diff --git a/.github/workflows/build-sphinx.yml b/.github/workflows/build-sphinx.yml
index 46d6667b99b..c1a10a4715e 100644
--- a/.github/workflows/build-sphinx.yml
+++ b/.github/workflows/build-sphinx.yml
@@ -104,7 +104,6 @@ jobs:
- name: Setup miniconda
uses: conda-incubator/setup-miniconda@a4260408e20b96e80095f42ff7f1a15b27dd94ca # v3.0.4
with:
- miniforge-variant: Mambaforge
miniforge-version: latest
use-mamba: true
channels: conda-forge
diff --git a/.github/workflows/conda-package.yml b/.github/workflows/conda-package.yml
index 4481223e052..6c34fa976d7 100644
--- a/.github/workflows/conda-package.yml
+++ b/.github/workflows/conda-package.yml
@@ -103,7 +103,6 @@ jobs:
- name: Setup miniconda
uses: conda-incubator/setup-miniconda@a4260408e20b96e80095f42ff7f1a15b27dd94ca # v3.0.4
with:
- miniforge-variant: Mambaforge
miniforge-version: latest
use-mamba: true
channels: conda-forge
@@ -197,7 +196,6 @@ jobs:
- name: Setup miniconda
uses: conda-incubator/setup-miniconda@a4260408e20b96e80095f42ff7f1a15b27dd94ca # v3.0.4
with:
- miniforge-variant: Mambaforge
miniforge-version: latest
use-mamba: true
channels: conda-forge
@@ -327,7 +325,6 @@ jobs:
- name: Setup miniconda
uses: conda-incubator/setup-miniconda@a4260408e20b96e80095f42ff7f1a15b27dd94ca # v3.0.4
with:
- miniforge-variant: Mambaforge
miniforge-version: latest
use-mamba: true
channels: conda-forge
@@ -469,7 +466,6 @@ jobs:
- name: Setup miniconda
uses: conda-incubator/setup-miniconda@a4260408e20b96e80095f42ff7f1a15b27dd94ca # v3.0.4
with:
- miniforge-variant: Mambaforge
miniforge-version: latest
use-mamba: true
channels: conda-forge
@@ -505,7 +501,6 @@ jobs:
steps:
- uses: conda-incubator/setup-miniconda@a4260408e20b96e80095f42ff7f1a15b27dd94ca # v3.0.4
with:
- miniforge-variant: Mambaforge
miniforge-version: latest
use-mamba: true
channels: conda-forge
diff --git a/.github/workflows/generate_coverage.yaml b/.github/workflows/generate_coverage.yaml
index 3db8f2e311a..36a7aecf28d 100644
--- a/.github/workflows/generate_coverage.yaml
+++ b/.github/workflows/generate_coverage.yaml
@@ -62,7 +62,6 @@ jobs:
- name: Setup miniconda
uses: conda-incubator/setup-miniconda@a4260408e20b96e80095f42ff7f1a15b27dd94ca # v3.0.4
with:
- miniforge-variant: Mambaforge
miniforge-version: latest
use-mamba: true
channels: conda-forge
diff --git a/CHANGELOG.md b/CHANGELOG.md
index 864fb2fb79a..f428b033c7d 100644
--- a/CHANGELOG.md
+++ b/CHANGELOG.md
@@ -1,9 +1,23 @@
# Changelog
All notable changes to this project will be documented in this file.
-The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/),
+The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.1.0/),
and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html).
+## [0.16.1] - 12/XX/2024
+
+This is a bug-fix release.
