diff --git a/.github/workflows/build-sphinx.yml b/.github/workflows/build-sphinx.yml index 178e1835fe2..95db7b640f1 100644 --- a/.github/workflows/build-sphinx.yml +++ b/.github/workflows/build-sphinx.yml @@ -67,7 +67,9 @@ jobs: channels: intel, conda-forge - name: Install sphinx dependencies - run: conda install sphinx sphinx_rtd_theme + run: | + conda install sphinx sphinx_rtd_theme + pip install sphinxcontrib-googleanalytics - name: Install dpnp dependencies run: | diff --git a/.github/workflows/conda-package.yml b/.github/workflows/conda-package.yml index 64a14a85be5..52ac769b7fe 100644 --- a/.github/workflows/conda-package.yml +++ b/.github/workflows/conda-package.yml @@ -12,6 +12,7 @@ env: CHANNELS: '-c dppy/label/dev -c intel -c main --override-channels' TEST_SCOPE: >- test_arraycreation.py + test_dot.py test_dparray.py test_fft.py test_linalg.py diff --git a/.gitignore b/.gitignore index fda4c163531..7ed68aab856 100644 --- a/.gitignore +++ b/.gitignore @@ -1,6 +1,7 @@ # CMake build and local install directory build build_cython +dpnp.egg-info # Byte-compiled / optimized / DLL files __pycache__/ @@ -14,6 +15,9 @@ coverage.xml # Backup files kept after git merge/rebase *.orig +# Build examples +example3 + *dpnp_backend* dpnp/**/*.cpython*.so dpnp/**/*.pyd diff --git a/doc/conf.py b/doc/conf.py index 999b2504bd6..532715c4e44 100644 --- a/doc/conf.py +++ b/doc/conf.py @@ -27,7 +27,7 @@ # -- Project information ----------------------------------------------------- project = 'dpnp' -copyright = '2020-2022, Intel' +copyright = '2020-2023, Intel Corporation' author = 'Intel' # The short X.Y version @@ -54,8 +54,12 @@ 'sphinx.ext.napoleon', 'sphinx.ext.autodoc', 'sphinx.ext.autosummary', + 'sphinxcontrib.googleanalytics', ] +googleanalytics_id = 'G-554F8VNE28' +googleanalytics_enabled = True + # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] diff --git a/dpnp/backend/include/dpnp_gen_2arg_3type_tbl.hpp b/dpnp/backend/include/dpnp_gen_2arg_3type_tbl.hpp index e345c6eefea..0964f18df81 100644 --- a/dpnp/backend/include/dpnp_gen_2arg_3type_tbl.hpp +++ b/dpnp/backend/include/dpnp_gen_2arg_3type_tbl.hpp @@ -176,11 +176,11 @@ MACRO_2ARG_3TYPES_OP(dpnp_multiply_c, MACRO_UNPACK_TYPES(float, double, std::complex, std::complex)) MACRO_2ARG_3TYPES_OP(dpnp_power_c, - sycl::pow((double)input1_elem, (double)input2_elem), - nullptr, - std::false_type, + static_cast<_DataType_output>(std::pow(input1_elem, input2_elem)), + sycl::pow(x1, x2), + MACRO_UNPACK_TYPES(float, double), oneapi::mkl::vm::pow, - MACRO_UNPACK_TYPES(float, double)) + MACRO_UNPACK_TYPES(float, double, std::complex, std::complex)) MACRO_2ARG_3TYPES_OP(dpnp_subtract_c, input1_elem - input2_elem, diff --git a/dpnp/backend/include/dpnp_iface.hpp b/dpnp/backend/include/dpnp_iface.hpp index 7a80b40a3d2..348dd8e7bff 100644 --- a/dpnp/backend/include/dpnp_iface.hpp +++ b/dpnp/backend/include/dpnp_iface.hpp @@ -1683,6 +1683,57 @@ INP_DLLEXPORT void dpnp_var_c(void* array, size_t naxis, size_t ddof); +/** + * @ingroup BACKEND_API + * @brief Implementation of where function + * + * @param [in] q_ref Reference to SYCL queue. + * @param [out] result_out Output array. + * @param [in] result_size Size of output array. + * @param [in] result_ndim Number of output array dimensions. + * @param [in] result_shape Shape of output array. + * @param [in] result_strides Strides of output array. + * @param [in] condition_in Condition array. + * @param [in] condition_size Size of condition array. + * @param [in] condition_ndim Number of condition array dimensions. + * @param [in] condition_shape Shape of condition array. + * @param [in] condition_strides Strides of condition array. + * @param [in] input1_in First input array. + * @param [in] input1_size Size of first input array. + * @param [in] input1_ndim Number of first input array dimensions. + * @param [in] input1_shape Shape of first input array. + * @param [in] input1_strides Strides of first input array. + * @param [in] input2_in Second input array. + * @param [in] input2_size Size of second input array. + * @param [in] input2_ndim Number of second input array dimensions. + * @param [in] input2_shape Shape of second input array. + * @param [in] input2_strides Strides of second input array. + * @param [in] dep_event_vec_ref Reference to vector of SYCL events. + */ +template +INP_DLLEXPORT DPCTLSyclEventRef dpnp_where_c(DPCTLSyclQueueRef q_ref, + void* result_out, + const size_t result_size, + const size_t result_ndim, + const shape_elem_type* result_shape, + const shape_elem_type* result_strides, + const void* condition_in, + const size_t condition_size, + const size_t condition_ndim, + const shape_elem_type* condition_shape, + const shape_elem_type* condition_strides, + const void* input1_in, + const size_t input1_size, + const size_t input1_ndim, + const shape_elem_type* input1_shape, + const shape_elem_type* input1_strides, + const void* input2_in, + const size_t input2_size, + const size_t input2_ndim, + const shape_elem_type* input2_shape, + const shape_elem_type* input2_strides, + const DPCTLEventVectorRef dep_event_vec_ref); + /** * @ingroup BACKEND_API * @brief Implementation of invert function diff --git a/dpnp/backend/include/dpnp_iface_fptr.hpp b/dpnp/backend/include/dpnp_iface_fptr.hpp index fb154fcabfa..197623efe45 100644 --- a/dpnp/backend/include/dpnp_iface_fptr.hpp +++ b/dpnp/backend/include/dpnp_iface_fptr.hpp @@ -234,7 +234,6 @@ enum class DPNPFuncName : size_t DPNP_FN_NEGATIVE, /**< Used in numpy.negative() impl */ DPNP_FN_NEGATIVE_EXT, /**< Used in numpy.negative() impl, requires extra parameters */ DPNP_FN_NONZERO, /**< Used in numpy.nonzero() impl */ - DPNP_FN_NONZERO_EXT, /**< Used in numpy.nonzero() impl, requires extra parameters */ DPNP_FN_NOT_EQUAL_EXT, /**< Used in numpy.not_equal() impl, requires extra parameters */ DPNP_FN_ONES, /**< Used in numpy.ones() impl */ DPNP_FN_ONES_LIKE, /**< Used in numpy.ones_like() impl */ @@ -377,6 +376,7 @@ enum class DPNPFuncName : size_t DPNP_FN_VANDER_EXT, /**< Used in numpy.vander() impl, requires extra parameters */ DPNP_FN_VAR, /**< Used in numpy.var() impl */ DPNP_FN_VAR_EXT, /**< Used in numpy.var() impl, requires extra parameters */ + DPNP_FN_WHERE_EXT, /**< Used in numpy.where() impl, requires extra parameters */ DPNP_FN_ZEROS, /**< Used in numpy.zeros() impl */ DPNP_FN_ZEROS_LIKE, /**< Used in numpy.zeros_like() impl */ DPNP_FN_LAST, /**< The latest element of the enumeration */ diff --git a/dpnp/backend/kernels/dpnp_krnl_bitwise.cpp b/dpnp/backend/kernels/dpnp_krnl_bitwise.cpp index b64670be4e0..c082bd636bf 100644 --- a/dpnp/backend/kernels/dpnp_krnl_bitwise.cpp +++ b/dpnp/backend/kernels/dpnp_krnl_bitwise.cpp @@ -1,5 +1,5 @@ //***************************************************************************** -// Copyright (c) 2016-2020, Intel Corporation +// Copyright (c) 2016-2023, Intel Corporation // All rights reserved. // // Redistribution and use in source and binary forms, with or without @@ -148,53 +148,62 @@ static void func_map_init_bitwise_1arg_1type(func_map_t& fmap) \ sycl::queue q = *(reinterpret_cast(q_ref)); \ \ - DPNPC_ptr_adapter<_DataType> input1_ptr(q_ref, input1_in, input1_size); \ - DPNPC_ptr_adapter input1_shape_ptr(q_ref, input1_shape, input1_ndim, true); \ - DPNPC_ptr_adapter input1_strides_ptr(q_ref, input1_strides, input1_ndim, true); \ + _DataType* input1_data = static_cast<_DataType*>(const_cast(input1_in)); \ + _DataType* input2_data = static_cast<_DataType*>(const_cast(input2_in)); \ + _DataType* result = static_cast<_DataType*>(result_out); \ \ - DPNPC_ptr_adapter<_DataType> input2_ptr(q_ref, input2_in, input2_size); \ - DPNPC_ptr_adapter input2_shape_ptr(q_ref, input2_shape, input2_ndim, true); \ - DPNPC_ptr_adapter input2_strides_ptr(q_ref, input2_strides, input2_ndim, true); \ + shape_elem_type* input1_shape_offsets = new shape_elem_type[input1_ndim]; \ \ - DPNPC_ptr_adapter<_DataType> result_ptr(q_ref, result_out, result_size, false, true); \ - DPNPC_ptr_adapter result_strides_ptr(q_ref, result_strides, result_ndim); \ + get_shape_offsets_inkernel(input1_shape, input1_ndim, input1_shape_offsets); \ + bool use_strides = !array_equal(input1_strides, input1_ndim, input1_shape_offsets, input1_ndim); \ + delete[] input1_shape_offsets; \ \ - _DataType* input1_data = input1_ptr.get_ptr(); \ - shape_elem_type* input1_shape_data = input1_shape_ptr.get_ptr(); \ - shape_elem_type* input1_strides_data = input1_strides_ptr.get_ptr(); \ + shape_elem_type* input2_shape_offsets = new shape_elem_type[input2_ndim]; \ \ - _DataType* input2_data = input2_ptr.get_ptr(); \ - shape_elem_type* input2_shape_data = input2_shape_ptr.get_ptr(); \ - shape_elem_type* input2_strides_data = input2_strides_ptr.get_ptr(); \ - \ - _DataType* result = result_ptr.get_ptr(); \ - shape_elem_type* result_strides_data = result_strides_ptr.get_ptr(); \ - \ - const size_t input1_shape_size_in_bytes = input1_ndim * sizeof(shape_elem_type); \ - shape_elem_type* input1_shape_offsets = \ - reinterpret_cast(sycl::malloc_shared(input1_shape_size_in_bytes, q)); \ - get_shape_offsets_inkernel(input1_shape_data, input1_ndim, input1_shape_offsets); \ - bool use_strides = !array_equal(input1_strides_data, input1_ndim, input1_shape_offsets, input1_ndim); \ - sycl::free(input1_shape_offsets, q); \ - \ - const size_t input2_shape_size_in_bytes = input2_ndim * sizeof(shape_elem_type); \ - shape_elem_type* input2_shape_offsets = \ - reinterpret_cast(sycl::malloc_shared(input2_shape_size_in_bytes, q)); \ - get_shape_offsets_inkernel(input2_shape_data, input2_ndim, input2_shape_offsets); \ - use_strides = \ - use_strides || !array_equal(input2_strides_data, input2_ndim, input2_shape_offsets, input2_ndim); \ - sycl::free(input2_shape_offsets, q); \ + get_shape_offsets_inkernel(input2_shape, input2_ndim, input2_shape_offsets); \ + use_strides = use_strides || !array_equal(input2_strides, input2_ndim, input2_shape_offsets, input2_ndim); \ + delete[] input2_shape_offsets; \ \ sycl::event event; \ sycl::range<1> gws(result_size); \ \ if (use_strides) \ { \ + if ((result_ndim != input1_ndim) || (result_ndim != input2_ndim)) \ + { \ + throw std::runtime_error("Result ndim=" + std::to_string(result_ndim) + \ + " mismatches with either input1 ndim=" + std::to_string(input1_ndim) + \ + " or input2 ndim=" + std::to_string(input2_ndim)); \ + } \ + \ + /* memory transfer optimization, use USM-host for temporary speeds up tranfer to device */ \ + using usm_host_allocatorT = sycl::usm_allocator; \ + \ + size_t strides_size = 3 * result_ndim; \ + shape_elem_type* dev_strides_data = sycl::malloc_device(strides_size, q); \ + \ + /* create host temporary for packed strides managed by shared pointer */ \ + auto strides_host_packed = \ + std::vector(strides_size, usm_host_allocatorT(q)); \ + \ + /* packed vector is concatenation of result_strides, input1_strides and input2_strides */ \ + std::copy(result_strides, result_strides + result_ndim, strides_host_packed.begin()); \ + std::copy(input1_strides, input1_strides + result_ndim, strides_host_packed.begin() + result_ndim); \ + std::copy(input2_strides, input2_strides + result_ndim, strides_host_packed.begin() + 2 * result_ndim); \ + \ + auto copy_strides_ev = \ + q.copy(strides_host_packed.data(), dev_strides_data, strides_host_packed.size()); \ + \ auto kernel_parallel_for_func = [=](sycl::id<1> global_id) { \ - const size_t output_id = global_id[0]; /*for (size_t i = 0; i < result_size; ++i)*/ \ + const size_t output_id = global_id[0]; /* for (size_t i = 0; i < result_size; ++i) */ \ { \ + const shape_elem_type* result_strides_data = &dev_strides_data[0]; \ + const shape_elem_type* input1_strides_data = &dev_strides_data[1]; \ + const shape_elem_type* input2_strides_data = &dev_strides_data[2]; \ + \ size_t input1_id = 0; \ size_t input2_id = 0; \ + \ for (size_t i = 0; i < result_ndim; ++i) \ { \ const size_t output_xyz_id = \ @@ -209,14 +218,19 @@ static void func_map_init_bitwise_1arg_1type(func_map_t& fmap) } \ }; \ auto kernel_func = [&](sycl::handler& cgh) { \ + cgh.depends_on(copy_strides_ev); \ cgh.parallel_for>(gws, kernel_parallel_for_func); \ }; \ - event = q.submit(kernel_func); \ + \ + q.submit(kernel_func).wait(); \ + \ + sycl::free(dev_strides_data, q); \ + return event_ref; \ } \ else \ { \ auto kernel_parallel_for_func = [=](sycl::id<1> global_id) { \ - size_t i = global_id[0]; /*for (size_t i = 0; i < result_size; ++i)*/ \ + size_t i = global_id[0]; /* for (size_t i = 0; i < result_size; ++i) */ \ const _DataType input1_elem = (input1_size == 1) ? input1_data[0] : input1_data[i]; \ const _DataType input2_elem = (input2_size == 1) ? input2_data[0] : input2_data[i]; \ result[i] = __operation__; \ @@ -226,16 +240,8 @@ static void func_map_init_bitwise_1arg_1type(func_map_t& fmap) }; \ event = q.submit(kernel_func); \ } \ - input1_ptr.depends_on(event); \ - input1_shape_ptr.depends_on(event); \ - input1_strides_ptr.depends_on(event); \ - input2_ptr.depends_on(event); \ - input2_shape_ptr.depends_on(event); \ - input2_strides_ptr.depends_on(event); \ - result_ptr.depends_on(event); \ - result_strides_ptr.depends_on(event); \ - event_ref = reinterpret_cast(&event); \ \ + event_ref = reinterpret_cast(&event); \ return DPCTLEvent_Copy(event_ref); \ } \ \ @@ -278,6 +284,7 @@ static void func_map_init_bitwise_1arg_1type(func_map_t& fmap) where, \ dep_event_vec_ref); \ DPCTLEvent_WaitAndThrow(event_ref); \ + DPCTLEvent_Delete(event_ref); \ } \ \ template \ diff --git a/dpnp/backend/kernels/dpnp_krnl_elemwise.cpp b/dpnp/backend/kernels/dpnp_krnl_elemwise.cpp index 5133473d393..741a945fb09 100644 --- a/dpnp/backend/kernels/dpnp_krnl_elemwise.cpp +++ b/dpnp/backend/kernels/dpnp_krnl_elemwise.cpp @@ -70,35 +70,49 @@ \ sycl::queue q = *(reinterpret_cast(q_ref)); \ \ - DPNPC_ptr_adapter<_DataType_input> input1_ptr(q_ref, input1_in, input1_size); \ - DPNPC_ptr_adapter input1_shape_ptr(q_ref, input1_shape, input1_ndim, true); \ - DPNPC_ptr_adapter input1_strides_ptr(q_ref, input1_strides, input1_ndim, true); \ - \ - DPNPC_ptr_adapter<_DataType_output> result_ptr(q_ref, result_out, result_size, false, true); \ - DPNPC_ptr_adapter result_strides_ptr(q_ref, result_strides, result_ndim); \ - \ - _DataType_input* input1_data = input1_ptr.get_ptr(); \ - shape_elem_type* input1_shape_data = input1_shape_ptr.get_ptr(); \ - shape_elem_type* input1_strides_data = input1_strides_ptr.get_ptr(); \ + _DataType_input* input1_data = static_cast<_DataType_input*>(const_cast(input1_in)); \ + _DataType_output* result = static_cast<_DataType_output*>(result_out); \ \ - _DataType_output* result = result_ptr.get_ptr(); \ - shape_elem_type* result_strides_data = result_strides_ptr.get_ptr(); \ + shape_elem_type* input1_shape_offsets = new shape_elem_type[input1_ndim]; \ \ - const size_t input1_shape_size_in_bytes = input1_ndim * sizeof(shape_elem_type); \ - shape_elem_type* input1_shape_offsets = \ - reinterpret_cast(sycl::malloc_shared(input1_shape_size_in_bytes, q)); \ - get_shape_offsets_inkernel(input1_shape_data, input1_ndim, input1_shape_offsets); \ - bool use_strides = !array_equal(input1_strides_data, input1_ndim, input1_shape_offsets, input1_ndim); \ - sycl::free(input1_shape_offsets, q); \ + get_shape_offsets_inkernel(input1_shape, input1_ndim, input1_shape_offsets); \ + bool use_strides = !array_equal(input1_strides, input1_ndim, input1_shape_offsets, input1_ndim); \ + delete[] input1_shape_offsets; \ \ sycl::event event; \ sycl::range<1> gws(result_size); \ \ if (use_strides) \ { \ + if (result_ndim != input1_ndim) \ + { \ + throw std::runtime_error("Result ndim=" + std::to_string(result_ndim) + \ + " mismatches with input1 ndim=" + std::to_string(input1_ndim)); \ + } \ + \ + /* memory transfer optimization, use USM-host for temporary speeds up tranfer to device */ \ + using usm_host_allocatorT = sycl::usm_allocator; \ + \ + size_t strides_size = 2 * result_ndim; \ + shape_elem_type* dev_strides_data = sycl::malloc_device(strides_size, q); \ + \ + /* create host temporary for packed strides managed by shared pointer */ \ + auto strides_host_packed = \ + std::vector(strides_size, usm_host_allocatorT(q)); \ + \ + /* packed vector is concatenation of result_strides, input1_strides and input2_strides */ \ + std::copy(result_strides, result_strides + result_ndim, strides_host_packed.begin()); \ + std::copy(input1_strides, input1_strides + result_ndim, strides_host_packed.begin() + result_ndim); \ + \ + auto copy_strides_ev = \ + q.copy(strides_host_packed.data(), dev_strides_data, strides_host_packed.size()); \ + \ auto kernel_parallel_for_func = [=](sycl::id<1> global_id) { \ - size_t output_id = global_id[0]; /*for (size_t i = 0; i < result_size; ++i)*/ \ + size_t output_id = global_id[0]; /* for (size_t i = 0; i < result_size; ++i) */ \ { \ + const shape_elem_type* result_strides_data = &dev_strides_data[0]; \ + const shape_elem_type* input1_strides_data = &dev_strides_data[1]; \ + \ size_t input_id = 0; \ for (size_t i = 0; i < input1_ndim; ++i) \ { \ @@ -115,7 +129,11 @@ cgh.parallel_for>( \ gws, kernel_parallel_for_func); \ }; \ - event = q.submit(kernel_func); \ + \ + q.submit(kernel_func).wait(); \ + \ + sycl::free(dev_strides_data, q); \ + return event_ref; \ } \ else \ { \ @@ -143,14 +161,7 @@ } \ } \ \ - input1_ptr.depends_on(event); \ - input1_shape_ptr.depends_on(event); \ - input1_strides_ptr.depends_on(event); \ - result_ptr.depends_on(event); \ - result_strides_ptr.depends_on(event); \ - \ event_ref = reinterpret_cast(&event); \ - \ return DPCTLEvent_Copy(event_ref); \ } \ \ @@ -583,34 +594,49 @@ static void func_map_init_elemwise_1arg_2type(func_map_t& fmap) \ sycl::queue q = *(reinterpret_cast(q_ref)); \ \ - DPNPC_ptr_adapter<_DataType> input1_ptr(q_ref, input1_in, input1_size); \ - DPNPC_ptr_adapter input1_shape_ptr(q_ref, input1_shape, input1_ndim, true); \ - DPNPC_ptr_adapter input1_strides_ptr(q_ref, input1_strides, input1_ndim, true); \ - DPNPC_ptr_adapter<_DataType> result_ptr(q_ref, result_out, result_size, false, true); \ - DPNPC_ptr_adapter result_strides_ptr(q_ref, result_strides, result_ndim); \ - \ - _DataType* input1_data = input1_ptr.get_ptr(); \ - shape_elem_type* input1_shape_data = input1_shape_ptr.get_ptr(); \ - shape_elem_type* input1_strides_data = input1_strides_ptr.get_ptr(); \ + _DataType* input1_data = static_cast<_DataType*>(const_cast(input1_in)); \ + _DataType* result = static_cast<_DataType*>(result_out); \ \ - _DataType* result = result_ptr.get_ptr(); \ - shape_elem_type* result_strides_data = result_strides_ptr.get_ptr(); \ + shape_elem_type* input1_shape_offsets = new shape_elem_type[input1_ndim]; \ \ - const size_t input1_shape_size_in_bytes = input1_ndim * sizeof(shape_elem_type); \ - shape_elem_type* input1_shape_offsets = \ - reinterpret_cast(sycl::malloc_shared(input1_shape_size_in_bytes, q)); \ - get_shape_offsets_inkernel(input1_shape_data, input1_ndim, input1_shape_offsets); \ - bool use_strides = !array_equal(input1_strides_data, input1_ndim, input1_shape_offsets, input1_ndim); \ - sycl::free(input1_shape_offsets, q); \ + get_shape_offsets_inkernel(input1_shape, input1_ndim, input1_shape_offsets); \ + bool use_strides = !array_equal(input1_strides, input1_ndim, input1_shape_offsets, input1_ndim); \ + delete[] input1_shape_offsets; \ \ sycl::event event; \ sycl::range<1> gws(result_size); \ \ if (use_strides) \ { \ + if (result_ndim != input1_ndim) \ + { \ + throw std::runtime_error("Result ndim=" + std::to_string(result_ndim) + \ + " mismatches with input1 ndim=" + std::to_string(input1_ndim)); \ + } \ + \ + /* memory transfer optimization, use USM-host for temporary speeds up tranfer to device */ \ + using usm_host_allocatorT = sycl::usm_allocator; \ + \ + size_t strides_size = 2 * result_ndim; \ + shape_elem_type* dev_strides_data = sycl::malloc_device(strides_size, q); \ + \ + /* create host temporary for packed strides managed by shared pointer */ \ + auto strides_host_packed = \ + std::vector(strides_size, usm_host_allocatorT(q)); \ + \ + /* packed vector is concatenation of result_strides, input1_strides and input2_strides */ \ + std::copy(result_strides, result_strides + result_ndim, strides_host_packed.begin()); \ + std::copy(input1_strides, input1_strides + result_ndim, strides_host_packed.begin() + result_ndim); \ + \ + auto copy_strides_ev = \ + q.copy(strides_host_packed.data(), dev_strides_data, strides_host_packed.size()); \ + \ auto kernel_parallel_for_func = [=](sycl::id<1> global_id) { \ - size_t output_id = global_id[0]; /*for (size_t i = 0; i < result_size; ++i)*/ \ + size_t output_id = global_id[0]; /* for (size_t i = 0; i < result_size; ++i) */ \ { \ + const shape_elem_type* result_strides_data = &dev_strides_data[0]; \ + const shape_elem_type* input1_strides_data = &dev_strides_data[1]; \ + \ size_t input_id = 0; \ for (size_t i = 0; i < input1_ndim; ++i) \ { \ @@ -626,12 +652,16 @@ static void func_map_init_elemwise_1arg_2type(func_map_t& fmap) auto kernel_func = [&](sycl::handler& cgh) { \ cgh.parallel_for>(gws, kernel_parallel_for_func); \ }; \ - event = q.submit(kernel_func); \ + \ + q.submit(kernel_func).wait(); \ + \ + sycl::free(dev_strides_data, q); \ + return event_ref; \ } \ else \ { \ auto kernel_parallel_for_func = [=](sycl::id<1> global_id) { \ - size_t i = global_id[0]; /*for (size_t i = 0; i < result_size; ++i)*/ \ + size_t i = global_id[0]; /* for (size_t i = 0; i < result_size; ++i) */ \ { \ const _DataType input_elem = input1_data[i]; \ result[i] = __operation1__; \ @@ -651,14 +681,7 @@ static void func_map_init_elemwise_1arg_2type(func_map_t& fmap) } \ } \ \ - input1_ptr.depends_on(event); \ - input1_shape_ptr.depends_on(event); \ - input1_strides_ptr.depends_on(event); \ - result_ptr.depends_on(event); \ - result_strides_ptr.depends_on(event); \ - \ event_ref = reinterpret_cast(&event); \ - \ return DPCTLEvent_Copy(event_ref); \ } \ \ @@ -1247,28 +1270,34 @@ static void func_map_elemwise_2arg_3type_core(func_map_t& fmap) func_type_map_t::find_type, func_type_map_t::find_type>}), ...); + ((fmap[DPNPFuncName::DPNP_FN_DIVIDE_EXT][FT1][FTs] = + {get_divide_res_type(), + (void*)dpnp_divide_c_ext()>, + func_type_map_t::find_type, + func_type_map_t::find_type>, + get_divide_res_type(), + (void*)dpnp_divide_c_ext()>, + func_type_map_t::find_type, + func_type_map_t::find_type>}), + ...); ((fmap[DPNPFuncName::DPNP_FN_MULTIPLY_EXT][FT1][FTs] = {populate_func_types(), (void*)dpnp_multiply_c_ext()>, func_type_map_t::find_type, func_type_map_t::find_type>}), ...); + ((fmap[DPNPFuncName::DPNP_FN_POWER_EXT][FT1][FTs] = + {populate_func_types(), + (void*)dpnp_power_c_ext()>, + func_type_map_t::find_type, + func_type_map_t::find_type>}), + ...); ((fmap[DPNPFuncName::DPNP_FN_SUBTRACT_EXT][FT1][FTs] = {populate_func_types(), (void*)dpnp_subtract_c_ext()>, func_type_map_t::find_type, func_type_map_t::find_type>}), ...); - ((fmap[DPNPFuncName::DPNP_FN_DIVIDE_EXT][FT1][FTs] = - {get_divide_res_type(), - (void*)dpnp_divide_c_ext()>, - func_type_map_t::find_type, - func_type_map_t::find_type>, - get_divide_res_type(), - (void*)dpnp_divide_c_ext()>, - func_type_map_t::find_type, - func_type_map_t::find_type>}), - ...); } template @@ -1855,39 +1884,6 @@ static void func_map_init_elemwise_2arg_3type(func_map_t& fmap) fmap[DPNPFuncName::DPNP_FN_POWER][eft_DBL][eft_DBL] = {eft_DBL, (void*)dpnp_power_c_default}; - fmap[DPNPFuncName::DPNP_FN_POWER_EXT][eft_INT][eft_INT] = {eft_INT, - (void*)dpnp_power_c_ext}; - fmap[DPNPFuncName::DPNP_FN_POWER_EXT][eft_INT][eft_LNG] = {eft_LNG, - (void*)dpnp_power_c_ext}; - fmap[DPNPFuncName::DPNP_FN_POWER_EXT][eft_INT][eft_FLT] = {eft_DBL, - (void*)dpnp_power_c_ext}; - fmap[DPNPFuncName::DPNP_FN_POWER_EXT][eft_INT][eft_DBL] = {eft_DBL, - (void*)dpnp_power_c_ext}; - fmap[DPNPFuncName::DPNP_FN_POWER_EXT][eft_LNG][eft_INT] = {eft_LNG, - (void*)dpnp_power_c_ext}; - fmap[DPNPFuncName::DPNP_FN_POWER_EXT][eft_LNG][eft_LNG] = {eft_LNG, - (void*)dpnp_power_c_ext}; - fmap[DPNPFuncName::DPNP_FN_POWER_EXT][eft_LNG][eft_FLT] = {eft_DBL, - (void*)dpnp_power_c_ext}; - fmap[DPNPFuncName::DPNP_FN_POWER_EXT][eft_LNG][eft_DBL] = {eft_DBL, - (void*)dpnp_power_c_ext}; - fmap[DPNPFuncName::DPNP_FN_POWER_EXT][eft_FLT][eft_INT] = {eft_DBL, - (void*)dpnp_power_c_ext}; - fmap[DPNPFuncName::DPNP_FN_POWER_EXT][eft_FLT][eft_LNG] = {eft_DBL, - (void*)dpnp_power_c_ext}; - fmap[DPNPFuncName::DPNP_FN_POWER_EXT][eft_FLT][eft_FLT] = {eft_FLT, - (void*)dpnp_power_c_ext}; - fmap[DPNPFuncName::DPNP_FN_POWER_EXT][eft_FLT][eft_DBL] = {eft_DBL, - (void*)dpnp_power_c_ext}; - fmap[DPNPFuncName::DPNP_FN_POWER_EXT][eft_DBL][eft_INT] = {eft_DBL, - (void*)dpnp_power_c_ext}; - fmap[DPNPFuncName::DPNP_FN_POWER_EXT][eft_DBL][eft_LNG] = {eft_DBL, - (void*)dpnp_power_c_ext}; - fmap[DPNPFuncName::DPNP_FN_POWER_EXT][eft_DBL][eft_FLT] = {eft_DBL, - (void*)dpnp_power_c_ext}; - fmap[DPNPFuncName::DPNP_FN_POWER_EXT][eft_DBL][eft_DBL] = {eft_DBL, - (void*)dpnp_power_c_ext}; - fmap[DPNPFuncName::DPNP_FN_SUBTRACT][eft_INT][eft_INT] = { eft_INT, (void*)dpnp_subtract_c_default}; fmap[DPNPFuncName::DPNP_FN_SUBTRACT][eft_INT][eft_LNG] = { diff --git a/dpnp/backend/kernels/dpnp_krnl_fft.cpp b/dpnp/backend/kernels/dpnp_krnl_fft.cpp index b3f9716d73f..611f71c045d 100644 --- a/dpnp/backend/kernels/dpnp_krnl_fft.cpp +++ b/dpnp/backend/kernels/dpnp_krnl_fft.cpp @@ -178,7 +178,6 @@ static void dpnp_fft_fft_mathlib_cmplx_to_cmplx_c(DPCTLSyclQueueRef q_ref, const size_t shape_size, const size_t input_size, const size_t result_size, - _Descriptor_type& desc, size_t inverse, const size_t norm) { @@ -187,14 +186,15 @@ static void dpnp_fft_fft_mathlib_cmplx_to_cmplx_c(DPCTLSyclQueueRef q_ref, (void)input_size; (void)result_size; - if (!shape_size) { + if (!shape_size) + { return; } sycl::queue queue = *(reinterpret_cast(q_ref)); - _DataType_input* array_1 = static_cast<_DataType_input *>(const_cast(array1_in)); - _DataType_output* result = static_cast<_DataType_output *>(result_out); + _DataType_input* array_1 = static_cast<_DataType_input*>(const_cast(array1_in)); + _DataType_output* result = static_cast<_DataType_output*>(result_out); const size_t n_iter = std::accumulate(input_shape, input_shape + shape_size - 1, 1, std::multiplies()); @@ -204,39 +204,49 @@ static void dpnp_fft_fft_mathlib_cmplx_to_cmplx_c(DPCTLSyclQueueRef q_ref, double backward_scale = 1.; double forward_scale = 1.; - if (norm == 0) { // norm = "backward" + if (norm == 0) // norm = "backward" + { backward_scale = 1. / shift; - } else if (norm == 1) { // norm = "forward" + } + else if (norm == 1) // norm = "forward" + { forward_scale = 1. / shift; - } else { // norm = "ortho" - if (inverse) { + } + else // norm = "ortho" + { + if (inverse) + { backward_scale = 1. / sqrt(shift); - } else { + } + else + { forward_scale = 1. / sqrt(shift); } } - desc.set_value(mkl_dft::config_param::BACKWARD_SCALE, backward_scale); - desc.set_value(mkl_dft::config_param::FORWARD_SCALE, forward_scale); - // enum value from math library C interface - // instead of mkl_dft::config_value::NOT_INPLACE - desc.set_value(mkl_dft::config_param::PLACEMENT, DFTI_NOT_INPLACE); - desc.commit(queue); - - std::vector fft_events; - fft_events.reserve(n_iter); - - for (size_t i = 0; i < n_iter; ++i) { - if (inverse) { - fft_events.push_back(mkl_dft::compute_backward(desc, array_1 + i * shift, result + i * shift)); - } else { - fft_events.push_back(mkl_dft::compute_forward(desc, array_1 + i * shift, result + i * shift)); + std::vector fft_events(n_iter); + + for (size_t i = 0; i < n_iter; ++i) + { + std::unique_ptr<_Descriptor_type> desc = std::make_unique<_Descriptor_type>(shift); + desc->set_value(mkl_dft::config_param::BACKWARD_SCALE, backward_scale); + desc->set_value(mkl_dft::config_param::FORWARD_SCALE, forward_scale); + desc->set_value(mkl_dft::config_param::PLACEMENT, DFTI_NOT_INPLACE); + desc->commit(queue); + + if (inverse) + { + fft_events[i] = mkl_dft::compute_backward<_Descriptor_type, _DataType_input, _DataType_output>( + *desc, array_1 + i * shift, result + i * shift); + } + else + { + fft_events[i] = mkl_dft::compute_forward<_Descriptor_type, _DataType_input, _DataType_output>( + *desc, array_1 + i * shift, result + i * shift); } } sycl::event::wait(fft_events); - - return; } template @@ -251,7 +261,6 @@ static DPCTLSyclEventRef dpnp_fft_fft_mathlib_real_to_cmplx_c(DPCTLSyclQueueRef const size_t shape_size, const size_t input_size, const size_t result_size, - _Descriptor_type& desc, size_t inverse, const size_t norm, const size_t real) @@ -260,14 +269,15 @@ static DPCTLSyclEventRef dpnp_fft_fft_mathlib_real_to_cmplx_c(DPCTLSyclQueueRef (void)input_size; DPCTLSyclEventRef event_ref = nullptr; - if (!shape_size) { + if (!shape_size) + { return event_ref; } sycl::queue queue = *(reinterpret_cast(q_ref)); - _DataType_input* array_1 = static_cast<_DataType_input *>(const_cast(array1_in)); - _DataType_output* result = static_cast<_DataType_output *>(result_out); + _DataType_input* array_1 = static_cast<_DataType_input*>(const_cast(array1_in)); + _DataType_output* result = static_cast<_DataType_output*>(result_out); const size_t n_iter = std::accumulate(input_shape, input_shape + shape_size - 1, 1, std::multiplies()); @@ -278,38 +288,52 @@ static DPCTLSyclEventRef dpnp_fft_fft_mathlib_real_to_cmplx_c(DPCTLSyclQueueRef double backward_scale = 1.; double forward_scale = 1.; - if (norm == 0) { // norm = "backward" - if (inverse) { + if (norm == 0) // norm = "backward" + { + if (inverse) + { forward_scale = 1. / result_shift; - } else { + } + else + { backward_scale = 1. / result_shift; } - } else if (norm == 1) { // norm = "forward" - if (inverse) { + } + else if (norm == 1) // norm = "forward" + { + if (inverse) + { backward_scale = 1. / result_shift; - } else { + } + else + { forward_scale = 1. / result_shift; } - } else { // norm = "ortho" + } + else // norm = "ortho" + { forward_scale = 1. / sqrt(result_shift); } - desc.set_value(mkl_dft::config_param::BACKWARD_SCALE, backward_scale); - desc.set_value(mkl_dft::config_param::FORWARD_SCALE, forward_scale); - desc.set_value(mkl_dft::config_param::PLACEMENT, DFTI_NOT_INPLACE); + std::vector fft_events(n_iter); - desc.commit(queue); - - std::vector fft_events; - fft_events.reserve(n_iter); - - for (size_t i = 0; i < n_iter; ++i) { - fft_events.push_back(mkl_dft::compute_forward(desc, array_1 + i * input_shift, result + i * result_shift * 2)); + for (size_t i = 0; i < n_iter; ++i) + { + std::unique_ptr<_Descriptor_type> desc = std::make_unique<_Descriptor_type>(input_shift); + desc->set_value(mkl_dft::config_param::BACKWARD_SCALE, backward_scale); + desc->set_value(mkl_dft::config_param::FORWARD_SCALE, forward_scale); + desc->set_value(mkl_dft::config_param::PLACEMENT, DFTI_NOT_INPLACE); + desc->commit(queue); + + // real result_size = 2 * result_size, because real type of "result" is twice wider than '_DataType_output' + fft_events[i] = mkl_dft::compute_forward<_Descriptor_type, _DataType_input, _DataType_output>( + *desc, array_1 + i * input_shift, result + i * result_shift * 2); } sycl::event::wait(fft_events); - if (real) { // the output size of the rfft function is input_size/2 + 1 so we don't need to fill the second half of the output + if (real) // the output size of the rfft function is input_size/2 + 1 so we don't need to fill the second half of the output + { return event_ref; } @@ -325,19 +349,22 @@ static DPCTLSyclEventRef dpnp_fft_fft_mathlib_real_to_cmplx_c(DPCTLSyclQueueRef size_t j = global_id[1]; { *(reinterpret_cast*>(result) + result_shift * (i + 1) - (j + 1)) = - std::conj(*(reinterpret_cast*>(result) + result_shift * i + (j + 1))); + std::conj( + *(reinterpret_cast*>(result) + result_shift * i + (j + 1))); } } }; auto kernel_func = [&](sycl::handler& cgh) { - cgh.parallel_for>( + cgh.parallel_for< + class dpnp_fft_fft_mathlib_real_to_cmplx_c_kernel<_DataType_input, _DataType_output, _Descriptor_type>>( gws, kernel_parallel_for_func); }; event = queue.submit(kernel_func); - if (inverse) { + if (inverse) + { event.wait(); event = oneapi::mkl::vm::conj(queue, result_size, @@ -346,7 +373,6 @@ static DPCTLSyclEventRef dpnp_fft_fft_mathlib_real_to_cmplx_c(DPCTLSyclQueueRef } event_ref = reinterpret_cast(&event); - return DPCTLEvent_Copy(event_ref); } @@ -375,43 +401,35 @@ DPCTLSyclEventRef dpnp_fft_fft_c(DPCTLSyclQueueRef q_ref, const size_t input_size = std::accumulate(input_shape, input_shape + shape_size, 1, std::multiplies()); - size_t dim = input_shape[shape_size - 1]; - if constexpr (std::is_same<_DataType_output, std::complex>::value || std::is_same<_DataType_output, std::complex>::value) { if constexpr (std::is_same<_DataType_input, std::complex>::value && std::is_same<_DataType_output, std::complex>::value) { - desc_dp_cmplx_t desc(dim); dpnp_fft_fft_mathlib_cmplx_to_cmplx_c<_DataType_input, _DataType_output, desc_dp_cmplx_t>( - q_ref, array1_in, result_out, input_shape, result_shape, shape_size, input_size, result_size, desc, inverse, norm); + q_ref, array1_in, result_out, input_shape, result_shape, shape_size, input_size, result_size, inverse, norm); } /* complex-to-complex, single precision */ else if constexpr (std::is_same<_DataType_input, std::complex>::value && std::is_same<_DataType_output, std::complex>::value) { - desc_sp_cmplx_t desc(dim); dpnp_fft_fft_mathlib_cmplx_to_cmplx_c<_DataType_input, _DataType_output, desc_sp_cmplx_t>( - q_ref, array1_in, result_out, input_shape, result_shape, shape_size, input_size, result_size, desc, inverse, norm); + q_ref, array1_in, result_out, input_shape, result_shape, shape_size, input_size, result_size, inverse, norm); } /* real-to-complex, double precision */ else if constexpr (std::is_same<_DataType_input, double>::value && std::is_same<_DataType_output, std::complex>::value) { - desc_dp_real_t desc(dim); - event_ref = dpnp_fft_fft_mathlib_real_to_cmplx_c<_DataType_input, double, desc_dp_real_t>( - q_ref, array1_in, result_out, input_shape, result_shape, shape_size, input_size, result_size, desc, inverse, norm, 0); + q_ref, array1_in, result_out, input_shape, result_shape, shape_size, input_size, result_size, inverse, norm, 0); } /* real-to-complex, single precision */ else if constexpr (std::is_same<_DataType_input, float>::value && std::is_same<_DataType_output, std::complex>::value) { - desc_sp_real_t desc(dim); // try: 2 * result_size - event_ref = dpnp_fft_fft_mathlib_real_to_cmplx_c<_DataType_input, float, desc_sp_real_t>( - q_ref, array1_in, result_out, input_shape, result_shape, shape_size, input_size, result_size, desc, inverse, norm, 0); + q_ref, array1_in, result_out, input_shape, result_shape, shape_size, input_size, result_size, inverse, norm, 0); } else if constexpr (std::is_same<_DataType_input, int32_t>::value || std::is_same<_DataType_input, int64_t>::value) @@ -428,9 +446,8 @@ DPCTLSyclEventRef dpnp_fft_fft_c(DPCTLSyclQueueRef q_ref, DPCTLEvent_WaitAndThrow(event_ref); DPCTLEvent_Delete(event_ref); - desc_dp_real_t desc(dim); event_ref = dpnp_fft_fft_mathlib_real_to_cmplx_c( - q_ref, array1_copy, result_out, input_shape, result_shape, shape_size, input_size, result_size, desc, inverse, norm, 0); + q_ref, array1_copy, result_out, input_shape, result_shape, shape_size, input_size, result_size, inverse, norm, 0); DPCTLEvent_WaitAndThrow(event_ref); DPCTLEvent_Delete(event_ref); @@ -537,26 +554,21 @@ DPCTLSyclEventRef dpnp_fft_rfft_c(DPCTLSyclQueueRef q_ref, const size_t input_size = std::accumulate(input_shape, input_shape + shape_size, 1, std::multiplies()); - size_t dim = input_shape[shape_size - 1]; - if constexpr (std::is_same<_DataType_output, std::complex>::value || std::is_same<_DataType_output, std::complex>::value) { if constexpr (std::is_same<_DataType_input, double>::value && - std::is_same<_DataType_output, std::complex>::value) + std::is_same<_DataType_output, std::complex>::value) { - desc_dp_real_t desc(dim); - event_ref = dpnp_fft_fft_mathlib_real_to_cmplx_c<_DataType_input, double, desc_dp_real_t>( - q_ref, array1_in, result_out, input_shape, result_shape, shape_size, input_size, result_size, desc, inverse, norm, 1); + q_ref, array1_in, result_out, input_shape, result_shape, shape_size, input_size, result_size, inverse, norm, 1); } /* real-to-complex, single precision */ else if constexpr (std::is_same<_DataType_input, float>::value && std::is_same<_DataType_output, std::complex>::value) { - desc_sp_real_t desc(dim); // try: 2 * result_size event_ref = dpnp_fft_fft_mathlib_real_to_cmplx_c<_DataType_input, float, desc_sp_real_t>( - q_ref, array1_in, result_out, input_shape, result_shape, shape_size, input_size, result_size, desc, inverse, norm, 1); + q_ref, array1_in, result_out, input_shape, result_shape, shape_size, input_size, result_size, inverse, norm, 1); } else if constexpr (std::is_same<_DataType_input, int32_t>::value || std::is_same<_DataType_input, int64_t>::value) @@ -573,9 +585,8 @@ DPCTLSyclEventRef dpnp_fft_rfft_c(DPCTLSyclQueueRef q_ref, DPCTLEvent_WaitAndThrow(event_ref); DPCTLEvent_Delete(event_ref); - desc_dp_real_t desc(dim); event_ref = dpnp_fft_fft_mathlib_real_to_cmplx_c( - q_ref, array1_copy, result_out, input_shape, result_shape, shape_size, input_size, result_size, desc, inverse, norm, 1); + q_ref, array1_copy, result_out, input_shape, result_shape, shape_size, input_size, result_size, inverse, norm, 1); DPCTLEvent_WaitAndThrow(event_ref); DPCTLEvent_Delete(event_ref); diff --git a/dpnp/backend/kernels/dpnp_krnl_indexing.cpp b/dpnp/backend/kernels/dpnp_krnl_indexing.cpp index 0b80ac678d3..756899b6cc5 100644 --- a/dpnp/backend/kernels/dpnp_krnl_indexing.cpp +++ b/dpnp/backend/kernels/dpnp_krnl_indexing.cpp @@ -475,6 +475,7 @@ void dpnp_nonzero_c(const void* in_array1, j, dep_event_vec_ref); DPCTLEvent_WaitAndThrow(event_ref); + DPCTLEvent_Delete(event_ref); } template @@ -485,16 +486,6 @@ void (*dpnp_nonzero_default_c)(const void*, const size_t, const size_t) = dpnp_nonzero_c<_DataType>; -template -DPCTLSyclEventRef (*dpnp_nonzero_ext_c)(DPCTLSyclQueueRef, - const void*, - void*, - const size_t, - const shape_elem_type*, - const size_t, - const size_t, - const DPCTLEventVectorRef) = dpnp_nonzero_c<_DataType>; - template DPCTLSyclEventRef dpnp_place_c(DPCTLSyclQueueRef q_ref, void* arr_in, @@ -1021,11 +1012,6 @@ void func_map_init_indexing_func(func_map_t& fmap) fmap[DPNPFuncName::DPNP_FN_NONZERO][eft_FLT][eft_FLT] = {eft_FLT, (void*)dpnp_nonzero_default_c}; fmap[DPNPFuncName::DPNP_FN_NONZERO][eft_DBL][eft_DBL] = {eft_DBL, (void*)dpnp_nonzero_default_c}; - fmap[DPNPFuncName::DPNP_FN_NONZERO_EXT][eft_INT][eft_INT] = {eft_INT, (void*)dpnp_nonzero_ext_c}; - fmap[DPNPFuncName::DPNP_FN_NONZERO_EXT][eft_LNG][eft_LNG] = {eft_LNG, (void*)dpnp_nonzero_ext_c}; - fmap[DPNPFuncName::DPNP_FN_NONZERO_EXT][eft_FLT][eft_FLT] = {eft_FLT, (void*)dpnp_nonzero_ext_c}; - fmap[DPNPFuncName::DPNP_FN_NONZERO_EXT][eft_DBL][eft_DBL] = {eft_DBL, (void*)dpnp_nonzero_ext_c}; - fmap[DPNPFuncName::DPNP_FN_PLACE][eft_INT][eft_INT] = {eft_INT, (void*)dpnp_place_default_c}; fmap[DPNPFuncName::DPNP_FN_PLACE][eft_LNG][eft_LNG] = {eft_LNG, (void*)dpnp_place_default_c}; fmap[DPNPFuncName::DPNP_FN_PLACE][eft_FLT][eft_FLT] = {eft_FLT, (void*)dpnp_place_default_c}; diff --git a/dpnp/backend/kernels/dpnp_krnl_logic.cpp b/dpnp/backend/kernels/dpnp_krnl_logic.cpp index 157347aa90c..d1a6767c2ad 100644 --- a/dpnp/backend/kernels/dpnp_krnl_logic.cpp +++ b/dpnp/backend/kernels/dpnp_krnl_logic.cpp @@ -41,6 +41,8 @@ DPCTLSyclEventRef dpnp_all_c(DPCTLSyclQueueRef q_ref, const size_t size, const DPCTLEventVectorRef dep_event_vec_ref) { + static_assert(std::is_same_v<_ResultType, bool>, "Boolean result type is required"); + // avoid warning unused variable (void)dep_event_vec_ref; @@ -52,38 +54,50 @@ DPCTLSyclEventRef dpnp_all_c(DPCTLSyclQueueRef q_ref, } sycl::queue q = *(reinterpret_cast(q_ref)); - sycl::event event; - DPNPC_ptr_adapter<_DataType> input1_ptr(q_ref, array1_in, size); - DPNPC_ptr_adapter<_ResultType> result1_ptr(q_ref, result1, 1, true, true); - const _DataType* array_in = input1_ptr.get_ptr(); - _ResultType* result = result1_ptr.get_ptr(); + const _DataType* array_in = static_cast(array1_in); + bool* result = static_cast(result1); - result[0] = true; + auto fill_event = q.fill(result, true, 1); if (!size) { - return event_ref; + event_ref = reinterpret_cast(&fill_event); + return DPCTLEvent_Copy(event_ref); } - sycl::range<1> gws(size); - auto kernel_parallel_for_func = [=](sycl::id<1> global_id) { - size_t i = global_id[0]; + constexpr size_t lws = 64; + constexpr size_t vec_sz = 8; + + auto gws_range = sycl::range<1>(((size + lws * vec_sz - 1) / (lws * vec_sz)) * lws); + auto lws_range = sycl::range<1>(lws); + sycl::nd_range<1> gws(gws_range, lws_range); + + auto kernel_parallel_for_func = [=](sycl::nd_item<1> nd_it) { + auto gr = nd_it.get_group(); + const auto max_gr_size = gr.get_max_local_range()[0]; + const size_t start = + vec_sz * (nd_it.get_group(0) * nd_it.get_local_range(0) + gr.get_group_id()[0] * max_gr_size); + const size_t end = sycl::min(start + vec_sz * max_gr_size, size); - if (!array_in[i]) + // each work-item reduces over "vec_sz" elements in the input array + bool local_reduction = sycl::joint_none_of( + gr, &array_in[start], &array_in[end], [&](_DataType elem) { return elem == static_cast<_DataType>(0); }); + + if (gr.leader() && (local_reduction == false)) { result[0] = false; } }; auto kernel_func = [&](sycl::handler& cgh) { + cgh.depends_on(fill_event); cgh.parallel_for>(gws, kernel_parallel_for_func); }; - event = q.submit(kernel_func); + auto event = q.submit(kernel_func); event_ref = reinterpret_cast(&event); - return DPCTLEvent_Copy(event_ref); } @@ -98,6 +112,7 @@ void dpnp_all_c(const void* array1_in, void* result1, const size_t size) size, dep_event_vec_ref); DPCTLEvent_WaitAndThrow(event_ref); + DPCTLEvent_Delete(event_ref); } template @@ -218,6 +233,8 @@ DPCTLSyclEventRef dpnp_any_c(DPCTLSyclQueueRef q_ref, const size_t size, const DPCTLEventVectorRef dep_event_vec_ref) { + static_assert(std::is_same_v<_ResultType, bool>, "Boolean result type is required"); + // avoid warning unused variable (void)dep_event_vec_ref; @@ -229,38 +246,50 @@ DPCTLSyclEventRef dpnp_any_c(DPCTLSyclQueueRef q_ref, } sycl::queue q = *(reinterpret_cast(q_ref)); - sycl::event event; - DPNPC_ptr_adapter<_DataType> input1_ptr(q_ref, array1_in, size); - DPNPC_ptr_adapter<_ResultType> result1_ptr(q_ref, result1, 1, true, true); - const _DataType* array_in = input1_ptr.get_ptr(); - _ResultType* result = result1_ptr.get_ptr(); + const _DataType* array_in = static_cast(array1_in); + bool* result = static_cast(result1); - result[0] = false; + auto fill_event = q.fill(result, false, 1); if (!size) { - return event_ref; + event_ref = reinterpret_cast(&fill_event); + return