetic se- 
quence whose seventeenth element is 7 and whose 
forty-seventh element is 31. 

Find the sum of the infinite geometric series: 

O40 0200.00 bas. 
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In Exercises 20 and 21, express the given nonterminating repeating decimal as a 

23. 

24. 

25. 

fraction. 

20. 0.727272 21. 4.6636363 

22. Prove by mathematical induction that (x — y) is a 

factor of 2" 

of n. 
A pile of logs has 30 logs in the bottom layer, 29 
logs in the next to bottom layer, and so on, and the 
top layer contains 5 logs; each layer except the last 
contains one less log than the layer beneath it. 

How many logs are in the pile? 
In a certain culture, the number of bacteria in- 

creases 20 per cent every 30 minutes. If there are 

1000 bacteria present initially, find a formula for 
determining the number of bacteria in the culture 
at the end of ¢ hours. How many bacteria are in the 

culture at the end of 5 hours? 
How many ancestors, to the nearest thousand, did 

you have 20 generations ago under the assumption 

— yn) for all positive-integer values 

26. 

27. 

that each ancestor appears only once in your fam- 
ily tree? What is the total number of ancestors, to 

the nearest thousand, in all 20 generations? 
A man borrows $20,000 and places a mortgage on 
his home. He agrees that at the end of each year 
for 10 years, he will repay $2000 of the principal 
together with interest at the rate of 10 per cent per 
year on the amount outstanding during the year. 
What is the total amount to be paid in 10 years? 
Three numbers whose sum is 35 form a geometric 
sequence. If 1 is subtracted from the first number, 

2 is subtracted from the second number, and 8 is 

subtracted from the third number, the resulting 
differences form an arithmetic sequence. What are 

the numbers? 
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and the Binomial Theorem 



9.1 Counting 

9.1.1 AXIOM 

Tens’ Units’ 
digit digit Number 

2 12 

| <— 3 13 

4 14 

1 Di 

4 24 

] 31 

3 _ 2D 32 

4 34 

1 4] 

a — 2 42 

3} 43 

Figure 9.1.1 

EXAMPLE 1 
If there are seven doors giving access 
to a building, in how many ways can 
a person enter the building by one 
door and leave by a different door? 

470 

We wish to consider the number of ways a set of events can occur under 

certain conditions. For instance, how many positive integers of two different 

digits can be formed from the integers 1, 2, 3, and 4? In how many ways can 

a chairman and a secretary be chosen from a committee of five people? If 

there are seven doors giving access to a building, in how many ways can a 

person enter the building by one door and leave by a different door? The 

answers to these questions can be obtained by applying the following axiom. 

Fundamental Principle of Counting. If one event can occur in m different 

ways, and if, after it has happened in one of these ways, a second event can 

occur in n different ways, then both events can occur in the order stated, in 

m:n different ways. 

ILLUSTRATION 1. To determine how many positive integers of two different 

digits can be formed from the integers 1, 2, 3, and 4, we apply Axiom 9.1.1 

with m = 4 (the number of ways the tens’ digit can be selected from among 

the four digits) and n = 3 (the number of ways the units’ digit can be selected 

from among the three remaining digits after the tens’ digit has been chosen). 

Hence there are 4-3, or 12, positive integers. To enumerate the twelve 

positive integers, we use a tree diagram as shown in Figure 9.1.1. The twelve 

positive integers are 12, 13, 14,2123, 24.03 132,334.41. 42 and 437, e 

ILLUSTRATION 2. If in Illustration 1, repetition of digits is allowed, then the 

tens’ digit can be chosen in four ways and the units’ digit can also be chosen 
in four ways. Therefore, using Axiom 9.1.1 with m = 4 and n = 4, we have 
4-4, or 16, possible positive integers. e 

ILLUSTRATION 3. Suppose that we wish to determine how many ways a 
chairman and a secretary can be chosen from a committee of five people. The 
number of ways that the chairman can be selected from among the five 
people on the committee is five and then, after the chairman has been 
chosen, there are four ways in which the secretary can be selected from the 
remaining four people. Hence, from Axiom 9.1.1, the two positions can be 
filled in 5+ 4, or 20, different ways. e 

SOLUTION 

The entry door can be chosen in any one of seven ways, and then the exit 
door can be selected from among the six remaining doors. Therefore, from 
Axiom 9.1.1, the number of ways that a person can enter the building by one 
door and leave by a different door is 7 - 6, or 42. 



9.1] 

9.1.2 AXIOM 

Hundreds’ Tens’ Units’ 
digit digit digit Number 

3 12 

a, 9 
2 132 

2 142 

: oes 143 

3 213 

: lily, 214 

< aid ie, 
1 241 

: —aoGs 243 

2 312 

SSG 314 
1 321 

1 341 

eee 342 
2 412 

a 413 
1 421 

io ae, 423 
1 431 

: sare: 432 

Figure 9.1.2 

9.1.33 AXIOM 

Counting 471 

Two events are said to be independent of each other if neither one of them 

is influenced by the outcome of the other. For two independent events we 
have the following principle of counting, which is similar to Axiom 9.1.1. 

Fundamental Principle of Counting. If one of two independent events can 
occur in m different ways and the other can occur in n different ways, then 
both events can occur, without regard to order, in m+n different ways. 

ILLUSTRATION 4. A lunch is to consist of a bowl of soup and a sandwich. If 
there are three different kinds of soup and five different kinds of sandwich, 
we wish to determine how many different lunches can be made. The choice of 
the soup and the choice of the sandwich are independent of each other, and 
so we apply Axiom 9.1.2. Therefore, there are 3 - 5, or 15, different lunches. 

e 

ILLUSTRATION 5. In Illustration 1, we enumerated, by the use of a tree 

diagram, the twelve positive integers of two different digits that can be 
formed from the integers 1, 2, 3, and 4. Suppose now that we wish to find how 

many positive integers of three different digits can be formed with the same 
integers 1, 2, 3, and 4. In this case we have a tree diagram similar to that of 

Figure 9.1.1 but at the ends of each of the branches there are two additional 
branches. Such a tree diagram is shown in Figure 9.1.2. We see that there are 
24 possible positive integers. Observe that 24 is the product of the number of 
ways, four, that the hundreds’ digit can be chosen, the number of ways, three, 

that the tens’ digit can be selected (after determining the hundreds’ digit), 

and the number of possible choices, two, for the units’ digit (after the tens’ 

digit is chosen); that is, 24 = 4-3-2. e 

Illustration 5 shows an application of the following axiom. 

Fundamental Principle of Counting. _ If one event can occur in n, different 
ways, a second event can occur in n, different ways, a third event can occur in 
n, different ways, and so on, and a kth event can occur in n,, different ways, 

then the total number of ways that the events may take place in the stated 
order 1S nyNoNz -- + Nx. 

ILLUSTRATION 6. We wish to determine how many different arrangements 
of six distinct books each can be made on a shelf with space for six books. We 

apply Axiom 9.1.3. In the first space we may place any one of the six books. 
In the next space we may place any one of the five remaining books; in the 
next space we may place any one of the four remaining books; and so on. 

Therefore, the number of different arrangements is 6 -5+-4-3+2-+ 1, or720. 
® 
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EXAMPLE 2 

How many different arrangements, 

each consisting of four different let- 
ters, can be formed from the letters 
of the word “personal” if each ar- 
rangement is to begin and end with 
a vowel? 

EXAMPLE 3 

How many positive even integers of 
three different digits each, are less 
than 400? 

When applying Axiom 9.1.3, it is sometimes convenient to write a hori- 

zontal mark for each of the events that is to occur. Then, in the order in 
which the events occur, insert above the corresponding mark the number of 
ways that the event can happen. The number of ways the set of events can 

occur in the required order is equal to the product of the numbers above the 
horizontal marks. If there are any special conditions affecting the order of 

events, these conditions should be considered first. The following example 

demonstrates the procedure. 

SOLUTION 

There are three vowels and five consonants and four positions to be filled. We 

write four horizontal marks: _ _ _ _. In the first position we may choose any 

one of the three vowels and for the fourth position we may choose any one of 

the two remaining vowels. The second position can then be filled by any one 
of the six remaining letters, and the third position by any one of the five 

remaining letters. We write the numbers of choices over the horizontal marks 
and multiply, and we have 

3°6°5°2 = 180 

Therefore, there are 180 different arrangements. 

SOLUTION 
The three digits are selected from the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. If 

a positive integer of three digits is less than 400, its hundreds’ digit must be 
1, 2, or 3. We consider separately the numbers for which the hundreds’ digit 

is 2 and those for which it is | or 3. 
If the hundreds’ digit is 2, it can be chosen in only one way. Because the 

number is even, it must have a units’ digit of 0, 4, 6, or 8; hence the units’ 

digit can be chosen in one of four ways. The tens’ digit can be any one of the 
eight digits not already used. Hence the number of positive even integers less 
than 400, for which the hundreds’ digit is 2, is 

128 74 = 32 

If the hundreds’ digit is either 1 or 3, it can be selected in two ways. The 
units’ digit may be 0, 2, 4, 6, or 8, and thus it can be selected in five ways. The 

tens’ digit can then be chosen from any one of the eight remaining digits. 
Thus the number of positive even integers less than 400 for which the 
hundreds’ digit is either | or 3 is 

We, therefore, conclude that the number of positive even integers less than 

400, of three different digits, is 32 + 80, or 112. 
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EXAMPLE 4 

If three of the books in I}lustration 

6 are mathematics books and three 

are physics books, how many differ- 
ent arrangements of the six books 
can be made on the shelf if books on 

the same subject are to be kept to- 
gether? 

EXAMPLE 5 
In how many ways can the books in 

Example 4 be arranged on a shelf if 
the three mathematics books are to 
be kept together, but the three phys- 
ics books can be placed anywhere? 

EXERCISES 9.1 

SOLUTION 
If the mathematics books are on the left, then the first book may be chosen in 

any one of three ways; the second book can be chosen from either of the two 
remaining books; and the third book must be the remaining mathematics 

book. The fourth book can be any one of the three physics books; the fifth 

book can be selected from either of the two remaining physics books; and the 
sixth book must be the remaining physics book. Therefore, if the mathemat- 

ics books are on the left, the number of arrangements is 

SOA LAS csp nie Ts) 

There are also 36 arrangements of the books for which the physics books are 

on the left. Therefore, the total number of arrangements of the six books, for 

which books on the same subject are kept together, is 36 + 36, or 72. 

SOLUTION 
We first consider the three mathematics books as a single element and each 

of the physics books as a single element. Then, we are arranging four 

elements in a row on a shelf. The first space can be occupied by any one of 
the four elements, the second space can be occupied by any one of the 
remaining three elements, and so on. The number of ways of arranging the 

four elements in order is 

However, for each way of arranging the four elements, the three mathematics 

books can be arranged in order 3 + 2 « I, or 6, ways. Hence the six books can 

be arranged in the desired order in 24-6, or 144 ways. 

1. How many positive integers of three digits can be 6. If two cubical dice, one white and one black, are 

formed from the digits 1, 3, 5, 7, and 9 if repeti- thrown, in how many ways can they fall? 

tions (a) are not permitted, and (b) are permitted? 7. In how many ways can three different-colored 

2. How many positive integers of four digits can be cubical dice fall? 

formed from the digits 1, 2, 3, 4, 5, and 6 if repeti- 8. In a contest with twelve entries, in how many ways 

tions (a) are not permitted, and (b) are permitted? can a jury award first, second, and third prizes? 

3. How many positive even integers of four different 9. In a club of ten members, in how many ways can 

digits can be formed from the digits of Exercise 2? 
4. How many positive integers of four different digits, 

each greater than 3000, can be formed from the 10. 

digits of Exercise 2? 
5. How many positive integers of three different dig- 

its, each less than 400, can be formed from the 

digits of Exercise 2? 

the offices of president, secretary, and treasurer be 
filled if no person is to hold more than one office? 
In a manufacturing plant, raw material is proc- 
essed by three different operations. If the first 
Operation can be done on any one of eight ma- 
chines, the second operation on any one of five 

machines, and the third on either of two machines, 
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11. 

12. 

13. 

14. 

15. 

9,2 Permutations 

over how many different runs can the raw material 
be processed? 
If there are six airlines flying between Los Angeles 

and San Francisco and four bus lines going be- 
tween San Francisco and Sonoma, in how many 

ways can a person go by plane from Los Angeles to 

San Francisco, and then by bus from San Fran- 

cisco to Sonoma, and return, without using the 

same company twice? 
In how many ways can nine books be arranged on 
a shelf if four particular books are to be kept 
together? 
In how many ways can four French books, two 
Spanish books, and three German books be ar- 
ranged on a shelf so that all books in the ‘same 
language are together? 
There are ten desks in a row. In how many ways 
can five students be seated at consecutive desks? 
(Hint: First determine the number of ways that the 
five consecutive desks can be chosen.) 

If, in Exercise 14, the five students are seated for a 

test and there is to be exactly one empty desk 
between each two students, in how many ways can 
the students be seated in the row? 

16 

17. 

18. 

19. 

20. 

21: 

22. 

A man and woman invite four other men and four 
other women to dinner. After the host and hostess 
are seated at the ends of the table, in how many 
ways can the guests be seated so that no two 

women are seated next to each other? 
How many different arrangements, each consisting 
of five different letters, can be formed from the 

letters of the word “equation,” if each arrangement 
is to begin and end with a consonant? 
How many arrangements, each consisting of five 

different letters, can be formed from the letters of 

the word “equation” if vowels and consonants 
alternate? 
How many different arrangements can be formed 
of the eight letters of the word “equation” if all the 
vowels are to be kept together? 
How many different arrangements can be formed 
of the eight letters of the word “equation” if in 
each arrangement the letter q is to be immediately 
followed by the letter u? 
How many four-digit positive integers greater than 
7500 can be made without repeating any digits? 
How many of the positive integers in Exercise 21 

are odd? 

In Illustration 1 of Section 9.1 we determined how many positive integers 
of two different digits can be formed from the integers 1, 2, 3, and 4. We 

obtained the following twelve positive integers. 

12.13 14 21 23 24 31 32 34 41 42 43 

Each of these orderings is called a “permutation” of the elements of the set 
{1, 2, 3,4} taken two at a time. 

9.2.1 DEFINITION Let S be a set containing n elements, and suppose r is a positive integer such 
that r <n. Then a permutation of r elements of S is an arrangement in a 
definite order, without repetitions, of r elements of S. 

We use the notation ,P,. to denote the number of permutations of n 
elements taken r at a time. Other symbols used for this number are P(n, r), 
ie ani 
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9.2.2 THEOREM 

EXAMPLE 1 

A bus has seven vacant seats. If 
three additional passengers enter the 
bus, in how many different ways can 
they be seated? 

ILLUSTRATION 1. If S = {1, 2, 3,4}, we have seen that there are twelve 

permutations of these four elements taken two at a time. Thus 

ae le ® 

We wish to find a formula for computing ,, P,. The number of arrangements 
in a definite order of n distinct elements taken r at a time is the number of 
ways that r positions can be filled from n elements. The first position can be 
chosen in n ways. Then there are n — 1 ways of choosing the second position, 

n — 2 ways of choosing the third position, and so on. The rth position can be 
selected from any of the remaining n —(r—1) (or, equivalently, 
(n —r + 1)) elements. Hence, from Axiom 9.1.3, we have 

ne, = W(n — 1)(n — 2)---(n-—r 41) 

We have, therefore, proved the following theorem. 

The number of permutations of n elements taken r at a time is given by 

(1) 

ILLUSTRATION 2. If in formula (1), n = 4 and r = 2, we have 

ey NOS) 
= Y 

This result agrees with that of Illustration 1. @ 

ILLUSTRATION 3. The number of positive integers of three different digits 
that can be formed with the integers 1, 2, 3, and 4 is the number of permu- 

tations of four elements taken three at a time. From formula (1) 

ges = 4 . 3 B 2 

= 24 

This result agrees with that of Illustration 5 in Section 9.1. e 

SOLUTION 

Each seating arrangement of the three passengers is a different arrangement 
of three seats from a set of seven seats. Therefore, the number of ways the 

passengers can be seated is ,P, and 

Mey ea) MO 

=o 1\() 

To determine the number of permutations of n elements taken n (or all) at 
a time, we use formula (1) withr = n and then(n — r + l)is(n —n 4+ 1), or 
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1, and so we have 

OP Renn — \)\(n — 2)e 2 (2) 

Thus ,,P, is the product of the first positive integers. 

