diff --git a/dpnp/dpnp_algo/CMakeLists.txt b/dpnp/dpnp_algo/CMakeLists.txt index 8aa419220de..57c85151551 100644 --- a/dpnp/dpnp_algo/CMakeLists.txt +++ b/dpnp/dpnp_algo/CMakeLists.txt @@ -8,7 +8,6 @@ set(dpnp_algo_pyx_deps ${CMAKE_CURRENT_SOURCE_DIR}/dpnp_algo_sorting.pxi ${CMAKE_CURRENT_SOURCE_DIR}/dpnp_algo_arraycreation.pxi ${CMAKE_CURRENT_SOURCE_DIR}/dpnp_algo_mathematical.pxi - ${CMAKE_CURRENT_SOURCE_DIR}/dpnp_algo_searching.pxi ${CMAKE_CURRENT_SOURCE_DIR}/dpnp_algo_indexing.pxi ${CMAKE_CURRENT_SOURCE_DIR}/dpnp_algo_logic.pxi ${CMAKE_CURRENT_SOURCE_DIR}/dpnp_algo_special.pxi diff --git a/dpnp/dpnp_algo/dpnp_algo.pyx b/dpnp/dpnp_algo/dpnp_algo.pyx index 2d3be5f88a0..4e9518899c5 100644 --- a/dpnp/dpnp_algo/dpnp_algo.pyx +++ b/dpnp/dpnp_algo/dpnp_algo.pyx @@ -66,7 +66,6 @@ include "dpnp_algo_linearalgebra.pxi" include "dpnp_algo_logic.pxi" include "dpnp_algo_manipulation.pxi" include "dpnp_algo_mathematical.pxi" -include "dpnp_algo_searching.pxi" include "dpnp_algo_sorting.pxi" include "dpnp_algo_special.pxi" include "dpnp_algo_statistics.pxi" diff --git a/dpnp/dpnp_array.py b/dpnp/dpnp_array.py index 6026e9e2f85..8efa24dcda4 100644 --- a/dpnp/dpnp_array.py +++ b/dpnp/dpnp_array.py @@ -492,17 +492,6 @@ def argmax(self, axis=None, out=None): Refer to :obj:`dpnp.argmax` for full documentation. - Examples - -------- - >>> import dpnp as np - >>> a = np.arange(6).reshape(2,3) - >>> a.argmax() - array(5) - >>> a.argmax(0) - array([1, 1, 1]) - >>> a.argmax(1) - array([2, 2]) - """ return dpnp.argmax(self, axis, out) diff --git a/dpnp/dpnp_iface_searching.py b/dpnp/dpnp_iface_searching.py index 28f1565a02e..53025c35806 100644 --- a/dpnp/dpnp_iface_searching.py +++ b/dpnp/dpnp_iface_searching.py @@ -49,7 +49,7 @@ __all__ = ["argmax", "argmin", "searchsorted", "where"] -def argmax(a, axis=None, out=None, keepdims=False): +def argmax(a, axis=None, out=None, *, keepdims=False): """ Returns the indices of the maximum values along an axis. @@ -62,11 +62,13 @@ def argmax(a, axis=None, out=None, keepdims=False): Limitations ----------- - Input array is only supported as either :class:`dpnp.ndarray` or :class:`dpctl.tensor.usm_ndarray`. + Input and output arrays are only supported as either :class:`dpnp.ndarray` + or :class:`dpctl.tensor.usm_ndarray`. Input array data types are limited by supported DPNP :ref:`Data types`. See Also -------- + :obj:`dpnp.ndarray.argmax` : Equivalent function. :obj:`dpnp.argmin` : Returns the indices of the minimum values along an axis. :obj:`dpnp.amax` : The maximum value along a given axis. :obj:`dpnp.unravel_index` : Convert a flat index into an index tuple. @@ -147,7 +149,7 @@ def argmax(a, axis=None, out=None, keepdims=False): return out -def argmin(a, axis=None, out=None, keepdims=False): +def argmin(a, axis=None, out=None, *, keepdims=False): """ Returns the indices of the minimum values along an axis. @@ -160,11 +162,13 @@ def argmin(a, axis=None, out=None, keepdims=False): Limitations ----------- - Input array is only supported as either :class:`dpnp.ndarray` or :class:`dpctl.tensor.usm_ndarray`. + Input and output arrays are only supported as either :class:`dpnp.ndarray` + or :class:`dpctl.tensor.usm_ndarray`. Input array data types are limited by supported DPNP :ref:`Data types`. See Also -------- + :obj:`dpnp.ndarray.argmin` : Equivalent function. :obj:`dpnp.argmax` : Returns the indices of the maximum values along an axis. :obj:`dpnp.amin` : The minimum value along a given axis. :obj:`dpnp.unravel_index` : Convert a flat index into an index tuple. diff --git a/tests/third_party/cupy/core_tests/test_ndarray_reduction.py b/tests/third_party/cupy/core_tests/test_ndarray_reduction.py index ecc5655e6b4..70d654d6a69 100644 --- a/tests/third_party/cupy/core_tests/test_ndarray_reduction.py +++ b/tests/third_party/cupy/core_tests/test_ndarray_reduction.py @@ -229,97 +229,101 @@ def test_ptp_nan_imag(self, xp, dtype): @testing.for_all_dtypes() @testing.numpy_cupy_allclose(contiguous_check=False) def test_argmax_all(self, xp, dtype): - a = testing.shaped_random((2, 3), xp, dtype) + a = testing.shaped_random((2, 3), xp, dtype, order=self.order) return a.argmax() @testing.for_all_dtypes() @testing.numpy_cupy_allclose(contiguous_check=False) def test_argmax_axis_large(self, xp, dtype): - a = testing.shaped_random((3, 1000), xp, dtype) + a = testing.shaped_random((3, 