DPCTLEvent_Copy(event_ref); } - sycl::range<1> gws(size); - auto kernel_parallel_for_func = [=](sycl::id<1> global_id) { - size_t i = global_id[0]; + constexpr size_t lws = 64; + constexpr size_t vec_sz = 8; + + auto gws_range = sycl::range<1>(((size + lws * vec_sz - 1) / (lws * vec_sz)) * lws); + auto lws_range = sycl::range<1>(lws); + sycl::nd_range<1> gws(gws_range, lws_range); + + auto kernel_parallel_for_func = [=](sycl::nd_item<1> nd_it) { + auto gr = nd_it.get_group(); + const auto max_gr_size = gr.get_max_local_range()[0]; + const size_t start = + vec_sz * (nd_it.get_group(0) * nd_it.get_local_range(0) + gr.get_group_id()[0] * max_gr_size); + const size_t end = sycl::min(start + vec_sz * max_gr_size, size); - if (array_in[i]) + // each work-item reduces over "vec_sz" elements in the input array + bool local_reduction = sycl::joint_any_of( + gr, &array_in[start], &array_in[end], [&](_DataType elem) { return elem != static_cast<_DataType>(0); }); + + if (gr.leader() && (local_reduction == true)) { result[0] = true; } }; auto kernel_func = [&](sycl::handler& cgh) { + cgh.depends_on(fill_event); cgh.parallel_for>(gws, kernel_parallel_for_func); }; - event = q.submit(kernel_func); + auto event = q.submit(kernel_func); event_ref = reinterpret_cast(&event); - return DPCTLEvent_Copy(event_ref); } @@ -275,6 +304,7 @@ void dpnp_any_c(const void* array1_in, void* result1, const size_t size) size, dep_event_vec_ref); DPCTLEvent_WaitAndThrow(event_ref); + DPCTLEvent_Delete(event_ref); } template @@ -751,6 +781,8 @@ void func_map_init_logic(func_map_t& fmap) fmap[DPNPFuncName::DPNP_FN_ALL_EXT][eft_LNG][eft_LNG] = {eft_LNG, (void*)dpnp_all_ext_c}; fmap[DPNPFuncName::DPNP_FN_ALL_EXT][eft_FLT][eft_FLT] = {eft_FLT, (void*)dpnp_all_ext_c}; fmap[DPNPFuncName::DPNP_FN_ALL_EXT][eft_DBL][eft_DBL] = {eft_DBL, (void*)dpnp_all_ext_c}; + fmap[DPNPFuncName::DPNP_FN_ALL_EXT][eft_C64][eft_C64] = {eft_C64, (void*)dpnp_all_ext_c, bool>}; + fmap[DPNPFuncName::DPNP_FN_ALL_EXT][eft_C128][eft_C128] = {eft_C128, (void*)dpnp_all_ext_c, bool>}; fmap[DPNPFuncName::DPNP_FN_ALLCLOSE][eft_INT][eft_INT] = {eft_BLN, (void*)dpnp_allclose_default_c}; @@ -829,6 +861,8 @@ void func_map_init_logic(func_map_t& fmap) fmap[DPNPFuncName::DPNP_FN_ANY_EXT][eft_LNG][eft_LNG] = {eft_LNG, (void*)dpnp_any_ext_c}; fmap[DPNPFuncName::DPNP_FN_ANY_EXT][eft_FLT][eft_FLT] = {eft_FLT, (void*)dpnp_any_ext_c}; fmap[DPNPFuncName::DPNP_FN_ANY_EXT][eft_DBL][eft_DBL] = {eft_DBL, (void*)dpnp_any_ext_c}; + fmap[DPNPFuncName::DPNP_FN_ANY_EXT][eft_C64][eft_C64] = {eft_C64, (void*)dpnp_any_ext_c, bool>}; + fmap[DPNPFuncName::DPNP_FN_ANY_EXT][eft_C128][eft_C128] = {eft_C128, (void*)dpnp_any_ext_c, bool>}; func_map_logic_1arg_1type_helper(fmap); func_map_logic_2arg_2type_helper(fmap); diff --git a/dpnp/backend/kernels/dpnp_krnl_mathematical.cpp b/dpnp/backend/kernels/dpnp_krnl_mathematical.cpp index 32f8ffe465d..cbcd191fae6 100644 --- a/dpnp/backend/kernels/dpnp_krnl_mathematical.cpp +++ b/dpnp/backend/kernels/dpnp_krnl_mathematical.cpp @@ -1,5 +1,5 @@ //***************************************************************************** -// Copyright (c) 2016-2020, Intel Corporation +// Copyright (c) 2016-2023, Intel Corporation // All rights reserved. // // Redistribution and use in source and binary forms, with or without @@ -114,10 +114,10 @@ DPCTLSyclEventRef (*dpnp_around_ext_c)(DPCTLSyclQueueRef, const int, const DPCTLEventVectorRef) = dpnp_around_c<_DataType>; -template +template class dpnp_elemwise_absolute_c_kernel; -template +template DPCTLSyclEventRef dpnp_elemwise_absolute_c(DPCTLSyclQueueRef q_ref, const void* input1_in, void* result1, @@ -137,43 +137,63 @@ DPCTLSyclEventRef dpnp_elemwise_absolute_c(DPCTLSyclQueueRef q_ref, sycl::queue q = *(reinterpret_cast(q_ref)); sycl::event event; - DPNPC_ptr_adapter<_DataType> input1_ptr(q_ref, input1_in, size); - _DataType* array1 = input1_ptr.get_ptr(); - DPNPC_ptr_adapter<_DataType> result1_ptr(q_ref, result1, size, false, true); - _DataType* result = result1_ptr.get_ptr(); + _DataType_input* array1 = static_cast<_DataType_input*>(const_cast(input1_in)); + _DataType_output* result = static_cast<_DataType_output*>(result1); - if constexpr (std::is_same<_DataType, double>::value || std::is_same<_DataType, float>::value) + if constexpr (is_any_v<_DataType_input, float, double, std::complex, std::complex>) { - // https://docs.oneapi.com/versions/latest/onemkl/abs.html event = oneapi::mkl::vm::abs(q, size, array1, result); } else { - sycl::range<1> gws(size); - auto kernel_parallel_for_func = [=](sycl::id<1> global_id) { - const size_t idx = global_id[0]; + static_assert(is_any_v<_DataType_input, int32_t, int64_t>, + "Integer types are only expected to pass in 'abs' kernel"); + static_assert(std::is_same_v<_DataType_input, _DataType_output>, "Result type must match a type of input data"); + + constexpr size_t lws = 64; + constexpr unsigned int vec_sz = 8; + constexpr sycl::access::address_space global_space = sycl::access::address_space::global_space; + + auto gws_range = sycl::range<1>(((size + lws * vec_sz - 1) / (lws * vec_sz)) * lws); + auto lws_range = sycl::range<1>(lws); - if (array1[idx] >= 0) + auto kernel_parallel_for_func = [=](sycl::nd_item<1> nd_it) { + auto sg = nd_it.get_sub_group(); + const auto max_sg_size = sg.get_max_local_range()[0]; + const size_t start = + vec_sz * (nd_it.get_group(0) * nd_it.get_local_range(0) + sg.get_group_id()[0] * max_sg_size); + + if (start + static_cast(vec_sz) * max_sg_size < size) { - result[idx] = array1[idx]; + using input_ptrT = sycl::multi_ptr<_DataType_input, global_space>; + using result_ptrT = sycl::multi_ptr<_DataType_output, global_space>; + + sycl::vec<_DataType_input, vec_sz> data_vec = sg.load(input_ptrT(&array1[start])); + + // sycl::abs() returns unsigned integers only, so explicit casting to signed ones is required + using result_absT = typename cl::sycl::detail::make_unsigned<_DataType_output>::type; + sycl::vec<_DataType_output, vec_sz> res_vec = + dpnp_vec_cast<_DataType_output, result_absT, vec_sz>(sycl::abs(data_vec)); + + sg.store(result_ptrT(&result[start]), res_vec); } else { - result[idx] = -1 * array1[idx]; + for (size_t k = start + sg.get_local_id()[0]; k < size; k += max_sg_size) + { + result[k] = std::abs(array1[k]); + } } }; auto kernel_func = [&](sycl::handler& cgh) { - cgh.parallel_for>(gws, kernel_parallel_for_func); + cgh.parallel_for>( + sycl::nd_range<1>(gws_range, lws_range), kernel_parallel_for_func); }; - event = q.submit(kernel_func); } - input1_ptr.depends_on(event); - result1_ptr.depends_on(event); event_ref = reinterpret_cast(&event); - return DPCTLEvent_Copy(event_ref); } @@ -182,28 +202,24 @@ void dpnp_elemwise_absolute_c(const void* input1_in, void* result1, size_t size) { DPCTLSyclQueueRef q_ref = reinterpret_cast(&DPNP_QUEUE); DPCTLEventVectorRef dep_event_vec_ref = nullptr; - DPCTLSyclEventRef event_ref = dpnp_elemwise_absolute_c<_DataType>(q_ref, - input1_in, - result1, - size, - dep_event_vec_ref); + DPCTLSyclEventRef event_ref = dpnp_elemwise_absolute_c<_DataType, _DataType>(q_ref, + input1_in, + result1, + size, + dep_event_vec_ref); DPCTLEvent_WaitAndThrow(event_ref); + DPCTLEvent_Delete(event_ref); } template void (*dpnp_elemwise_absolute_default_c)(const void*, void*, size_t) = dpnp_elemwise_absolute_c<_DataType>; -template +template DPCTLSyclEventRef (*dpnp_elemwise_absolute_ext_c)(DPCTLSyclQueueRef, const void*, void*, size_t, - const DPCTLEventVectorRef) = dpnp_elemwise_absolute_c<_DataType>; - -// template void dpnp_elemwise_absolute_c(void* array1_in, void* result1, size_t size); -// template void dpnp_elemwise_absolute_c(void* array1_in, void* result1, size_t size); -// template void dpnp_elemwise_absolute_c(void* array1_in, void* result1, size_t size); -// template void dpnp_elemwise_absolute_c(void* array1_in, void* result1, size_t size); + const DPCTLEventVectorRef) = dpnp_elemwise_absolute_c<_DataType_input, _DataType_output>; template DPCTLSyclEventRef dpnp_cross_c(DPCTLSyclQueueRef q_ref, @@ -1085,10 +1101,12 @@ void func_map_init_mathematical(func_map_t& fmap) (void*)dpnp_elemwise_absolute_ext_c}; fmap[DPNPFuncName::DPNP_FN_ABSOLUTE_EXT][eft_LNG][eft_LNG] = {eft_LNG, (void*)dpnp_elemwise_absolute_ext_c}; - fmap[DPNPFuncName::DPNP_FN_ABSOLUTE_EXT][eft_FLT][eft_FLT] = {eft_FLT, - (void*)dpnp_elemwise_absolute_ext_c}; - fmap[DPNPFuncName::DPNP_FN_ABSOLUTE_EXT][eft_DBL][eft_DBL] = {eft_DBL, - (void*)dpnp_elemwise_absolute_ext_c}; + fmap[DPNPFuncName::DPNP_FN_ABSOLUTE_EXT][eft_FLT][eft_FLT] = {eft_FLT, (void*)dpnp_elemwise_absolute_ext_c}; + fmap[DPNPFuncName::DPNP_FN_ABSOLUTE_EXT][eft_DBL][eft_DBL] = {eft_DBL, (void*)dpnp_elemwise_absolute_ext_c}; + fmap[DPNPFuncName::DPNP_FN_ABSOLUTE_EXT][eft_C64][eft_C64] = { + eft_FLT, (void*)dpnp_elemwise_absolute_ext_c, float>}; + fmap[DPNPFuncName::DPNP_FN_ABSOLUTE_EXT][eft_C128][eft_C128] = { + eft_DBL, (void*)dpnp_elemwise_absolute_ext_c, double>}; fmap[DPNPFuncName::DPNP_FN_AROUND][eft_INT][eft_INT] = {eft_INT, (void*)dpnp_around_default_c}; fmap[DPNPFuncName::DPNP_FN_AROUND][eft_LNG][eft_LNG] = {eft_LNG, (void*)dpnp_around_default_c}; diff --git a/dpnp/backend/kernels/dpnp_krnl_searching.cpp b/dpnp/backend/kernels/dpnp_krnl_searching.cpp index 39156ea07c4..fef5f78d15d 100644 --- a/dpnp/backend/kernels/dpnp_krnl_searching.cpp +++ b/dpnp/backend/kernels/dpnp_krnl_searching.cpp @@ -1,5 +1,5 @@ //***************************************************************************** -// Copyright (c) 2016-2020, Intel Corporation +// Copyright (c) 2016-2023, Intel Corporation // All rights reserved. // // Redistribution and use in source and binary forms, with or without @@ -27,6 +27,7 @@ #include #include "dpnp_fptr.hpp" +#include "dpnp_iterator.hpp" #include "dpnpc_memory_adapter.hpp" #include "queue_sycl.hpp" @@ -139,6 +140,258 @@ DPCTLSyclEventRef (*dpnp_argmin_ext_c)(DPCTLSyclQueueRef, size_t, const DPCTLEventVectorRef) = dpnp_argmin_c<_DataType, _idx_DataType>; + +template +class dpnp_where_c_broadcast_kernel; + +template +class dpnp_where_c_strides_kernel; + +template +class dpnp_where_c_kernel; + +template +DPCTLSyclEventRef dpnp_where_c(DPCTLSyclQueueRef q_ref, + void* result_out, + const size_t result_size, + const size_t result_ndim, + const shape_elem_type* result_shape, + const shape_elem_type* result_strides, + const void* condition_in, + const size_t condition_size, + const size_t condition_ndim, + const shape_elem_type* condition_shape, + const shape_elem_type* condition_strides, + const void* input1_in, + const size_t input1_size, + const size_t input1_ndim, + const shape_elem_type* input1_shape, + const shape_elem_type* input1_strides, + const void* input2_in, + const size_t input2_size, + const size_t input2_ndim, + const shape_elem_type* input2_shape, + const shape_elem_type* input2_strides, + const DPCTLEventVectorRef dep_event_vec_ref) +{ + /* avoid warning unused variable*/ + (void)dep_event_vec_ref; + + DPCTLSyclEventRef event_ref = nullptr; + + if (!condition_size || !input1_size || !input2_size) + { + return event_ref; + } + + sycl::queue q = *(reinterpret_cast(q_ref)); + + bool* condition_data = static_cast(const_cast(condition_in)); + _DataType_input1* input1_data = static_cast<_DataType_input1*>(const_cast(input1_in)); + _DataType_input2* input2_data = static_cast<_DataType_input2*>(const_cast(input2_in)); + _DataType_output* result = static_cast<_DataType_output*>(result_out); + + bool use_broadcasting = !array_equal(input1_shape, input1_ndim, input2_shape, input2_ndim); + use_broadcasting = use_broadcasting || !array_equal(condition_shape, condition_ndim, input1_shape, input1_ndim); + use_broadcasting = use_broadcasting || !array_equal(condition_shape, condition_ndim, input2_shape, input2_ndim); + + shape_elem_type* condition_shape_offsets = new shape_elem_type[condition_ndim]; + + get_shape_offsets_inkernel(condition_shape, condition_ndim, condition_shape_offsets); + bool use_strides = !array_equal(condition_strides, condition_ndim, condition_shape_offsets, condition_ndim); + delete[] condition_shape_offsets; + + shape_elem_type* input1_shape_offsets = new shape_elem_type[input1_ndim]; + + get_shape_offsets_inkernel(input1_shape, input1_ndim, input1_shape_offsets); + use_strides = use_strides || !array_equal(input1_strides, input1_ndim, input1_shape_offsets, input1_ndim); + delete[] input1_shape_offsets; + + shape_elem_type* input2_shape_offsets = new shape_elem_type[input2_ndim]; + + get_shape_offsets_inkernel(input2_shape, input2_ndim, input2_shape_offsets); + use_strides = use_strides || !array_equal(input2_strides, input2_ndim, input2_shape_offsets, input2_ndim); + delete[] input2_shape_offsets; + + sycl::event event; + sycl::range<1> gws(result_size); + + if (use_broadcasting) + { + DPNPC_id* condition_it; + const size_t condition_it_it_size_in_bytes = sizeof(DPNPC_id); + condition_it = reinterpret_cast*>(dpnp_memory_alloc_c(q_ref, condition_it_it_size_in_bytes)); + new (condition_it) DPNPC_id(q_ref, condition_data, condition_shape, condition_strides, condition_ndim); + + condition_it->broadcast_to_shape(result_shape, result_ndim); + + DPNPC_id<_DataType_input1>* input1_it; + const size_t input1_it_size_in_bytes = sizeof(DPNPC_id<_DataType_input1>); + input1_it = reinterpret_cast*>(dpnp_memory_alloc_c(q_ref, input1_it_size_in_bytes)); + new (input1_it) DPNPC_id<_DataType_input1>(q_ref, input1_data, input1_shape, input1_strides, input1_ndim); + + input1_it->broadcast_to_shape(result_shape, result_ndim); + + DPNPC_id<_DataType_input2>* input2_it; + const size_t input2_it_size_in_bytes = sizeof(DPNPC_id<_DataType_input2>); + input2_it = reinterpret_cast*>(dpnp_memory_alloc_c(q_ref, input2_it_size_in_bytes)); + new (input2_it) DPNPC_id<_DataType_input2>(q_ref, input2_data, input2_shape, input2_strides, input2_ndim); + + input2_it->broadcast_to_shape(result_shape, result_ndim); + + auto kernel_parallel_for_func = [=](sycl::id<1> global_id) { + const size_t i = global_id[0]; /* for (size_t i = 0; i < result_size; ++i) */ + { + const bool condition = (*condition_it)[i]; + const _DataType_output input1_elem = (*input1_it)[i]; + const _DataType_output input2_elem = (*input2_it)[i]; + result[i] = (condition) ? input1_elem : input2_elem; + } + }; + auto kernel_func = [&](sycl::handler& cgh) { + cgh.parallel_for>( + gws, kernel_parallel_for_func); + }; + + q.submit(kernel_func).wait(); + + condition_it->~DPNPC_id(); + input1_it->~DPNPC_id(); + input2_it->~DPNPC_id(); + + return event_ref; + } + else if (use_strides) + { + if ((result_ndim != condition_ndim) || (result_ndim != input1_ndim) || (result_ndim != input2_ndim)) + { + throw std::runtime_error("Result ndim=" + std::to_string(result_ndim) + + " mismatches with either condition ndim=" + std::to_string(condition_ndim) + + " or input1 ndim=" + std::to_string(input1_ndim) + + " or input2 ndim=" + std::to_string(input2_ndim)); + } + + /* memory transfer optimization, use USM-host for temporary speeds up tranfer to device */ + using usm_host_allocatorT = sycl::usm_allocator; + + size_t strides_size = 4 * result_ndim; + shape_elem_type* dev_strides_data = sycl::malloc_device(strides_size, q); + + /* create host temporary for packed strides managed by shared pointer */ + auto strides_host_packed = + std::vector(strides_size, usm_host_allocatorT(q)); + + /* packed vector is concatenation of result_strides, condition_strides, input1_strides and input2_strides */ + std::copy(result_strides, result_strides + result_ndim, strides_host_packed.begin()); + std::copy(condition_strides, condition_strides + result_ndim, strides_host_packed.begin() + result_ndim); + std::copy(input1_strides, input1_strides + result_ndim, strides_host_packed.begin() + 2 * result_ndim); + std::copy(input2_strides, input2_strides + result_ndim, strides_host_packed.begin() + 3 * result_ndim); + + auto copy_strides_ev = + q.copy(strides_host_packed.data(), dev_strides_data, strides_host_packed.size()); + + auto kernel_parallel_for_func = [=](sycl::id<1> global_id) { + const size_t output_id = global_id[0]; /* for (size_t i = 0; i < result_size; ++i) */ + { + const shape_elem_type* result_strides_data = &dev_strides_data[0]; + const shape_elem_type* condition_strides_data = &dev_strides_data[1]; + const shape_elem_type* input1_strides_data = &dev_strides_data[2]; + const shape_elem_type* input2_strides_data = &dev_strides_data[3]; + + size_t condition_id = 0; + size_t input1_id = 0; + size_t input2_id = 0; + + for (size_t i = 0; i < result_ndim; ++i) + { + const size_t output_xyz_id = + get_xyz_id_by_id_inkernel(output_id, result_strides_data, result_ndim, i); + condition_id += output_xyz_id * condition_strides_data[i]; + input1_id += output_xyz_id * input1_strides_data[i]; + input2_id += output_xyz_id * input2_strides_data[i]; + } + + const bool condition = condition_data[condition_id]; + const _DataType_output input1_elem = input1_data[input1_id]; + const _DataType_output input2_elem = input2_data[input2_id]; + result[output_id] = (condition) ? input1_elem : input2_elem; + } + }; + auto kernel_func = [&](sycl::handler& cgh) { + cgh.depends_on(copy_strides_ev); + cgh.parallel_for>( + gws, kernel_parallel_for_func); + }; + + q.submit(kernel_func).wait(); + + sycl::free(dev_strides_data, q); + return event_ref; + } + else + { + auto kernel_parallel_for_func = [=](sycl::id<1> global_id) { + const size_t i = global_id[0]; /* for (size_t i = 0; i < result_size; ++i) */ + + const bool condition = condition_data[i]; + const _DataType_output input1_elem = input1_data[i]; + const _DataType_output input2_elem = input2_data[i]; + result[i] = (condition) ? input1_elem : input2_elem; + }; + auto kernel_func = [&](sycl::handler& cgh) { + cgh.parallel_for>( + gws, kernel_parallel_for_func); + }; + event = q.submit(kernel_func); + } + + event_ref = reinterpret_cast(&event); + return DPCTLEvent_Copy(event_ref); + + return event_ref; +} + +template +DPCTLSyclEventRef (*dpnp_where_ext_c)(DPCTLSyclQueueRef, + void*, + const size_t, + const size_t, + const shape_elem_type*, + const shape_elem_type*, + const void*, + const size_t, + const size_t, + const shape_elem_type*, + const shape_elem_type*, + const void*, + const size_t, + const size_t, + const shape_elem_type*, + const shape_elem_type*, + const void*, + const size_t, + const size_t, + const shape_elem_type*, + const shape_elem_type*, + const DPCTLEventVectorRef) = dpnp_where_c<_DataType_output, _DataType_input1, _DataType_input2>; + +template +static void func_map_searching_2arg_3type_core(func_map_t& fmap) +{ + ((fmap[DPNPFuncName::DPNP_FN_WHERE_EXT][FT1][FTs] = + {populate_func_types(), + (void*)dpnp_where_ext_c()>, + func_type_map_t::find_type, + func_type_map_t::find_type>}), + ...); +} + +template +static void func_map_searching_2arg_3type_helper(func_map_t& fmap) +{ + ((func_map_searching_2arg_3type_core(fmap)), ...); +} + void func_map_init_searching(func_map_t& fmap) { fmap[DPNPFuncName::DPNP_FN_ARGMAX][eft_INT][eft_INT] = {eft_INT, (void*)dpnp_argmax_default_c}; @@ -177,5 +430,7 @@ void func_map_init_searching(func_map_t& fmap) fmap[DPNPFuncName::DPNP_FN_ARGMIN_EXT][eft_DBL][eft_INT] = {eft_INT, (void*)dpnp_argmin_ext_c}; fmap[DPNPFuncName::DPNP_FN_ARGMIN_EXT][eft_DBL][eft_LNG] = {eft_LNG, (void*)dpnp_argmin_ext_c}; + func_map_searching_2arg_3type_helper(fmap); + return; } diff --git a/dpnp/backend/src/dpnp_fptr.hpp b/dpnp/backend/src/dpnp_fptr.hpp index 742e6dff378..d6c48784e6b 100644 --- a/dpnp/backend/src/dpnp_fptr.hpp +++ b/dpnp/backend/src/dpnp_fptr.hpp @@ -163,6 +163,12 @@ struct is_any : std::disjunction...> {}; template struct are_same : std::conjunction...