We introduce the notation n!, read “factorial n’” (or “n factorial”), to 

denote the product of the first n positive integers; that is, 

Thus formula (2) can be written as 

Rea 9 
ILLUSTRATION 4 

—) = 4 

and so on. e 

Because 

n! =n(n — 1)(n — 2) --°3-2-4 

and 

(n— I= hl) — 2) =. 3->2-1 

it follows that 

n! = n(n — 1)! (4) 

In particular, 

Desc and 26) 2625) 

Furthermore, if we substitute 1 for n in formula (4), we obtain 

1!=1d0 — D)! 

or, equivalently, 

Lisser ip iQ! 

Therefore, we define 

Olav 

ILLUSTRATION 5. To simplify S. we first write 10! = 10-9-8 -(7!) and 

then divide numerator and denominator by 7!. 
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EXAMPLE 2 

In how many ways can four boys 

and four girls be seated in a row 
containing eight seats if (a) a person 
may sit in any seat, and (b) boys and 
girls must sit in alternate seats? 

Permutations 477 

10! 10-9 - 8(7!) 

ae 7! 

— 10-9-8 

= 720 e 

By a procedure similar to that used in Illustration 5 we can obtain an 
alternative formula for computing ,, P, that involves the factorial notation. If 
n and r are positive integers and r < n, then 

n! _ [nv — 1) — 2)---m—r+))-™—n! 

Gaal Fy (n — 7”)! 
Thus 

Gea = Me 2+ @ rt (5) 

From formulas (1) and (5) it follows that 

(6) 

Observe that if in formula (6) r = n, we have 

n! 

anni n)! 

n! 

Or 

or, equivalently, because 0! = 1. 

which is formula (3). 

SOLUTION 

(a) The number of ways that eight people may be arranged in order eight at 
a time is P., and 

lly SSO ASS AES SORT 
= 40,320 

(b) If a boy is in the first seat on the left, then the first seat can be occupied 

by any one of the four boys, the second seat can be occupied by any one 
of the four girls, the third seat can be occupied by any one of the three 
remaining boys, the fourth seat can be occupied by any one of the three 
remaining girls, and so on. Hence, if a boy is in the first seat on the left, 
the number of ways the eight people can be seated is 
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a Cc b 

Figure 9.2.1 

a b G 

Figure 9.2.2 

EXAMPLE 3 
How many different necklaces can 
be formed by stringing eight beads 
of different colors? 

There are also 576 arrangements for which a girl is in the first seat on the 

left. Hence the total number of ways that four boys and four girls can be 

seated in a row containing eight seats, if boys and girls must alternate, 

is.5./6 + 576,= 1152. 

When elements are placed in order in a circle, we consider only their 
relative order as we go around the circle in a specific direction. For instance, 
the three circular arrangements of the elements a, b, and c as shown in Figure 
9.2.1 are considered the same. Furthermore, the three circular arrangements 
in Figure 9.2.2 are also considered the same. Thus there are only two 
different arrangements of three elements in a circle. Therefore, to determine 
the number of circular arrangements we first consider the position of one 
element as fixed and then calculate the number of permutations of the 
remaining elements as if they were in a straight line. Hence the number of 

ways that n distinct elements can be arranged in a circle is (n — 1)!. 

ILLUSTRATION 6. If eight people are to occupy eight seats at a circular 

table, the number of different arrangements is 

(8 — 1)! =7! 
= 5040 ® 

In arranging keys on a ring (or different beads on a necklace), it is agreed 
that two arrangements are the same if one arrangement can be obtained 
from the other by turning over the ring (or the necklace). Thus the arrange- 

ments in Figures 9.2.1 and 9.2.2 are the same under such conditions. Conse- 
quently, there is only one arrangement of three different keys on a ring 
(or three different beads on a necklace); that is, the number of different 

1)! 
arrangements is oo = |. More generally, the number of different 

arrangements of n keys on a ring (or n different beads on a necklace) 
re (n — 1)! 

aa 

SOLUTION 

The number of different necklaces is 

(8-1! 7! 
men Sere 

_ 5040 
2 

=)520 
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ILLUSTRATION 7. The number of permutations of the six distinct letters of 
the word PAINTS, taken six at a time is 6!, or 720. Now consider the letters of 
the word DEGREE. For this word, we also have six letters, but because there 
are three E’s the letters are not distinct. Hence the number of distinguishable 
permutations of the six letters of the word DEGREE taken six at a time is not 
720. To demonstrate this concept, we consider reordering the second, fifth, 
and sixth letters in each of the words DEGREE and PAINTS, without changing 
the order of the other letters. For the word DEGREE the three E’s are distin- 
guished by using subscripts and we write 

Dahil GeiRmEs EB, 

Rearranging the second, fifth, and sixth letters in each of the words gives the 
following permutations. 

Dee mRmeer weer A I N TS 

Det Cena ers © PA i N ST 

Da CREE 9a? Teil: NA. Ss 

Diet CRE ere TP ay TN |S) A 

DEGREE Ess PS TN AT 

Dee weCmRet mE e ePe Sey Noor A 
Observe that corresponding to the one permutation DEGREE there are 6, or 

3!, permutations for the letters of the word paInTs. Such a situation exists for 
each distinguishable permutation of the letters of the word DEGREE. Let P be 
the number of distinguishable permutations of the six letters 

IBY WSs Xe ARS dain Ss 

Then, because for each of these permutations there are 3! ways in which the 
E’s can be rearranged without changing the order of the other letters, we 
have 

3!-P—6! 

6! 

Hence P = 120. ® 

ILLUSTRATION 8. To determine the number of different nine-digit numerals 
that can be formed from the digits 6, 6, 6, 6, 5, 5,5, 4, and 3, we first consider 
one such numeral, for instance, 

665566543 (7) 
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9.2.3 THEOREM 

EXAMPLE 4 
How many different signals, each 

consisting of eight flags hung one 
above the other, can be formed from 
a set of three indistinguishable 
red flags, two indistinguishable blue 
flags, two indistinguishable white 
flags, and one black flag? 

With this ordering of the nine digits, there are 4! permutations of the digits 6 

and 3! permutations of the digits 5 which have no effect on the numeral. 

Therefore, there are 4! - 3! arrangements of digits in the numeral given by (7) 

that do not result in a distinguishable permutation of the given nine digits. 

Hence if P is the number of distinguishable permutations of the nine digits, 

Ale Shin Ps a19! 

because 9! is the number of permutations of nine distinct elements taken nine 

at a time. Thus 

eee! 
4) +3! 

_ 9+8+7-6:5 4 
= Oe 
= 2520 

Therefore, there are 2520 different nine-digit numerals that can be formed 

from the given digits. e 

By the procedure used in Illustrations 7 and 8, we can prove the following 

theorem. The details of the proof are omitted. 

If we are given n elements, of which exactly m, are alike of one kind, exactly 

ma, are alike of a second kind,... , and exactly m, are alike of a kth kind, 

and ifn =m, +m, + --- +m,, then the number of distinguishable per- 

mutations that can be made of the n elements taking them all at one time is 

n! 
te m,!+m,! .-- mg 

SOLUTION 
We have a set of eight elements in which three are alike of one kind (the red 

flags), two are alike of a second kind (the blue flags), two are alike of a third 

kind (the white flags), and one is of a fourth kind (the black flag). If P is the 

number of different signals (the number of distinguishable permutations of 

these eight elements taken all at one time), it follows from Theorem 9.2.3 

that 

II = lon oo a) 
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EXERCISES 9.2 

In Exercises I through 6, simplify the given rational expression. 

6! S51! 12! 25) 3! + 4! 8! Ue ._ _—— 4. —— 5 eee w) : 49! 8!6! wa ; 7! ° 6! + 7! 

In Exercises 7 through 12, find the number. 

7. 5P3 8. .P, Ome. 10. ;P; 1 Fe aa 12 oor se 

13. How many different signals, each consisting of 23. Three boys and three girls join hands in a ring and 

14. 

15. 

16. 

1g: 

18. 

19. 

20. 

21. 

22. 

three flags hung one above the other, can be made 
from seven different flags? 
If a bookshelf has space for five books and there 
are ten different books available, how many dif- 

ferent arrangements can be made of the five books 
on the shelf? 

After a baseball coach has selected a team of nine 
members, in how many ways can the coach pre- 
pare a batting order? 

In how many ways can the baseball coach of Exer- 
cise 15 prepare the batting order if the coach still 
has to select the team from among twelve players? 

If the baseball coach of Exercise 15 wishes the 
pitcher to bat last and the best hitter to bat fourth, 
in how many ways can the batting order be pre- 
pared after the team has been selected? 
In how many ways can a baseball coach assign 

positions to a team of nine men if only two men 
are qualified to be pitcher and only three other 
men are qualified to be catcher, but all of the men 
are qualified to play any other position? 
A classroom has only eight vacant seats, three in 
the front row and five in the back row. In how 
many ways can five additional students be seated if 
two of them insist on sitting in the front row? 

In how many ways can five students be seated in a 
row of eight seats if a certain two students insist on 
sitting next to each other? 

In how many ways can five students be seated in a 
row of eight seats if a certain two students refuse to 
sit next to each other? 

Six children join hands in a ring. In how many 
different orders can they be arranged? 

24. 

25. 

26. 

27. 

28. 

29. 

30. 

35 

32, 

33. 

34. 

boys and girls are to alternate. In how many dif- 

ferent orders can they be arranged? 
In how many ways can six children be seated at a 
round table if a certain two children refuse to sit 
next to each other? 

In how many ways can six children be seated at a 

round table if a certain two children insist on 
sitting next to each other? 

If five distinct keys are placed on a key ring, how 
many different orders are possible? 
In how many different orders can nine different 
charms be placed on a charm bracelet? 
From the letters of the word COLLEGE, how many 
different permutations can be formed if the letters 
are taken all at a time? 
From the letters of the word BOOKWworM, how 
many different permutations can be formed if the 
letters are taken all at a time? 

How many different permutations can be formed 

from the letters of the word mississipPI, taken all at 
a time? 

How many different permutations can be formed 
from the letters of the word TENNESSEE, taken all at 
a time? 

How many different eight-digit numerals can be 
formed from the digits 2, 2, 2, 4, 4, 6, 6, and 8? 

How many different ten-digit numerals can be 
formed from the digits 3, 3, 3, 3, 1, 1, 1, 7, 7, and 5? 
In a display window a grocer wishes to put a row of 
fifteen cans of soup consisting of five identical cans 
of tomato soup, four identical cans of mushroom 
soup, three identical cans of celery soup, and three 
identical cans of vegetable soup. How many dif- 
ferent displays are possible? 



482 Permutations, Combinations, and the Binomial Theorem [ehag 

35. How many of the displays in Exercise 34 have a 36. How many of the displays in Exercise 34 have a 
can of tomato soup at each end? can of the same kind of soup at each end? 

In Exercises 37 through 40, solve for n. 

See Os) 38.) et (ae) 3905s = 0h.) 40. ,,2P, = 600 

9'3 Combinations We have been concerned with permutations, which are ordered arrange- 
ments of elements of a set. Our discussion now pertains to subsets of a set 
without regard to the relative order of the elements in the subsets. 

9.3.1 DEFINITION _ Let S bea set containing n elements, and suppose r is a positive integer such 
that r < n. Then a combination of r elements of S is a subset of S containing 
r distinct elements. 

The notation we use for the number of combinations of n elements taken r 

at a time is ,C,. Other symbols used for this number are C(n, r), GaSe 
and (*). 

ILLUSTRATION 1. Suppose that S = {a, b, c,d} 

(a) There is only one subset of the four letters taken all at a time. Hence 

4Gn 1 

(b) There are four subsets of the four letters taken three at a time. They are 

(a: DG {a, b, d} Weng veh (bachas 

Therefore, 

4C3 = 4 

(c) There are six subsets of the four letters taken two at a time, and they are 

{a,b} {a,c} {ad} {b,c} {bd} {ed} 
Thus 

aco =—0 

(d) The subsets of the four letters taken one at a time are 

(cio fe}, anal 
Therefore, 

ney = 4! e 
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9.3.2 THEOREM 

Combinations 483 

The distinction between permutations and combinations is that changing 
the order of a set of elements gives a different permutation but the same 
combination. Observe in Illustration | that there are four subsets of 

{a, b, c,d}, taken three at a time, and therefore ,C, = 4. But the elements of 

each of these four subsets can be arranged in a definite order 3!, or 6, 

different ways. For instance, the elements of the subset {a,b,c} can be 
arranged in order as 

abc acb bac bea cab cba 

Therefore, ,P; = 4-°6, or 24, which agrees with the computation using 
formulas())ror section 9 220 Ps 4-3-2 = 1, or 24. 

The formula for computing ,,C, is given by the following theorem. 

The number of combinations of n elements taken r at a time is given by 

iE _ aby (1) 
1 {era r! 

Proof. To find ,,C,, we must find the total number of subsets of r elements 
each that can be obtained from a set of n elements. The elements of each of 
the subsets can be arranged in order r! different ways. Therefore, for each 
combination of n elements taken r at a time, there are r! permutations; thus, 

for the total of all the possible combinations the number of different permu- 
tations is r!+,,C,. However, these are all the possible permutations of n 
elements taken r at a time, and therefore 

if ACs = ov tee 

gre 

eee r! 

ILLUSTRATION 2 

IP IP 
(a) Cy = or (b) 4C3 = ar 

_ 4! = 4-3-2 

~ 4! eS 2eu| 

= —4 

ie P 
EOS — 4 

= 4-3 _4 

Do II | 

= 6 a 

These results agree with those of Illustration 1. e 
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EXAMPLE I SOLUTION 

A football conference consists of | The number of conference games that are played is the number of two- 

eight teams. If each team plays every | element subsets of an eight-element set. This number is ,C,, and 
other team, how many conference 
games are played? AC. = = 

Formula (6) in Section 9.2 is 

Sin We 

daa 

Substituting from this formula into formula (1), we obtain the following 

alternate formula for computing ,,C,. 

n! (2) 6 geen Ete 
cs (n — r)y!r! 

ILLUSTRATION 3. Using formula (2) to compute gC, in Example 1, we have 

8! Cc, = ————— 
ex 8 19)1)| 

D8 - 7 6t 
eG 

= 28 ® 

9.3.3 THEOREM 

Proof. From formula (2) we have 

! 
C — Ue 

nt (vn — rir! @G) 

Using this formula with r replaced by n — r, we get 

Ca n! 

aes (Sn has)! 

! 
nnn = Gres r)! 5) 

Comparing equations (3) and (4), it follows that ,C, = 7G oe 

Theorem 9.3.3 seems reasonable if you realize that each time a subset of r 
elements is chosen from a set of n elements, another set of n — r elements 
remains unchosen. 



9.3] 

EXAMPLE 2 
A student has ten posters to pin up 
on the walls of her room, but there is 

space for only seven. In how many 
ways can she choose the posters to 
be pinned up? 

EXAMPLE 3 
How many committees of five can be 
formed from eight sophomores and 

four freshmen if each committee is 
to have at least three sophomores? 

EXAMPLE 4 
(a) In how many ways can six tickets 

be divided among three people 
so that each person receives two 
tickets? 

Combinations 485 

SOLUTION 
The number of ways she can choose the posters is the number of combina- 
tions of ten elements taken seven at a time, which is ,)C;. From Theorem 
OS oC A= 16 ca lLemce 

10C7 = 10C3 

I| = tw oO 

SOLUTION 
If the committee is to have at least three sophomores, then it can have 
(a) three sophomores and two freshmen, (b) four sophomores and | fresh- 

man, or (c) five sophomores. 

(a) The number of committees consisting of three sophomores and two 

freshmen is 

ico Thc Ra} Gee = (aes 
sC3* aCe Ie 

— 56°6 

= 336 

(b) The number of committees consisting of four sophomores and one 

freshman is 

(c) The number of committees consisting of five sophomores is 

sC5 = C3 

LSID 
oe 

=a 0 

—_ 

Thus the total number of committees with at least three sophomores is 

S308 80-00) 1012, 

SOLUTION 
(a) The number of ways the first person can be allocated two tickets is ,C,. 