+
+### Changed
+
+* Changed to use `Miniforge` installer in GutHub actions [#2057](https://github.com/IntelPython/dpnp/pull/2057)
+* Updated `README.md` to reflect current installation requirements and available options [#2166](https://github.com/IntelPython/dpnp/pull/2166)
+
+### Fixed
+
+* Resolved a compilation error when building with DPC++ 2025.1 compiler [#2211](https://github.com/IntelPython/dpnp/pull/2211)
+
+
## [0.16.0] - 10/14/2024
This release reaches an important milestone by making offloading fully asynchronous. Calls to `dpnp` submit tasks for execution to DPC++ runtime and return without waiting for execution of these tasks to finish. The sequential semantics a user comes to expect from execution of Python script is preserved though.
diff --git a/README.md b/README.md
index aa31495d88f..6dd31be3e23 100644
--- a/README.md
+++ b/README.md
@@ -6,117 +6,76 @@
[![Build Sphinx](https://github.com/IntelPython/dpnp/workflows/Build%20Sphinx/badge.svg)](https://intelpython.github.io/dpnp)
[![OpenSSF Scorecard](https://api.securityscorecards.dev/projects/github.com/IntelPython/dpnp/badge)](https://securityscorecards.dev/viewer/?uri=github.com/IntelPython/dpnp)
+
+
# DPNP - Data Parallel Extension for NumPy*
+
+Data Parallel Extension for NumPy* or `dpnp` is a Python library that
+implements a subset of NumPy* that can be executed on any data parallel device.
+The subset is a drop-in replacement of core NumPy* functions and numerical data types.
+
[API coverage summary](https://intelpython.github.io/dpnp/reference/comparison.html#summary)
[Full documentation](https://intelpython.github.io/dpnp/)
-[DPNP C++ backend documentation](https://intelpython.github.io/dpnp/backend_doc/)
+`Dpnp` is the core part of a larger family of [data-parallel Python libraries and tools](https://www.intel.com/content/www/us/en/developer/tools/oneapi/distribution-for-python.html)
+to program on XPUs.
-## Build from source:
-Ensure you have the following prerequisite packages installed:
-- `cython`
-- `cmake >=3.21`
-- `dpcpp_linux-64` or `dpcpp_win-64` (depending on your OS)
-- `dpctl`
-- `mkl-devel-dpcpp`
-- `onedpl-devel`
-- `ninja`
-- `numpy >=1.19,<1.25a0`
-- `python`
-- `scikit-build`
-- `setuptools`
-- `sysroot_linux-64 >=2.28` (only on Linux OS)
-- `tbb-devel`
+# Installing
-After these steps, `dpnp` can be built in debug mode as follows:
+You can install the library using `conda`, `mamba` or [pip](https://pypi.org/project/dpnp/)
+package managers. It is also available as part of the [Intel(R) Distribution for Python](https://www.intel.com/content/www/us/en/developer/tools/oneapi/distribution-for-python.html)
+(IDP).
-```bash
-git clone https://github.com/IntelPython/dpnp
-cd dpnp
-python scripts/build_locally.py
-```
+## Intel(R) Distribution for Python
-## Install Wheel Package via pip
-Install DPNP
-```cmd
-python -m pip install --index-url https://software.repos.intel.com/python/pypi dpnp
-```
+You can find the most recent release of `dpnp` every quarter as part of the IDP
+releases.
-Set path to Performance Libraries in case of using venv or system Python:
-```cmd
-export LD_LIBRARY_PATH=/lib
-```
+To get the library from the latest release, follow the instructions from
+[Get Started With IntelĀ® Distribution for Python](https://www.intel.com/content/www/us/en/developer/articles/technical/get-started-with-intel-distribution-for-python.html).