> {}; +/** + * A template constant to check if type T matces any type from Ts. + */ +template +constexpr auto is_any_v = is_any::value; + /** * A template constat to check if both types T1 and T2 match every type from Ts sequence. */ diff --git a/dpnp/dpnp_algo/dpnp_algo.pxd b/dpnp/dpnp_algo/dpnp_algo.pxd index 9bf161b0aaf..da1efddd3cc 100644 --- a/dpnp/dpnp_algo/dpnp_algo.pxd +++ b/dpnp/dpnp_algo/dpnp_algo.pxd @@ -211,7 +211,6 @@ cdef extern from "dpnp_iface_fptr.hpp" namespace "DPNPFuncName": # need this na DPNP_FN_NEGATIVE DPNP_FN_NEGATIVE_EXT DPNP_FN_NONZERO - DPNP_FN_NONZERO_EXT DPNP_FN_NOT_EQUAL_EXT DPNP_FN_ONES DPNP_FN_ONES_LIKE @@ -356,6 +355,7 @@ cdef extern from "dpnp_iface_fptr.hpp" namespace "DPNPFuncName": # need this na DPNP_FN_VANDER_EXT DPNP_FN_VAR DPNP_FN_VAR_EXT + DPNP_FN_WHERE_EXT DPNP_FN_ZEROS DPNP_FN_ZEROS_LIKE @@ -578,6 +578,7 @@ Searching functions """ cpdef dpnp_descriptor dpnp_argmax(dpnp_descriptor array1) cpdef dpnp_descriptor dpnp_argmin(dpnp_descriptor array1) +cpdef dpnp_descriptor dpnp_where(dpnp_descriptor cond_obj, dpnp_descriptor x_obj, dpnp_descriptor y_obj) """ Trigonometric functions diff --git a/dpnp/dpnp_algo/dpnp_algo.pyx b/dpnp/dpnp_algo/dpnp_algo.pyx index f12707ccc76..2fa9de34b99 100644 --- a/dpnp/dpnp_algo/dpnp_algo.pyx +++ b/dpnp/dpnp_algo/dpnp_algo.pyx @@ -48,6 +48,8 @@ cimport dpnp.dpnp_utils as utils cimport numpy import numpy +import operator + __all__ = [ "dpnp_astype", @@ -231,11 +233,11 @@ cpdef dpnp_queue_is_cpu(): Internal functions """ cdef DPNPFuncType dpnp_dtype_to_DPNPFuncType(dtype): - dt_c = numpy.dtype(dtype).char - kind = numpy.dtype(dtype).kind + dt_c = dpnp.dtype(dtype).char + kind = dpnp.dtype(dtype).kind if isinstance(kind, int): kind = chr(kind) - itemsize = numpy.dtype(dtype).itemsize + itemsize = dpnp.dtype(dtype).itemsize if dt_c == 'd': return DPNP_FT_DOUBLE @@ -264,19 +266,19 @@ cdef dpnp_DPNPFuncType_to_dtype(size_t type): TODO needs to use DPNPFuncType here """ if type == DPNP_FT_DOUBLE: - return numpy.float64 + return dpnp.float64 elif type == DPNP_FT_FLOAT: - return numpy.float32 + return dpnp.float32 elif type == DPNP_FT_LONG: - return numpy.int64 + return dpnp.int64 elif type == DPNP_FT_INT: - return numpy.int32 + return dpnp.int32 elif type == DPNP_FT_CMPLX64: - return numpy.complex64 + return dpnp.complex64 elif type == DPNP_FT_CMPLX128: - return numpy.complex128 + return dpnp.complex128 elif type == DPNP_FT_BOOL: - return numpy.bool_ + return dpnp.bool else: utils.checker_throw_type_error("dpnp_DPNPFuncType_to_dtype", type) diff --git a/dpnp/dpnp_algo/dpnp_algo_arraycreation.pyx b/dpnp/dpnp_algo/dpnp_algo_arraycreation.pyx index cb44a08db59..7b538118b93 100644 --- a/dpnp/dpnp_algo/dpnp_algo_arraycreation.pyx +++ b/dpnp/dpnp_algo/dpnp_algo_arraycreation.pyx @@ -41,7 +41,6 @@ __all__ += [ "dpnp_identity", "dpnp_linspace", "dpnp_logspace", - "dpnp_meshgrid", "dpnp_ptp", "dpnp_trace", "dpnp_tri", @@ -190,83 +189,86 @@ cpdef utils.dpnp_descriptor dpnp_identity(n, result_dtype): return result -# TODO this function should work through dpnp_arange_c -cpdef tuple dpnp_linspace(start, stop, num, endpoint, retstep, dtype, axis): - cdef shape_type_c obj_shape = utils._object_to_tuple(num) - cdef utils.dpnp_descriptor result = utils_py.create_output_descriptor_py(obj_shape, dtype, None) +def dpnp_linspace(start, stop, num, dtype=None, device=None, usm_type=None, sycl_queue=None, endpoint=True, retstep=False, axis=0): + usm_type_alloc, sycl_queue_alloc = utils_py.get_usm_allocations([start, stop]) - if endpoint: - steps_count = num - 1 - else: - steps_count = num + # Get sycl_queue. + if sycl_queue is None and device is None: + sycl_queue = sycl_queue_alloc + sycl_queue_normalized = dpnp.get_normalized_queue_device(sycl_queue=sycl_queue, device=device) - # if there are steps, then fill values - if steps_count > 0: - step = (dpnp.float64(stop) - start) / steps_count - for i in range(1, result.size): - result.get_pyobj()[i] = start + step * i + # Get temporary usm_type for getting dtype. + if usm_type is None: + _usm_type = "device" if usm_type_alloc is None else usm_type_alloc else: - step = dpnp.nan - - # if result is not empty, then fiil first and last elements - if num > 0: - result.get_pyobj()[0] = start - if endpoint and result.size > 1: - result.get_pyobj()[result.size - 1] = stop - - return (result.get_pyobj(), step) - - -cpdef utils.dpnp_descriptor dpnp_logspace(start, stop, num, endpoint, base, dtype, axis): - temp = dpnp.linspace(start, stop, num=num, endpoint=endpoint) - return dpnp.get_dpnp_descriptor(dpnp.astype(dpnp.power(base, temp), dtype)) - - -cpdef list dpnp_meshgrid(xi, copy, sparse, indexing): - input_count = len(xi) - - # simple case - if input_count == 0: - return [] - - # simple case - if input_count == 1: - return [dpnp_copy(dpnp.get_dpnp_descriptor(xi[0])).get_pyobj()] + _usm_type = usm_type + + # Get dtype. + if not hasattr(start, "dtype") and not dpnp.isscalar(start): + start = dpnp.asarray(start, usm_type=_usm_type, sycl_queue=sycl_queue_normalized) + if not hasattr(stop, "dtype") and not dpnp.isscalar(stop): + stop = dpnp.asarray(stop, usm_type=_usm_type, sycl_queue=sycl_queue_normalized) + dt = numpy.result_type(start, stop, float(num)) + dt = utils_py.map_dtype_to_device(dt, sycl_queue_normalized.sycl_device) + if dtype is None: + dtype = dt + + if dpnp.isscalar(start) and dpnp.isscalar(stop): + # Call linspace() function for scalars. + res = dpnp_container.linspace(start, + stop, + num, + dtype=dt, + usm_type=_usm_type, + sycl_queue=sycl_queue_normalized, + endpoint=endpoint) + else: + num = operator.index(num) + if num < 0: + raise ValueError("Number of points must be non-negative") + + # Get final usm_type and copy arrays if needed with current dtype, usm_type and sycl_queue. + # Do not need to copy usm_ndarray by usm_type if it is not explicitly stated. + if usm_type is None: + usm_type = _usm_type + if not hasattr(start, "usm_type"): + _start = dpnp.asarray(start, dtype=dt, usm_type=usm_type, sycl_queue=sycl_queue_normalized) + else: + _start = dpnp.asarray(start, dtype=dt, sycl_queue=sycl_queue_normalized) + if not hasattr(stop, "usm_type"): + _stop = dpnp.asarray(stop, dtype=dt, usm_type=usm_type, sycl_queue=sycl_queue_normalized) + else: + _stop = dpnp.asarray(stop, dtype=dt, sycl_queue=sycl_queue_normalized) + else: + _start = dpnp.asarray(start, dtype=dt, usm_type=usm_type, sycl_queue=sycl_queue_normalized) + _stop = dpnp.asarray(stop, dtype=dt, usm_type=usm_type, sycl_queue=sycl_queue_normalized) - shape_mult = 1 - for i in range(input_count): - shape_mult = shape_mult * xi[i].size + # FIXME: issue #1304. Mathematical operations with scalar don't follow data type. + _num = dpnp.asarray((num - 1) if endpoint else num, dtype=dt, usm_type=usm_type, sycl_queue=sycl_queue_normalized) - shape_list = [] - for i in range(input_count): - shape_list.append(xi[i].size) - if indexing == "xy": - temp = shape_list[0] - shape_list[0] = shape_list[1] - shape_list[1] = temp + step = (_stop - _start) / _num - steps = [] - for i in range(input_count): - shape_mult = shape_mult // shape_list[i] - steps.append(shape_mult) - if indexing == "xy": - temp = steps[0] - steps[0] = steps[1] - steps[1] = temp + res = dpnp_container.arange(0, + stop=num, + step=1, + dtype=dt, + usm_type=usm_type, + sycl_queue=sycl_queue_normalized) - shape = tuple(shape_list) + res = res.reshape((-1,) + (1,) * step.ndim) + res = res * step + _start - cdef utils.dpnp_descriptor res_item - result = [] - for i in range(input_count): - res_item = utils_py.create_output_descriptor_py(shape, xi[i].dtype, None) + if endpoint and num > 1: + res[-1] = dpnp_container.full(step.shape, _stop) - for j in range(res_item.size): - res_item.get_pyobj()[j] = xi[i][(j // steps[i]) % xi[i].size] + if numpy.issubdtype(dtype, dpnp.integer): + dpnp.floor(res, out=res) + return res.astype(dtype) - result.append(res_item.get_pyobj()) - return result +cpdef utils.dpnp_descriptor dpnp_logspace(start, stop, num, endpoint, base, dtype, axis): + temp = dpnp.linspace(start, stop, num=num, endpoint=endpoint) + return dpnp.get_dpnp_descriptor(dpnp.astype(dpnp.power(base, temp), dtype)) cpdef dpnp_ptp(utils.dpnp_descriptor arr, axis=None): diff --git a/dpnp/dpnp_algo/dpnp_algo_indexing.pyx b/dpnp/dpnp_algo/dpnp_algo_indexing.pyx index 907d2044d87..4e07c03f24a 100644 --- a/dpnp/dpnp_algo/dpnp_algo_indexing.pyx +++ b/dpnp/dpnp_algo/dpnp_algo_indexing.pyx @@ -1,7 +1,7 @@ # cython: language_level=3 # -*- coding: utf-8 -*- # ***************************************************************************** -# Copyright (c) 2016-2020, Intel Corporation +# Copyright (c) 2016-2023, Intel Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without @@ -40,7 +40,6 @@ __all__ += [ "dpnp_diagonal", "dpnp_fill_diagonal", "dpnp_indices", - "dpnp_nonzero", "dpnp_place", "dpnp_put", "dpnp_put_along_axis", @@ -104,14 +103,6 @@ ctypedef c_dpctl.DPCTLSyclEventRef(*custom_indexing_6in_func_ptr_t)(c_dpctl.DPCT const size_t, const size_t, const c_dpctl.DPCTLEventVectorRef) -ctypedef c_dpctl.DPCTLSyclEventRef(*fptr_dpnp_nonzero_t)(c_dpctl.DPCTLSyclQueueRef, - const void * , - void * , - const size_t, - const shape_elem_type * , - const size_t , - const size_t, - const c_dpctl.DPCTLEventVectorRef) cpdef utils.dpnp_descriptor dpnp_choose(utils.dpnp_descriptor x1, list choices1): @@ -316,60 +307,6 @@ cpdef object dpnp_indices(dimensions): return dpnp_result -cpdef tuple dpnp_nonzero(utils.dpnp_descriptor in_array1): - cdef shape_type_c shape_arr = in_array1.shape - res_count = in_array1.ndim - - # have to go through array one extra time to count size of result arrays - res_size_obj = dpnp_count_nonzero(in_array1) - cdef size_t res_size = dpnp.convert_single_elem_array_to_scalar(res_size_obj.get_pyobj()) - - cdef DPNPFuncType param1_type = dpnp_dtype_to_DPNPFuncType(in_array1.dtype) - - cdef DPNPFuncData kernel_data = get_dpnp_function_ptr(DPNP_FN_NONZERO_EXT, param1_type, param1_type) - - cdef fptr_dpnp_nonzero_t func = kernel_data.ptr - - cdef c_dpctl.SyclQueue q - cdef c_dpctl.DPCTLSyclQueueRef q_ref - cdef c_dpctl.DPCTLSyclEventRef event_ref - - array1_obj = in_array1.get_array() - - res_list = [] - cdef utils.dpnp_descriptor res_arr - cdef shape_type_c result_shape - for j in range(res_count): - result_shape = utils._object_to_tuple(res_size) - res_arr = utils_py.create_output_descriptor_py(result_shape, - dpnp.int64, - None, - device=array1_obj.sycl_device, - usm_type=array1_obj.usm_type, - sycl_queue=array1_obj.sycl_queue) - - q = res_arr.get_array().sycl_queue - q_ref = q.get_queue_ref() - - event_ref = func(q_ref, - in_array1.get_data(), - res_arr.get_data(), - res_arr.size, - shape_arr.data(), - in_array1.ndim, - j, - NULL) # dep_events_ref - - with nogil: c_dpctl.DPCTLEvent_WaitAndThrow(event_ref) - c_dpctl.DPCTLEvent_Delete(event_ref) - - res_list.append(res_arr.get_pyobj()) - - result = utils._object_to_tuple(res_list) - - return result - - cpdef dpnp_place(dpnp_descriptor arr, object mask, dpnp_descriptor vals): result_sycl_device, result_usm_type, result_sycl_queue = utils.get_common_usm_allocation(arr, vals) diff --git a/dpnp/dpnp_algo/dpnp_algo_linearalgebra.pyx b/dpnp/dpnp_algo/dpnp_algo_linearalgebra.pyx index c738cc75b70..91c1da88405 100644 --- a/dpnp/dpnp_algo/dpnp_algo_linearalgebra.pyx +++ b/dpnp/dpnp_algo/dpnp_algo_linearalgebra.pyx @@ -1,7 +1,7 @@ # cython: language_level=3 # -*- coding: utf-8 -*- # ***************************************************************************** -# Copyright (c) 2016-2020, Intel Corporation +# Copyright (c) 2016-2023, Intel Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without @@ -65,8 +65,9 @@ ctypedef c_dpctl.DPCTLSyclEventRef(*fptr_2in_1out_matmul_t)(c_dpctl.DPCTLSyclQue const shape_elem_type *, const shape_elem_type * , const c_dpctl.DPCTLEventVectorRef) -cpdef utils.dpnp_descriptor dpnp_dot(utils.dpnp_descriptor in_array1, utils.dpnp_descriptor in_array2): - +cpdef utils.dpnp_descriptor dpnp_dot(utils.dpnp_descriptor in_array1, + utils.dpnp_descriptor in_array2, + utils.dpnp_descriptor out=None): cdef shape_type_c shape1, shape2 shape1 = in_array1.shape @@ -78,6 +79,7 @@ cpdef utils.dpnp_descriptor dpnp_dot(utils.dpnp_descriptor in_array1, utils.dpnp # get the FPTR data structure cdef DPNPFuncData kernel_data = get_dpnp_function_ptr(DPNP_FN_DOT_EXT, param1_type, param2_type) + cdef utils.dpnp_descriptor result ndim1 = in_array1.ndim ndim2 = in_array2.ndim @@ -89,7 +91,7 @@ cpdef utils.dpnp_descriptor dpnp_dot(utils.dpnp_descriptor in_array1, utils.dpnp elif ndim1 == 1 and ndim2 == 1: result_shape = () elif ndim1 == 1: # ndim2 > 1 - result_shape = shape2[:-1] + result_shape = shape2[::-2] if ndim2 == 2 else shape2[::2] elif ndim2 == 1: # ndim1 > 1 result_shape = shape1[:-1] else: @@ -101,13 +103,24 @@ cpdef utils.dpnp_descriptor dpnp_dot(utils.dpnp_descriptor in_array1, utils.dpnp result_sycl_device, result_usm_type, result_sycl_queue = utils.get_common_usm_allocation(in_array1, in_array2) - # create result array with type given by FPTR data - cdef utils.dpnp_descriptor result = utils.create_output_descriptor(result_shape, - kernel_data.return_type, - None, - device=result_sycl_device, - usm_type=result_usm_type, - sycl_queue=result_sycl_queue) + if out is None: + # create result array with type given by FPTR data + result = utils.create_output_descriptor(result_shape, + kernel_data.return_type, + None, + device=result_sycl_device, + usm_type=result_usm_type, + sycl_queue=result_sycl_queue) + else: + result_type = dpnp_DPNPFuncType_to_dtype(< size_t > kernel_data.return_type) + if out.dtype != result_type: + utils.checker_throw_value_error('dot', 'out.dtype', out.dtype, result_type) + if out.shape != result_shape: + utils.checker_throw_value_error('dot', 'out.shape', out.shape, result_shape) + + result = out + + utils.get_common_usm_allocation(in_array1, result) # check USM allocation is common cdef shape_type_c result_strides = utils.strides_to_vector(result.strides, result.shape) cdef shape_type_c in_array1_shape = in_array1.shape diff --git a/dpnp/dpnp_algo/dpnp_algo_searching.pyx b/dpnp/dpnp_algo/dpnp_algo_searching.pyx index 59ce8475181..44621b5cca0 100644 --- a/dpnp/dpnp_algo/dpnp_algo_searching.pyx +++ b/dpnp/dpnp_algo/dpnp_algo_searching.pyx @@ -1,7 +1,7 @@ # cython: language_level=3 # -*- coding: utf-8 -*- # ***************************************************************************** -# Copyright (c) 2016-2020, Intel Corporation +# Copyright (c) 2016-2023, Intel Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without @@ -36,7 +36,8 @@ and the rest of the library __all__ += [ "dpnp_argmax", - "dpnp_argmin" + "dpnp_argmin", + "dpnp_where" ] @@ -45,6 +46,29 @@ ctypedef c_dpctl.DPCTLSyclEventRef(*custom_search_1in_1out_func_ptr_t)(c_dpctl.D void * , void * , size_t, const c_dpctl.DPCTLEventVectorRef) +ctypedef c_dpctl.DPCTLSyclEventRef(*where_func_ptr_t)(c_dpctl.DPCTLSyclQueueRef, + void *, + const size_t, + const size_t, + const shape_elem_type * , + const shape_elem_type * , + void *, + const size_t, + const size_t, + const shape_elem_type * , + const shape_elem_type * , + void *, + const size_t, + const size_t, + const shape_elem_type * , + const shape_elem_type * , + void *, + const size_t, + const size_t, + const shape_elem_type * , + const shape_elem_type * , + const c_dpctl.DPCTLEventVectorRef) except + + cpdef utils.dpnp_descriptor dpnp_argmax(utils.dpnp_descriptor in_array1): cdef DPNPFuncType param1_type = dpnp_dtype_to_DPNPFuncType(in_array1.dtype) @@ -116,3 +140,81 @@ cpdef utils.dpnp_descriptor dpnp_argmin(utils.dpnp_descriptor in_array1): c_dpctl.DPCTLEvent_Delete(event_ref) return result + + +cpdef utils.dpnp_descriptor dpnp_where(utils.dpnp_descriptor cond_obj, + utils.dpnp_descriptor x_obj, + utils.dpnp_descriptor y_obj): + # Convert object type to C enum DPNPFuncType + cdef DPNPFuncType cond_c_type = dpnp_dtype_to_DPNPFuncType(cond_obj.dtype) + cdef DPNPFuncType x_c_type = dpnp_dtype_to_DPNPFuncType(x_obj.dtype) + cdef DPNPFuncType y_c_type = dpnp_dtype_to_DPNPFuncType(y_obj.dtype) + + # get the FPTR data structure + cdef DPNPFuncData kernel_data = get_dpnp_function_ptr(DPNP_FN_WHERE_EXT, x_c_type, y_c_type) + + # Create result array + cdef shape_type_c cond_shape = cond_obj.shape + cdef shape_type_c x_shape = x_obj.shape + cdef shape_type_c y_shape = y_obj.shape + + cdef shape_type_c cond_strides = utils.strides_to_vector(cond_obj.strides, cond_shape) + cdef shape_type_c x_strides = utils.strides_to_vector(x_obj.strides, x_shape) + cdef shape_type_c y_strides = utils.strides_to_vector(y_obj.strides, y_shape) + + cdef shape_type_c cond_x_shape = utils.get_common_shape(cond_shape, x_shape) + cdef shape_type_c cond_y_shape = utils.get_common_shape(cond_shape, y_shape) + cdef shape_type_c result_shape = utils.get_common_shape(cond_x_shape, cond_y_shape) + cdef utils.dpnp_descriptor result + + result_usm_type, result_sycl_queue = utils_py.get_usm_allocations([cond_obj.get_array(), + x_obj.get_array(), + y_obj.get_array()]) + + # get FPTR function and return type + cdef where_func_ptr_t func = < where_func_ptr_t > kernel_data.ptr + cdef DPNPFuncType return_type = kernel_data.return_type + + """ Create result array with type given by FPTR data """ + result = utils.create_output_descriptor(result_shape, + return_type, + None, + device=None, + usm_type=result_usm_type, + sycl_queue=result_sycl_queue) + + cdef shape_type_c result_strides = utils.strides_to_vector(result.strides, result_shape) + + result_obj = result.get_array() + + cdef c_dpctl.SyclQueue q = < c_dpctl.SyclQueue > result_obj.sycl_queue + cdef c_dpctl.DPCTLSyclQueueRef q_ref = q.get_queue_ref() + + """ Call FPTR function """ + cdef c_dpctl.DPCTLSyclEventRef event_ref = func(q_ref, + result.get_data(), + result.size, + result.ndim, + result_shape.data(), + result_strides.data(), + cond_obj.get_data(), + cond_obj.size, + cond_obj.ndim, + cond_shape.data(), + cond_strides.data(), + x_obj.get_data(), + x_obj.size, + x_obj.ndim, + x_shape.data(), + x_strides.data(), + y_obj.get_data(), + y_obj.size, + y_obj.ndim, + y_shape.data(), + y_strides.data(), + NULL) # dep_events_ref) + + with nogil: c_dpctl.DPCTLEvent_WaitAndThrow(event_ref) + c_dpctl.DPCTLEvent_Delete(event_ref) + + return result diff --git a/dpnp/dpnp_algo/dpnp_algo_statistics.pyx b/dpnp/dpnp_algo/dpnp_algo_statistics.pyx index 920068c7d63..5d21dcf8c74 100644 --- a/dpnp/dpnp_algo/dpnp_algo_statistics.pyx +++ b/dpnp/dpnp_algo/dpnp_algo_statistics.pyx @@ -1,7 +1,7 @@ # cython: language_level=3 # -*- coding: utf-8 -*- # ***************************************************************************** -# Copyright (c) 2016-2020, Intel Corporation +# Copyright (c) 2016-2023, Intel Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without @@ -129,7 +129,7 @@ cpdef dpnp_average(utils.dpnp_descriptor x1): array_sum = dpnp_sum(x1).get_pyobj() """ Numpy interface inconsistency """ - return_type = numpy.float32 if (x1.dtype == numpy.float32) else numpy.float64 + return_type = dpnp.float32 if (x1.dtype == dpnp.float32) else dpnp.float64 return (return_type(array_sum / x1.size)) diff --git a/dpnp/dpnp_array.py b/dpnp/dpnp_array.py index c50ed979272..d1ad1252d4e 100644 --- a/dpnp/dpnp_array.py +++ b/dpnp/dpnp_array.py @@ -174,6 +174,9 @@ def __ge__(self, other): # '__getattribute__', def __getitem__(self, key): + if isinstance(key, dpnp_array): + key = key.get_array() + item = self._array_obj.__getitem__(key) if not isinstance(item, dpt.usm_ndarray): raise RuntimeError( @@ -208,7 +211,11 @@ def __int__(self): # '__invert__', # '__ior__', - # '__ipow__', + + def __ipow__(self, other): + dpnp.power(self, other, out=self) + return self + # '__irshift__', # '__isub__', # '__iter__', @@ -276,7 +283,10 @@ def __rmul__(self, other): return dpnp.multiply(other, self) # '__ror__', - # '__rpow__', + + def __rpow__(self, other): + return dpnp.power(other, self) + # '__rrshift__', # '__rshift__', @@ -290,6 +300,11 @@ def __rtruediv__(self, other): # '__setattr__', def __setitem__(self, key, val): + if isinstance(key, dpnp_array): + key = key.get_array() + if isinstance(val, dpnp_array): + val = val.get_array() + self._array_obj.