With each of these ways, the number of ways that the second person can 

be allocated two tickets is ,C,. The third person then receives the 
remaining two tickets in only one way, or ,C,. Hence the number of ways 
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(b) In how many ways can six tickets 

be divided into three groups of 
two tickets each? 

that six tickets can be divided among three people so that each person 

receives two tickets is 

prey ers) Gai Gee Be TERE rca CL | 
6C 2° 42° 2Ce a: 1] a 

=) 

(b) The three groups, unlike the three people in part (a), are indistinguish- 
able. When the three groups of two tickets each are established, these 
groups of tickets can be distributed among the three people in 3! different 
ways. Thus if x is the number of ways that six tickets can be divided into 
three groups of two tickets each, 

EXAMPLE 5 SOLUTION 

From six history books and eight 
economics books, in how many ways 
can a person select two history books 
and three economics books and ar- 

range them on a shelf? 

EXERCISES 9.3 

In Exercises 1 through 6, find the number. 

I aes IR Cy. Bh ens 

In Exercises 7 through 10, solve for n. 

oe CxO Sea Cc) 

Lilt -Pe= 5040p finds CG, 
13. How many different committees of three persons 

each can be chosen from a group of twelve per- 
sons? 

Bio se =O) 

xe 
6 

a) 

The number of ways that two history books can be selected from six is gC5, 
and the number of ways that three economics books can be selected from 
eight is gC. Then, after the five books are selected, the number of ways that 
they can be arranged on a shelf is ;P,. Hence if x is the number of ways that 
a person can select the books and arrange them on a shelf, 

X = 6Cy* C3 °5P5 

Ox25 Oia ae aS 3 | 
PRAY SNOPES | : Ba 

= 100,800 

A. Caz 5. 50C4g 6. 15Ci5 

Oar Oe — Oe ey) 10. ,,2C, = 30(,,C3) 

123if Ci ="165,sind ae 

14. How many different hands of five cards each can 

be dealt from a standard deck of 52 cards? 
15. If a student is to answer any six questions on a test 
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16. 

17. 

18. 

19. 

20. 

containing nine questions, in how many different 

ways can the student choose the questions? 

If, in Exercise 15, the first three questions must be 

answered, in how many different ways can the 

student choose the six questions? 

From seven points, no three of which are collinear, 

how many different lines are determined? 

How many triangles are determined from the 

points in Exercise 17? 

A committee of five is to be chosen from seven 

Republicans and four Democrats. In how many 

ways can the committee be chosen if it is to contain 

exactly three Republicans? 

If, in Exercise 19, the committee is to contain at 

least three Republicans, in how many ways can it 

be chosen? 

pA 

22. 

23. 

24. 

25: 

In how many ways can the committee in Exercise 

19 be chosen if it is to contain at most three Re- 

publicans? 

A bag contains four red balls, six white balls, and 

five blue balls. In how many ways can six balls be 

chosen if there are to be two balls of each color? 

For the bag of Exercise 22, in how many ways can 

the six balls be chosen if there are to be exactly 

four white balls? 

For the bag of Exercise 22, in how many ways can 

the six balls be chosen if there are to be no white 

balls? 

For the bag of Exercise 22, in how many ways can 

four balls be chosen if all the balls are to be the 

same color? 

In Exercises 26 through 29, note that in a standard deck of cards there are 13 spades, 13 

hearts, 13 diamonds, and 13 clubs. 

26. 

ZT. 

28. 

29. 

33 

9.4 The Binomial 

Theorem 

In how many different ways can a bridge hand of 

thirteen cards be dealt from a standard deck? 

In how many different ways can a bridge hand 

containing six spades, four hearts, two diamonds, 

and one club be dealt from a standard deck? 

In how many different ways can a bridge hand of 

thirteen cards, containing exactly eight spades, be 

dealt from a standard deck? 

In how many different ways can a bridge hand of 

thirteen cards, containing at least ten spades, be 

dealt from a standard deck? 

Prove: ,4C, + »-1G-1 = n& rT 

and 

30. 

31. 

32. 

34. 

(a + b)? = a® + 2ab + Bb? 

From eighteen boys, in how many different ways 

can two teams of nine players each be chosen to 

play baseball? 

In how many ways can twelve persons be divided 

into four groups of three persons each? 

From twelve different charms, how many different 

charm bracelets, containing eight charms each, can 

be formed? 

Proves: ré,,C )i=n(,.1G,-1) 

A power of a binomial is a polynomial, which is a special kind of series 

called a binomial expansion. For instance, 

(a+bji=a+b (1) 

(2) 
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(a + by? = (a + b\(a + b)?; thus (a + 5)? = (a + b)(a2 + 2ab + b?). We 
obtain 

(a + b)? = a® + 3a2b + 3ab? + bP (3) 

In a similar way, because (a +b)*=(a+b)(a +b)? we have 
(a + b)* = (a + b)(a? + 3a*b + 3ab? + b3). Therefore, 

(a + b)* = a* + 4a%b + 6a?b? + 4ab? + bt (4) 

Multiplying the expansion of (a + b)* by (a + b), we obtain 

(a + b)? =a + 5atb + 10a°b? + 10a2b3 + S5ab* + b5 (5) 

and multiplying the expansion of (a + b)° by (a + b), we have 

(a + b)® = a® + 6a°b + 15a4*b? + 20a3b3 + 15a2b4 + 6ab® + be (6) 

Equations (1) through (6) give the binomial expansion of 

(a + by” 

for n = 1, 2, 3, 4, 5, and 6. In each of these equations the first term on the 
right side can be written with a factor b° and the last term on the right side 
can be written with a factor a°. Therefore, each term contains a nonnegative 
integer power of a and a nonnegative integer power of b. Referring to the 
expansions (1) through (6), we note the following properties for these 
expressions. 

1. There are n + | terms in the expansion. 
2. The sum of the exponents of a and b in any term is n: the exponent of a 

decreases by | and the exponent of b increases by | from each term to the 
next term. 

3. (i) The first term in the expansion is 

a or, equivalently, noon” 

(ii) The second term is 

va tb or, equivalently,  ,C,a"~1b 

(111) The third term is 

n(n — ih 
al ) gn-2p2 or, equivalently, ,C,a"~2b? 

(iv) The fourth term is 

n(n — 1)(n — 2) 
Tapa a"~*b? or, equivalently, —_, C,a"-3p3 
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(v) The fifth term is 

se os 2 ae g4b§ or, equivalently, —_,,C,a"~4b4 

(vi) The term involving 5b” is 

n(n — 1l)(n — 2)-+-(n —r +1) 

r! 
ae voreequivalently, , Ga"s'D" 

(vil) The last term is 

De or, equivalently, Cele 

ILLUSTRATION 1. Equation (6) is 

(a + b)® = a® + 6a°b + 15a4b? + 20a%b? + 15a2b* + 6ab° + b® 

We show that the preceding properties apply to this expansion. 

1. There are seven terms in the expansion. 
. The sum of the exponents of a and b in any term is 6; the exponent of a 
decreases by | and the exponent of b increases by | from each term to the 

next term. 

3. (i) The first term in the expansion is 

om Gedo 

(11) The second term is 

0° b= .C, aD 

(iii) The third term is 

6 - 5 = 9 
See 2h2 = BC aeD- 

(iv) The fourth term is 

OSG e343 3p3 Sie b KERTH 

(v) The fifth term is 

oe tht = Cab 
4+3-2-1 

(vi) The sixth term is 

6°5°4-3-2 Ga aoe 5 

icipe e 
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9.4.1 THEOREM 

EXAMPLE 1 

Expand and simplify by the bino- 
mial theorem 

(x? + 3y)° 

(vii) The last term is 

b8 = .C,b* ® 

Illustration 1 and the discussion preceding it suggest a similar expression 
for the expansion of (a + 6)", where n is any positive integer. We state this in 

the binomial theorem. 

The Binomial Theorem. _ If n is any positive integer, then 

(a4 b)* = Coa" +, Cab 4 Coo 2b? ae. 

Pree ae eee ee tee $C, 

Proof. If n is a positive integer, then (a + b)” represents the product of n 
equal factors of (a + b); that is, 

(a+b =(a+bja+bya+b).---(a+b) n factors of (a + b) 

When performing the multiplication, we select either a or b from each of 
the n factors and multiply these n numbers; we form every such product by 
considering all possible choices of either a or b from each of the n factors. The 

term involving a"~"b" is a sum of terms, each of which is a product of r factors 
of b (one factor from each of r factors (a + 6)) and (n — r) factors of a (one 

factor from each of the remaining (m — r) factors (a + b)). The number of 

ways that the r factors of b can be chosen from n factors of (a + 5) is ,C,. 
Therefore, there are ,,C, terms involving a”"b". Thus the coefficient of a*~"b" 
is ,C,- Because r can be any integer from 0 through , inclusive, formula (7) 

follows. 

The binomial theorem can also be proved by mathematical induction; 
however, this proof is quite lengthy and is omitted. 

SOLUTION 
Applying formula (7) where a is x”, b is 3y, and n is 5, we have 

(x? + 3y)? = 5Co(x?)? + 5Cy(x?)*Gy)? + C(x? )FGy)? 

+ eae + 5Cq(x?)*By)* + 5C5(3y)? 

= 1x2 4 2x8(3y) + 2-4 x9(9y2) + 225 x4(07y9) 
5) O24) 08) 0 2 4 5 + Oy laa 

= x0 4 15x8y + 90x%y? 4 270x4y3 4+ 405x2y4 + 243y5 
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EXAMPLE 2 
Expand and simplify 

(vr-1) 

EXAMPLE 3 

Find the value of (1.02)® to four 
significant digits. 

Formula (2) of Section 9.3 is 

n!} 

(n — r)!r! et =a 

or, equivalently, 

Dra (ee) rel) (7)! 
C= 

Pt r! (n — r)! 

or, equivalently, 

n(n — l)(n — 2)---(n —r 41) 

ee r! 

Therefore, formula (7) can be written as 

Nis nn—l|) n(n — l)\(n—2) | 
(a+b =a" + 7 ath + oor an 2h? + oe ory eae ay eb 

n(n — 1)(n —2)---n-r4+l ee MOS Dn = 2) =D rege gg ge 
r! 

(8) 
Formula (8) is used in the next example. 

SOLUTION 

We use formula (8) where a is IN ai -, and nis 4. 

4 1 A 2 (vt-1) «avin favi(-A) + A2avi (1 
Mohed (By tape 
NOE Se ae Sor i 

24 8 1 yA ats 
FE EI ese ey an 

SOLUTION 

(1.02)® = (1 + 0.02)®. We apply formula (8) where a is 1, 5 is 0.02, and 
nis 8. 

A= ie 847 1 8:7 y6 2 C102)? = 125 Tr! (0.02)1 + ial (0.02) 

Sed: 6 
3! 

1 + 0.16 + 0.0112 + 0.000448 + .-- + 0.0000000000000256 
BS 

Ee 1°(0.02)3 + --- + (0.02)8 
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EXAMPLE 4 
Find the seventh term of the expan- 

sion of (2r3 — 4s*)?°. 

EXAMPLE 5 

Find the term involving x* in the 
expansion of (x — 3x71)’. 

9.4.2 THEOREM 

From formula (8), the term involving b” in the expansion of (a + b)" is 

n(n — 1)\@ — 2) > @ 7 + 1) n-tpr (9) 

ri 

Notice in expression (9) that the denominator is the product of the first r 

positive integers and the numerator has r factors beginning with n and 

successively decreasing by 1; that is, the number of factors in both the 

numerator and denominator of the coefficient is the same as the exponent of 

b. Expression (9) is the (r + 1)th term of the binomial expansion of (a + 5)”. 

Hence the rth term of the expansion of (a + 5)” is 

SOLUTION 

Applying expression (10), where ris 7, nis 10, a is 2r3, and bis —4s*, we have 

LORS 8 1. 653 es \Ce LOD ae ee (- +) = apie 

SOLUTION 

From expression (10), where a is x, bis —3x71, and nis 9, the rth term has 

the factors 
5p ope Bea eS = ( eee! 

The term involving x? is the one for which the exponent of x is 3, hence we 

solve the equation 
eS 

a 4 

Thus the fourth term is the desired term. It is 

ae = T .8(—3x-18 = —2268x3 

The formula for the expansion of (a + b)" was proved when nis a positive 

integer. There is a similar formula for the expansion of (1 + 6b)", when n is 

any real number, and |b| < 1. However, in such a situation the formula gives 

an infinite series, called a binomial series. 

Formula for Binomial Series. If n is any real number, and |b| < 1, then 

(11) 
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EXAMPLE 6 

Write a binomial series for 

(+ vx) 
if < t 

EXAMPLE 7 

Compute the value of \/25 accurate 
to three decimal places by using the 

binomial series for (1 + x)!/%. 
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The proof of Theorem 9.4.2 is omitted because it depends upon concepts 
studied in the calculus. 

Observe that formula (11) is similar to formula (8), where a is 1 and n is 

any real number, except that formula (11) gives an infinite series while in 

formula (8) the expansion terminates. 

SOLUTION 

From formula (11) with n = —1 and b = \/x, we have 

abe Var =e oe (xaye 4 KOE) (ary 
3! 

—1)(—2)(—3) --- (—7)__ ,,, ue ve nis )( = ( (ye) ak aa 

or, equivalently, 

CUE ee! Je a = 2 ee (12 + == (12) 

Note that the infinite series in the right member of equation (12) is an 

infinite geometric series where the first term is | and the common ratio is 
—x!/?. Definition 8.5.1 states that the sum of an infinite geometric series, for 
which the first term is a, and the common ratio is r, with |r| < 1, is given by 

ay 
l—r 

lita leandra——— ee then 

a, 
(eee eS (—x1/2) 

eee So, 
(eei72 

= (1 + x/2)1 

Thus the result of Example 6 is in agreement with the discussion in 
Section 8.5. 

SOLUTION 

From formula (11) we have if |x| < 1 

demmateds (Y(-3 E+ DEt~ 09 
Because 

3 3 25 
V2 ee W 

5} 
3 pace 

; yi 
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then 

1/3 
5 =3 (1 . =; (14) 

27 

We can use equation (13) with x = —#, and we have 

2 \v3 I 2 2 auf peel eee pally pePa\Viom Oem De 
( 2) +3 a7) 32-20 \7 37 

es 2 \3 
Grane) 

1 — 0.0247 — 0.0006 — 0.00003 — ... (15) 

The fourth term has a zero in the fourth decimal place, and so has each 
successive term. It can be proved that no term after the third term affects the 

first four'decimal places. Using the first three terms of series (15), we obtain 

(1 "= 0.9747 la 

Substituting into equation (14), we have 

V25 = 3(0.9747) 
= 2.9241 

Rounding off to three decimal places gives \/25 = 2.924. 

EXERCISES 9.4 

In Exercises 1 through 8, expand the given power of the binomial. 

1. (x + 3y)® 2. (2x — y)§ 3. (4 — ab)® 4. Qi 432)! 
5. (Gren u?)? 6. (e* = e*)9 op G2 = pigs 8. (xy pu. xy) 

In Exercises 9 through 12, find the first four terms in the expansion of the given power of 
the binomial and simplify each term. 

9. (x? + y?)l2 10, (8 =e 2/2) 11. (a¥/3 — 61/3)9 12. (ga?/3 4 53/2)" 

In Exercises 13 through 16, find to four significant digits the value of the given power by 
using a binomial expansion. 

13. (1.06)4 14. (0.49)? 15399) 16. (51)# 

17. Find the seventh term of the expansion of 19. Find the sixth term of the expansion of (2x — 3). 
(a + b)?2. 20. Find the tenth term of the expansion of 

18. Find the sixth term of the expansion of (4a — b)}3. (Vt — 17172)15, 
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21. Find the middle term of the expansion of 24. Find the term involving x!” in the expansion of 
(1 — x3y-2)12, (x2 — 311. 

22. Find the middle term of the expansion of 25. Find the term that does not contain x in the ex- 
(fa + Va), pansion of (x? — 2x77)! 

23. Find the term involving a® in the expansion of 26. Find the term involving f° in the expansion of 
(4 + a)}2. (71 — 418, 

In Exercises 27 through 32, find the first four terms of the binomial series for the given 
expression. 