1000), xp, dtype, order=self.order) return a.argmax(axis=0) @testing.for_all_dtypes() @testing.numpy_cupy_allclose(contiguous_check=False) def test_argmax_axis0(self, xp, dtype): - a = testing.shaped_random((2, 3, 4), xp, dtype) + a = testing.shaped_random((2, 3, 4), xp, dtype, order=self.order) return a.argmax(axis=0) @testing.for_all_dtypes() @testing.numpy_cupy_allclose(contiguous_check=False) def test_argmax_axis1(self, xp, dtype): - a = testing.shaped_random((2, 3, 4), xp, dtype) + a = testing.shaped_random((2, 3, 4), xp, dtype, order=self.order) return a.argmax(axis=1) @testing.for_all_dtypes() @testing.numpy_cupy_allclose(contiguous_check=False) def test_argmax_axis2(self, xp, dtype): - a = testing.shaped_random((2, 3, 4), xp, dtype) + a = testing.shaped_random((2, 3, 4), xp, dtype, order=self.order) return a.argmax(axis=2) @testing.for_float_dtypes() @testing.numpy_cupy_allclose(contiguous_check=False) def test_argmax_nan(self, xp, dtype): - a = xp.array([float("nan"), 1, -1], dtype) + a = xp.array([float("nan"), 1, -1], dtype, order=self.order) return a.argmax() @testing.for_complex_dtypes() @testing.numpy_cupy_allclose(contiguous_check=False) def test_argmax_nan_real(self, xp, dtype): - a = xp.array([float("nan"), 1, -1], dtype) + a = xp.array([float("nan"), 1, -1], dtype, order=self.order) return a.argmax() @testing.for_complex_dtypes() @testing.numpy_cupy_allclose(contiguous_check=False) def test_argmax_nan_imag(self, xp, dtype): - a = xp.array([float("nan") * 1.0j, 1.0j, -1.0j], dtype) + a = xp.array( + [float("nan") * 1.0j, 1.0j, -1.0j], dtype, order=self.order + ) return a.argmax() @testing.for_all_dtypes() @testing.numpy_cupy_allclose(contiguous_check=False) def test_argmin_all(self, xp, dtype): - a = testing.shaped_random((2, 3), xp, dtype) + a = testing.shaped_random((2, 3), xp, dtype, order=self.order) return a.argmin() @testing.for_all_dtypes() @testing.numpy_cupy_allclose(contiguous_check=False) def test_argmin_axis_large(self, xp, dtype): - a = testing.shaped_random((3, 1000), xp, dtype) + a = testing.shaped_random((3, 1000), xp, dtype, order=self.order) return a.argmin(axis=0) @testing.for_all_dtypes() @testing.numpy_cupy_allclose(contiguous_check=False) def test_argmin_axis0(self, xp, dtype): - a = testing.shaped_random((2, 3, 4), xp, dtype) + a = testing.shaped_random((2, 3, 4), xp, dtype, order=self.order) return a.argmin(axis=0) @testing.for_all_dtypes() @testing.numpy_cupy_allclose(contiguous_check=False) def test_argmin_axis1(self, xp, dtype): - a = testing.shaped_random((2, 3, 4), xp, dtype) + a = testing.shaped_random((2, 3, 4), xp, dtype, order=self.order) return a.argmin(axis=1) @testing.for_all_dtypes() @testing.numpy_cupy_allclose(contiguous_check=False) def test_argmin_axis2(self, xp, dtype): - a = testing.shaped_random((2, 3, 4), xp, dtype) + a = testing.shaped_random((2, 3, 4), xp, dtype, order=self.order) return a.argmin(axis=2) @testing.for_float_dtypes() @testing.numpy_cupy_allclose(contiguous_check=False) def test_argmin_nan(self, xp, dtype): - a = xp.array([float("nan"), 1, -1], dtype) + a = xp.array([float("nan"), 1, -1], dtype, order=self.order) return a.argmin() @testing.for_complex_dtypes() @testing.numpy_cupy_allclose(contiguous_check=False) def test_argmin_nan_real(self, xp, dtype): - a = xp.array([float("nan"), 1, -1], dtype) + a = xp.array([float("nan"), 1, -1], dtype, order=self.order) return a.argmin() @testing.for_complex_dtypes() @testing.numpy_cupy_allclose(contiguous_check=False) def test_argmin_nan_imag(self, xp, dtype): - a = xp.array([float("nan") * 1.0j, 1.0j, -1.0j], dtype) + a = xp.array( + [float("nan") * 1.0j, 1.0j, -1.0j], dtype, order=self.order + ) return a.argmin() diff --git a/tests/third_party/cupy/sorting_tests/test_search.py b/tests/third_party/cupy/sorting_tests/test_search.py index 32eee58b792..edfe4ea02ed 100644 --- a/tests/third_party/cupy/sorting_tests/test_search.py +++ b/tests/third_party/cupy/sorting_tests/test_search.py @@ -91,8 +91,8 @@ def test_argmin_all(self, xp, dtype): a = testing.shaped_random((2, 3), xp, dtype) return a.argmin() - @testing.for_all_dtypes(no_complex=True) - @testing.numpy_cupy_allclose(accept_error=ValueError) + @testing.for_float_dtypes() + @testing.numpy_cupy_allclose() def test_argmin_nan(self, xp, dtype): a = xp.array([float("nan"), -1, 1], dtype) return a.argmin()