__setitem__(key, val) # '__setstate__', @@ -331,33 +346,43 @@ def _create_from_usm_ndarray(usm_ary : dpt.usm_ndarray): res._array_obj = usm_ary return res - def all(self, axis=None, out=None, keepdims=False): + def all(self, + axis=None, + out=None, + keepdims=False, + *, + where=True): """ Returns True if all elements evaluate to True. - Refer to `numpy.all` for full documentation. + Refer to :obj:`dpnp.all` for full documentation. See Also -------- - :obj:`numpy.all` : equivalent function + :obj:`dpnp.all` : equivalent function """ - return dpnp.all(self, axis, out, keepdims) + return dpnp.all(self, axis=axis, out=out, keepdims=keepdims, where=where) - def any(self, axis=None, out=None, keepdims=False): + def any(self, + axis=None, + out=None, + keepdims=False, + *, + where=True): """ Returns True if any of the elements of `a` evaluate to True. - Refer to `numpy.any` for full documentation. + Refer to :obj:`dpnp.any` for full documentation. See Also -------- - :obj:`numpy.any` : equivalent function + :obj:`dpnp.any` : equivalent function """ - return dpnp.any(self, axis, out, keepdims) + return dpnp.any(self, axis=axis, out=out, keepdims=keepdims, where=where) def argmax(self, axis=None, out=None): """ @@ -519,7 +544,7 @@ def conj(self): """ - if not numpy.issubsctype(self.dtype, numpy.complex_): + if not dpnp.issubsctype(self.dtype, dpnp.complex_): return self else: return dpnp.conjugate(self) @@ -532,7 +557,7 @@ def conjugate(self): """ - if not numpy.issubsctype(self.dtype, numpy.complex_): + if not dpnp.issubsctype(self.dtype, dpnp.complex_): return self else: return dpnp.conjugate(self) @@ -567,7 +592,8 @@ def diagonal(input, offset=0, axis1=0, axis2=1): return dpnp.diagonal(input, offset, axis1, axis2) - # 'dot', + def dot(self, other, out=None): + return dpnp.dot(self, other, out) @property def dtype(self): @@ -734,7 +760,10 @@ def ndim(self): return self._array_obj.ndim # 'newbyteorder', - # 'nonzero', + + def nonzero(self): + return dpnp.nonzero(self) + # 'partition', def prod(self, axis=None, dtype=None, out=None, keepdims=False, initial=None, where=True): diff --git a/dpnp/dpnp_container.py b/dpnp/dpnp_container.py index 75e20f8a0cb..12d28074b8f 100644 --- a/dpnp/dpnp_container.py +++ b/dpnp/dpnp_container.py @@ -47,6 +47,7 @@ "empty", "eye", "full", + "linspace", "ones" "tril", "triu", @@ -126,6 +127,33 @@ def empty(shape, return dpnp_array(array_obj.shape, buffer=array_obj, order=order) +def eye(N, + M=None, + /, + *, + k=0, + dtype=None, + order="C", + device=None, + usm_type="device", + sycl_queue=None): + """Validate input parameters before passing them into `dpctl.tensor` module""" + dpu.validate_usm_type(usm_type, allow_none=False) + sycl_queue_normalized = dpnp.get_normalized_queue_device(sycl_queue=sycl_queue, device=device) + if order is None: + order = 'C' + + """Creates `dpnp_array` with ones on the `k`th diagonal.""" + array_obj = dpt.eye(N, + M, + k=k, + dtype=dtype, + order=order, + usm_type=usm_type, + sycl_queue=sycl_queue_normalized) + return dpnp_array(array_obj.shape, buffer=array_obj, order=order) + + def full(shape, fill_value, *, @@ -153,31 +181,38 @@ def full(shape, return dpnp_array(array_obj.shape, buffer=array_obj, order=order) -def eye(N, - M=None, - /, - *, - k=0, - dtype=None, - order="C", - device=None, - usm_type="device", - sycl_queue=None): +def linspace(start, + stop, + /, + num, + *, + dtype=None, + device=None, + usm_type="device", + sycl_queue=None, + endpoint=True): """Validate input parameters before passing them into `dpctl.tensor` module""" dpu.validate_usm_type(usm_type, allow_none=False) sycl_queue_normalized = dpnp.get_normalized_queue_device(sycl_queue=sycl_queue, device=device) - if order is None: - order = 'C' - """Creates `dpnp_array` with ones on the `k`th diagonal.""" - array_obj = dpt.eye(N, - M, - k=k, - dtype=dtype, - order=order, - usm_type=usm_type, - sycl_queue=sycl_queue_normalized) - return dpnp_array(array_obj.shape, buffer=array_obj, order=order) + """Creates `dpnp_array` with evenly spaced numbers of specified interval.""" + array_obj = dpt.linspace(start, + stop, + num, + dtype=dtype, + usm_type=usm_type, + sycl_queue=sycl_queue_normalized, + endpoint=endpoint) + return dpnp_array(array_obj.shape, buffer=array_obj) + + +def meshgrid(*xi, indexing="xy"): + """Creates list of `dpnp_array` coordinate matrices from vectors.""" + if len(xi) == 0: + return [] + arrays = tuple(x.get_array() if isinstance(x, dpnp_array) else x for x in xi) + arrays_obj = dpt.meshgrid(*arrays, indexing=indexing) + return [dpnp_array._create_from_usm_ndarray(array_obj) for array_obj in arrays_obj] def ones(shape, diff --git a/dpnp/dpnp_iface_arraycreation.py b/dpnp/dpnp_iface_arraycreation.py index 5b062a346b9..257fd660fbb 100644 --- a/dpnp/dpnp_iface_arraycreation.py +++ b/dpnp/dpnp_iface_arraycreation.py @@ -50,6 +50,7 @@ import dpnp.dpnp_container as dpnp_container import dpctl.tensor as dpt +import dpctl __all__ = [ @@ -879,7 +880,18 @@ def identity(n, dtype=None, *, like=None): return call_origin(numpy.identity, n, dtype=dtype, like=like) -def linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None, axis=0): +def linspace(start, + stop, + /, + num, + *, + dtype=None, + device=None, + usm_type=None, + sycl_queue=None, + endpoint=True, + retstep=False, + axis=0): """ Return evenly spaced numbers over a specified interval. @@ -888,6 +900,8 @@ def linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None, axis Limitations ----------- Parameter ``axis`` is supported only with default value ``0``. + Parameter ``retstep`` is supported only with default value ``False``. + Otherwise the function will be executed sequentially on CPU. See Also -------- @@ -913,16 +927,19 @@ def linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None, axis """ - if not use_origin_backend(): - if axis != 0: - checker_throw_value_error("linspace", "axis", axis, 0) - - res = dpnp_linspace(start, stop, num, endpoint, retstep, dtype, axis) - - if retstep: - return res - else: - return res[0] + if retstep is not False: + pass + elif axis != 0: + pass + else: + return dpnp_linspace(start, + stop, + num, + dtype=dtype, + device=device, + usm_type=usm_type, + sycl_queue=sycl_queue, + endpoint=endpoint) return call_origin(numpy.linspace, start, stop, num, endpoint, retstep, dtype, axis) @@ -1010,8 +1027,10 @@ def meshgrid(*xi, copy=True, sparse=False, indexing='xy'): Limitations ----------- + Each array instance from `xi` is supported as either :class:`dpnp.dpnp_array` or :class:`dpctl.tensor.usm_ndarray`. Parameter ``copy`` is supported only with default value ``True``. Parameter ``sparse`` is supported only with default value ``False``. + Otherwise the function will be executed sequentially on CPU. Examples -------- @@ -1045,17 +1064,16 @@ def meshgrid(*xi, copy=True, sparse=False, indexing='xy'): """ - if not use_origin_backend(): - # original limitation - if indexing not in ["ij", "xy"]: - checker_throw_value_error("meshgrid", "indexing", indexing, "'ij' or 'xy'") - - if copy is not True: - checker_throw_value_error("meshgrid", "copy", copy, True) - if sparse is not False: - checker_throw_value_error("meshgrid", "sparse", sparse, False) - - return dpnp_meshgrid(xi, copy, sparse, indexing) + if not all((isinstance(x, (dpnp.ndarray, dpt.usm_ndarray)) for x in xi)): + pass + elif indexing not in ["ij", "xy"]: + pass + elif copy is not True: + pass + elif sparse is not False: + pass + else: + return dpnp_container.meshgrid(*xi, indexing=indexing) return call_origin(numpy.meshgrid, xi, copy, sparse, indexing) diff --git a/dpnp/dpnp_iface_indexing.py b/dpnp/dpnp_iface_indexing.py index 6ff554d89d3..ad2eb9794f6 100644 --- a/dpnp/dpnp_iface_indexing.py +++ b/dpnp/dpnp_iface_indexing.py @@ -2,7 +2,7 @@ # distutils: language = c++ # -*- coding: utf-8 -*- # ***************************************************************************** -# Copyright (c) 2016-2020, Intel Corporation +# Copyright (c) 2016-2023, Intel Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without @@ -39,14 +39,14 @@ """ - -import collections - from dpnp.dpnp_algo import * from dpnp.dpnp_utils import * import dpnp +from dpnp.dpnp_array import dpnp_array + import numpy +import dpctl.tensor as dpt __all__ = [ @@ -286,15 +286,21 @@ def indices(dimensions, dtype=int, sparse=False): return call_origin(numpy.indices, dimensions, dtype, sparse) -def nonzero(x1): +def nonzero(x, /): """ Return the indices of the elements that are non-zero. For full documentation refer to :obj:`numpy.nonzero`. + Returns + ------- + y : tuple[dpnp.ndarray] + Indices of elements that are non-zero. + Limitations ----------- - Input array is supported as :obj:`dpnp.ndarray`. + Parameters `x` is supported as either :class:`dpnp.ndarray` + or :class:`dpctl.tensor.usm_ndarray`. Otherwise the function will be executed sequentially on CPU. Input array data types are limited by supported DPNP :ref:`Data types`. @@ -329,11 +335,11 @@ def nonzero(x1): """ - x1_desc = dpnp.get_dpnp_descriptor(x1, copy_when_nondefault_queue=False) - if x1_desc: - return dpnp_nonzero(x1_desc) + if isinstance(x, dpnp_array) or isinstance(x, dpt.usm_ndarray): + dpt_array = x.get_array() if isinstance(x, dpnp_array) else x + return tuple(dpnp_array._create_from_usm_ndarray(y) for y in dpt.nonzero(dpt_array)) - return call_origin(numpy.nonzero, x1) + return call_origin(numpy.nonzero, x) def place(x1, mask, vals): diff --git a/dpnp/dpnp_iface_linearalgebra.py b/dpnp/dpnp_iface_linearalgebra.py index 1fd6eba2d9c..a989f745c0a 100644 --- a/dpnp/dpnp_iface_linearalgebra.py +++ b/dpnp/dpnp_iface_linearalgebra.py @@ -2,7 +2,7 @@ # distutils: language = c++ # -*- coding: utf-8 -*- # ***************************************************************************** -# Copyright (c) 2016-2020, Intel Corporation +# Copyright (c) 2016-2023, Intel Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without @@ -44,9 +44,9 @@ from dpnp.dpnp_algo import * from dpnp.dpnp_utils import * import dpnp -import dpnp.config as config import numpy +import dpctl.tensor as dpt __all__ = [ @@ -62,18 +62,25 @@ ] -def dot(x1, x2, **kwargs): +def dot(x1, x2, out=None, **kwargs): """ - Returns the dot product of `x1` and `x2`. + Dot product of `x1` and `x2`. For full documentation refer to :obj:`numpy.dot`. + Returns + ------- + y : dpnp.ndarray + Returns the dot product of `x1` and `x2`. + If `out` is given, then it is returned. + Limitations ----------- - Parameters ``x1`` and ``x2`` are supported as :obj:`dpnp.ndarray` of the same type. - Keyword arguments ``kwargs`` are currently unsupported. - Otherwise the functions will be executed sequentially on CPU. - Input array data types are limited by supported DPNP :ref:`Data types`. + Parameters `x1` and `x2` are supported as either scalar, :class:`dpnp.ndarray` + or :class:`dpctl.tensor.usm_ndarray`, but both `x1` and `x2` can not be scalars at the same time. + Keyword argument ``kwargs`` is currently unsupported. + Otherwise the functions will be executed sequentially on CPU. + Input array data types are limited by supported DPNP :ref:`Data types`. See Also -------- @@ -82,31 +89,37 @@ def dot(x1, x2, **kwargs): Examples -------- - >>> import dpnp as np - >>> np.dot(3, 4) - 12 - >>> a = np.array([1, 2, 3]) - >>> b = np.array([1, 2, 3]) - >>> np.dot(a, b) + >>> import dpnp as dp + >>> a = dp.array([1, 2, 3]) + >>> b = dp.array([1, 2, 3]) + >>> dp.dot(a, b) 14 """ - x1_desc = dpnp.get_dpnp_descriptor(x1, copy_when_strides=False, copy_when_nondefault_queue=False) - x2_desc = dpnp.get_dpnp_descriptor(x2, copy_when_strides=False, copy_when_nondefault_queue=False) - if x1_desc and x2_desc and not kwargs: - # TODO: remove fallback with scalars when muliply backend func will support strides - if(x1_desc.ndim == 0 and x2_desc.strides is not None - or x2_desc.ndim == 0 and x1_desc.strides is not None): - pass - elif (x1_desc.ndim >= 1 and x2_desc.ndim > 1 and x1_desc.shape[-1] != x2_desc.shape[-2]): - pass - elif (x1_desc.ndim > 0 and x2_desc.ndim == 1 and x1_desc.shape[-1] != x2_desc.shape[0]): - pass - else: - return dpnp_dot(x1_desc, x2_desc).get_pyobj() + if kwargs: + pass + elif dpnp.isscalar(x1) and dpnp.isscalar(x2): + # at least either x1 or x2 has to be an array + pass + else: + # get USM type and queue to copy scalar from the host memory into a USM allocation + usm_type, queue = get_usm_allocations([x1, x2]) if dpnp.isscalar(x1) or dpnp.isscalar(x2) else (None, None) + + x1_desc = dpnp.get_dpnp_descriptor(x1, copy_when_strides=False, copy_when_nondefault_queue=False, + alloc_usm_type=usm_type, alloc_queue=queue) + x2_desc = dpnp.get_dpnp_descriptor(x2, copy_when_strides=False, copy_when_nondefault_queue=False, + alloc_usm_type=usm_type, alloc_queue=queue) + if x1_desc and x2_desc: + if out is not None: + if not isinstance(out, (dpnp.ndarray, dpt.usm_ndarray)): + raise TypeError("return array must be of supported array type") + out_desc = dpnp.get_dpnp_descriptor(out, copy_when_nondefault_queue=False) + else: + out_desc = None + return dpnp_dot(x1_desc, x2_desc, out=out_desc).get_pyobj() - return call_origin(numpy.dot, x1, x2, **kwargs) + return call_origin(numpy.dot, x1, x2, out=out, **kwargs) def einsum(*args, **kwargs): @@ -269,7 +282,7 @@ def matmul(x1, x2, out=None, **kwargs): array2_size = x2_desc.size cost_size = 4096 # 2D array shape(64, 64) - if ((x1_desc.dtype == numpy.float64) or (x1_desc.dtype == numpy.float32)): + if ((x1_desc.dtype == dpnp.float64) or (x1_desc.dtype == dpnp.float32)): """ Floating point types are handled via original math library better than SYCL math library """ diff --git a/dpnp/dpnp_iface_logic.py b/dpnp/dpnp_iface_logic.py index e94b0f6c1ef..716b2ff8a0f 100644 --- a/dpnp/dpnp_iface_logic.py +++ b/dpnp/dpnp_iface_logic.py @@ -69,7 +69,13 @@ ] -def all(x1, axis=None, out=None, keepdims=False): +def all(x1, + /, + axis=None, + out=None, + keepdims=False, + *, + where=True): """ Test whether all array elements along a given axis evaluate to True. @@ -80,9 +86,10 @@ def all(x1, axis=None, out=None, keepdims=False): Input array is supported as :obj:`dpnp.ndarray`. Otherwise the function will be executed sequentially on CPU. Input array data types are limited by supported DPNP :ref:`Data types`. - Parameter ``axis`` is supported only with default value ``None``. - Parameter ``out`` is supported only with default value ``None``. - Parameter ``keepdims`` is supported only with default value ``False``. + Parameter `axis` is supported only with default value `None`. + Parameter `out` is supported only with default value `None`. + Parameter `keepdims` is supported only with default value `False`. + Parameter `where` is supported only with default value `True`. See Also -------- @@ -95,15 +102,15 @@ def all(x1, axis=None, out=None, keepdims=False): Examples -------- - >>> import dpnp as np - >>> x = np.array([[True, False], [True, True]]) - >>> np.all(x) + >>> import dpnp as dp + >>> x = dp.array([[True, False], [True, True]]) + >>> dp.all(x) False - >>> x2 = np.array([-1, 4, 5]) - >>> np.all(x2) + >>> x2 = dp.array([-1, 4, 5]) + >>> dp.all(x2) True - >>> x3 = np.array([1.0, np.nan]) - >>> np.all(x3) + >>> x3 = dp.array([1.0, dp.nan]) + >>> dp.all(x3) True """ @@ -116,13 +123,13 @@ def all(x1, axis=None, out=None, keepdims=False): pass elif keepdims is not False: pass + elif where is not True: + pass else: result_obj = dpnp_all(x1_desc).get_pyobj() - result = dpnp.convert_single_elem_array_to_scalar(result_obj) - - return result + return dpnp.convert_single_elem_array_to_scalar(result_obj) - return call_origin(numpy.all, x1, axis, out, keepdims) + return call_origin(numpy.all, x1, axis=axis, out=out, keepdims=keepdims, where=where) def allclose(x1, x2, rtol=1.e-5, atol=1.e-8, **kwargs): @@ -163,7 +170,13 @@ def allclose(x1, x2, rtol=1.e-5, atol=1.e-8, **kwargs): return call_origin(numpy.allclose, x1, x2, rtol=rtol, atol=atol, **kwargs) -def any(x1, axis=None, out=None, keepdims=False): +def any(x1, + /, + axis=None, + out=None, + keepdims=False, + *, + where=True): """ Test whether any array element along a given axis evaluates to True. @@ -174,9 +187,10 @@ def any(x1, axis=None, out=None, keepdims=False): Input array is supported as :obj:`dpnp.ndarray`. Otherwise the function will be executed sequentially on CPU. Input array data types are limited by supported DPNP :ref:`Data types`. - Parameter ``axis`` is supported only with default value ``None``. - Parameter ``out`` is supported only with default value ``None``. - Parameter ``keepdims`` is supported only with default value ``False``. + Parameter `axis` is supported only with default value `None`. + Parameter `out` is supported only with default value `None`. + Parameter `keepdims` is supported only with default value `False`. + Parameter `where` is supported only with default value `True`. See Also -------- @@ -189,15 +203,15 @@ def any(x1, axis=None, out=None, keepdims=False): Examples -------- - >>> import dpnp as np - >>> x = np.array([[True, False], [True, True]]) - >>> np.any(x) + >>> import dpnp as dp + >>> x = dp.array([[True, False], [True, True]]) + >>> dp.any(x) True - >>> x2 = np.array([0, 0, 0]) - >>> np.any(x2) + >>> x2 = dp.array([0, 0, 0]) + >>> dp.any(x2) False - >>> x3 = np.array([1.0, np.nan]) - >>> np.any(x3) + >>> x3 = dp.array([1.0, dp.nan]) + >>> dp.any(x3) True """ @@ -210,13 +224,13 @@ def any(x1, axis=None, out=None, keepdims=False): pass elif keepdims is not False: pass + elif where is not True: + pass else: result_obj = dpnp_any(x1_desc).get_pyobj() - result = dpnp.convert_single_elem_array_to_scalar(result_obj) - - return result + return dpnp.convert_single_elem_array_to_scalar(result_obj) - return call_origin(numpy.any, x1, axis, out, keepdims) + return call_origin(numpy.any, x1, axis=axis, out=out, keepdims=keepdims, where=where) def equal(x1, @@ -239,8 +253,8 @@ def equal(x1, Limitations ----------- - Parameters `x1` and `x2` are supported as either :class:`dpnp.ndarray` or scalar, - but not both (at least either `x1` or `x2` should be as :class:`dpnp.ndarray`). + Parameters `x1` and `x2` are supported as either scalar, :class:`dpnp.ndarray` + or :class:`dpctl.tensor.usm_ndarray`, but both `x1` and `x2` can not be scalars at the same time. Parameters `out`, `where`, `dtype` and `subok` are supported with their default values. Otherwise the function will be executed sequentially on CPU. Input array data types are limited by supported DPNP :ref:`Data types`, @@ -309,8 +323,8 @@ def greater(x1, Limitations ----------- - Parameters `x1` and `x2` are supported as either :class:`dpnp.ndarray` or scalar, - but not both (at least either `x1` or `x2` should be as :class:`dpnp.ndarray`). + Parameters `x1` and `x2` are supported as either scalar, :class:`dpnp.ndarray` + or :class:`dpctl.tensor.usm_ndarray`, but both `x1` and `x2` can not be scalars at the same time. Parameters `out`, `where`, `dtype` and `subok` are supported with their default values. Otherwise the function will be executed sequentially on CPU. Input array data types are limited by supported DPNP :ref:`Data types`, @@ -379,8 +393,8 @@ def greater_equal(x1, Limitations ----------- - Parameters `x1` and `x2` are supported as either :class:`dpnp.ndarray` or scalar, - but not both (at least either `x1` or `x2` should be as :class:`dpnp.ndarray`). + Parameters `x1` and `x2` are supported as either scalar, :class:`dpnp.ndarray` + or :class:`dpctl.tensor.usm_ndarray`, but both `x1` and `x2` can not be scalars at the same time. Parameters `out`, `where`, `dtype` and `subok` are supported with their default values. Otherwise the function will be executed sequentially on CPU. Input array data types are limited by supported DPNP :ref:`Data types`, @@ -497,9 +511,8 @@ def isfinite(x1, out=None, **kwargs): Examples -------- - >>> import numpy >>> import dpnp as np - >>> x = np.array([-numpy.inf, 0., numpy.inf]) + >>> x = np.array([-np.inf, 0., np.inf]) >>> out = np.isfinite(x) >>> [i for i in out] [False, True, False] @@ -542,9 +555,8 @@ def isinf(x1, out=None, **kwargs): Examples -------- - >>> import numpy >>> import dpnp as np - >>> x = np.array([-numpy.inf, 0., numpy.inf]) + >>> x = np.array([-np.inf, 0., np.inf]) >>> out = np.isinf(x) >>> [i for i in out] [True, False, True] @@ -588,9 +600,8 @@ def isnan(x1, out=None, **kwargs): Examples -------- - >>> import numpy >>> import dpnp as np - >>> x = np.array([numpy.inf, 0., np.nan]) + >>> x = np.array([np.inf, 0., np.nan]) >>> out = np.isnan(x) >>> [i for i in out] [False, False, True] @@ -627,8 +638,8 @@ def less(x1, Limitations ----------- - Parameters `x1` and `x2` are supported as either :class:`dpnp.ndarray` or scalar, - but not both (at least either `x1` or `x2` should be as :class:`dpnp.ndarray`). + Parameters `x1` and `x2` are supported as either scalar, :class:`dpnp.ndarray` + or :class:`dpctl.tensor.usm_ndarray`, but both `x1` and `x2` can not be scalars at the same time. Parameters `out`, `where`, `dtype` and `subok` are supported with their default values. Otherwise the function will be executed sequentially on CPU. Input array data types are limited by supported DPNP :ref:`Data types`, @@ -697,8 +708,8 @@ def less_equal(x1, Limitations ----------- - Parameters `x1` and `x2` are supported as either :class:`dpnp.ndarray` or scalar, - but not both (at least either `x1` or `x2` should be as :class:`dpnp.ndarray`). + Parameters `x1` and `x2` are supported as either scalar, :class:`dpnp.ndarray` + or :class:`dpctl.tensor.usm_ndarray`, but both `x1` and `x2` can not be scalars at the same time. Parameters `out`, `where`, `dtype` and `subok` are supported with their default values. Otherwise the function will be executed sequentially on CPU. Input array data types are limited by supported DPNP :ref:`Data types`, @@ -767,8 +778,8 @@ def logical_and(x1, Limitations ----------- - Parameters `x1` and `x2` are supported as either :class:`dpnp.ndarray` or scalar, - but not both (at least either `x1` or `x2` should be as :class:`dpnp.ndarray`). + Parameters `x1` and `x2` are supported as either scalar, :class:`dpnp.ndarray` + or :class:`dpctl.tensor.usm_ndarray`, but both `x1` and `x2` can not be scalars at the same time. Parameters `out`, `where`, `dtype` and `subok` are supported with their default values. Otherwise the function will be executed sequentially on CPU. Input array data types are limited by supported DPNP :ref:`Data types`, @@ -836,7 +847,7 @@ def logical_not(x, Limitations ----------- - Parameters `x` is only supported as :class:`dpnp.ndarray`. + Parameters `x` is only supported as either :class:`dpnp.ndarray` or :class:`dpctl.tensor.usm_ndarray`. Parameters `out`, `where`, `dtype` and `subok` are supported with their default values. Otherwise the function will be executed sequentially on CPU. Input array data type is limited by supported DPNP :ref:`Data types`, @@ -893,8 +904,8 @@ def logical_or(x1, Limitations ----------- - Parameters `x1` and `x2` are supported as either :class:`dpnp.ndarray` or scalar, - but not both (at least either `x1` or `x2` should be as :class:`dpnp.ndarray`). + Parameters `x1` and `x2` are supported as either scalar, :class:`dpnp.ndarray` + or :class:`dpctl.tensor.usm_ndarray`, but both `x1` and `x2` can not be scalars at the same time. Parameters `out`, `where`, `dtype` and `subok` are supported with their default values. Otherwise the function will be executed sequentially on CPU. Input array data types are limited by supported DPNP :ref:`Data types`, @@ -962,8 +973,8 @@ def logical_xor(x1, Limitations ----------- - Parameters `x1` and `x2` are supported as either :class:`dpnp.ndarray` or scalar, - but not both (at least either `x1` or `x2` should be as :class:`dpnp.ndarray`). + Parameters `x1` and `x2` are supported as either scalar, :class:`dpnp.ndarray` + or :class:`dpctl.tensor.usm_ndarray`, but both `x1` and `x2` can not be scalars at the same time. Parameters `out`, `where`, `dtype` and `subok` are supported with their default values. Otherwise the function will be executed sequentially on CPU. Input array data types are limited by supported DPNP :ref:`Data types`, @@ -1031,8 +1042,8 @@ def not_equal(x1, Limitations ----------- - Parameters `x1` and `x2` are supported as either :class:`dpnp.ndarray` or scalar, - but not both (at least either `x1` or `x2` should be as :class:`dpnp.ndarray`). + Parameters `x1` and `x2` are supported as either scalar, :class:`dpnp.ndarray` + or :class:`dpctl.tensor.usm_ndarray`, but both `x1` and `x2` can not be scalars at the same time. Parameters `out`, `where`, `dtype` and `subok` are supported with their default values. Otherwise the function will be executed sequentially on CPU. Input array data types are limited by supported DPNP :ref:`Data types`, diff --git a/dpnp/dpnp_iface_manipulation.py b/dpnp/dpnp_iface_manipulation.py index 22f34f514ee..adc2bdf15f3 100644 --- a/dpnp/dpnp_iface_manipulation.py +++ b/dpnp/dpnp_iface_manipulation.py @@ -2,7 +2,7 @@ # distutils: language = c++ # -*- coding: utf-8 -*- # ***************************************************************************** -# Copyright (c) 2016-2022, Intel Corporation +# Copyright (c) 2016-2023, Intel Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without @@ -73,7 +73,7 @@ ] -def asfarray(x1, dtype=numpy.float64): +def asfarray(x1, dtype=None): """ Return an array converted to a float type. @@ -82,14 +82,15 @@ def asfarray(x1, dtype=numpy.float64): Notes ----- This function works exactly the same as :obj:`dpnp.array`. + If dtype is `None`, `bool` or one of the `int` dtypes, it is replaced with + the default floating type in DPNP depending on device capabilities. """ x1_desc = dpnp.get_dpnp_descriptor(x1, copy_when_nondefault_queue=False) if x1_desc: - # behavior of original function: int types replaced with float64 - if numpy.issubdtype(dtype, numpy.integer): - dtype = numpy.float64 + if dtype is None or not numpy.issubdtype(dtype, dpnp.inexact): + dtype = dpnp.default_float_type(sycl_queue=x1.sycl_queue) # if type is the same then same object should be returned if x1_desc.dtype == dtype: diff --git a/dpnp/dpnp_iface_mathematical.py b/dpnp/dpnp_iface_mathematical.py index feff53288cf..03d2a352775 100644 --- a/dpnp/dpnp_iface_mathematical.py +++ b/dpnp/dpnp_iface_mathematical.py @@ -45,6 +45,7 @@ import dpnp import numpy +import dpctl.tensor as dpt __all__ = [ @@ -116,7 +117,14 @@ def abs(*args, **kwargs): return dpnp.absolute(*args, **kwargs) -def absolute(x1, **kwargs): +def absolute(x, + /, + out=None, + *, + where=True, + dtype=None, + subok=True, + **kwargs): """ Calculate the absolute value element-wise. @@ -124,34 +132,48 @@ def absolute(x1, **kwargs): .. seealso:: :obj:`dpnp.abs` : Calculate the absolute value element-wise. + Returns + ------- + y : dpnp.ndarray + An array containing the absolute value of each element in `x`. + Limitations ----------- - Parameter ``x1`` is supported as :obj:`dpnp.ndarray`. - Dimension of input array is limited by ``x1.ndim != 0``. - Keyword arguments ``kwargs`` are currently unsupported. - Otherwise the functions will be executed sequentially on CPU. - Input array data types are limited by supported DPNP :ref:`Data types`. + Parameters `x` is only supported as either :class:`dpnp.ndarray` or :class:`dpctl.tensor.usm_ndarray`. + Parameters `out`, `where`, `dtype` and `subok` are supported with their default values. + Keyword arguments ``kwargs`` are currently unsupported. + Otherwise the function will be executed sequentially on CPU. + Input array data types are limited by supported DPNP :ref:`Data types`. Examples -------- - >>> import dpnp as np - >>> a = np.array([-1.2, 1.2]) - >>> result = np.absolute(a) + >>> import dpnp as dp + >>> a = dp.array([-1.2, 1.2]) + >>> result = dp.absolute(a) >>> [x for x in result] [1.2, 1.2] """ - x1_desc = dpnp.get_dpnp_descriptor(x1, copy_when_nondefault_queue=False) - if x1_desc and not kwargs: - if not x1_desc.ndim: - pass - else: - result = dpnp_absolute(x1_desc).get_pyobj() - - return result + if out is not None: + pass + elif where is not True: + pass + elif dtype is not None: + pass + elif subok is not True: + pass + elif dpnp.isscalar(x): + pass + else: + x_desc = dpnp.get_dpnp_descriptor(x, copy_when_nondefault_queue=False) + if x_desc: + if x_desc.dtype == dpnp.bool: + # return a copy of input array "x" + return dpnp.array(x, dtype=x.dtype, sycl_queue=x.sycl_queue, usm_type=x.usm_type) + return dpnp_absolute(x_desc).get_pyobj() - return call_origin(numpy.absolute, x1, **kwargs) + return call_origin(numpy.absolute, x, out=out, where=where, dtype=dtype, subok=subok, **kwargs) def add(x1, @@ -175,8 +197,8 @@ def add(x1, Limitations ----------- - Parameters `x1` and `x2` are supported as either :class:`dpnp.ndarray` or scalar, - but not both (at least either `x1` or `x2` should be as :class:`dpnp.ndarray`). + Parameters `x1` and `x2` are supported as either scalar, :class:`dpnp.ndarray` + or :class:`dpctl.tensor.usm_ndarray`, but both `x1` and `x2` can not be scalars at the same time. Parameters `out`, `where`, `dtype` and `subok` are supported with their default values. Keyword arguments ``kwargs`` are currently unsupported. Otherwise the function will be executed sequentially on CPU. @@ -565,8 +587,8 @@ def divide(x1, Limitations ----------- - Parameters `x1` and `x2` are supported as either :class:`dpnp.ndarray` or scalar, - but not both (at least either `x1` or `x2` should be as :class:`dpnp.ndarray`). + Parameters `x1` and `x2` are supported as either scalar, :class:`dpnp.ndarray` + or :class:`dpctl.tensor.usm_ndarray`, but both `x1` and `x2` can not be scalars at the same time. Parameters `out`, `where`, `dtype` and `subok` are supported with their default values. Keyword arguments ``kwargs`` are currently unsupported. Otherwise the function will be executed sequentially on CPU. @@ -1117,8 +1139,8 @@ def multiply(x1, Limitations ----------- - Parameters `x1` and `x2` are supported as either :class:`dpnp.ndarray` or scalar, - but not both (at least either `x1` or `x2` should be as :class:`dpnp.ndarray`). + Parameters `x1` and `x2` are supported as either scalar, :class:`dpnp.ndarray` + or :class:`dpctl.tensor.usm_ndarray`, but both `x1` and `x2` can not be scalars at the same time. Parameters `out`, `where`, `dtype` and `subok` are supported with their default values. Keyword arguments ``kwargs`` are currently unsupported. Otherwise the functions will be executed sequentially on CPU. @@ -1325,18 +1347,35 @@ def negative(x1, **kwargs): return call_origin(numpy.negative, x1, **kwargs) -def power(x1, x2, dtype=None, out=None, where=True, **kwargs): +def power(x1, + x2, + /, + out=None, + *, + where=True, + dtype=None, + subok=True, + **kwargs): """ First array elements raised to powers from second array, element-wise. + An integer type (of either negative or positive value, but not zero) + raised to a negative integer power will return an array of zeroes. + For full documentation refer to :obj:`numpy.power`. + Returns + ------- + y : dpnp.ndarray + The bases in `x1` raised to the exponents in `x2`. + Limitations ----------- - Parameters ``x1`` and ``x2`` are supported as either :obj:`dpnp.ndarray` or scalar. - Parameters ``dtype``, ``out`` and ``where`` are supported with their default values. + Parameters `x1` and `x2` are supported as either scalar, :class:`dpnp.ndarray` + or :class:`dpctl.tensor.usm_ndarray`, but both `x1` and `x2` can not be scalars at the same time. + Parameters `where`, `dtype` and `subok` are supported with their default values. Keyword arguments ``kwargs`` are currently unsupported. - Otherwise the functions will be executed sequentially on CPU. + Otherwise the function will be executed sequentially on CPU. Input array data types are limited by supported DPNP :ref:`Data types`. See Also @@ -1348,40 +1387,44 @@ def power(x1, x2, dtype=None, out=None, where=True, **kwargs): Example ------- - >>> import dpnp as np - >>> a = np.array([1, 2, 3, 4, 5]) - >>> b = np.array([2, 2, 2, 2, 2]) - >>> result = np.power(a, b) + >>> import dpnp as dp + >>> a = dp.array([1, 2, 3, 4, 5]) + >>> b = dp.array([2, 2, 2, 2, 2]) + >>> result = dp.power(a, b) >>> [x for x in result] [1, 4, 9, 16, 25] """ - x1_is_scalar = dpnp.isscalar(x1) - x2_is_scalar = dpnp.isscalar(x2) - x1_desc = dpnp.get_dpnp_descriptor(x1, copy_when_strides=False, copy_when_nondefault_queue=False) - x2_desc = dpnp.get_dpnp_descriptor(x2, copy_when_strides=False, copy_when_nondefault_queue=False) + if where is not True: + pass + elif dtype is not None: + pass + elif subok is not True: + pass + elif dpnp.isscalar(x1) and dpnp.isscalar(x2): + # at least either x1 or x2 has to be an array + pass + else: + # get USM type and queue to copy scalar from the host memory into a USM allocation + usm_type, queue = get_usm_allocations([x1, x2]) if dpnp.isscalar(x1) or dpnp.isscalar(x2) else (None, None) - if x1_desc and x2_desc and not kwargs: - if not x1_desc and not x1_is_scalar: - pass - elif not x2_desc and not x2_is_scalar: - pass - elif x1_is_scalar and x2_is_scalar: - pass - elif x1_desc and x1_desc.ndim == 0: - pass - elif x2_desc and x2_desc.ndim == 0: - pass - elif dtype is not None: - pass - elif not where: - pass + x1_desc = dpnp.get_dpnp_descriptor(x1, copy_when_strides=False, copy_when_nondefault_queue=False, + alloc_usm_type=usm_type, alloc_queue=queue) + x2_desc = dpnp.get_dpnp_descriptor(x2, copy_when_strides=False, copy_when_nondefault_queue=False, + alloc_usm_type=usm_type, alloc_queue=queue) + + if out is not None: + if not isinstance(out, (dpnp.ndarray, dpt.usm_ndarray)): + raise TypeError("return array must be of supported array type") + out_desc = dpnp.get_dpnp_descriptor(out, copy_when_nondefault_queue=False) else: - out_desc = dpnp.get_dpnp_descriptor(out, copy_when_nondefault_queue=False) if out is not None else None - return dpnp_power(x1_desc, x2_desc, dtype, out_desc, where).get_pyobj() + out_desc = None + + if x1_desc and x2_desc: + return dpnp_power(x1_desc, x2_desc, dtype=dtype, out=out_desc, where=where).get_pyobj() - return call_origin(numpy.power, x1, x2, dtype=dtype, out=out, where=where, **kwargs) + return call_origin(numpy.power, x1, x2, out=out, where=where, dtype=dtype, subok=subok, **kwargs) def prod(x1, axis=None, dtype=None, out=None, keepdims=False, initial=None, where=True): @@ -1552,8 +1595,8 @@ def subtract(x1, Limitations ----------- - Parameters `x1` and `x2` are supported as either :class:`dpnp.ndarray` or scalar, - but not both (at least either `x1` or `x2` should be as :class:`dpnp.ndarray`). + Parameters `x1` and `x2` are supported as either scalar, :class:`dpnp.ndarray` + or :class:`dpctl.tensor.usm_ndarray`, but both `x1` and `x2` can not be scalars at the same time. Parameters `out`, `where`, `dtype` and `subok` are supported with their default values. Keyword arguments ``kwargs`` are currently unsupported. Otherwise the function will be executed sequentially on CPU. diff --git a/dpnp/dpnp_iface_searching.py b/dpnp/dpnp_iface_searching.py index cef5d686035..a0b17f4845e 100644 --- a/dpnp/dpnp_iface_searching.py +++ b/dpnp/dpnp_iface_searching.py @@ -2,7 +2,7 @@ # distutils: language = c++ # -*- coding: utf-8 -*- # ***************************************************************************** -# Copyright (c) 2016-2020, Intel Corporation +# Copyright (c) 2016-2023, Intel Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without @@ -176,12 +176,62 @@ def searchsorted(a, v, side='left', sorter=None): return call_origin(numpy.where, a, v, side, sorter) -def where(condition, x=None, y=None): +def where(condition, x=None, y=None, /): """ - Find indices where elements should be inserted to maintain order. + Return elements chosen from `x` or `y` depending on `condition`. - For full documentation refer to :obj:`numpy.searchsorted`. + When only `condition` is provided, this function is a shorthand for + :obj:`dpnp.nonzero(condition)`. + + For full documentation refer to :obj:`numpy.where`. + + Returns + ------- + y : dpnp.ndarray + An array with elements from `x` where `condition` is True, and elements + from `y` elsewhere. + + Limitations + ----------- + Parameters `condition`, `x` and `y` are supported as either scalar, :class:`dpnp.ndarray` + or :class:`dpctl.tensor.usm_ndarray`. + Otherwise the function will be executed sequentially on CPU. + Data type of `condition` parameter is limited by :obj:`dpnp.bool`. + Input array data types of `x` and `y` are limited by supported DPNP :ref:`Data types`. + + See Also + -------- + :obj:`nonzero` : The function that is called when `x` and `y`are omitted. + + Examples + -------- + >>> import dpnp as dp + >>> a = dp.arange(10) + >>> d + array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) + >>> dp.where(a < 5, a, 10*a) + array([ 0, 1, 2, 3, 4, 50, 60, 70, 80, 90]) """ + missing = (x is None, y is None).count(True) + if missing == 1: + raise ValueError("Must provide both 'x' and 'y' or neither.") + elif missing == 2: + return dpnp.nonzero(condition) + elif missing == 0: + # get USM type and queue to copy scalar from the host memory into a USM allocation + usm_type, queue = get_usm_allocations([condition, x, y]) + + c_desc = dpnp.get_dpnp_descriptor(condition, copy_when_strides=False, copy_when_nondefault_queue=False, + alloc_usm_type=usm_type, alloc_queue=queue) + x_desc = dpnp.get_dpnp_descriptor(x, copy_when_strides=False, copy_when_nondefault_queue=False, + alloc_usm_type=usm_type, alloc_queue=queue) + y_desc = dpnp.get_dpnp_descriptor(y, copy_when_strides=False, copy_when_nondefault_queue=False, + alloc_usm_type=usm_type, alloc_queue=queue) + if c_desc and x_desc and y_desc: + if c_desc.dtype != dpnp.bool: + raise TypeError("condition must be a boolean array") + return dpnp_where(c_desc, x_desc, y_desc).get_pyobj() + return call_origin(numpy.where, condition, x, y) diff --git a/dpnp/dpnp_iface_trigonometric.py b/dpnp/dpnp_iface_trigonometric.py index c50ec260ada..098dd19648f 100644 --- a/dpnp/dpnp_iface_trigonometric.py +++ b/dpnp/dpnp_iface_trigonometric.py @@ -2,7 +2,7 @@ # distutils: language = c++ # -*- coding: utf-8 -*- # ***************************************************************************** -# Copyright (c) 2016-2020, Intel Corporation +# Copyright (c) 2016-2023, Intel Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without @@ -136,9 +136,8 @@ def arccosh(x1): Examples -------- - >>> import numpy >>> import dpnp as np - >>> x = np.array([numpy.e, 10.0]) + >>> x = np.array([np.e, 10.0]) >>> out = np.arccosh(x) >>> [i for i in out] [1.65745445, 2.99322285] @@ -205,9 +204,8 @@ def arcsinh(x1): Examples -------- - >>> import numpy >>> import dpnp as np - >>> x = np.array([numpy.e, 10.0]) + >>> x = np.array([np.e, 10.0]) >>> out = np.arcsinh(x) >>> [i for i in out] [1.72538256, 2.99822295] @@ -384,9 +382,8 @@ def cos(x1, out=None, **kwargs): Examples -------- - >>> import numpy >>> import dpnp as np - >>> x = np.array([0, numpy.pi/2, numpy.pi]) + >>> x = np.array([0, np.pi/2, np.pi]) >>> out = np.cos(x) >>> [i for i in out] [1.0, 6.123233995736766e-17, -1.0] @@ -464,9 +461,8 @@ def degrees(x1): Examples -------- - >>> import numpy >>> import dpnp as np - >>> rad = np.arange(6.) * numpy.pi/6 + >>> rad = np.arange(6.) * np.pi/6 >>> out = np.degrees(rad) >>> [i for i in out] [0.0, 30.0, 60.0, 90.0, 120.0, 150.0] @@ -652,9 +648,8 @@ def log(x1, out=None, **kwargs): Examples -------- - >>> import numpy >>> import dpnp as np - >>> x = np.array([1.0, numpy.e, numpy.e**2, 0.0]) + >>> x = np.array([1.0, np.e, np.e**2, 0.0]) >>> out = np.log(x) >>> [i for i in out] [0.0, 1.0, 2.0, -inf] @@ -867,9 +862,8 @@ def sin(x1, out=None, **kwargs): Examples -------- - >>> import numpy >>> import dpnp as np - >>> x = np.array([0, numpy.pi/2, numpy.pi]) + >>> x = np.array([0, np.pi/2, np.pi]) >>> out = np.sin(x) >>> [i for i in out] [0.0, 1.0, 1.2246467991473532e-16] @@ -897,9 +891,8 @@ def sinh(x1): Examples -------- - >>> import numpy >>> import dpnp as np - >>> x = np.array([0, numpy.pi/2, numpy.pi]) + >>> x = np.array([0, np.pi/2, np.pi]) >>> out = np.sinh(x) >>> [i for i in out] [0.0, 2.3012989, 11.548739] @@ -991,9 +984,8 @@ def tan(x1, out=None, **kwargs): Examples -------- - >>> import numpy >>> import dpnp as np - >>> x = np.array([-numpy.pi, numpy.pi/2, numpy.pi]) + >>> x = np.array([-np.pi, np.pi/2, np.pi]) >>> out = np.tan(x) >>> [i for i in out] [1.22460635e-16, 1.63317787e+16, -1.22460635e-16] @@ -1021,9 +1013,8 @@ def tanh(x1): Examples -------- - >>> import numpy >>> import dpnp as np - >>> x = np.array([-numpy.pi, numpy.pi/2, numpy.pi]) + >>> x = np.array([-np.pi, np.pi/2, np.pi]) >>> out = np.tanh(x) >>> [i for i in out] [-0.996272, 0.917152, 0.996272] @@ -1055,11 +1046,10 @@ def unwrap(x1): Examples -------- - >>> import numpy >>> import dpnp as np - >>> phase = np.linspace(0, numpy.pi, num=5) + >>> phase = np.linspace(0, np.pi, num=5) >>> for i in range(3, 5): - >>> phase[i] += numpy.pi + >>> phase[i] += np.pi >>> out = np.unwrap(phase) >>> [i for i in out] [0.0, 0.78539816, 1.57079633, 5.49778714, 6.28318531] diff --git a/dpnp/dpnp_iface_types.py b/dpnp/dpnp_iface_types.py index a39cfa47cd1..0109f5bdd21 100644 --- a/dpnp/dpnp_iface_types.py +++ b/dpnp/dpnp_iface_types.py @@ -40,39 +40,105 @@ __all__ = [ "bool", "bool_", + "cdouble", + "complex_", "complex128", "complex64", + "complexfloating", + "cfloat", + "csingle", + "double", "dtype", + "e", + "euler_gamma", "float", + "float_", "float16", "float32", "float64", + "floating", + "inexact", + "Inf", + "inf", + "Infinity", + "infty", "int", + "int_", "int32", "int64", "integer", + "intc", "isscalar", + "issubdtype", + "issubsctype", "is_type_supported", - "longcomplex", + "NAN", + "NaN", "nan", "newaxis", - "void" + "NINF", + "NZERO", + "number", + "pi", + "PINF", + "PZERO", + "signedinteger", + "single", + "singlecomplex" ] + +# ============================================================================= +# Data types (borrowed from NumPy) +# ============================================================================= bool = numpy.bool_ bool_ = numpy.bool_ +cdouble = numpy.cdouble +complex_ = numpy.complex_ complex128 = numpy.complex128 complex64 = numpy.complex64 +complexfloating = numpy.complexfloating +cfloat = numpy.cfloat +csingle = numpy.csingle +double = numpy.double dtype = numpy.dtype +float = numpy.float_ +float_ = numpy.float_ float16 = numpy.float16 float32 = numpy.float32 float64 = numpy.float64 -float = numpy.float_ +floating = numpy.floating +inexact = numpy.inexact +int = numpy.int_ +int_ = numpy.int_ int32 = numpy.int32 int64 = numpy.int64 integer = numpy.integer -int = numpy.int_ -longcomplex = numpy.longcomplex +intc = numpy.intc +number = numpy.number +signedinteger = numpy.signedinteger +single = numpy.single +singlecomplex = numpy.singlecomplex + + +# ============================================================================= +# Constants (borrowed from NumPy) +# ============================================================================= +e = numpy.e +euler_gamma = numpy.euler_gamma +Inf = numpy.Inf +inf = numpy.inf +Infinity = numpy.Infinity +infty = numpy.infty +NAN = numpy.NAN +NaN = numpy.NaN +nan = numpy.nan +newaxis = None +NINF = numpy.NINF +NZERO = numpy.NZERO +pi = numpy.pi +PINF = numpy.PINF +PZERO = numpy.PZERO def isscalar(obj): @@ -85,9 +151,26 @@ def isscalar(obj): return numpy.isscalar(obj) -nan = numpy.nan -newaxis = None -void = numpy.void +def issubdtype(arg1, arg2): + """ + Returns True if first argument is a typecode lower/equal in type hierarchy. + + For full documentation refer to :obj:`numpy.issubdtype`. + + """ + + return numpy.issubdtype(arg1, arg2) + + +def issubsctype(arg1, arg2): + """ + Determine if the first argument is a subclass of the second argument. + + For full documentation refer to :obj:`numpy.issubsctype`. + + """ + + return numpy.issubsctype(arg1, arg2) def is_type_supported(obj_type): diff --git a/dpnp/dpnp_utils/dpnp_algo_utils.pyx b/dpnp/dpnp_utils/dpnp_algo_utils.pyx index 672aa19e4dc..a9438178876 100644 --- a/dpnp/dpnp_utils/dpnp_algo_utils.pyx +++ b/dpnp/dpnp_utils/dpnp_algo_utils.pyx @@ -268,18 +268,18 @@ def map_dtype_to_device(dtype, device): Map an input ``dtype`` with type ``device`` may use """ - dtype = numpy.dtype(dtype) + dtype = dpnp.dtype(dtype) if not hasattr(dtype, 'char'): raise TypeError(f"Invalid type of input dtype={dtype}") elif not isinstance(device, dpctl.SyclDevice): raise TypeError(f"Invalid type of input device={device}") dtc = dtype.char - if dtc == "?" or numpy.issubdtype(dtype, numpy.integer): + if dtc == "?" or dpnp.issubdtype(dtype, dpnp.integer): # bool or integer type return dtype - if numpy.issubdtype(dtype, numpy.floating): + if dpnp.issubdtype(dtype, dpnp.floating): if dtc == "f": # float32 type return dtype @@ -294,7 +294,7 @@ def map_dtype_to_device(dtype, device): # float32 is default floating type return dpnp.dtype("f4") - if numpy.issubdtype(dtype, numpy.complexfloating): + if dpnp.issubdtype(dtype, dpnp.complexfloating): if dtc == "F": # complex64 type return dtype @@ -418,14 +418,14 @@ cdef tuple get_shape_dtype(object input_obj): # shape and dtype does not match with siblings. if ((return_shape != elem_shape) or (return_dtype != elem_dtype)): - return (elem_shape, numpy.dtype(numpy.object_)) + return (elem_shape, dpnp.dtype(numpy.object_)) list_shape.push_back(len(input_obj)) list_shape.insert(list_shape.end(), return_shape.begin(), return_shape.end()) return (list_shape, return_dtype) # assume scalar or object - return (return_shape, numpy.dtype(type(input_obj))) + return (return_shape, dpnp.dtype(type(input_obj))) cpdef find_common_type(object x1_obj, object x2_obj): diff --git a/dpnp/linalg/dpnp_algo_linalg.pyx b/dpnp/linalg/dpnp_algo_linalg.pyx index