Dh CM PES ee MN EB ca, Pale sl DASA LSE a) A Ball 
SS OS BEY I G1 (84 x) xl <8 £925, (OP Sa pape oI 

In Exercises 33 through 38, compute the value of the given quantity accurate to three 
decimal places by using a binomial series. 

33. \/1.04 34. \/0.99 35. 1/63 36. \/38 37. 1/620 38. —! 
v15 

REVIEW EXERCISES (CHAPTER 9) 

In Exercises 1 and 2, simplify the given rational expression. 

12! a si 
Y 419! ‘i 6! 

In Exercises 3 through 6, find the number. 

In Exercises 7 through 10, solve for n. 

Te BN) a Sete ie Wh, SCs eatin Os 10S oe Cre Cy 

11. In how many ways can six students be seated in a 15. In how many ways can six students be seated in six 
row of six desks? chairs at a round table? 

12. In how many ways can the six students of Exercise 16. There are ten questions on an examination and a 
11 be seated in the row of six desks if a certain two student is required to answer any five of them. 
students insist on sitting next to each other? How many different sets of five questions can be 

13. In how many ways can the six students of Exercise selected? 
11 be seated in the row of six desks if a certain two 17. A committee of four is to be formed from eight 
students refuse to sit next to each other? sophomores and six freshmen. How many different 

14. In how many ways can six students be seated at committees can be chosen if the committee is to 
consecutive desks if there are nine desks in the contain two sophomores and two freshmen? 
row? 18. If in Exercise 17, the committee is to contain at 
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19. 

20. 

21: 

22. 

23. 

24. 

25. 

least two sophomores, how many different com- 

mittees can be chosen? 

If in Exercise 17, the committee is to contain at 

most two sophomores, how many different com- 

mittees can be chosen? 

A basketball team consists of twelve players, of 

which only four play the center position. How 

many starting line-ups of five players are possible? 

From the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, how many 

three-digit numerals can be formed? 

How many of the numerals in Exercise 21 are odd? 

How many of the numerals in Exercise 21 are 

even? 
From the letters of the word PEOPLE, how many 

different permutations can be formed by taking all 

the letters at a time? 
How many of the permutations in Exercise 24 

begin and end with a vowel? 

26 

27. 

28. 

29. 

30. 

SHE 

32. 

For an audition a tenor is to sing three operatic 
arias from a selection of ten. (a) In how many ways 

can he choose the three arias? (b) In how many 

different orders can he present three arias? 
There are twelve people qualified to operate a 

machine that requires three persons at one time. 

(a) How many different groups of three people can 
operate the machine? (b) In how many of these 

groups does one particular person appear? 
What is the binomial expansion of (2a — b)®? 

Write and simplify the first four terms of the bino- 

mial expansion of (x + 2x~1)?°. 
Find the tenth term of the expansion of 
(1/2 — 9-1/2) 15, 

Use a binomial expansion to find to four decimal 

places the value of (0.95)°. 
Use a binomial series to compute accurately to 
three decimal places the value of ay ae 



Appendix 

Table 1. Powers and Roots 

n n Vn n? Wn n n Vn ne Wn 

1 1,000 1 1.000 Tie ne 00 e141 e205 3.108 
2 4 1.414 8 1.260 52 2,704 Teall 140,608 3.732 

3 Q jes 27.~—s: 1.442 53 2,809 7.280 148,877 3.756 

4 16 2.000 64 =—-1.587 54 2,916 7.348 157,464 3.780 

5 MS TKS) IWS 7) 55 3,025 7.416 166,375 3.803 

6 36 =. 2.449 216 =-:1.817 56 3,136 7.483 175,616 3.826 

7 49 2.646 Bais) SONS Syf/ 3,249 e550) 185,193 3.848 

8 64 = 2.828 512 2.000 58 3,364 7.616 SINR Ses7/l 

9 81 3.000 729 ~—-2..080 59 3,481 7.681 D053 79 eS 895 

10 100 3.162 1,000 2.154 60 3,600 7.746 216,000 3.915 

11 Ii BB 1S 32224 61 SPA 7.810 226,981 3.936 

12 144 3.464 72S SAA 62 3,844 7.874 238,328 3.958 

13 169 3.606 DMS zsh 63 3,969 7.937 250,047 3.979 

14 196 3.742 2,744 2.410 64 4,096 8.000 262,144 4.000 

15 WIS BESTS 3,375 2.466 65 4,225 8.062 274,625 4.021 

16 256 4.000 4,096 2.520 66 4,356 8.124 287,496 4.041 

17 289 = 4.123 4913 2.571 67 4,489 8.185 300,763 4.062 

18 324 94.243 5,832 2.621 68 4,624 8.246 314,432 4.082 

19 361 4.359 6,859 2.668 69 4,761 8.307 328,509 4.102 

20 400 4.472 8,000 2.714 70 4,900 8.367 343,000 4.121 

21 441 4.583 D261 22159. 11 5,041 8.426 357,911 4.141 

aD 484 4.690 10,648 2.802 72 5,184 8.485 373,248 4.160 

8} 529 4.796 12,167 2.844 73 53329) 8.544 389,017 4.179 

24 576 4.899 13,824 2.884 74 5,476 8.602 405,224 4.198 

25 625 5.000 15,625 2.924 15 5,625 8.660 421,875 4.217 

26 676 5.099 StS Bee 76 5,776 8.718 438,976 4.236 

27 TQ dS 19,683 3.000 77 5029 8.775 456,533 4.254 

28 784 5.291 PNG A087) 78 6,084 8.832 474,552 4.273 

29 841 5.385 24,389 3.072 79 6,241 8.888 493,039 4.291 

30 900 5.477 27,000 3.107 80 6,400 8.944 512,000 4.309 

31 961 5.568 PTE Ba 81 6,561 9.000 531,441 4.327 

B20 L024 S.05)/ 32 OSs 82 6,724 9.055 551,368 4.344 

3433 || LOR)  S.745) 35,937 3.208 83 6,889 9.110 571,787 4.362 

Sal | Ie) Suisi3hil 39,304 3.240 84 7,056 9 AES) 592,704 4.380 

35) || pS Sle 42,875 3.271 85 T5225 9.220 614,125 4.397 

36 | 1,296 6.000 46,656 3.302 86 7,396 9.274 636,056 4.414 

3H || ike) xO S0IGSS ees 332 87 7,569 9327) 658,503 4.431 

38 | 1,444 6.164 54,872 3.362 88 7,744 9.381 681,472 4.448 

39) | Lewil © 24 SBI B-BPIil 89 We 9.434 704,969 4.465 

40 | 1,600 6.325 64,000 3.420 90 8,100 9.487 729,000 4.481 

4] 1,681 6.403 68,921 3.448 91 8,281 D589) 753,571 4.498 

42 | 1,764 6.481 74,088 3.476 92 8,464 9.592 778,688 4.514 

43 | 1,849 6.557 Esty 08 93 8,649 9.643 804,357 = 4.531 

44 | 1,936 6.633 85,184 3.530 94 8,836 9.695 830,584 4.547 

45 | 2,025 6.708 QL IWS SS ))7/ 95 9,025 9.747 857,375 4.563 

46 || 2,116 6.782 97,336 3.583 96 9,216 9.798 884,736 4.579 

A \\ 2,209) 6:856) 91035823) 3:609 97 9,409 9.849 912,673 4.595 

48 | 2,304 6.928 110,592 3.634 98 9,604 9.899 941,192 4.610 

49 | 2,401 7.000 117,649 3.659 oY) 9,801 9.950 970,299 4.626 

SO a2, S00 071 125,000 3.684 100 | 10,000 10.000 1,000,000 4.642 



Table 2. Common Logarithms 

N f 0 I 2 3 4 5 6 Wl 8 

10 0000 0043 0086 0128 0170 0212 0253 0294 0334 

11 0414 0453 0492 0531 0569 0607 0645 0682 0719 

12 0792 0828 0864 0899 0934 0969 1004 1038 1072 

13 1139 1173 1206 1239 1271 1303 1335) 1367 1399 

14 1461 1492 1523 1553 1584 1614 1644 1673 1703 

15 1761 1790 1818 1847 1875 1903 1931 1959 1987 

16 2041 2068 2095 2122 2148 2175 2201 2227 2253 

17 2304 2330 2355 2380 2405 2430 2455 2480 2504 

18 2555 2577 2601 2625 2648 2672 2695 2718 2742 

19 2788 2810 2833 2856 2878 2900 2923 2945 2967 

20 3010 3032 3054 3075 3096 3118 3139 3160 3181 

21 3222 3243 3263 3284 3304 3324 3345 3365 3385 

2D 3424 3444 3464 3483 3502 3522 3541 3560 S579) 

23 3617 3636 3655 3674 3692 3711 6729 3747 3766 

24 3802 3820 3838 3856 3874 3892 3909 3927 3945 

25 3979 8997, 4014 4031 4048 4065 4082 4099 4116 

26 4150 ©4166 4183 4200 4216 4232 4249 4265 4281 

27 4314 4330 4346 4362 4378 4393 4409 4425 4440 

28 4472 4487 4502 4518 4533 4548 4564 4579 4594 

29 4624 4639 4654 4669 4683 4698 4713 4728 4742 

30 477\ 4786 4800 4814 4829 4843 4857 4871 4886 

31 4914 4928 4942 4955 4969 4983 4997 5011 5024 

32 5051 5065 5079 5092 5105 SHUG 5132 5145 5159 

33 5185 5198 =y U1 5224 5237 5250 5263 5276 5289 

34 5315 5328 5340 5355) 5366 5378 5391 5403 5416 

35 5441 5453 5465 5478 5490 5502 5514 5527 5539 

36 5563 Si. 5587 5599 5611 5623 5635 5647 5658 

3 5682 5694 5705 5717 529 5740 5752 5763 5775 

38 5798 5809 5821 5832 5843 5855 5866 5877 5888 

39 5911 5922 5933 5944 5955 5966 5977 5988 5999 

40 6021 6031 6042 6053 6064 6075 6085 6096 6107 

4] 6128 6138 6149 6160 6170 6180 6191 6201 6212 

42 6232 6243 6253 6263 6274 6284 6294 6304 6314 

43 6335 6345 6355 6365 6375 6385 6395 6405 6415 

44 6435 6444 6454 6464 6474 6484 6493 6503 6513 

45 6532 6542 6551 6561 6571 6580 6590 6599 6609 

46 6628 6637 6646 6656 6665 6675 6684 6693 6702 

47 6721 6730 6739 6749 6758 6767 6776 6785 6794 

48 6812 6821 6830 6839 6848 6857 6866 6875 6884 

49 6902 ©6911 6920 6928 6937 6946 6955 6964 6972 

50 6990 6998 7007 7016 7024 7033 7042 7050 7059 

51 7076 7084 7093 7101 7110 7118 7126 TNS) 7143 

52 7160 7168 WAGE 7185 7193 7202 7210 7218 7226 

53 7243 7251 7259 7267 7275 7284 7292 7300 7308 

54 1324 ea32, 7340 7348 7356 7364 7372 7380 7388 

0374 

0755 

1106 

1430 

1732 

2014 

2279 

2529 

2765 

2989 

3201 

3404 

3598 

3784 

3962 

4133 

4298 

4456 

4609 

4757 

4900 

5038 

5172 

5302 

5428 

Bp)! 

5670 

5786 

5899 

6010 

6117 

6222 

6325 

6425 

6522 

6618 
6712 

6803 

6893 
6981 

7067 

7152 

7235 

7316 

7396 



Table 2. Common Logarithms (cont.) 

N 0 2 3 4 3 6 7 8 9 

55 7404 7412 7419 7427 7435 7443 7451 7459 7466 7474 

56 7482 7490 7497 7505 7513 7520 7528 7536 7543 fos 

57 TSS) 7566 7574 7582 7589 SD 7604 7612 7619 7627 

58 7634 7642 7649 7657 7664 7672 7679 7686 7694 7701 

59 7709 7716 Tg23 773) 7738 7745 Wi 7760 7767 7774 

60 7782 7789 7796 7803 7810 7818 7825 7832 7839 7846 

61 7853 7860 7868 7875 7882 7889 7896 7903 7910 7917 

62 7924 7931 7938 7945 7952 7959 7966 7973 7980 7987 

63 7993 8000 8007 8014 8021 8028 8035 8041 8048 8055 

64 8062 8069 8075 8082 8089 8096 8102 8109 8116 8122 

65 8129 8136 8142 8149 8156 8162 8169 8176 8182 8189 

66 8195 8202 8209 8215 8222 8228 8235 8241 8248 8254 

67 8261 8267 8274 8280 8287 8293 8299 8306 8312 8319 

68 8325 8331 8338 8344 8351 8357 8363 8370 8376 8382 

69 8388 8395 8401 8407 8414 8420 8426 8432 8439 8445 

70 8451 8457 8463 8470 8476 8482 8488 8494 8500 8506 

7\ 8513 8519 8525 8531 8537 8543 8549 8555 8561 8567 

72 8573 8579 8585 859] 8597 8603 8609 8615 8621 8627 

73 8633 8639 8645 8651 8657 8663 8669 8675 8681 8686 
74 8692 8698 8704 8710 8716 8722 8727 8733 8739 8745 

75 8751 8756 8762 8768 8774 8779 8785 8791 8797 8802 

76 8808 8814 8820 8825 8831 8837 8842 8848 8854 8859 

77 8865 8871 8876 8882 8887 8893 8899 8904 8910 8915 

78 8921 8927 8932 8938 8943 8949 8954 8960 8965 8971 

® 8976 8982 8987 8993 8998 9004 9009 9015 9020 9025 

80 9031 9036 9042 9047 9053 9058 9063 9069 9074 9079 

81 9085 9090 9096 9101 9106 9112 9117 9122 9128 1333 

82 9138 9143 9149 9154 9159 9165 9170 9175 9180 9186 

83 9191 9196 9201 9206 9212 9217 9222 9227 9232 9238 

84 9243 9248 9253 9258 9263 9269 9274 9279 9284 9289 

85 9294 9299 9304 9309 9315 9320 9325 9330 9335 9340 

86 9345 9350 9355 9360 9365 9370 9375 9380 9385 9390 

87 9395 9400 9405 9410 9415 9420 9425 9430 9435 9440 

88 9445 9450 9455 9460 9465 9469 9474 9479 9484 9489 

89 9494 9499 9504 9509 9513 9518 9523 9528 9533 9538 

90 9542 9547 9552 9557 9562 9566 957] 9576 9581 9586 

91 9590 9595 9600 9605 9609 9614 9619 9624 9628 9633 

92 9638 9643 9647 9652 9657 9661 9666 9671 9675 9680 

93 9685 9689 9694 9699 9703 9708 Oils} 9717 9722 9727 

94 9731 9736 9741 9745 9750 9754 9759 9763 9768 9773 

95 9777 9782 9786 9791 9795 9800 9805 9809 9814 9818 

96 9823 9827 9832 9836 984] 9845 9850 9854 9859 9863 

97 9868 9872 9877 9881 9886 9890 9894 9899 9903 9908 

98 9912 9917 9921 9926 9930 9934 9939 9943 9948 9952 

99 9956 9961 9965 9969 9974 9978 9983 9987 9991 9996 

A-3 



Table 3. Exponential Functions 

NG er er? 