-It is also required to set following environment variables:
-```cmd
-export OCL_ICD_FILENAMES_RESET=1
-export OCL_ICD_FILENAMES=libintelocl.so
-```
+## Conda
-## Run test
-```bash
-pytest
-# or
-pytest tests/test_matmul.py -s -v
-# or
-python -m unittest tests/test_mixins.py
-```
+To install `dpnp` from the Intel(R) conda channel, use the following command:
-## Run numpy external test
```bash
-. ./0.env.sh
-python -m tests.third_party.numpy_ext
-# or
-python -m tests.third_party.numpy_ext core/tests/test_umath.py
-# or
-python -m tests.third_party.numpy_ext core/tests/test_umath.py::TestHypot::test_simple
+conda install dpnp -c https://software.repos.intel.com/python/conda/ -c conda-forge
```
-### Building documentation:
+## Pip
+
+The `dpnp` can be installed using `pip` obtaining wheel packages either from
+PyPi or from Intel(R) channel. To install `dpnp` wheel package from Intel(R)
+channel, run the following command:
+
```bash
-Prerequisites:
-$ conda install sphinx sphinx_rtd_theme
-Building:
-1. Install dpnp into your python environment
-2. $ cd doc && make html
-3. The documentation will be in doc/_build/html
+python -m pip install --index-url https://software.repos.intel.com/python/pypi dpnp
```
-## Packaging:
+## Installing the bleeding edge
+
+To try out the latest features, install `dpnp` using our development channel on
+Anaconda cloud:
+
```bash
-. ./0.env.sh
-conda-build conda-recipe/
+conda install dpnp -c dppy/label/dev -c https://software.repos.intel.com/python/conda/ -c conda-forge
```
-## Run benchmark:
-```bash
-cd benchmarks/
-asv run --python=python --bench
-# example:
-asv run --python=python --bench bench_elementwise
+# Building
-# or
+Refer to our [Documentation](https://intelpython.github.io/dpnp/quick_start_guide.html)
+for more information on setting up a development environment and building `dpnp`
+from the source.
-asv run --python=python --bench .
-# example:
-asv run --python=python --bench Elementwise.time_square
-# add --quick option to run every case once but looks like first execution has additional overheads and takes a lot of time (need to be investigated)
-```
+# Running Tests
+Tests are located in folder [dpnp/tests](dpnp/tests).
-## Tests matrix:
-| # |Name |OS |distributive|interpreter|python used from|SYCL queue manager|build commands set |forced environment |
-|---|------------------------------------|-----|------------|-----------|:--------------:|:----------------:|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
-|1 |Ubuntu 20.04 Python37 |Linux|Ubuntu 20.04|Python 3.7 | IntelOneAPI | local |export DPNP_DEBUG=1 python setup.py clean python setup.py build_clib python setup.py build_ext --inplace pytest |cmake-3.19.2, valgrind, pytest-valgrind, conda-build, pytest, hypothesis |
-|2 |Ubuntu 20.04 Python38 |Linux|Ubuntu 20.04|Python 3.8 | IntelOneAPI | local |export DPNP_DEBUG=1 python setup.py clean python setup.py build_clib python setup.py build_ext --inplace pytest |cmake-3.19.2, valgrind, pytest-valgrind, conda-build, pytest, hypothesis |
-|3 |Ubuntu 20.04 Python39 |Linux|Ubuntu 20.04|Python 3.9 | IntelOneAPI | local |export DPNP_DEBUG=1 python setup.py clean python setup.py build_clib python setup.py build_ext --inplace pytest |cmake-3.19.2, valgrind, pytest-valgrind, conda-build, pytest, hypothesis |
-|4 |Ubuntu 20.04 External Tests Python37|Linux|Ubuntu 20.04|Python 3.7 | IntelOneAPI | local |export DPNP_DEBUG=1 python setup.py clean python setup.py build_clib python setup.py build_ext --inplace python -m tests_external.numpy.runtests|cmake-3.19.2, valgrind, pytest-valgrind, conda-build, pytest, hypothesis |