e6b239eb880..ddcaf677499 100644 --- a/dpnp/linalg/dpnp_algo_linalg.pyx +++ b/dpnp/linalg/dpnp_algo_linalg.pyx @@ -1,7 +1,7 @@ # cython: language_level=3 # -*- coding: utf-8 -*- # ***************************************************************************** -# Copyright (c) 2016-2022, Intel Corporation +# Copyright (c) 2016-2023, Intel Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without @@ -119,10 +119,10 @@ cpdef object dpnp_cond(object input, object p): sqnorm = dpnp.dot(input, input) res = dpnp.sqrt(sqnorm) ret = dpnp.array([res]) - elif p == numpy.inf: + elif p == dpnp.inf: dpnp_sum_val = dpnp.sum(dpnp.abs(input), axis=1) ret = dpnp.max(dpnp_sum_val) - elif p == -numpy.inf: + elif p == -dpnp.inf: dpnp_sum_val = dpnp.sum(dpnp.abs(input), axis=1) ret = dpnp.min(dpnp_sum_val) elif p == 1: @@ -342,13 +342,13 @@ cpdef object dpnp_norm(object input, ord=None, axis=None): cdef long size_input = input.size cdef shape_type_c shape_input = input.shape - if input.dtype == numpy.float32: - res_type = numpy.float32 + if input.dtype == dpnp.float32: + res_type = dpnp.float32 else: - res_type = numpy.float64 + res_type = dpnp.float64 if size_input == 0: - return dpnp.array([numpy.nan], dtype=res_type) + return dpnp.array([dpnp.nan], dtype=res_type) if isinstance(axis, int): axis_ = tuple([axis]) @@ -368,9 +368,9 @@ cpdef object dpnp_norm(object input, ord=None, axis=None): len_axis = 1 if axis is None else len(axis_) if len_axis == 1: - if ord == numpy.inf: + if ord == dpnp.inf: return dpnp.array([dpnp.abs(input).max(axis=axis)]) - elif ord == -numpy.inf: + elif ord == -dpnp.inf: return dpnp.array([dpnp.abs(input).min(axis=axis)]) elif ord == 0: return input.dtype.type(dpnp.count_nonzero(input, axis=axis)) @@ -414,7 +414,7 @@ cpdef object dpnp_norm(object input, ord=None, axis=None): col_axis -= 1 dpnp_sum_val = dpnp.sum(dpnp.abs(input), axis=row_axis) ret = dpnp_sum_val.min(axis=col_axis) - elif ord == numpy.inf: + elif ord == dpnp.inf: if row_axis > col_axis: row_axis -= 1 dpnp_sum_val = dpnp.sum(dpnp.abs(input), axis=col_axis) @@ -424,7 +424,7 @@ cpdef object dpnp_norm(object input, ord=None, axis=None): col_axis -= 1 dpnp_sum_val = dpnp.sum(dpnp.abs(input), axis=row_axis) ret = dpnp_sum_val.min(axis=col_axis) - elif ord == -numpy.inf: + elif ord == -dpnp.inf: if row_axis > col_axis: row_axis -= 1 dpnp_sum_val = dpnp.sum(dpnp.abs(input), axis=col_axis) diff --git a/dpnp/linalg/dpnp_iface_linalg.py b/dpnp/linalg/dpnp_iface_linalg.py index 43a26c1b530..6e6f55db8f9 100644 --- a/dpnp/linalg/dpnp_iface_linalg.py +++ b/dpnp/linalg/dpnp_iface_linalg.py @@ -2,7 +2,7 @@ # distutils: language = c++ # -*- coding: utf-8 -*- # ***************************************************************************** -# Copyright (c) 2016-2020, Intel Corporation +# Copyright (c) 2016-2023, Intel Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without @@ -111,7 +111,7 @@ def cond(input, p=None): Limitations ----------- Input array is supported as :obj:`dpnp.ndarray`. - Parameter p=[None, 1, -1, 2, -2, numpy.inf, -numpy.inf, 'fro'] is supported. + Parameter p=[None, 1, -1, 2, -2, dpnp.inf, -dpnp.inf, 'fro'] is supported. See Also -------- @@ -119,7 +119,7 @@ def cond(input, p=None): """ if (not use_origin_backend(input)): - if p in [None, 1, -1, 2, -2, numpy.inf, -numpy.inf, 'fro']: + if p in [None, 1, -1, 2, -2, dpnp.inf, -dpnp.inf, 'fro']: result_obj = dpnp_cond(input, p) result = dpnp.convert_single_elem_array_to_scalar(result_obj) diff --git a/dpnp/random/dpnp_algo_random.pyx b/dpnp/random/dpnp_algo_random.pyx index 2e259625087..314906cee6d 100644 --- a/dpnp/random/dpnp_algo_random.pyx +++ b/dpnp/random/dpnp_algo_random.pyx @@ -1,7 +1,7 @@ # cython: language_level=3 # -*- coding: utf-8 -*- # ***************************************************************************** -# Copyright (c) 2016-2022, Intel Corporation +# Copyright (c) 2016-2023, Intel Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without @@ -353,9 +353,9 @@ cdef class MT19937: cdef bint is_integer(self, value): if isinstance(value, numbers.Number): - return isinstance(value, int) or isinstance(value, numpy.integer) + return isinstance(value, int) or isinstance(value, dpnp.integer) # cover an element of dpnp array: - return numpy.ndim(value) == 0 and hasattr(value, "dtype") and numpy.issubdtype(value, numpy.integer) + return numpy.ndim(value) == 0 and hasattr(value, "dtype") and dpnp.issubdtype(value, dpnp.integer) cdef bint is_uint_range(self, value): @@ -455,7 +455,7 @@ cpdef utils.dpnp_descriptor dpnp_rng_beta(double a, double b, size): """ # convert string type names (array.dtype) to C enum DPNPFuncType - cdef DPNPFuncType param1_type = dpnp_dtype_to_DPNPFuncType(numpy.float64) + cdef DPNPFuncType param1_type = dpnp_dtype_to_DPNPFuncType(dpnp.float64) # get the FPTR data structure cdef DPNPFuncData kernel_data = get_dpnp_function_ptr(DPNP_FN_RNG_BETA_EXT, param1_type, param1_type) @@ -488,7 +488,7 @@ cpdef utils.dpnp_descriptor dpnp_rng_binomial(int ntrial, double p, size): """ - dtype = numpy.int32 + dtype = dpnp.int32 cdef DPNPFuncType param1_type cdef DPNPFuncData kernel_data cdef fptr_dpnp_rng_binomial_c_1out_t func @@ -527,7 +527,7 @@ cpdef utils.dpnp_descriptor dpnp_rng_chisquare(int df, size): """ # convert string type names (array.dtype) to C enum DPNPFuncType - cdef DPNPFuncType param1_type = dpnp_dtype_to_DPNPFuncType(numpy.float64) + cdef DPNPFuncType param1_type = dpnp_dtype_to_DPNPFuncType(dpnp.float64) # get the FPTR data structure cdef DPNPFuncData kernel_data = get_dpnp_function_ptr(DPNP_FN_RNG_CHISQUARE_EXT, param1_type, param1_type) @@ -560,7 +560,7 @@ cpdef utils.dpnp_descriptor dpnp_rng_exponential(double beta, size): """ - dtype = numpy.float64 + dtype = dpnp.float64 # convert string type names (array.dtype) to C enum DPNPFuncType cdef DPNPFuncType param1_type = dpnp_dtype_to_DPNPFuncType(dtype) @@ -593,7 +593,7 @@ cpdef utils.dpnp_descriptor dpnp_rng_f(double df_num, double df_den, size): univariate F distribution. """ - dtype = numpy.float64 + dtype = dpnp.float64 # convert string type names (array.dtype) to C enum DPNPFuncType cdef DPNPFuncType param1_type = dpnp_dtype_to_DPNPFuncType(dtype) @@ -627,7 +627,7 @@ cpdef utils.dpnp_descriptor dpnp_rng_gamma(double shape, double scale, size): """ - dtype = numpy.float64 + dtype = dpnp.float64 cdef DPNPFuncType param1_type cdef DPNPFuncData kernel_data cdef fptr_dpnp_rng_gamma_c_1out_t func @@ -664,7 +664,7 @@ cpdef utils.dpnp_descriptor dpnp_rng_geometric(float p, size): """ - dtype = numpy.int32 + dtype = dpnp.int32 cdef DPNPFuncType param1_type cdef DPNPFuncData kernel_data cdef fptr_dpnp_rng_geometric_c_1out_t func @@ -702,7 +702,7 @@ cpdef utils.dpnp_descriptor dpnp_rng_gumbel(double loc, double scale, size): """ - dtype = numpy.float64 + dtype = dpnp.float64 cdef DPNPFuncType param1_type cdef DPNPFuncData kernel_data cdef fptr_dpnp_rng_gumbel_c_1out_t func @@ -737,7 +737,7 @@ cpdef utils.dpnp_descriptor dpnp_rng_hypergeometric(int l, int s, int m, size): """ - dtype = numpy.int32 + dtype = dpnp.int32 cdef DPNPFuncType param1_type cdef DPNPFuncData kernel_data cdef fptr_dpnp_rng_hypergeometric_c_1out_t func @@ -775,7 +775,7 @@ cpdef utils.dpnp_descriptor dpnp_rng_laplace(double loc, double scale, size): """ - dtype = numpy.float64 + dtype = dpnp.float64 cdef DPNPFuncType param1_type cdef DPNPFuncData kernel_data cdef fptr_dpnp_rng_laplace_c_1out_t func @@ -814,7 +814,7 @@ cpdef utils.dpnp_descriptor dpnp_rng_logistic(double loc, double scale, size): """ # convert string type names (array.dtype) to C enum DPNPFuncType - cdef DPNPFuncType param1_type = dpnp_dtype_to_DPNPFuncType(numpy.float64) + cdef DPNPFuncType param1_type = dpnp_dtype_to_DPNPFuncType(dpnp.float64) # get the FPTR data structure cdef DPNPFuncData kernel_data = get_dpnp_function_ptr(DPNP_FN_RNG_LOGISTIC_EXT, param1_type, param1_type) @@ -846,7 +846,7 @@ cpdef utils.dpnp_descriptor dpnp_rng_lognormal(double mean, double stddev, size) """ - dtype = numpy.float64 + dtype = dpnp.float64 cdef DPNPFuncType param1_type cdef DPNPFuncData kernel_data cdef fptr_dpnp_rng_lognormal_c_1out_t func @@ -886,7 +886,7 @@ cpdef utils.dpnp_descriptor dpnp_rng_multinomial(int ntrial, utils.dpnp_descript """ - dtype = numpy.int32 + dtype = dpnp.int32 cdef DPNPFuncType param1_type cdef DPNPFuncData kernel_data cdef fptr_dpnp_rng_multinomial_c_1out_t func @@ -934,7 +934,7 @@ cpdef utils.dpnp_descriptor dpnp_rng_multivariate_normal(utils.dpnp_descriptor m """ - dtype = numpy.float64 + dtype = dpnp.float64 cdef int dimen cdef size_t mean_size cdef size_t cov_size @@ -981,7 +981,7 @@ cpdef utils.dpnp_descriptor dpnp_rng_negative_binomial(double a, double p, size) """ - dtype = numpy.int32 + dtype = dpnp.int32 cdef utils.dpnp_descriptor result cdef DPNPFuncType param1_type cdef DPNPFuncData kernel_data @@ -1031,7 +1031,7 @@ cpdef utils.dpnp_descriptor dpnp_rng_noncentral_chisquare(double df, double nonc """ # convert string type names (array.dtype) to C enum DPNPFuncType - cdef DPNPFuncType param1_type = dpnp_dtype_to_DPNPFuncType(numpy.float64) + cdef DPNPFuncType param1_type = dpnp_dtype_to_DPNPFuncType(dpnp.float64) # get the FPTR data structure cdef DPNPFuncData kernel_data = get_dpnp_function_ptr(DPNP_FN_RNG_NONCENTRAL_CHISQUARE_EXT, param1_type, param1_type) @@ -1063,7 +1063,7 @@ cpdef utils.dpnp_descriptor dpnp_rng_pareto(double alpha, size): """ - dtype = numpy.float64 + dtype = dpnp.float64 # convert string type names (array.dtype) to C enum DPNPFuncType cdef DPNPFuncType param1_type = dpnp_dtype_to_DPNPFuncType(dtype) @@ -1098,7 +1098,7 @@ cpdef utils.dpnp_descriptor dpnp_rng_poisson(double lam, size): """ - dtype = numpy.int32 + dtype = dpnp.int32 cdef shape_type_c result_shape cdef utils.dpnp_descriptor result cdef DPNPFuncType param1_type @@ -1143,7 +1143,7 @@ cpdef utils.dpnp_descriptor dpnp_rng_power(double alpha, size): univariate power distribution of `alpha`. """ - dtype = numpy.float64 + dtype = dpnp.float64 # convert string type names (array.dtype) to C enum DPNPFuncType cdef DPNPFuncType param1_type = dpnp_dtype_to_DPNPFuncType(dtype) @@ -1177,7 +1177,7 @@ cpdef utils.dpnp_descriptor dpnp_rng_rayleigh(double scale, size): """ - dtype = numpy.float64 + dtype = dpnp.float64 cdef shape_type_c result_shape cdef utils.dpnp_descriptor result cdef DPNPFuncType param1_type @@ -1252,7 +1252,7 @@ cpdef dpnp_rng_srand(seed): """ # convert string type names (array.dtype) to C enum DPNPFuncType - cdef DPNPFuncType param1_type = dpnp_dtype_to_DPNPFuncType(numpy.float64) + cdef DPNPFuncType param1_type = dpnp_dtype_to_DPNPFuncType(dpnp.float64) # get the FPTR data structure cdef DPNPFuncData kernel_data = get_dpnp_function_ptr(DPNP_FN_RNG_SRAND, param1_type, param1_type) @@ -1271,7 +1271,7 @@ cpdef utils.dpnp_descriptor dpnp_rng_standard_cauchy(size): """ # convert string type names (array.dtype) to C enum DPNPFuncType - cdef DPNPFuncType param1_type = dpnp_dtype_to_DPNPFuncType(numpy.float64) + cdef DPNPFuncType param1_type = dpnp_dtype_to_DPNPFuncType(dpnp.float64) # get the FPTR data structure cdef DPNPFuncData kernel_data = get_dpnp_function_ptr(DPNP_FN_RNG_STANDARD_CAUCHY_EXT, param1_type, param1_type) @@ -1306,7 +1306,7 @@ cpdef utils.dpnp_descriptor dpnp_rng_standard_exponential(size): cdef fptr_dpnp_rng_standard_exponential_c_1out_t func # convert string type names (array.dtype) to C enum DPNPFuncType - cdef DPNPFuncType param1_type = dpnp_dtype_to_DPNPFuncType(numpy.float64) + cdef DPNPFuncType param1_type = dpnp_dtype_to_DPNPFuncType(dpnp.float64) # get the FPTR data structure cdef DPNPFuncData kernel_data = get_dpnp_function_ptr(DPNP_FN_RNG_STANDARD_EXPONENTIAL_EXT, param1_type, param1_type) @@ -1338,7 +1338,7 @@ cpdef utils.dpnp_descriptor dpnp_rng_standard_gamma(double shape, size): """ - dtype = numpy.float64 + dtype = dpnp.float64 cdef shape_type_c result_shape cdef utils.dpnp_descriptor result cdef DPNPFuncType param1_type @@ -1385,7 +1385,7 @@ cpdef utils.dpnp_descriptor dpnp_rng_standard_t(double df, size): """ # convert string type names (array.dtype) to C enum DPNPFuncType - cdef DPNPFuncType param1_type = dpnp_dtype_to_DPNPFuncType(numpy.float64) + cdef DPNPFuncType param1_type = dpnp_dtype_to_DPNPFuncType(dpnp.float64) # get the FPTR data structure cdef DPNPFuncData kernel_data = get_dpnp_function_ptr(DPNP_FN_RNG_STANDARD_T_EXT, param1_type, param1_type) @@ -1417,7 +1417,7 @@ cpdef utils.dpnp_descriptor dpnp_rng_triangular(double left, double mode, double """ - dtype = numpy.float64 + dtype = dpnp.float64 # convert string type names (array.dtype) to C enum DPNPFuncType cdef DPNPFuncType param1_type = dpnp_dtype_to_DPNPFuncType(dtype) @@ -1452,7 +1452,7 @@ cpdef utils.dpnp_descriptor dpnp_rng_vonmises(double mu, double kappa, size): """ # convert string type names (array.dtype) to C enum DPNPFuncType - cdef DPNPFuncType param1_type = dpnp_dtype_to_DPNPFuncType(numpy.float64) + cdef DPNPFuncType param1_type = dpnp_dtype_to_DPNPFuncType(dpnp.float64) # get the FPTR data structure cdef DPNPFuncData kernel_data = get_dpnp_function_ptr(DPNP_FN_RNG_VONMISES_EXT, param1_type, param1_type) @@ -1484,7 +1484,7 @@ cpdef utils.dpnp_descriptor dpnp_rng_wald(double mean, double scale, size): """ - dtype = numpy.float64 + dtype = dpnp.float64 # convert string type names (array.dtype) to C enum DPNPFuncType cdef DPNPFuncType param1_type = dpnp_dtype_to_DPNPFuncType(dtype) @@ -1518,13 +1518,13 @@ cpdef utils.dpnp_descriptor dpnp_rng_weibull(double a, size): """ - dtype = numpy.float64 + dtype = dpnp.float64 cdef DPNPFuncType param1_type cdef DPNPFuncData kernel_data cdef fptr_dpnp_rng_weibull_c_1out_t func # convert string type names (array.dtype) to C enum DPNPFuncType - param1_type = dpnp_dtype_to_DPNPFuncType(numpy.float64) + param1_type = dpnp_dtype_to_DPNPFuncType(dpnp.float64) # get the FPTR data structure kernel_data = get_dpnp_function_ptr(DPNP_FN_RNG_WEIBULL_EXT, param1_type, param1_type) @@ -1557,7 +1557,7 @@ cpdef utils.dpnp_descriptor dpnp_rng_zipf(double a, size): """ # convert string type names (array.dtype) to C enum DPNPFuncType - cdef DPNPFuncType param1_type = dpnp_dtype_to_DPNPFuncType(numpy.float64) + cdef DPNPFuncType param1_type = dpnp_dtype_to_DPNPFuncType(dpnp.float64) # get the FPTR data structure cdef DPNPFuncData kernel_data = get_dpnp_function_ptr(DPNP_FN_RNG_ZIPF_EXT, param1_type, param1_type) diff --git a/dpnp/random/dpnp_iface_random.py b/dpnp/random/dpnp_iface_random.py index ade85bb2fe1..a2e6f164dde 100644 --- a/dpnp/random/dpnp_iface_random.py +++ b/dpnp/random/dpnp_iface_random.py @@ -670,7 +670,7 @@ def multinomial(n, pvals, size=None): d = len(pvals) if n < 0: pass - elif n > numpy.iinfo(numpy.int32).max: + elif n > numpy.iinfo(dpnp.int32).max: pass elif pvals_sum > 1.0: pass @@ -714,11 +714,11 @@ def multivariate_normal(mean, cov, size=None, check_valid='warn', tol=1e-8): """ if not use_origin_backend(mean): - mean_ = dpnp.get_dpnp_descriptor(dpnp.array(mean, dtype=numpy.float64)) - cov_ = dpnp.get_dpnp_descriptor(dpnp.array(cov, dtype=numpy.float64)) + mean_ = dpnp.get_dpnp_descriptor(dpnp.array(mean, dtype=dpnp.float64)) + cov_ = dpnp.get_dpnp_descriptor(dpnp.array(cov, dtype=dpnp.float64)) if size is None: shape = [] - elif isinstance(size, (int, numpy.integer)): + elif isinstance(size, (int, dpnp.integer)): shape = [size] else: shape = size diff --git a/tests/helper.py b/tests/helper.py index 17c62cecd28..8432443d488 100644 --- a/tests/helper.py +++ b/tests/helper.py @@ -1,7 +1,51 @@ +from sys import platform + import dpctl import dpnp +def get_complex_dtypes(device=None): + """ + Build a list of complex types supported by DPNP based on device capabilities. + """ + + dev = dpctl.select_default_device() if device is None else device + + # add complex types + dtypes = [dpnp.complex64] + if dev.has_aspect_fp64: + dtypes.append(dpnp.complex128) + return dtypes + + +def get_float_dtypes(no_float16=True, + device=None): + """ + Build a list of floating types supported by DPNP based on device capabilities. + """ + + dev = dpctl.select_default_device() if device is None else device + + # add floating types + dtypes = [dpnp.float16] if not no_float16 else [] + + dtypes.append(dpnp.float32) + if dev.has_aspect_fp64: + dtypes.append(dpnp.float64) + return dtypes + + +def get_float_complex_dtypes(no_float16=True, + device=None): + """ + Build a list of floating and complex types supported by DPNP based on device capabilities. + """ + + dtypes = get_float_dtypes(no_float16, device) + dtypes.extend(get_complex_dtypes(device)) + return dtypes + + def get_all_dtypes(no_bool=False, no_float16=True, no_complex=False, @@ -20,20 +64,28 @@ def get_all_dtypes(no_bool=False, dtypes.extend([dpnp.int32, dpnp.int64]) # add floating types - if not no_float16 and dev.has_aspect_fp16: - dtypes.append(dpnp.float16) - - dtypes.append(dpnp.float32) - if dev.has_aspect_fp64: - dtypes.append(dpnp.float64) + dtypes.extend(get_float_dtypes(dev)) # add complex types if not no_complex: - dtypes.append(dpnp.complex64) - if dev.has_aspect_fp64: - dtypes.append(dpnp.complex128) + dtypes.extend(get_complex_dtypes(dev)) # add None value to validate a default dtype if not no_none: dtypes.append(None) return dtypes + + +def is_cpu_device(device=None): + """ + Return True if a test is running on CPU device, False otherwise. + """ + dev = dpctl.select_default_device() if device is None else device + return dev.has_aspect_cpu + + +def is_win_platform(): + """ + Return True if a test is runing on Windows OS, False otherwise. + """ + return platform.startswith('win') diff --git a/tests/skipped_tests.tbl b/tests/skipped_tests.tbl index 2f0334077a0..26dd6fc59cd 100644 --- a/tests/skipped_tests.tbl +++ b/tests/skipped_tests.tbl @@ -364,7 +364,7 @@ tests/third_party/cupy/creation_tests/test_from_data.py::TestArrayPreservationOf tests/third_party/cupy/creation_tests/test_from_data.py::TestArrayPreservationOfShape_param_7_{copy=True, ndmin=3, xp=dpnp}::test_cupy_array tests/third_party/cupy/creation_tests/test_from_data.py::TestArrayPreservationOfShape_param_8_{copy=False, ndmin=0, xp=numpy}::test_cupy_array tests/third_party/cupy/creation_tests/test_from_data.py::TestArrayPreservationOfShape_param_9_{copy=False, ndmin=0, xp=dpnp}::test_cupy_array -tests/third_party/cupy/creation_tests/test_from_data.py::TestFromData::test_array_copy_is_copied +tests/third_party/cupy/creation_tests/test_from_data.py::TestFromData::test_array_copy_is_copied tests/third_party/cupy/creation_tests/test_from_data.py::TestFromData::test_array_copy_list_of_cupy_with_dtype tests/third_party/cupy/creation_tests/test_from_data.py::TestFromData::test_array_copy_list_of_cupy_with_dtype_char tests/third_party/cupy/creation_tests/test_from_data.py::TestFromData::test_array_copy_list_of_numpy_with_dtype @@ -406,16 +406,10 @@ tests/third_party/cupy/creation_tests/test_ranges.py::TestMeshgrid_param_3_{copy tests/third_party/cupy/creation_tests/test_ranges.py::TestMeshgrid_param_3_{copy=False, indexing='ij', sparse=True}::test_meshgrid1 tests/third_party/cupy/creation_tests/test_ranges.py::TestMeshgrid_param_3_{copy=False, indexing='ij', sparse=True}::test_meshgrid2 tests/third_party/cupy/creation_tests/test_ranges.py::TestMeshgrid_param_3_{copy=False, indexing='ij', sparse=True}::test_meshgrid3 -tests/third_party/cupy/creation_tests/test_ranges.py::TestMeshgrid_param_4_{copy=True, indexing='xy', sparse=False}::test_meshgrid1 -tests/third_party/cupy/creation_tests/test_ranges.py::TestMeshgrid_param_4_{copy=True, indexing='xy', sparse=False}::test_meshgrid2 -tests/third_party/cupy/creation_tests/test_ranges.py::TestMeshgrid_param_4_{copy=True, indexing='xy', sparse=False}::test_meshgrid3 tests/third_party/cupy/creation_tests/test_ranges.py::TestMeshgrid_param_5_{copy=True, indexing='xy', sparse=True}::test_meshgrid0 tests/third_party/cupy/creation_tests/test_ranges.py::TestMeshgrid_param_5_{copy=True, indexing='xy', sparse=True}::test_meshgrid1 tests/third_party/cupy/creation_tests/test_ranges.py::TestMeshgrid_param_5_{copy=True, indexing='xy', sparse=True}::test_meshgrid2 tests/third_party/cupy/creation_tests/test_ranges.py::TestMeshgrid_param_5_{copy=True, indexing='xy', sparse=True}::test_meshgrid3 -tests/third_party/cupy/creation_tests/test_ranges.py::TestMeshgrid_param_6_{copy=True, indexing='ij', sparse=False}::test_meshgrid1 -tests/third_party/cupy/creation_tests/test_ranges.py::TestMeshgrid_param_6_{copy=True, indexing='ij', sparse=False}::test_meshgrid2 -tests/third_party/cupy/creation_tests/test_ranges.py::TestMeshgrid_param_6_{copy=True, indexing='ij', sparse=False}::test_meshgrid3 tests/third_party/cupy/creation_tests/test_ranges.py::TestMeshgrid_param_7_{copy=True, indexing='ij', sparse=True}::test_meshgrid0 tests/third_party/cupy/creation_tests/test_ranges.py::TestMeshgrid_param_7_{copy=True, indexing='ij', sparse=True}::test_meshgrid1 tests/third_party/cupy/creation_tests/test_ranges.py::TestMeshgrid_param_7_{copy=True, indexing='ij', sparse=True}::test_meshgrid2 @@ -424,12 +418,10 @@ tests/third_party/cupy/creation_tests/test_ranges.py::TestMgrid::test_mgrid3 tests/third_party/cupy/creation_tests/test_ranges.py::TestOgrid::test_ogrid3 tests/third_party/cupy/creation_tests/test_ranges.py::TestOgrid::test_ogrid4 tests/third_party/cupy/creation_tests/test_ranges.py::TestOgrid::test_ogrid5 -tests/third_party/cupy/creation_tests/test_ranges.py::TestRanges::test_linspace_array_start_stop