0 1.0000 1.0000 
0.1 1.1052 0.90484 

0.2 1.2214 0.81873 

0.3 1.3499 0.74082 

0.4 1.4918 0.67032 

0.5 1.6487 0.60653 

0.6 1.8221 0.54881 

0.7 2.0138 0.49659 
0.8 2.2255 0.44933 

OW 2.4596 0.40657 

1.0 2.7183 0.36788 

Neil 3.0042 0.33287 

lip 3.3201 0.30119 

1.3 3.6693 0.27253 

1.4 4.0552 0.24660 

hs 4.4817 0.22313 

1.6 4.9530 0.20190 

Wa 5.4739 0.18268 

1.8 6.0496 0.16530 
1.9 6.6859 0.14957 

2.0 7.3891 0.13534 
Dell 8.1662 0.12246 

DP) 9.0250 0.11080 
pies) 9.9742 0.10026 
2.4 11.023 0.09072 

SS) 12.182 0.08208 
2.6 13.464 0.07427 

Dal 14.880 0.06721 

2.8 16.445 0.0608 1 

2.9 18.174 0.05502 

3.0 20.086 0.04979 

Sal 22.198 0.04505 

ayn) 24.533 0.04076 

28) Ma NB 0.03688 

3.4 29.964 0.03337 

3h) 2)sh 1 UIs) 0.03020 

3.6 36.598 0.02732 

Su, 40.447 0.02472 

3.8 44.701 0.02237 
3.9 49.402 0.02024 

4.0 54.598 0.01832 
4.1 60.340 0.01657 

4.2 66.686 0.01500 
4.3 73.700 0.01357 

44 81.451 0.01228 

4.5 90.017 0.01111 
4.6 99.484 0.01005 

4.7 109.95 0.00910 

4.8 iESy 0.00823 
4.9 134.29 0.00745 

5.0 148.41 0.00674 

A-4 

Table 4. Natural Logarithms 

n In n n Inn n Inn 

| 2 kive. 4.5 1.5041 9.0 ae 2.1972 

0.1 7.6974 4.6 1.5261 9.1 2.2083 

0.2 8.3906 4.7 1.5476 9.2 2.2192 

0.3 8.7960 4.8 1.5686 9.3 2.2300 

0.4 9.0837 4.9 1.5892 9.4 2.2407 

0.5 9.3069 5.0 1.6094 9.5 2.253) 

0.6 9.4892 Dell 1.6292 9.6 2.2618 

0.7 9.6433 522 1.6487 OFF 227124 

0.8 9.7769 Sra) 1.6677 9.8 2.2824 

0.9 9.8946 | 5.4 1.6864 9.9 2.2925 

1.0 0.0000 SS) 1.7047 10 2.3026 

ile 0.0953 5.6 1.7228 11 2.3979 

12) 0.1823 alk 1.7405 12 2.4849 

13 0.2624 5.8 1.7579 13 2.5649 

1.4 0.3365 5.9 1.7750 14 2.6391 

1S) 0.4055 6.0 1.7918 15 2.7081 

1.6 0.4700 6.1 1.8083 16 2.7726 

leg 0.5306 6.2 1.8245 slg 2.8332 

1.8 0.5878 6.3 1.8405 18 2.8904 

1.9 0.6419 6.4 1.8563 19 2.9444 

2.0 0.6931 6.5 1.8718 20 2.9957 

2.1 0.7419 6.6 1.8871 75) 3.2189 

De) 0.7885 6.7 1.9021 30 3.4012 

Mes} 0.8329 6.8 1.9169 35) 3.5599 

2.4 0.8755 6.9 1.9315 40 3.6889 

WS) 0.9163 7.0 1.9459 45 3.8067 

2.6 0.9555 Wes 1.9601 50 3.9120 

Deal 0.9933 ez 1.9741 5») 4.0073 

2.8 1.0296 TES) 1.9879 60 4.0943 

2.9 1.0647 7.4 2.0015 65 4.1744 

3.0 1.0986 VES) 2.0149 70 4.2485 

Shi 1.1314 7.6 2.0281 75 4.3175 

Sy) 1.1632 Hell 2.0412 80 4.3820 

B53 1.1939 7.8 2.0541 85 4.4427 

3.4 1.2238 7.9 2.0669 90 4.4998 

3.5 1.2528 8.0 2.0794 100 4.6052 

3.6 1.2809 8.1 2.0919 110 4.7005 

Sei 1.3083 8.2 2.1041 120 4.7875 

3.8 1.3350 8.3 2.1163 130 4.8676 

3.9 1.3610 8.4 2.1282 140 4.9416 

4.0 1.3863 8.5 2.1401 150 5.0106 

4.1 1.4110 8.6 2.1518 160 5.0752 

4.2 1.4351 8.7 2.1633 170 5.1358 

4.3 1.4586 8.8 2.1748 180 5.1930 

4.4 pearl 8.9 2.1861 190 5.2470 

*Subtract 10 for n < 1. Thus In 0.1 = 7.6974 — 10 = —2.3026. 



Answers to Odd-numbered 

Exercises 

Exercises 1.1 1. {2,4,6,8} 3. {8, 16, 24, 32, 40, 48, 56, 64, 72, 80, 88, 96} 
Ss 1 W; €; d, 11,'S, a, ¥} 7. {x |x is a natural number less than 10} 
9. {x |x is one of the first four letters of the English alphabet} 

11. Infinite 13. Finite MS Oey AG Uh One adh 2p Ove the {2h 
a) | Wy 19. Z 21. Z DSU Nas OH, Dy O90, 8, 9} 
IE eRe, 271m ly 2546.8} 29. © 31. {2, 4, 8} 2ey fo): 

35; 1 254 8y 37. © 397716, 9} 41. {1, 2, 3, 4, 6, 8, 9} 43. € 

ASAT G49 Gg 51 NCW 53.NCR- 55. HOR 
SO 59. R 61° N 63. {—38,0, 12,571} 65. (V7, — v¥2,7} 
67. {—38} 

Exercises 1.2 1. Axiom 1.2.2 3. Axiom 1.2.5 5. Axiom 1.2.2 Se A XT OMS 

9. Axiom 1.2.6 11. Axiom 1.2.2 13. Axiom 1.2.7 15. Axiom 1.2.2 

17. Axiom 1.2.5 19. Axiom 1.2.5 21. Axiom 1.2.4 23. Axiom 1.2.3 

25 5818018, 4, 4/2, 3, 5, 21 
27. 8 > —9; -9 <8 29 Dee 3 — 1) 

31. 4x —5 <0; 0 > 4x —5 88h Sy a6 7 > Oe 0 q By ae 7k 

Be 2K PK Sp SP Mh =) KG=VE BRIS asQ> = 

Exercises 1.3 1. Binomial; second degree in x; first degree in y; second-degree expression 

3. Monomial; first degree in x; third degree in y; second degree in z; sixth-degree 
expression 

5. Trinomial; second degree in wu; third degree in v; fourth-degree expression 
7. Binomial; first degree in x; third degree in y; third degree in z; sixth-degree 

expression 

9 —148 11. —30 13. -2 15. -% 17.9 19. —4 
Zi Os eee 250027. 2 Ae 29.3 31. 7i 33. 6+/3i 
B54 resus = 4eee?s Wns 3 — 44/33 «41. 2. — 3: 
43, 5\/2 + 102i 

Exercises 1.4 WES Va) geese (2) wee 5.” 13 0718S 9. {-# 11. {—33} 13. {2} 
15,423 LA Lo meee. ee 20 fit 23.0 3} 25. {4} 
Ze sO aD cee ely =a + 3b: a — 2b'+ 0 



A-6 Appendix 

Exercises 1.5 

Exercises 1.6 

Exercises 1.7 

Exercises 1.8 

Exercises 1.9 

Review Exercises (Chapter 1) 

ny 2A _ E—IR 33. x = 3a — 5b;a+bF0 sie alas pay boat Pe 7 

i a—S 
. p= — -r=— 14S 39. p AS 41. r = os 

1. 12cm; 8cm ‘3. $12,000 at 14 per cent and $18,000 at 10 per cent 

5. 83. 7. 150 ounces of $26 perfume and 120 ounces of $12.50 perfume 

9. 1 hour 11. 9 meters per second; 94 meters per second 

13. 18 minutes 15. Newer press, 44 hours; older press, 9 hours 

17. Fundamentals, 650; composition, 590 

19. $2500 in camera A; $2500 in camera B; $1500 in camera C 
21. 6 liters 23. 36 seconds 25. 54 minutes 

1. {x |x > 5} a 3 {xl SS. Gelx Soy xis 
9. {x|x< -}{} 11. {x|x >—8} 13. {x /4<x< 8} 
15. {x|-4<x< 1} 17. {x|-6<x< -4} 19 {x|-3 <x < $} 
21, {x|x<O} U {xlx> 2} 23. (x|x < —3) U {xlx > 0} 
25. {x|4< x < 24} 27. {x|x << —3} U {x|x > —3} 

37. At least 14 grams and at most 20 grams. 39. $6000 41. 49 

1. (a) 10; (b) 6; (c) 8; (d)O —3. (a) 24; (b) 24; (c) —24; (d) —24; (e) 24 
5. (a) —2; (b) 53.4c) 2;(¢) 8 87. {1,9} 9. {$4} 11. {—5, 3} 
13. {-—1, 8} 1S. {1, 3} 17. (2, 4} 19." x 3 = = 3} 
21. {x |x << —6} U {x|x >8} 9-23. {x|2< x < 8} 
25. {x|-l< x < 8} 21. {xx =< —1} U {x(x > 8} 

2D. (xjx< MB) (xfo> 8) 31. (x[x < —} U [xs 2} 
33. {x |x< —3} U {x|-3 <x < #} U (x|x > 38) 

9. (a) 7; (b) —7 11. (a) —4; (b) 4 13. (a) —10; (b) 6 15. 5 

17.13 19.32 21.55 23. |AB| = 10; |AC| = 13; [BC] = V17 
25.3 27.-2 2.0 418 

17. 3x —7y =0 19. x —y+1=0 ie 

2342xi= py) p10 Opec ay 19 20 Fy sO 
29. y=2x+5;m=2;b=5 31. y=2x —3;m=2; 5 = —% 
33. y= -8; m=0;b=-§ 35. 4x —3y — 15 =0 
37. Sx+y—14=0 39. 6x+y—30=0 41. (a)y =0;(b)x=0 

1. {1, 2, 4, 6, 8,9} 3. {4} Seri2, 12} 7. {—4, 17,3, —5, 0, —4, 2} 
9. {2, 4, 6,8}; {2,4, 8}; (4, 6, 8}; (4, 8} 

11. Commutative law for multiplication (Axiom 1.2.2) 

13. Identity element for addition (Axiom 1.2.5) 
15. Associative law for multiplication (Axiom 1.2.3) 

17. Existence of additive inverse (Axiom 1.2.6) 
19. M6 21s) F238 2. 8—8i 27. {4} 29. {4} 31. {4, 2} 

ita # We i eG 330% = at DAO, a bA#0 y= ria B 



Answers to Odd-numbered Exercises A-7 

Exercises 2.1 

Exercises 2.2 

Exercises 2.3 

OTe come 4 39 x |x 1 5 CWI 45 4| Sie 55 << ey 

43. {x|-l<x< 6} AdmAy/ (OMS I: parallelogram 53. rectangle 

S50 cee ly eie= 08 57.02% 3y 4113 = 0 
59. $10,000 at 8 per cent; $20,000 at 11 per cent 61. $9, $6 

63. 26 minutes and 40 seconds 65. I4 liters 67. at least 95 

eee meses 3p meeS eons 15.25/15) © 7, (0,1) 9, {3,5} 
11. {—3,2} 13. {—3,2} 15. {-#} 17. {—$, -$} 19. {4a, Za} 

— tie % = Sy es a, { = | 22s AT? S a 109 ee 927. fn 9} 

ID), x62 = bbe = 10 =O 31. 12x2— 17x +6 =0 33. 9x2 +x =—0 

35. abx? — (a? + b?)x +ab=0 37. x2?+16=0 39. 8, 10 
41. 27 centimeters by 12 centimeters 

43. 30 feet per second and 25 feet per second, or 25 feet per second and 20 feet 
per second. 

45. 6 kilometers per hour, or 48 kilometers per hour 

1.x? + 6x) 4.9; (x 4:3) 3. x? — 1lx + 421; ( — HL) 

S. w* + gw + aks (w4h)? _ 7. x? — fax + $a; (x — 4a)? = 9. (—5, —2} wa ‘ ae fe 
11) 33. aes eve 15. | z anes ses) 
17. {-1,4} 19. {—3,3} 21. (1 — V3,14 V3} 

a er ore aie sy ae 2 1V | 5 
27. 361; roots are unequal rational numbers 

29. 52; roots are unequal irrational numbers 

31. —31; roots are unequal imaginary numbers 
33. 0; roots are equal rational numbers 

35. 225; roots are unequal irrational numbers 

= fa 2 
37. —60, 60 39. —1 41.33 43. ais = ie 5 G20 

a 
b b y—3 

45. = — = ——_ ; —_ ia = —_ S = —— Bb oe Pen: Toa te ily @ 2 Il A] Xe "5 — 26 5 

yyy haere aed Siete yy Pye 55.4; 4 
safes 7 

57. 2, Shera 59. x = Des ye 4ac + 4ay 

nH Ae 2a 
61. 15.51 meters 

ee eo ee a4) 9983) 1. (4) 13. 2 
2) 21. (3,3) 23. {73 © 25. {1,2} 
Pee Oe 29a Oey 21 Bt, (4/3, 24/2, v2, V3} 

Bs Vo WS 2 WO ND 
3331) — : 1, i} 

Fy 2 
cgpatrnnae 

35. Uae ss eee VS ead ae iV3, 1 +iv3} Hh wih 



A-8 Appendix 

Exercises 2.4 

Exercises 2.5 

Exercises 2.6 

Exercises 2.7 

Exercises 2.8 

Review Exercises (Chapter 2) 

Exercises 3.1 

S150 

1:0, D359 = —3 9 3. 0,2)3 p= —2" 5. 0,437 =4 7.0) 
9. (0,3);x =0; (0,4); y=H% 11. (3, —9); x = 3; (3, 38); y = — 
13. (—2, —6); x = —2; (—2, — 44); y = —* 

15. (—2,,3); x = =27(— 2,4), 7=2 17. 22-2); += 2,00) 
19. x2 = —12y Ml, 368 se Shy 23. x? + 4x + 60 = 8y 

27. (25,0); X= ey 9629. (8,0). = 8 

LCirecle_ 3.’ Circle, S57 Eilipse) 7. Hyperbola 
9. Two distinct lines through the origin 11. Point: the origin 
13. Hyperbola 15. Ellipse 17. No graph 

19. (a) Ellipse; (b) hyperbola; (c) point: the origin; (d) two distinct lines 

through the origin 
21. (a) Ellipse; (b) hyperbola; (c) no graph; (d) two distinct lines through 

the origin 

23. x7 + y? — 6x + 10y +18 =0 25. (5,6); 7 

Ve {x | V are  Sete  — A f  2 5. {x|-—2 < x < 3} 

de {XX <= 3 OU (xe 3 9. {x|-3 <x <4} 

Tl <oLUe x e3) 13. {a] —4 < x < 1} 

15. [see a ct 17. (n\n Al V2) Gla ee 

19. {x|x << —3} U {x|f <x <2} 21. {x|x << —4} U {x|x > —3} 

23. {x|2<x<2} 25. More than 10 and less than 150 

IU Dy NOP = ahs 19. 2x —7y +3 <0 

Lefer us, [eee pie pia iA) epee 

T. {Y= Vi3, 1/13} 9. a) Il. {-2} 13. {-4, -3,4.3 

15. x => at ee 29. Center at (2, —5), radius 4 

SL {x|x <2} Oe Ss) 0335 1X |) ee) 

35. {x|x <5) U {x|x >§) 37. {x|F <x <3} U (x[x D4} 
43. (0,3); y= —-3 45. x? =-—16y 47. 70 kilometers per hour 

49. 4\/21 kilometers per hour 

} 

- Domain: {—3, —1, 1, 3}; range: {0, 2, 4, 6}; function 
- Domain: {0, 2, 4,6}; range: {0, 2,4}; function 

- Domain: {—1, 1, 3}; range: {1, 3, 4,5}; not a function 
- Domain: {—2, 0,2}; range: {—1}; function 
. Domain {2, 3,4}; range: {—2, 0, 1, 3, 5}; not a function 11. Function 

13. Function 15. Function 17. Not a function 
19. S and T are functions; R is not a function 21. Domain: R; range: R 
23. Domain: R; range: { y|y > —4} 

25. Domain: {x|x > 4}; range: { y|y > 0} 

Onn Ww = 



Answers to Odd-numbered Exercises A-9 

Exercises 3.2 

Exercises 3.3 

27. 

29. 

33. 

Si. 

39. 

41. 

43. 

1. 

15. 

17. 

19. 

21. 

23. 

31. 