-|5 |Ubuntu 20.04 External Tests Python38|Linux|Ubuntu 20.04|Python 3.8 | IntelOneAPI | local |export DPNP_DEBUG=1 python setup.py clean python setup.py build_clib python setup.py build_ext --inplace python -m tests_external.numpy.runtests|cmake-3.19.2, valgrind, pytest-valgrind, conda-build, pytest, hypothesis |
-|6 |Ubuntu 20.04 External Tests Python39|Linux|Ubuntu 20.04|Python 3.9 | IntelOneAPI | local |export DPNP_DEBUG=1 python setup.py clean python setup.py build_clib python setup.py build_ext --inplace python -m tests_external.numpy.runtests|cmake-3.19.2, valgrind, pytest-valgrind, conda-build, pytest, hypothesis |
-|7 |Code style |Linux|Ubuntu 20.04|Python 3.8 | IntelOneAPI | local |python ./setup.py style |cmake-3.19.2, valgrind, pytest-valgrind, conda-build, pytest, hypothesis, conda-verify, pycodestyle, autopep8, black |
-|8 |Valgrind |Linux|Ubuntu 20.04| | IntelOneAPI | local |export DPNP_DEBUG=1 python setup.py clean python setup.py build_clib python setup.py build_ext --inplace |cmake-3.19.2, valgrind, pytest-valgrind, conda-build, pytest, hypothesis |
-|9 |Code coverage |Linux|Ubuntu 20.04|Python 3.8 | IntelOneAPI | local |export DPNP_DEBUG=1 python setup.py clean python setup.py build_clib python setup.py build_ext --inplace |cmake-3.19.2, valgrind, pytest-valgrind, conda-build, pytest, hypothesis, conda-verify, pycodestyle, autopep8, pytest-cov|
+To run the tests, use:
+```bash
+python -m pytest --pyargs dpnp
+```
diff --git a/dpnp/backend/kernels/dpnp_krnl_common.cpp b/dpnp/backend/kernels/dpnp_krnl_common.cpp
index b1d864327e6..453c9a88747 100644
--- a/dpnp/backend/kernels/dpnp_krnl_common.cpp
+++ b/dpnp/backend/kernels/dpnp_krnl_common.cpp
@@ -33,11 +33,23 @@
#include "queue_sycl.hpp"
#include
+/**
+ * Version of SYCL DPC++ 2025.1 compiler where support of
+ * sycl::ext::oneapi::experimental::properties was added.
+ */
+#ifndef __SYCL_COMPILER_REDUCTION_PROPERTIES_SUPPORT
+#define __SYCL_COMPILER_REDUCTION_PROPERTIES_SUPPORT 20241129
+#endif
+
namespace mkl_blas = oneapi::mkl::blas;
namespace mkl_blas_cm = oneapi::mkl::blas::column_major;
namespace mkl_blas_rm = oneapi::mkl::blas::row_major;
namespace mkl_lapack = oneapi::mkl::lapack;
+#if __SYCL_COMPILER_VERSION >= __SYCL_COMPILER_REDUCTION_PROPERTIES_SUPPORT
+namespace syclex = sycl::ext::oneapi::experimental;
+#endif
+
template
@@ -76,8 +88,13 @@ sycl::event dot(sycl::queue &queue,
cgh.parallel_for(
sycl::range<1>{size},
sycl::reduction(
- result_out, std::plus<_DataType_output>(),
- sycl::property::reduction::initialize_to_identity{}),
+ result_out, sycl::plus<_DataType_output>(),
+#if __SYCL_COMPILER_VERSION >= __SYCL_COMPILER_REDUCTION_PROPERTIES_SUPPORT
+ syclex::properties(syclex::initialize_to_identity)
+#else
+ sycl::property::reduction::initialize_to_identity {}
+#endif
+ ),
[=](sycl::id<1> idx, auto &sum) {
sum += static_cast<_DataType_output>(
input1_in[idx * input1_strides]) *
diff --git a/tests/third_party/cupy/creation_tests/test_ranges.py b/tests/third_party/cupy/creation_tests/test_ranges.py
index 92c81061b7a..bd3a21539ae 100644
--- a/tests/third_party/cupy/creation_tests/test_ranges.py
+++ b/tests/third_party/cupy/creation_tests/test_ranges.py
@@ -172,7 +172,7 @@ def test_linspace_float_overflow(self, xp):
dtype = cupy.default_float_type()
return xp.linspace(0.0, xp.finfo(dtype).max / 5, 10, dtype=dtype)
- @testing.numpy_cupy_allclose()
+ @testing.numpy_cupy_allclose(rtol={numpy.float32: 1e-6, "default": 1e-7})
def test_linspace_float_underflow(self, xp):
# find minimum subnormal number
dtype = cupy.default_float_type()