53: 

Domain: {x|—6 < x < 6}; range: {y|0 < y < 6} 

Domain: R; range: {—5} 31. Domain: R; range: {—3, 3} 

Domain: {x|x 4 3}; range: { y|y 6} 35. Domain: R; range: { y|y 4 6} 

Domain: {x|x 4 —5, 1}; range: {y|y 4 —9, —3} 

Domain: R; range: { y|y > —4} 

Domain: R; range: {y|y < —2} U{y|O<y <4} 

Domain: {x|x < —1} U {x|x > 5}; range: { y|y > 0} 

0 3. 30 5. 3 7. 3 9, 13 11. 16 13. —11 

(aes — 10: (b)) 8h — 5; (c) 8x — 5; (d) 4x + 3: (e) 4x2 — 5 

(a) 4h? + 2; (b) 8h? + 1; (c) 8x? + 1; (d) 2x? + 8x +4 9; (e) 2x44 1 
(a) 6 — 10h — 4h?; (b) 3 — 10h — 8h?; (c) 3 — 10x — 8x?; 
(d) sae: S 3) = Se 4 Die 

ie 2. 2 
@iy oO ae (©) Sear OT rere Cree: 

6 25. “ey = ip 27. 6x - 3h += 4 29 3x2 She = 2-3 
—11 

(34+ x)(3 +x +h) 

(a) even; (b) odd; (c) neither; (d) even; (e) neither; (f) even; (g) odd; 
(h) neither 

- (a) 2x + 5, domain: R; (b) —9, domain: R; (c) x? + 5x — 14, domain: R: 

(d 

(f) x? — 4x + 4, domain: R 

—1}; (e) + r, domain: {x|x #2): 

- (a) 6 + 4x — x?, domain: R; (b) x? + 4x — 2, domain: R; 

es 8 + 16x — 2x? — 4x3, domain: R; (d) 2 canes domain: {x|x 4 —2, 2}; 

4 , domain: {x|x 4 —4}; (f) 16x? + 16x + 4, domain: R 

. (a) 5x? — 9x — 18, domain: R; (b) —x? + 7x — 12, domain: R; 

22 
domain: 

Se a iL” 
(c) 6x4 — 19x3 — 43x? — 123x + 45, domain: R; (d) 

3 1 (xlx # —4,3}; (©) Pe, domain: {x |x 4 aeF 
(f) 4x4 — 4x? — 59x? + 30x + 225, domain: R 

. (a) a + Vx, domain: ealbe SRS (()) ees \/x, domain: {x |x > OP) a 

domain: {x|x > 0}; (d) =e domain: {x|x > 0}; (e) x Vx, domain: 
xVx 

ealee Sane (f) sa ; domain: {xx 4 0} 

Bet seit es ee as eer ieell . (a) ee ae domain: {x|x 4 0, 1}; (b) SL ? 

domiaines} x 136 54,0, 15. (c) as aa , domain: {x|x £0, 1}; (d) = eae 

domain: {x|x 4 —1,0, 1}; (e) ae domain: {x|x 4 0, 1}; (f) > 

domain: {x|x 4 0} 



A-10 Appendix 

Exercises 3.4 

Exercises 3.5 

Exercises 3.6 

11. (a) x +5, domain: R; (b) x + 5, domain: R; (c) x — 4, domain: R; 

(d) x + 14, domain: R 

13. (a) x2 — 1, domain: R; (b) (« — 1)?, domain: R; (c) x — 2, domain: R; 

(d) x*, domain: R 

15. (a) Vx? — 4, domain: {x|x < —2} U {x|x > 2}; (b) x — 4, domain: 

{xx >2};) (C)PV Vx = D2) domain: {x|x > 6}; (@) x4 — 407 

domain: R 

1 ; ] ; : 
17. (a) —~=, domain: {x|x > 0}; (b) —=, domain: {x|x > 0}; (c) x, domain: (a) 3 {x |x > 0}; (b) Te {x | }; (©) 

{x|x £0}; (d) Vx, domain: {x|x > 0} 
19. (a) |x + 2], domain: R; (b) ||x| + 2], domain: R; (c) |x|, domain: R: 

(d) ||x + 2| + 2|, domain: R 
23a 2(x) =x 3 

aay 
h(a) SC EOP GRID LANG) 11. —1, 3 13. ia 

15. —1 is a minimum value 17. 4 is a maximum value 

19. —4+is a maximum value 21. 5 and 5 23. 144 feet; 3 seconds 

25. 50 yards by 50 yards 27. _- 130; $84,500 29. 40; $900 

1. (a) domain: {x|x 4 0}; (6) x= 0, y = 0; (c) none 

3. (a) domain: {x|x 4 0}; (b) x =0, y=0; ©) y <0 

5. (a) domain: {x|x 4 4}; (b) x = 4, y = 1; (c) none 
7. (a) domains {x|x 4 I; (b) x =, 13 (©) 0 < yi<e4 

9. (a) domain x(x. 4 40. (bx = —2, v= 2, y = le (ce) 0 ay < 

11. (a) domain: R; (b) y = 0; (c) y< —-l,y> | 

13.(a) domain Wx bese 2} (be = — 2, x = 217 — 0; (C) none 

15. (a), domaing{ xix 4s 1} 3 (b) t= xt ya C) ay 

17. (a) domam={x |x, 4 1,233 (b) x = lox = 2) y = 1a (Oe Sa 0 

19. (a) domain: {x|x 4 —3,4}; (b) x = —3, x =4, y = 2; (Cc) none 

1. S-1 = {(3, —4), (—3, —2), (—1, 0), (1, 2), (0, 4)}; S71 is a function 
3. Sl = {(5, —1), (—2, 0), (—1, 1), (2, 1), (4, 2)}; S71 is a function 
5, S-1 = {(x, y)|2y? + x — 4 = 0}; S$} is not a function 
[aS == (xy) | Ket eS iS DOtea 1 UNCON 
9, St={(, y)|x = V9 —y*}; Sis not a function 
11 Say) |X = .6 Se sea function 
13. f-1 = {(7, —5), (4, —2), C, 1), (—2, 4)}; f77 is a function 
15. f * ={()) (26-5 ye 10)} 5 f= isa) function 

17. f* = {@y) |x = ly 41} fis not a function 

19. f-1 = {(x, y) |x = — Vy + 4}; ft is a function 

21. f-1 = {(x, y)|? — 6y — 6x + 15 = 0}; f~? is not a function 

23. f-1 = {(x,y)|y = Vx + 2}; f7 is a function 

25. (b) fx) =~ +3; (0) -} 27.) 7) = VE-B © -2 



Exercises 3.7 

Review Exercises (Chapter 3) 

Answers to Odd-numbered Exercises A-11 

29. (a) Range of f= {y|y > —5}; (6) f* = {@% y)|y = Vx + 5}, 
domain of f~! = {x|x > —5}; (c) f71 is a function 

31. (a) Range of f = {y|y > —4)}; (b) f = ((~ y)|y =2 — V3x + 12), 
domain of f~! = {x|x > —4}; (c) f71 is a function 

33. (a) Range of f= {y|0 < y < 4}; (b) f7 = {x y}|x = V16 — y*}, 
domain of f~! = {x|0 < x < 4}; (c) f 1 is not a function 

BS elmer (cay) ye ny 2) 37. (ay Ft (x,y) y= 2 — Vx} 

(2) ype (>) 3. (a) u = 3; (b) 20 5.4(3) 62. 6v2. @)yr 
vq 

em (a) ee => pa) eo 9. (a) r == =e UD) 11. £2 candlepower 

13. 24 seconds 15. 414 amperes 17. 200 cubic meters 

19. z is multiplied by 4 21.50 percent 23. 212.5 per cent 

1. Function 3. Not a function 5. Function 

7. Domain: R; range: {y|y > —4} 

9. Domain: {x |x < —2} U {x|x > 2}; range: {y|y > 0} 

11. Domain: {x |x 4 —4}; range: {y|y 4 —8} 
13. Domain: R; range: {y| y > 1} 15. 0 17. —2 19. (a) 9; (b) 57 

21. (a) 48x? — 8x + 1; (b) 12x? — 8x +4 

23a (ayesxe 1 4xn-ali (Db) 3x7 2x0 — 8& 

25. (a) x* + x — 6, domain: R; (b) —x? + x — 4, domain: R; 

(c) x3 — 5x? — x + 5, domain: R; (d) < zx e domain: {p47 2= 1): 

(e) * , domain: {x |x 4 5}; (f) x2 — 10x + 25, domain: R 

27. (a) ae: RE domain: {x |x > 0}; (b) V0 —= —— domain: (oe es Sys 

(c) ¥ domain: {x |x > 0}; (d) x2 Vx, domain: {x |x > 0}; 

(e) ze domain: {x |x > 0}; (f) x, domain: {x |x > 0} 

29. (a) Vx? + 1, domain: R; (b) x + 1, domain: {x |x > 0}; 

(c) Vx, domain: {x |x > 0}; (d) x4 + 2x? + 2, domain: R 
31. (a) 33. (b) 35. —3 is a minimum value 

Sia (adomaina tx |x 3); (b) x= 33 (c) 0 < y < 12 

9 'm(a) domaine < sees} (byt —), x = 5, y = —15 (c) -l<y <0 
41, ws (ny) or Oy ony 1S a) function. 
43. f-1 = {(x, y) |x = Vy — 4}; f71 is a function 
Aeon (ila 9 — 2, y > 0}: f-* is a function 
47. 9 and 9 
49. 24 or 25; $375 
51. (a) 80 amperes; (b) 0.25 ohm 



A-12 Appendix 

Exercises 4.1 

Exercises 4.2 

Exercises 4.3 

Exercises 4.4 

Exercises 4.5 

1 —-z 3.5 5.6 1h © 9. 4 11. —0.064 13. 

1SWL15iRs M7 eae 1971. 923 eS eee 
x 

| ae 1/4 2y4y474 b-a 2y 
29: x7 31. a Soh oF 35. 4X V2 S96 a 39: ee 

| y? +x? Z 

1 a ee ee 
1/2y1/2 aa 49. x 4+2x¥4yV24y S51. a 

l 
53, a + 30?/3bY3 4 3q¥/8b/3 4b 55. x? 57. xmt6 59. 

61. 100 63. 2\x|y2 65. 25(x — 5)? 67. A(x — 2)7|2 — y| 
& Of e138 

69. (a) | 2x if -3 <x <3; (b) x >3 
6 ifx >3 

1.9m 93503015 ee nos Sm ee aS 2) 
15. 2c2*/c2 «17, —2x5y2¥By? 19. |b] 2. 103-23. — 24-72 
25. —35212V/25 27. 6x2y2V15x2y 29. 7/7 351. 27 73 

3 

33, SaVia 35,3 =S Ver 37. ve 39. 63-6 V6 
Al. v/12 = 10° =<43; 30RHA2W6 ) 45.1 —21/6 41/36 47.5a 4138 

35 35 Lee 
49 iret GL: 65/1500 05300 \ 10 wee 55. = plo 57, a3 6y 

V12a?b? 21 59. so 61. — = YB? 63. 3 V3 — = v2 

13/14 — 54 
65.43 + V2) 6721+ V5 69. cai 

11. 362-13. 58V10— 15, 25V2—- 17. 3033s: 19. 22.3 grams 

1. log,81=4 3. log,125=3 5. log,0.001=-3 7. logg4 =4 
9. logesds=—2 1. 8 =64 13.34=81 15. 7% =1 
17.()2=9 19.9-/2=3 212 23% 25-3 27. -4 
29, 4 31.2. 33.3430 35. 81, 37 12039 1G 
43.0 451 47.3 49.0 

1. log, 5 + log,x + log, y 3. log, y—log,z 5. log, x — log, y — log,z 

7. log, x +5log,y 9 4log,x +4log,y 11. 4log, x + 3 log,z 
13. log, x + 4log, y—4log,z 15. Zlog, x — 4log, y — $log, z 

ve 
17. Zlog, x +4log, y + dlog, z 19. log,»x*Vy 21. log, —~— 

ye Vz4 
23. In4ar?h 25. 1.1461 27. 1.1761 29, 1.1993 31. 3.1461 

33. 0.3404 35. —2.7744 37. 0.6309 39. {125} 41. {3} 43. {7} 



Answers to Odd-numbered Exercises A-13 

Exercises 4.6 

Exercises 4.7 

Review Exercises (Chapter 4) 

Exercises 5.1 

Exercises 5.2 

Exercises 5.3 

Exercises 5.4 

1. (5.260)101 Sia(6nl) 10 Suna 2) 10° a.060) 10m 

9. (8.0022)10-® 11. 2.5611 13. 1.7143 15. 9.4314 — 10 

17. 8.9605 — 10 19. 5.5416 Jak, ZS 23. 8.43 25. 0.0298 

27. 0.000195 29. 581,000 31. 0.4400 33. 3.6617 35. 7.9667 — 10 

37. 5.5228 — 10 39. 5.8920 41. 3.525 43. 9311 45. 0.5116 

47. 0.001446 49. 7,396,000 Stk, 132 53. 0.0002269 55. 2.384 

57. 0.1501 59. 0.2258 61. 4.73 63. 4.03 65. 1.64 seconds 

Se SH ee 69. $10,940 

Ve 403 ese 04307 em 5. (4.299) 7. {8.632} 9. {32.2} 

11. {1.015} 13. 2.262 15. 4.169 17. 5.043 19. 0.9376 

21. Between 184 and 19 years 23. 68.4 years 25. 2.5 per cent 

8 ea 

ips yee Gs “ Ta - 9, 2y2\xz3] A. 4-3 

13.2°2— 4 15. 6x —2xV3y —12xy = 17. Vx + Vy 221. 625 

23.4 25.64 27. log,x +}log,y—4log,z 29. log, 4nr*h =: 331. {4} 

Bieta 0 350014584) 9037. 8.82 39.0.9358 41.47.63 

43. 11.9 years 45. 57.65 mg. 

(ees es Cun Sle 3yee7. 8 426; 9.7 9 /57 

[Ieee ee She2rt7, 8 — 182 19.53 

DA w nS 5S 19 a 8/0 25.i 27. — 5h 
SNe 

29. $4 fi 31. 4 — #i 33-5 1 

39.i 41 -i 43.i 45.16-16i 47.0 49.0 

19 Ome? | te) 23 25-0 

1 3i03) ee. [ae Sel i 5p ey 5} 

7G eee teat 2, 4442} 11x? — 10x +26=—90 

13. 25x2 —10V3x +19=0 15. 36x? — 36x? + 25x =0 

Wh, see te Ae ae 3} = 19. 3x2 — 4x2? — 12x27 + 20x — 15 = 0 

21 esate att) 25.0 fee} | 27. {=zh + 158} 
Wik 2. ve & 

PO ee ) mes. (1,42) 33. { - +s +51} 

—1+iv3 —3+ 313 
. —3 37 ; 5 sip I 39. —5,5, —Si, Si 

OW, Sail eee ey 

0S ees wll eceen9. Yes 11,No 13. Yes 15. Yes 

17. -7 19.1 21. 1 and —3 23. All positive integer values 

25. Positive odd integer values 

27. Positive even integer values not divisible by 4 
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Exercises 5.5 

Exercises 5.6 

Exercises 5.7 

Exercises 5.9 

1. The quotient is (2x? + 7x + 31), and the remainder is 135 

3. The quotient is (2x? — 3x? + 12x — 50), and the remainder is 199 

5. The quotient is (3x4 + 7x? + 14x? + 24x + 48), and the remainder is 103 

7. The quotient is (x* — x3 — 4x? — x — 4), and the remainder is —16 

9. The quotient is (6x? — 3x + 3), and the remainder is 1 

11. The quotient is (x® + x° + x4 + x° + x? +x 4 1), and the remainder is 0 

13. The quotient is (x? + 2ix? + i), and the remainder is —2 

15. The quotient is [x? + (1 + /)x — 2], and the remainder is (4 — 2/) 

17. 8; —157 19. —7; 126 21. 4; # 728}, 8) = Ghig 3} = Abi 

We, =I = Die =O 4 Wi 35. No 37. Yes 

1. 4, multiplicity two; —2; 2 

3. 0, multiplicity two; —1, multiplicity two; 7; —i 
5. —7, multiplicity three; /7, multiplicity two; — V7, multiplicity two 

7. —4, multiplicity three; 3, multiplicity two; —3, multiplicity two; 31; —3i 

i 5 or Aerie srk Bee OR ore he eb eT 
Dan i 

\/ ] ul 
19) See yey eee 

98, SEO = foe Se WS Ih, 369 = Tbs tb BS 29, x* + 18x? + 81 

+ 

S31), 5s Ox OE 3 Its Sex SEG | 33. (ae ey —2i, 21] 

35. [AS -2 — a -2 +4i} 

jel Vem G 
eee eh ES) en OG Sees 7. Regal 

9.4,3,2+ V3 11. 2 is the only rational zero 13. —4, —1, 1 
Paes WU 155 3,0,32 (17. £24,208 19m dee me Ae 6, 

23. —2 is the only rational root 29. 2cm or (4 — v1l1) cm 31. 6cm 

1. 1 positive, 0 negative, 
3. 2 positive, 1 negative, 

2 imaginary 
5. 3 positive, 0 negative, 

2 imaginary 
7. 1 positive, 1 negative, 

9. 0 positive, 1 negative, 

2 imaginary 

and 0 imaginary; or 0 positive, 1 negative, and 

and 0 imaginary; or | positive, 0 negative, and 

and 2 imaginary 

and 2 imaginary; one root is 0 
11. 3 positive, 0 negative, and 2 imaginary; or 1 positive, 0 negative, and 4 

imaginary 
13. One negative irrational root between —3 and —2; one positive irrational 

root between 0 and 1; one positive irrational root between 2 and 3 

15. One negative irrational root between —1 and 0; one positive irrational root 
between 0 and 1; two imaginary roots 



Answers to Odd-numbered Exercises A-15 

Review Exercises (Chapter 5) 

Exercises 6.1 

Exercises 6.2 

Exercises 6.3 

17. —1 is a root; one positive irrational root between | and 2; two imaginary 

roots 

19. 4 is a root; one negative irrational root between —1 and 0; one positive 

irrational root between 0 and 1; one positive irrational root between 2 and 3 

21. 2.65 728}, OSI 25. —1.12 

1 18 +i 3. 4 —3i 5. —21 7. 10 — 107 9. — 

15. x* — x3 + 10x? — l6x — 96 17. —4i,i 19. —2, 

21. —7 23 ees Ds SY 

27. The quotient is 2x? + x? — 3x + 5, and the remainder is — 10. 

29. The quotient is x° + 2x4 + 4x3 + 8x? + 16x + 32, and the remainder is 0. 

31. 17; 57 33. —2i, multiplicity two; 2i, multiplicity two; —3; —3; 3; 3 

ea 5, 

a5! 13. 5 

3 It + > 5B 

35. ae eae Bah, x2 = Gye? 25 ils? = ee Ie B 

~1+iVll UO ey om ieee IE gs 1+ 5 
» 

49. 2 positive, 1 negative, and 0 imaginary; or 0 positive, 1 negative, and 

2 imaginary 
51. 2 is a root; one negative irrational root between —4 and —3; one positive 

irrational root between 0 and 1; one positive irrational root between 3 and 4 

53. —1.58 

1. {(3, —5)} 3. -{($,3)} 5. Inconsistent 7. Consistent and dependent 

Sm ise Siayyee TINO) 413. (0, —2)) 15. (Go) 
D7 rs) pele 4) eet (4 )) 23. (2  — )} 
25. {(4, —3)} 

1. {(3,1,0)} 3. {1,2,1)} 5. {(—3,2, —4)} 7. Inconsistent 

Ome ows 0) mmetint(t sal) 
13. {(¢ — 3, 2t — 4, t)}; (—3, —4, 0), (—2, —2, 1), (—1, 0, 2), (—4, —6, —1), 

(—5, —8, —2) 
15. Consistent; {(3, 2, —4)} 17. Inconsistent 

1. India tea, $2.56 per pound; China tea, $2.32 per pound 3. 20; $120 

5. 600 kilometers per hour, 840 kilometers 

7. Any fraction of the form where ¢ #2 andi 40 
t 

2t — 4’ 

9. 64 miles per hour; 12 miles per hour 
11. Girl, 20 minutes; brother, 25 minutes 

13. Twenty grams of first alloy, forty grams of second alloy, and ten grams of 

third alloy 

15. y = 4x? — 8x +3 
17. Two large-size cards, seven medium-size cards, and one small-size card; 

three large-size cards, five medium-size cards, and two small-size cards; four 

large-size cards, three medium-size cards, and three small-size cards; or five 

large-size cards, one medium-size card, and four small-size cards 
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Exercises 6.4 

Exercises 6.5 

Review Exercises (Chapter 6) 

Exercises 7.1 

Exercises 7.2 

1. {(—4, —3), (3, 4)} 3. {(—1, 0), (3, 3)} Sa (4 53) 

ey = VON pba SS 
Gera epee 
y {(—2 + 23,2 — V3), (—2 — 23,2 + V3)} 
1. {(2, 0), (—2, 0), (0, 2)}; (0, 2) is a double root 

e {(4, 1), (—4, —], @ —4), (—7, 41)} 

15. {(2 V3, V13), (—2 V3, V13), (2 V3, — V13), (—2 V3, — V13)} 
17. {(—3, 0), (5, 4), (5, —4)}; (—3, 0) is a double root 
19. {(2, 4), (—2, —4)}; (2, 4) and (—2, —4) are double roots 

21. (1220. —2), (3 V6, 4 V6), (—3 V6, —4V6)} 
23. {(4, i), (—4, 2), (4, —2), (-4, -—) 25. 6 and 10 i DE SISO 

29. 24 miles; 6 miles per hour 

19. 344 at (22,42) 21. 8 units of product A and 16 units of product B. 
paps fies W, to R,; 4 from W, to R,; 2 from W, to R3 

LEE) (G52) FRESE) 5.1), (25) 
9. (1); {(3, 1, —2)} 11. (i); {Gt + 1, 2¢ — 1,0} 
13. Consistent; {(4, 4, —#)} 
15. {(—4¢ — 5, —2t — 3, 2)}; (—5, —3, 0), (—9, —5, 1), (— 13, —7, 2), 

(—1, —1, —)), (3, 1, —2) 

17. {(1, V2), (, — V2), (-1 v2), (—1, — v2)} 
19. AC —2), (1) 2); Cs; = 3), (= 3, 3)} 

25. 60 kilometers per hour; 540 kilometers per hour 

27. $12,500; 6 per cent. 

L(G 2) IB 6) SG, 1 ee Ones Op 
951 (210 =Oesor 7) (IL), | Be 

1. (a) 2 x 4; (b) 3 x 1; (©) —2; () = eel | 
a ee 

6 12 633 6sie IO 
(©) [-2} (f) bi 15 —3 seul (8) -4 

=§ i 10 

00 0 

3. (a) 4 x 3; (b) 2 x 2: (c) 0; (d) ; : at 

0 0 0 
arg VaL 8 : 

0 07. oem 6 3) 30 
©) [9 ra Be sated 29 @ L 6 a 

OG 
Sy 0.gaees 

mage ae Hii 3 
>: = 1 rif 13 5 me 2: : =. | 

4 8 
1G Ea geo gl sa uaa ice es cys] ea | 2 | 

—24 4 



Answers to Odd-numbered Exercises A-17 

Exercises 7.3 

Exercises 7.4 

Exercises 7.5 

Exercises 7.6 

ig Sane 
15. -s 4 | 17. | : 4 19. F 4 21. [7] 

101 =2 16 7 

» Ws ; pay tae 
alt Ge oe ea eae Fe | 300 |e 

= =o) 3 l 2 

ye 3.4 3 0 
evened |) Mas = | 3]: =a = | | 

a0 Ay, 12 aly bo elk basal | 

ahicaed Le) On OMS 
Re ne CMON =15560\2M.—=|-1 —1 2 

fC eet ea 1 ai ae pil 
5 © 8 

vio eat Shae 
ei 61 40 
yy i 2 Se Seo 

Te ee eee te 1) 218A |-1) 4. |: 
ai | vy Seal ye 
Be i 

ARN 41 
es 4 

gb 22 11. —6 13. 11 ies We 7h 1 19. —108 7A a 

23 a) 27. —3,1 

BL. = 44 4491432443455, 41442393294 1455 

33. = 4993434441955) 442423435441954) 41449239329414552 — 4444234354414505 

— 44 5493439441454, 445423434441450 

1. Theorem 7.4.1 

7. Theorem 7.4.3 

13. Theorem 7.4.4 

iff, See to Sy) = 7 

3. Theorem 7.4.5 5. Theorem 7.4.2 

9. Theorem 7.4.3 11. Theorem 7.4.4 

Sa 7h = 19. 50 2a 78}, == ID 

aes Seal 0 
ee!) 16h) a0: —6.-—1 5. | ; 4 7. Singular oes 

0 

3} 9. fa 1] 11. 
BY} 

29. {(1,4)} 31. 

er Gara) 

2 8 4 

ety 0 ee 
fy =| i | - re a j 15. [ | 

i ae On ie? 
ies Ay esa "3,1,4))) 35. {(1,1,2)) 

3. {((-3,9)} 5. (2,3, ae) 
7. {(—41, —t, t)}; dependent 9. {(-3%, —4, —4)} 11. 2; inconsistent 

139 (12.1.0) } 15. {(3, 4,4, —}))} V1. {(2t, 1 — t,1 + 4,1)}; dependent 
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=3 2 
Review Exercises (Chapter 7) 13468) } 3. {(—4, —2, 3)} 5. {(4, 3, —4, 9} 7. ee A 

=) = 
2 -1 3 a © 3 E =| we wf 2c 3] [fg] 

19 5 

Ol Oars | e 2 
17. 3 0 -4 19. [2 —3 2] 21. ley 3 23.) | —1 

—4 1 4 —3 

sa = 

2510 Eto SemeeomE4 || ; =| 35. 1( ee} 

37. {(% —I)} 39. (4.2, — 93 

Exercises 8.1 1h Dy, SS TEL, BS Is 3 

7. 44 84, -B& 
11. 0, 4, 0, 8, 0, 12 1 siths Qty 2 16} ih, 1,22 3 3 

17. 1 +5 +9 +.13 + 17; 45 19.24+34+4+3+4+8 @ 

21.54545+4--- +5, (100 terms); 500 23.1+4+}3+4+44+2 $8 

25, 4 1x? x? =x ex a Xe 

ce — 

RI » x a) ole tad | loo cad oo aH * Sl Oo} 3 
ror) 

6 

27. f(x) + f(%2) + f(%3) +--+ +£%q) 29: Ss} Qi — 1) 
eaal 

: ; 2h = jl 5 | x 2-2 

31.9 (1) 4a 1) 33. 355 (a. 
4=% Vea (Sil 

B7.0143;5,099), | een — henna 

chi on eh 1h 66 oa ae 
2n — 1, if n is odd | 

n+ 1, if n is even’ 

1, 3, 5, 13, 33, 71, ..-, 2n — 1 + (n — Im — 2)(n — 3), ..- 

_., where a, = | 

Exercises 8.3 1b 5), Til, Wey Wy 3. 10,6, 2, —2, —6 5, =o 10 19264 — 33 

7. x,x + 2y,x + 4y,x + by, x + 8y 

9. An arithmetic sequence; —13, —17 11. Not an arithmetic sequence 

13. An arithmetic sequence; 0, —3 
15. An arithmetic sequence; 4x + 3y, 5x + 4y i, 3S 19. 16 

21. Thirtieth 23. 54, 52, 52, 54 25.714 | 27. 108 29. 2500 
31. —2 33. 2430 35. $280, $260, $240, $220 37. 18 days 

Exercises 8.4 il, SIS, 2S, Weiss, 40S) 3. 8, —4,2, —1,4 5. —%,3, -4,4, -$ 

x Voare v2 ; WP ee SoCs aa 9. A geometric sequence; 27, 81 
XG 55 3 

11. A geometric sequence; 3 V6, 9 V2 13. Not a geometric sequence 

15. A geometric sequence; 3,-—#% 17. 42% 19. —3 21. Eleventh 
23. 2,4,8,16,32 25. 1/9, 1/243 27. —2 29.510 31. 54 
33. 11.17 35. 6,9, 12, 16; or, 6,1, —4,16 37. F2544% 39. $24,300 



Answers to Odd-numbered Exercises A-19 

Exercises 8.5 

Review Exercises (Chapter 8) 

Exercises 9.1 

Exercises 9.2 

Exercises 9.3 

Exercises 9.4 

Review Exercises (Chapter 9) 

9433 
| a A a 11. 

17. 319. Say «23. BE 25. 84 meters 
27. 400 centimeters 

ea}bo _ os) Fhe —_ o) Ww 

1. 
le 

4 x 2k 

1-85, sok Ab 3 D(-DPAZ OS. 14257. 10.56 
4=1 

13.4 15.40r—4 17. Twenty-first 19.3 21. 98 23. 455 
25. 1,049,000; 2,098,000 27. 5, 10, 20; or 20, 10, 5 

1. (a) 60; (b) 125 3. 180 5. 60 Fak) O20) 11. 360 

13. 1728 15. 240 i 78) 19. 2880 Dalh, MPS 

(ee as ees ee 7160 9.9720) ll? 1 13.210 
15. 362,880 17. 5040 19. 72021. 5040-23. 12-25. 48 
27. 20,160 29, 6720 31. 3780 33. 12,600 35. 1,201,200 37.9 
39. 11 

1. 35 3} 22D S225 (Be) 9. 8 1155210) 13.220 15. 84 
Wh, All 19. 210 21. 301 23. 540 Psy, 2h 27. 1,244,117,160 

29. 2,672,060 31. 15,400 

1. x5 + 15x4y + 90x3y? + 270x2y3 + 405xy* + 243y° 
3. 4096 — 6144ab + 3840a2b? — 1280a3b? + 240a*b* — 24a°b® + a®b® 

5, u-> — 5u-2 + 10u — 10u4 + 5u7 — u10 
7. a3 + 6a3/2bV2 4 15a2b + 20a3/2b3/2 + 15ab2 + 6al/2b5/2 + b3 

O72 Pal 22727 66x2°y= 220% 12y% 

11. a? — 9a8/3b1/3 4 36a7/3b?2/3 — 84a2b 
18 

13. 1.262 15, 96,060,000 17. 924aBS 19, —489,888x4 21. ae 
23. 22a 25. —8064 27.1—x?4x4—x 29. 1 —x — 43x? — 3x? 
BI? ee sx? 33. 1020 353.979 37. 4.990 

155 3. 360 Bh Sb) ts 9. 8 11. 720 13. 480 15. 120 

17. 420 19. 595 21. 648 23. 328 2 1?) Diem (a) 05D) eo 

29. x29 + 40x18 + 760x16 + 9120x14 31. 0.7351 
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Index 

A 

Abscissa, 64 

Absolute inequality, 49 

Absolute value, 55, 278 

Absolute value function, 165 

Addition 

of complex numbers, 267 

of functions, 167 

of radicals, 219 

of real numbers, 11 

Additive identity 

for complex numbers, 268 

for real numbers, 11 

Additive inverse 

for complex numbers, 268 

for real numbers, 11 

Additive-inverse axiom, 11 

Algebraic equation, 28 

Algebraic expression, 20 

Algebraic function, 164 

Antilogarithm, 250 

Arithmetic means, 447, 448 

Arithmetic progression, 444 

Arithmetic sequence 

common difference of, 444 

definition of, 444 

Nth element of, 445 

Arithmetic series, 448 

sum of, 449 

Associative law 

for addition of real numbers, 11 

for multiplication of real numbers, 

1] 

Asymptotes, 120, 132 

horizontal, 180 

vertical, 179 

Augmented matrix, 377 

Axiom(s) 

of addition, 11 

meaning of, 11 

of multiplication, 11 

of order, 13 

Axis 

of a coordinate system, 15, 64 

of a parabola, 122 

of pure imaginary numbers, 276 

of real numbers, 276 

B 

Base 

exponential function with, 226 

of a logarithm, 231 

logarithmic function with, 231 

of a power, 20 

Binomial 

definition of, 21 

expansion, 487 

A-21 



A-22 Index 

Binomial (cont.) 

series, 492 

theorem, 490 

C 

Cartesian coordinate system, rectangu- 

lar, 65 

Cartesian product, 63 

Center of a circle, 126 

Characteristic of a logarithm, 246 

Circle 

definition of, 126 

equation of, 127 

exterior of, 146 

interior of, 146 

Closed half plane, 144 

Closure 

law for addition of real numbers, 11 

law of multiplication of real num- 

IDensmell 

Coefficient, 21 

Coefficient matrix, 377 

Cofactor, 395 

Collinear, 72 

Column of a matrix, 376 

Combinations, 482 

Common logarithm, 245 

Commutative law 

for addition of real numbers, 11 

for multiplication of real numbers, 

itil 

Complete ordered field, 16 

Completeness property, 14 

Completing a square, 99 

Complex number, 24, 266 

Complex plane, 276 

Component of an ordered pair, 63 

Composite function, 169 

Compound interest, 254 

Conclusion of a theorem, 13 

Conditional equation, 29 

Conditional inequality, 50 

Conic section, 134 

Conjugate, 222, 269 

Consistent equations, 329, 339 

Constant, 20 

Constant function, 162 

Constant of proportionality, 196 

Constant of variation, 196 

Constraints, 369 

Convex region, 368 

Coordinate(s), 16, 65 

Coordinate axis, 15, 64 

Coordinate system, rectangular Carte- 

sian, 65 

Counting numbers, 2 

Cramer’s rule, 423, 425 

Cubic function, 163 

Curve, 76 

D 

Decimal(s) 

nonterminating, 8 

repeating, 8 

terminating, 8 

Decreasing function, 192 

Degree 

of equation, 29 

of monomial, 21 

of polynomial, 22 

Denominator, 12 

rationalizing a, 220 

Dependent equations, 329, 344 

Dependent variable, 155 

Descartes’ rule of signs, 319 

Determinant(s) 

in Cramer’s rule, 423, 425 

definition of, 393, 394 

evaluation of, 393, 394, 401 

nth order, 401 

properties of, 403 

second-order, 393 

third-order, 394 

Difference 

of functions, 167 

of real numbers, 12 



Index A-23 

Direct variation, 196 

Directed distance, 65 

Directly proportional, 196 

Directrix, 121 

Discriminant, 102 

Disjoint sets, 6 

Distance formula, 68 

Distinguishable permutations, 479 

Distributive law of multiplication over 

addition, for real numbers, 11 

Dividend, 12 

Division 

of complex numbers, 268 

of functions, 167 

of real numbers, 12 

by zero, 13 

Divisor, 12 

Domain 

of a function, 153 

of a relation, 152 

Double root, 92 

E 

e, 228 

table of powers of, A-4 

Elements(s) 

of a matrix, 376 

of a sequence, 433 

of a set, 2 

Elementary row operations for a ma- 

trix, 377 

Ellipse, 130 

Empty set, 3 

Equality 

of complex numbers, 266 

of sets, 4 

Equation(s) 

algebraic, 28 

of circle, 127 

conditional, 29 

consistent, 329, 339 

degree of, 29 

dependent, 329, 344 

equivalent, 30 

exponential, 256 

first-degree in one variable, 32 

first-degree in two variables, 75 

graph of, 76 

of graph, 80 

inconsistent, 329, 343 

independent, 329, 339 

involving radicals, 107 

involving rational expressions, 31 

of line 

point-slope form, 81 

slope-intercept form, 82 

standard form, 81 

two-point form, 81 

linear, 77 

literal, 34 

logarithmic, 230 

of parabola, 121, 123 

polynomial, 29, 286 

quadratic, 90 

quadratic in form, 112 

root of, 29 

second-degree in one variable, 90 

solution of, 29 

solution set of, 29 

solving, 30 

systems of linear, 328, 338 

systems involving quadratic, 355 

Equivalent equations, 30 

Equivalent sets, 5 

Equivalent systems of equations, 330 

Evaluation of determinants, 393, 394, 

401 

Even function, 162 

Expansion of a binomial, 487 

Exponent(s) 

irrational, 225 

laws of, 206 

negative integer, 208 

positive integer, 20, 206 

rational, 211 

zero, 209 

Exponential equation, 256 

Exponential form of an equation, 239 



A-24 Index 

Exponential function, 225 

Expression, algebraic, 20 

Extraneous solution, 108 

Factor(s) 

literal, 21 

numerical, 21 

Factor theorem, 288 

Factorial notation, 476 

Field, 12 

Field axioms, 12 

Finite sequence, 432 

Finite sequence function, 432 

Finite set, 5 

First-degree equation(s) 

in one variable, 32 

in two variables, 75 

Focus of a parabola, 121 

Formula 

distance, 68 

quadratic, 101 

Fractions, 12 

Function(s) 

absolute value, 165 

algebraic, 164 

composite, 169 

constant, 162 

cubic, 163 

decreasing, 192 

definition of, 153 

domain of, 153 

even, 162 

exponential, 225 

greatest integer, 165 

identity, 164 

increasing, 192 

inverse of, 187 

linear, 163 

logarithmic, 230 

odd, 162 

polynomial, 163, 286 

quadratic, 163, 171 

range of, 153 

rational, 164 

sequence, 432 

transcendental, 165 

value, 160 

zeros of, 172 

Fundamental principle of counting, 

470, 471 

Fundamental theorem of algebra, 295 

General element of a sequence, 433 

General term of a series, 436 

Generator of a cone, 134 

Geometric mean(s), 454, 455 

Geometric progression, 452 

Geometric sequence(s) 

common ratio of, 452 

definition of, 451 

Mth element of, 452 

Geometric series, 455 

infinite, 460 

sum of finite, 456 

sum of infinite, 463 

Graph(s) 

of a complex number, 275 

equation of, 80 

of equation, 76 

of inequality, 51, 141 

of an ordered pair, 65 

of polynomial functions, 312 

of rational functions, 177 

of a real number, 16 

of a set of ordered pairs, 75 

sketch of, 77 

Greater than, 14 

Greatest integer function, 165 



Index A-25 

H 

Half-plane, 142 

Horizontal asymptote, 180 

Hyperbola, 120, 131 

Hypothesis of a theorem, 13 

definition of, 24 

powers of, 271 

Identity, 29 

Identity element 

for addition of real numbers, 11 

for multiplication of real numbers, 

11 

Identity function, 164 

If and only if, meaning of, 3 

Imaginary number, 25, 266 

Imaginary part of complex number, 

25, 266 

Inconsistent equations, 329, 343 

Increasing function, 192 

Independent equations, 329, 339 

Independent events, 471 

Independent variable, 155 

Index of radical, 22 

Index of summation, 436 

Inequalities 

absolute, 49 

conditional, 50 

equivalent, 50 

first-degree in one variable, 46 

graphs of, 51, 141 

involving absolute values, 58 

quadratic, 136 

solution of, 49 

solution set of, 49 

systems of, 363 

in two variables, 141 

infinite geometric series, 460 

Infinite sequence, 432 

Infinite sequence function, 432 

Infinite series, 460 

Infinite set, 5 

Interest, compound, 254 

Interpolation, linear, 251 

Intersection of sets, 6 

Inverse 

additive, for real numbers, 11 

of a function, 187 

multiplicative, for real numbers, 12 

of a relation, 187 

of a square matrix, 414 

Inverse variation, 198 

Inversely proportional, 198 

Investment problem, 37 

Irrational numbers 

as exponents, 225 

set of, 8 

Joint variation, 199 

L 

Latus rectum of a parabola, 122 

Laws of exponents, 206 

Length of a line segment, 68 

Less than, 14 

Linear equation(s), 77 

graph of, 77 

point-slope form of, 81 

slope-intercept form of, 82 

standard form of, 81 

systems of 

in two variables, 328 

in three variables, 338 

two-point form of, 81 

Linear function, 163 

Linear interpolation, 251 

Linear programming, 369 

Literal equation, 34 



Literal factors, 21 

Logarithm(s), 231 

base of, 231 

changing base of, 258 

characteristic of, 246 

common, 245 

computations with, 253 

mantissa of, 247 

natural, 236 

properties of, 237 

table of common, A-2 

table of natural, A-4 

Logarithmic equation, 243 

Logarithmic form of an equation, 237 

Logarithmic function, 230 

Lower bound, 307 

Lower limit of sum, 436 

M 

Main diagonal of a matrix, 412 

Mantissa of a logarithm, 247 

Mathematical induction, 438 

Mathematical programming, 369 

Matrix, 376 

Maximum function value, 174 

Minimum function value, 173 

Minor, 395 

Mixture problem, 37 

Modulus, 278 

Monomial 

definition of, 20 

degree of, 21 

Multiple roots, 92 

Multiplication 

of complex numbers, 267 

of functions, 167 

of radicals, 217 

of real numbers, 11 

Multiplicative identity 

for complex numbers, 260 

for matrices, 412 

for real numbers, 11 

Multiplicative inverse 

for complex numbers, 270 

for real numbers, 12 

Multiplicative-inverse axiom, 12 

N 

nth element of a sequence, 432 

nth power, 20, 206 

nth root, 22 

Natural logarithm, 236 

Natural logarithmic function, 236 

Natural numbers, set of, 2 

Negative integers, set of, 7 

Negative numbers, set of, 7 

Nonnegative integers, 7 

Nonnegative numbers, 17 

Nonpositive integers, 7 

Nonpositive numbers, 17 

Nonsingular matrix, 415 

Nonterminating decimal, 8 

Notation 

factorial, 476 

function value, 160 

scientific, 245 

Sola 

set-builder, 2 

sigma, 436 

summation, 436 

Null set, 3 

Number(s) 

absolute value, 55, 278 

complex, 24, 266 

counting, 2 

graph of a complex, 275 

graph of a real, 16 

imaginary, 25, 266 

integers, 7 

irrational, 8 

natural, 8 

negative, 7 

nonnegative, 17 

nonpositive, 7 



Index A-27 

ordered pairs of real, 63 

positive, 13 

rational, 7 

real, 8 

whole, 6 

Numerator, 12 

Numerical coefficient, 21 

Numerical factors, 21 

Number line, real, 16 

O 

Odd function, 162 

One-to-one correspondence, 4 

Opposite of a real number, 11 

Order 

axiom of, 13 

of a determinant, 394 

of a matrix, 376 

of a radical, 22 

Ordered field, 14 

Ordered pairs of real numbers, 63 

components of, 63 

graph of, 65 

as solutions of equations, 75 

Ordered triple, 339 

Ordinate, 64 

Origin, 15, 64 

P 

Pair of real numbers, 63 

Parabola, 114, 121 

Permutation, 474 

Point-slope form of equation of line, 

81 

Polynomial(s) 

definition of, 20 

degree of, 22 

equation, 29, 286 

function, 163, 286 

Positive integers, set of, 7 

Positive numbers, set of, 13 

Power(s) 

of binomials, 487 

definition of, 20 

Oe, 21 

Primary variables, 369 

Principal nth root of a real number, 

2) 

Principal square root of a negative 

number, 26 

Principle of mathematical induction, 

438 

Product(s) 

Cartesian, 63 

of complex numbers, 267 

of functions, 167 

involving radicals, 217 

of real numbers, 11 

Progression(s) 

arithmetic, 444 

geometric, 452 

Proof of a theorem, 13 

Proper subset, 3 

Proportional 

directly, 196 

inversely, 198 

Pure imaginary number, 25, 266 

Pythagorean theorem, 16, 68 

Q 

Quadrant, 65 

Quadratic equation(s) 

definition of, 90 

discriminant of, 102 

formula for solving, 101 

solution of 

by completing a square, 99 

by factoring, 91 

by formula, 101 

standard form of, 90 

systems of, 355 

in two variables, 114 

Quadratic formula, 101 

Quadratic function, 163, 171 



Quadratic inequality, 136 

Quotient(s) 

of complex numbers, 268 

definition of, 12 

of functions, 167 

of real numbers, 12 

R 

Radical(s), 22 

addition of, 219 

definition of, 22 

division of, 220 

equations involving, 107 

index of, 22 

multiplication of, 217 

order of, 22 

Radical sign, 22 

Radicand, 22 

Radius of circle, 126 

Range 

of a function, 153 

of a relation, 152 

Ratio of a geometric sequence, 452 

Rational function(s), 164 

graphs of, 177 

Rational numbers, set of, 7 

Rationalizing the denominator, 220 

Real number(s), 8 

axioms for, 11 

set of, 8 

Real number line, 16 

Real part of complex number, 25, 266 

Real plane, 64 

Reciprocal, 12 

Rectangular Cartesian coordinate sys- 

tem, 65 

Rectangular matrix, 377 

Recursive formula, 445 

Relation 

definition of, 152 

domain of, 152 

inverse of, 187 

range of, 152 

Remainder theorem, 287 

Repeating decimal, 8 

Replacement set, 49 

Rise of a line, 69 

Root(s) 

of an equation, 29 

nth, of real numbers, 22 

Row of a matrix, 376 

Run of a line, 69 

S 

Scalar, 386 

Scientific notation, 245 

Second-degree equations (see quad- 

ratic equations) 

Sequence(s) 

arithmetic, 444 

definition of, 432 

finite, 432 

function, 432 

general element of, 433 

geometric, 451 

infinite, 432 

nth element of, 432 

Series 

arithmetic, 448 

definition of, 435 

geometric, 455 

infinite, 460 

Set(s) 

of complex numbers, 25, 266 

of counting numbers, 2 

disjoint, 6 

elements of, 2 

empty, 3 

equality of, 4 

finite, 5 

infinite, 5 

of integers, 7 

intersection of, 6 

of irrational numbers, 8 



of natural numbers, 2 

of negative integers, 7 

of negative real numbers, 9 

null, 3 

of positive integers, 7 

of positive real numbers, 9 

of rational numbers, 7 

of real numbers, 8 

replacement, 2 

solution, 29, 75, 339 

union of, 5 

of whole numbers, 6 

Set-builder notation, 2 

Sigma notation, 436 

Singular matrix, 415 

Significant digits, 250 

Slope, 70 

Slope-intercept form of equation of 

line, 82 

Solution(s) 

of an equation, 29, 75 

extraneous, 108 

of inequality, 49 

ordered pairs as, 75 

ordered triples as, 339 

of systems of equations, 328, 338 

Solution set 

of an equation, 29, 75, 328, 338 

of an inequality, 49, 328, 338 

of a system of equations, 328, 338 

Square matrix, 377 

Square root of a real number, 23 

table of, A-1 

Standard form 

of a linear equation, 81 

of a quadratic equation, 90 

Subset, 3 

Substitution, solution of system of 

equations by, 330 

Subtraction 

of functions, 167 

of real numbers, 12 

Sum 

of an arithmetic series, 449 

Index A-29 

of complex numbers, 267 

of functions, 167 

of a geometric series, 456 

of an infinite geometric series, 463 

of radicals, 219 

of real numbers, 11 

Summation 

index of, 436 

notation, 436 

Symmetry 

of a graph, 117, 119 

with respect to a line, 117 

with respect to a point, 119 

Synthetic division, 290 

System(s) 

of inequalities, 363 

of linear equations 

in two variables, 328 

in three variables, 338 

of quadratic equations, 355 

solution set of, 328, 338 

T 

Tables, numerical 

common logarithms, A-2 

exponential functions, A-4 

natural logarithms, A-4 

powers and roots, A-1 

Terms(s) 

of an algebraic expression, 20 

general, of a series, 436 

of a series, 436 

Terminating decimals, 8 

Theorem 

conclusion of, 13 

definition of, 13 

hypothesis of, 13 

Transcendental functions, 165 

Transitive property of order, 46 

Transpose of a matrix, 412 

Triangular form, 342 

Trinomial, 21 

Two-point form of equation of line, 81 



A-30 Index 

U 

Undirected distance, 67 

Uniform motion problem, 40 

Union of sets, 5 

Unit points, 15 

Unknown, variable as, 28 

Upper bound, 307 

Upper limit of sum, 436 

Value, absolute, 55, 495 

Value of a function, 160 

Variable(s), 2 

definition of, 2 

dependent, 155 

independent, 155 

replacement set of, 2 

Variation 

constant of, 196 

direct, 196 

inverse, 198 

joint, 199 

Vertex of a cone, 134 

Vertex of a parabola, 122 

Vertical asymptote, 179 

Ww 

Well-defined set, 2 

Whole numbers, set of, 6 

Word problems, 37, 346 

Work problem, 42 

xX 

x axis, 64 

x coordinate, 64 

x intercept, 78 

Y 

y axis, 64 

y coordinate, 64 

y intercept, 78 

Z 

Zero(s) 

division by, 13 

of a function, 172 

Zero-matrix, 384 


