tests/third_party/cupy/creation_tests/test_ranges.py::TestRanges::test_linspace_array_start_stop_axis1 -tests/third_party/cupy/creation_tests/test_ranges.py::TestRanges::test_linspace_float_underflow -tests/third_party/cupy/creation_tests/test_ranges.py::TestRanges::test_linspace_mixed_start_stop -tests/third_party/cupy/creation_tests/test_ranges.py::TestRanges::test_linspace_mixed_start_stop2 -tests/third_party/cupy/creation_tests/test_ranges.py::TestRanges::test_linspace_start_stop_list +tests/third_party/cupy/creation_tests/test_ranges.py::TestRanges::test_linspace_one_num_no_endopoint_with_retstep +tests/third_party/cupy/creation_tests/test_ranges.py::TestRanges::test_linspace_with_retstep +tests/third_party/cupy/creation_tests/test_ranges.py::TestRanges::test_linspace_zero_num_no_endopoint_with_retstep tests/third_party/cupy/indexing_tests/test_generate.py::TestAxisConcatenator::test_AxisConcatenator_init1 tests/third_party/cupy/indexing_tests/test_generate.py::TestAxisConcatenator::test_len tests/third_party/cupy/indexing_tests/test_generate.py::TestC_::test_c_1 @@ -618,10 +610,6 @@ tests/third_party/cupy/linalg_tests/test_einsum.py::TestEinSumLarge_param_9_{opt tests/third_party/cupy/linalg_tests/test_einsum.py::TestEinSumUnaryOperationWithScalar::test_scalar_float tests/third_party/cupy/linalg_tests/test_einsum.py::TestEinSumUnaryOperationWithScalar::test_scalar_int tests/third_party/cupy/linalg_tests/test_einsum.py::TestListArgEinSumError::test_invalid_sub1 -tests/third_party/cupy/linalg_tests/test_product.py::TestDot_param_64_{shape=((2,), (2, 4)), trans_a=True, trans_b=True}::test_dot -tests/third_party/cupy/linalg_tests/test_product.py::TestDot_param_65_{shape=((2,), (2, 4)), trans_a=True, trans_b=False}::test_dot -tests/third_party/cupy/linalg_tests/test_product.py::TestDot_param_66_{shape=((2,), (2, 4)), trans_a=False, trans_b=True}::test_dot -tests/third_party/cupy/linalg_tests/test_product.py::TestDot_param_67_{shape=((2,), (2, 4)), trans_a=False, trans_b=False}::test_dot tests/third_party/cupy/linalg_tests/test_product.py::TestMatrixPower::test_matrix_power_invlarge tests/third_party/cupy/linalg_tests/test_product.py::TestMatrixPower::test_matrix_power_large tests/third_party/cupy/linalg_tests/test_product.py::TestMatrixPower::test_matrix_power_of_two @@ -769,7 +757,6 @@ tests/third_party/cupy/math_tests/test_arithmetic.py::TestArithmeticModf::test_m tests/third_party/cupy/math_tests/test_arithmetic.py::TestArithmeticRaisesWithNumpyInput_param_10_{name='remainder', nargs=2}::test_raises_with_numpy_input tests/third_party/cupy/math_tests/test_arithmetic.py::TestArithmeticRaisesWithNumpyInput_param_11_{name='mod', nargs=2}::test_raises_with_numpy_input tests/third_party/cupy/math_tests/test_arithmetic.py::TestArithmeticRaisesWithNumpyInput_param_1_{name='angle', nargs=1}::test_raises_with_numpy_input -tests/third_party/cupy/math_tests/test_arithmetic.py::TestArithmeticRaisesWithNumpyInput_param_5_{name='power', nargs=2}::test_raises_with_numpy_input tests/third_party/cupy/math_tests/test_arithmetic.py::TestArithmeticRaisesWithNumpyInput_param_8_{name='floor_divide', nargs=2}::test_raises_with_numpy_input tests/third_party/cupy/math_tests/test_explog.py::TestExplog::test_logaddexp @@ -1081,11 +1068,6 @@ tests/third_party/cupy/sorting_tests/test_search.py::TestNonzeroZeroDimension_pa tests/third_party/cupy/sorting_tests/test_search.py::TestNonzeroZeroDimension_param_1_{array=array(1)}::test_nonzero tests/third_party/cupy/sorting_tests/test_search.py::TestSearch::test_argmax_zero_size tests/third_party/cupy/sorting_tests/test_search.py::TestSearch::test_argmin_zero_size -tests/third_party/cupy/sorting_tests/test_search.py::TestWhereCond_param_0_{cond_shape=(2, 3, 4)}::test_where_cond -tests/third_party/cupy/sorting_tests/test_search.py::TestWhereCond_param_1_{cond_shape=(4,)}::test_where_cond -tests/third_party/cupy/sorting_tests/test_search.py::TestWhereCond_param_2_{cond_shape=(2, 3, 4)}::test_where_cond -tests/third_party/cupy/sorting_tests/test_search.py::TestWhereCond_param_3_{cond_shape=(3, 4)}::test_where_cond -tests/third_party/cupy/sorting_tests/test_search.py::TestWhereError::test_one_argument tests/third_party/cupy/sorting_tests/test_sort.py::TestArgpartition_param_0_{external=False}::test_argpartition_axis tests/third_party/cupy/sorting_tests/test_sort.py::TestArgpartition_param_0_{external=False}::test_argpartition_invalid_axis1 tests/third_party/cupy/sorting_tests/test_sort.py::TestArgpartition_param_0_{external=False}::test_argpartition_invalid_axis2 diff --git a/tests/skipped_tests_gpu.tbl b/tests/skipped_tests_gpu.tbl index e6598904e16..7e9b9e5505d 100644 --- a/tests/skipped_tests_gpu.tbl +++ b/tests/skipped_tests_gpu.tbl @@ -12,7 +12,6 @@ tests/test_random.py::TestPermutationsTestShuffle::test_no_miss_numbers[int64] tests/test_random.py::TestPermutationsTestShuffle::test_shuffle1[lambda x: dpnp.array([])] tests/test_random.py::TestPermutationsTestShuffle::test_shuffle1[lambda x: dpnp.astype(dpnp.asarray(x), dpnp.float32)] -tests/test_sycl_queue.py::test_1in_1out[opencl:gpu:0-abs-data0] tests/test_sycl_queue.py::test_1in_1out[opencl:gpu:0-ceil-data1] tests/test_sycl_queue.py::test_1in_1out[opencl:gpu:0-conjugate-data2] tests/test_sycl_queue.py::test_1in_1out[opencl:gpu:0-copy-data3] @@ -22,7 +21,6 @@ tests/test_sycl_queue.py::test_1in_1out[opencl:gpu:0-ediff1d-data7] tests/test_sycl_queue.py::test_1in_1out[opencl:gpu:0-fabs-data8] tests/test_sycl_queue.py::test_1in_1out[opencl:gpu:0-floor-data9] -tests/test_sycl_queue.py::test_1in_1out[level_zero:gpu:0-abs-data0] tests/test_sycl_queue.py::test_1in_1out[level_zero:gpu:0-ceil-data1] tests/test_sycl_queue.py::test_1in_1out[level_zero:gpu:0-conjugate-data2] tests/test_sycl_queue.py::test_1in_1out[level_zero:gpu:0-copy-data3] @@ -54,13 +52,6 @@ tests/test_sycl_queue.py::test_modf[level_zero:gpu:0] tests/test_sycl_queue.py::test_1in_1out[opencl:gpu:0-trapz-data19] tests/test_sycl_queue.py::test_1in_1out[opencl:cpu:0-trapz-data19] -tests/test_indexing.py::test_nonzero[[[1, 0], [1, 0]]] -tests/test_indexing.py::test_nonzero[[[1, 2], [3, 4]]] -tests/test_indexing.py::test_nonzero[[[0, 1, 2], [3, 0, 5], [6, 7, 0]]] -tests/test_indexing.py::test_nonzero[[[0, 1, 0, 3, 0], [5, 0, 7, 0, 9]]] -tests/test_indexing.py::test_nonzero[[[[1, 2], [0, 4]], [[0, 2], [0, 1]], [[0, 0], [3, 1]]]] -tests/test_indexing.py::test_nonzero[[[[[1, 2, 3], [3, 4, 5]], [[1, 2, 3], [2, 1, 0]]], [[[1, 3, 5], [3, 1, 0]], [[0, 1, 2], [1, 3, 4]]]]] - tests/third_party/cupy/indexing_tests/test_indexing.py::TestIndexing::test_take_no_axis tests/third_party/cupy/indexing_tests/test_insert.py::TestPlace_param_3_{n_vals=1, shape=(7,)}::test_place tests/third_party/cupy/indexing_tests/test_insert.py::TestPlace_param_4_{n_vals=1, shape=(2, 3)}::test_place @@ -581,16 +572,10 @@ tests/third_party/cupy/creation_tests/test_ranges.py::TestMeshgrid_param_3_{copy tests/third_party/cupy/creation_tests/test_ranges.py::TestMeshgrid_param_3_{copy=False, indexing='ij', sparse=True}::test_meshgrid1 tests/third_party/cupy/creation_tests/test_ranges.py::TestMeshgrid_param_3_{copy=False, indexing='ij', sparse=True}::test_meshgrid2 tests/third_party/cupy/creation_tests/test_ranges.py::TestMeshgrid_param_3_{copy=False, indexing='ij', sparse=True}::test_meshgrid3 -tests/third_party/cupy/creation_tests/test_ranges.py::TestMeshgrid_param_4_{copy=True, indexing='xy', sparse=False}::test_meshgrid1 -tests/third_party/cupy/creation_tests/test_ranges.py::TestMeshgrid_param_4_{copy=True, indexing='xy', sparse=False}::test_meshgrid2 -tests/third_party/cupy/creation_tests/test_ranges.py::TestMeshgrid_param_4_{copy=True, indexing='xy', sparse=False}::test_meshgrid3 tests/third_party/cupy/creation_tests/test_ranges.py::TestMeshgrid_param_5_{copy=True, indexing='xy', sparse=True}::test_meshgrid0 tests/third_party/cupy/creation_tests/test_ranges.py::TestMeshgrid_param_5_{copy=True, indexing='xy', sparse=True}::test_meshgrid1 tests/third_party/cupy/creation_tests/test_ranges.py::TestMeshgrid_param_5_{copy=True, indexing='xy', sparse=True}::test_meshgrid2 tests/third_party/cupy/creation_tests/test_ranges.py::TestMeshgrid_param_5_{copy=True, indexing='xy', sparse=True}::test_meshgrid3 -tests/third_party/cupy/creation_tests/test_ranges.py::TestMeshgrid_param_6_{copy=True, indexing='ij', sparse=False}::test_meshgrid1 -tests/third_party/cupy/creation_tests/test_ranges.py::TestMeshgrid_param_6_{copy=True, indexing='ij', sparse=False}::test_meshgrid2 -tests/third_party/cupy/creation_tests/test_ranges.py::TestMeshgrid_param_6_{copy=True, indexing='ij', sparse=False}::test_meshgrid3 tests/third_party/cupy/creation_tests/test_ranges.py::TestMeshgrid_param_7_{copy=True, indexing='ij', sparse=True}::test_meshgrid0 tests/third_party/cupy/creation_tests/test_ranges.py::TestMeshgrid_param_7_{copy=True, indexing='ij', sparse=True}::test_meshgrid1 tests/third_party/cupy/creation_tests/test_ranges.py::TestMeshgrid_param_7_{copy=True, indexing='ij', sparse=True}::test_meshgrid2 @@ -600,19 +585,13 @@ tests/third_party/cupy/creation_tests/test_ranges.py::TestMgrid::test_mgrid5 tests/third_party/cupy/creation_tests/test_ranges.py::TestOgrid::test_ogrid3 tests/third_party/cupy/creation_tests/test_ranges.py::TestOgrid::test_ogrid4 tests/third_party/cupy/creation_tests/test_ranges.py::TestOgrid::test_ogrid5 - -tests/third_party/cupy/creation_tests/test_ranges.py::TestRanges::test_linspace_array_start_stop -tests/third_party/cupy/creation_tests/test_ranges.py::TestRanges::test_linspace_array_start_stop_axis1 tests/third_party/cupy/creation_tests/test_ranges.py::TestRanges::test_arange_negative_size tests/third_party/cupy/creation_tests/test_ranges.py::TestRanges::test_arange_no_dtype_int - -tests/third_party/cupy/creation_tests/test_ranges.py::TestRanges::test_linspace_float_underflow -tests/third_party/cupy/creation_tests/test_ranges.py::TestRanges::test_linspace_mixed_start_stop -tests/third_party/cupy/creation_tests/test_ranges.py::TestRanges::test_linspace_mixed_start_stop2 -tests/third_party/cupy/creation_tests/test_ranges.py::TestRanges::test_linspace_start_stop_list - +tests/third_party/cupy/creation_tests/test_ranges.py::TestRanges::test_linspace_array_start_stop_axis1 +tests/third_party/cupy/creation_tests/test_ranges.py::TestRanges::test_linspace_one_num_no_endopoint_with_retstep +tests/third_party/cupy/creation_tests/test_ranges.py::TestRanges::test_linspace_with_retstep +tests/third_party/cupy/creation_tests/test_ranges.py::TestRanges::test_linspace_zero_num_no_endopoint_with_retstep tests/third_party/cupy/creation_tests/test_ranges.py::TestRanges::test_logspace_zero_num - tests/third_party/cupy/fft_tests/test_fft.py::TestFft2_param_1_{axes=None, norm=None, s=(1, None), shape=(3, 4)}::test_fft2 tests/third_party/cupy/fft_tests/test_fft.py::TestFft2_param_7_{axes=(), norm=None, s=None, shape=(3, 4)}::test_fft2 tests/third_party/cupy/fft_tests/test_fft.py::TestFft2_param_7_{axes=(), norm=None, s=None, shape=(3, 4)}::test_ifft2 @@ -826,10 +805,6 @@ tests/third_party/cupy/linalg_tests/test_einsum.py::TestEinSumUnaryOperationWith tests/third_party/cupy/linalg_tests/test_einsum.py::TestEinSumUnaryOperationWithScalar::test_scalar_int tests/third_party/cupy/linalg_tests/test_einsum.py::TestListArgEinSumError::test_invalid_sub1 tests/third_party/cupy/linalg_tests/test_product.py::TestProduct::test_transposed_dot -tests/third_party/cupy/linalg_tests/test_product.py::TestDot_param_64_{shape=((2,), (2, 4)), trans_a=True, trans_b=True}::test_dot -tests/third_party/cupy/linalg_tests/test_product.py::TestDot_param_65_{shape=((2,), (2, 4)), trans_a=True, trans_b=False}::test_dot -tests/third_party/cupy/linalg_tests/test_product.py::TestDot_param_66_{shape=((2,), (2, 4)), trans_a=False, trans_b=True}::test_dot -tests/third_party/cupy/linalg_tests/test_product.py::TestDot_param_67_{shape=((2,), (2, 4)), trans_a=False, trans_b=False}::test_dot tests/third_party/cupy/linalg_tests/test_product.py::TestMatrixPower::test_matrix_power_invlarge tests/third_party/cupy/linalg_tests/test_product.py::TestMatrixPower::test_matrix_power_large tests/third_party/cupy/linalg_tests/test_product.py::TestMatrixPower::test_matrix_power_of_two @@ -841,7 +816,6 @@ tests/third_party/cupy/linalg_tests/test_product.py::TestProduct::test_transpose tests/third_party/cupy/linalg_tests/test_product.py::TestProduct::test_transposed_tensordot tests/third_party/cupy/linalg_tests/test_product.py::TestProduct::test_transposed_tensordot_with_int_axes tests/third_party/cupy/linalg_tests/test_product.py::TestProduct::test_transposed_tensordot_with_list_axes -tests/third_party/cupy/linalg_tests/test_product.py::TestProduct:: tests/third_party/cupy/linalg_tests/test_product.py::TestProduct::test_tensordot_zero_dim tests/third_party/cupy/linalg_tests/test_product.py::TestProduct::test_transposed_dot_with_out_f_contiguous tests/third_party/cupy/linalg_tests/test_product.py::TestProduct::test_transposed_multidim_vdot @@ -988,7 +962,6 @@ tests/third_party/cupy/math_tests/test_arithmetic.py::TestArithmeticBinary2_para tests/third_party/cupy/math_tests/test_arithmetic.py::TestArithmeticRaisesWithNumpyInput_param_10_{name='remainder', nargs=2}::test_raises_with_numpy_input tests/third_party/cupy/math_tests/test_arithmetic.py::TestArithmeticRaisesWithNumpyInput_param_11_{name='mod', nargs=2}::test_raises_with_numpy_input tests/third_party/cupy/math_tests/test_arithmetic.py::TestArithmeticRaisesWithNumpyInput_param_1_{name='angle', nargs=1}::test_raises_with_numpy_input -tests/third_party/cupy/math_tests/test_arithmetic.py::TestArithmeticRaisesWithNumpyInput_param_5_{name='power', nargs=2}::test_raises_with_numpy_input tests/third_party/cupy/math_tests/test_arithmetic.py::TestArithmeticRaisesWithNumpyInput_param_8_{name='floor_divide', nargs=2}::test_raises_with_numpy_input tests/third_party/cupy/math_tests/test_explog.py::TestExplog::test_logaddexp @@ -1289,15 +1262,6 @@ tests/third_party/cupy/sorting_tests/test_search.py::TestNonzeroZeroDimension_pa tests/third_party/cupy/sorting_tests/test_search.py::TestNonzeroZeroDimension_param_1_{array=array(1)}::test_nonzero tests/third_party/cupy/sorting_tests/test_search.py::TestSearch::test_argmax_zero_size tests/third_party/cupy/sorting_tests/test_search.py::TestSearch::test_argmin_zero_size -tests/third_party/cupy/sorting_tests/test_search.py::TestWhereCond_param_0_{cond_shape=(2, 3, 4)}::test_where_cond -tests/third_party/cupy/sorting_tests/test_search.py::TestWhereCond_param_1_{cond_shape=(4,)}::test_where_cond -tests/third_party/cupy/sorting_tests/test_search.py::TestWhereCond_param_2_{cond_shape=(2, 3, 4)}::test_where_cond -tests/third_party/cupy/sorting_tests/test_search.py::TestWhereCond_param_3_{cond_shape=(3, 4)}::test_where_cond -tests/third_party/cupy/sorting_tests/test_search.py::TestWhereError::test_one_argument -tests/third_party/cupy/sorting_tests/test_search.py::TestWhereTwoArrays_param_0_{cond_shape=(2, 3, 4), x_shape=(2, 3, 4), y_shape=(2, 3, 4)}::test_where_two_arrays -tests/third_party/cupy/sorting_tests/test_search.py::TestWhereTwoArrays_param_1_{cond_shape=(4,), x_shape=(2, 3, 4), y_shape=(2, 3, 4)}::test_where_two_arrays -tests/third_party/cupy/sorting_tests/test_search.py::TestWhereTwoArrays_param_2_{cond_shape=(2, 3, 4), x_shape=(2, 3, 4), y_shape=(3, 4)}::test_where_two_arrays -tests/third_party/cupy/sorting_tests/test_search.py::TestWhereTwoArrays_param_3_{cond_shape=(3, 4), x_shape=(2, 3, 4), y_shape=(4,)}::test_where_two_arrays tests/third_party/cupy/sorting_tests/test_sort.py::TestArgpartition_param_0_{external=False}::test_argpartition_axis tests/third_party/cupy/sorting_tests/test_sort.py::TestArgpartition_param_0_{external=False}::test_argpartition_invalid_axis1 tests/third_party/cupy/sorting_tests/test_sort.py::TestArgpartition_param_0_{external=False}::test_argpartition_invalid_axis2 diff --git a/tests/test_absolute.py b/tests/test_absolute.py index aa145cc9202..81929ca3aa1 100644 --- a/tests/test_absolute.py +++ b/tests/test_absolute.py @@ -1,53 +1,58 @@ import pytest +from .helper import ( + get_all_dtypes, + get_complex_dtypes, + get_float_complex_dtypes +) -import dpnp as inp +import dpnp import numpy - - -@pytest.mark.parametrize("type", - [numpy.int64], - ids=['int64']) -def test_abs_int(type): - a = numpy.array([1, 0, 2, -3, -1, 2, 21, -9]) - ia = inp.array(a) - - result = inp.abs(ia) - expected = numpy.abs(a) - numpy.testing.assert_array_equal(expected, result) - - -@pytest.mark.parametrize("type", - [numpy.int64], - ids=['int64']) -def test_absolute_int(type): - a = numpy.array([1, 0, 2, -3, -1, 2, 21, -9]) - ia = inp.array(a) - - result = inp.absolute(ia) - expected = numpy.absolute(a) - numpy.testing.assert_array_equal(expected, result) - - -@pytest.mark.parametrize("type", - [numpy.float64], - ids=['float64']) -def test_absolute_float(type): - a = numpy.array([[-2., 3., 9.1], [-2., 5.0, -2], [1.0, -2., 5.0]]) - ia = inp.array(a) - - result = inp.absolute(ia) - expected = numpy.absolute(a) - numpy.testing.assert_array_equal(expected, result) - - -@pytest.mark.parametrize("type", - [numpy.float64], - ids=['float64']) -def test_absolute_float_3(type): - a = numpy.array([[[-2., 3.], [9.1, 0.2]], [[-2., 5.0], [-2, -1.2]], [[1.0, -2.], [5.0, -1.1]]]) - ia = inp.array(a) - - result = inp.absolute(ia) - expected = numpy.absolute(a) - numpy.testing.assert_array_equal(expected, result) +from numpy.testing import ( + assert_array_equal, + assert_equal +) + + +@pytest.mark.parametrize("func", ["abs", "absolute"]) +@pytest.mark.parametrize("dtype", get_all_dtypes()) +def test_abs(func, dtype): + a = numpy.array([1, 0, 2, -3, -1, 2, 21, -9], dtype=dtype) + ia = dpnp.array(a) + + result = getattr(dpnp, func)(ia) + expected = getattr(numpy, func)(a) + assert_array_equal(expected, result) + assert_equal(result.dtype, expected.dtype) + + +@pytest.mark.parametrize("stride", [-4, -2, -1, 1, 2, 4]) +@pytest.mark.parametrize("dtype", get_complex_dtypes()) +def test_abs_complex(stride, dtype): + np_arr = numpy.array([complex(numpy.nan , numpy.nan), + complex(numpy.nan , numpy.inf), + complex(numpy.inf , numpy.nan), + complex(numpy.inf , numpy.inf), + complex(0. , numpy.inf), + complex(numpy.inf , 0.), + complex(0. , 0.), + complex(0. , numpy.nan), + complex(numpy.nan , 0.)], dtype=dtype) + dpnp_arr = dpnp.array(np_arr) + assert_equal(numpy.abs(np_arr[::stride]), dpnp.abs(dpnp_arr[::stride])) + + +@pytest.mark.parametrize("arraysize", [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 18, 19]) +@pytest.mark.parametrize("stride", [-4, -3, -2, -1, 1, 2, 3, 4]) +@pytest.mark.parametrize("astype", get_complex_dtypes()) +def test_abs_complex_avx(arraysize, stride, astype): + np_arr = numpy.ones(arraysize, dtype=astype) + dpnp_arr = dpnp.array(np_arr) + assert_equal(numpy.abs(np_arr[::stride]), dpnp.abs(dpnp_arr[::stride])) + + +@pytest.mark.parametrize("dtype", get_float_complex_dtypes()) +def test_abs_values(dtype): + np_arr = numpy.array([numpy.nan, -numpy.nan, numpy.inf, -numpy.inf, 0., -0., -1.0, 1.0], dtype=dtype) + dpnp_arr = dpnp.array(np_arr) + assert_equal(numpy.abs(np_arr), dpnp.abs(dpnp_arr)) diff --git a/tests/test_arraycreation.py b/tests/test_arraycreation.py index 63435bca11f..f8167b7d926 100644 --- a/tests/test_arraycreation.py +++ b/tests/test_arraycreation.py @@ -30,7 +30,7 @@ @pytest.mark.parametrize("dtype", get_all_dtypes(no_bool=True, no_float16=False)) def test_arange(start, stop, step, dtype): rtol_mult = 2 - if numpy.issubdtype(dtype, numpy.float16): + if dpnp.issubdtype(dtype, dpnp.float16): # numpy casts to float32 type when computes float16 data rtol_mult = 4 @@ -51,7 +51,7 @@ def test_arange(start, stop, step, dtype): else: _dtype = dtype - if numpy.issubdtype(_dtype, numpy.floating) or numpy.issubdtype(_dtype, numpy.complexfloating): + if dpnp.issubdtype(_dtype, dpnp.floating) or dpnp.issubdtype(_dtype, dpnp.complexfloating): assert_allclose(exp_array, res_array, rtol=rtol_mult*numpy.finfo(_dtype).eps) else: assert_array_equal(exp_array, res_array) @@ -507,7 +507,66 @@ def test_dpctl_tensor_input(func, args): new_args = [eval(val, {'x0' : x0}) for val in args] X = getattr(dpt, func)(*new_args) Y = getattr(dpnp, func)(*new_args) - if func is 'empty_like': + if func == 'empty_like': assert X.shape == Y.shape else: assert_array_equal(X, Y) + + +@pytest.mark.parametrize("start", + [0, -5, 10, -2.5, 9.7], + ids=['0', '-5', '10', '-2.5', '9.7']) +@pytest.mark.parametrize("stop", + [0, 10, -2, 20.5, 1000], + ids=['0', '10', '-2', '20.5', '1000']) +@pytest.mark.parametrize("num", + [5, numpy.array(10), dpnp.array(17), dpt.asarray(100)], + ids=['5', 'numpy.array(10)', 'dpnp.array(17)', 'dpt.asarray(100)']) +@pytest.mark.parametrize("dtype", get_all_dtypes(no_bool=True, no_float16=False)) +def test_linspace(start, stop, num, dtype): + func = lambda xp: xp.linspace(start, stop, num, dtype=dtype) + + if numpy.issubdtype(dtype, dpnp.integer): + assert_allclose(func(numpy), func(dpnp), rtol=1) + else: + assert_allclose(func(numpy), func(dpnp), atol=numpy.finfo(dtype).eps) + + +@pytest.mark.parametrize("start_dtype", + [numpy.float64, numpy.float32, numpy.int64, numpy.int32], + ids=['float64', 'float32', 'int64', 'int32']) +@pytest.mark.parametrize("stop_dtype", + [numpy.float64, numpy.float32, numpy.int64, numpy.int32], + ids=['float64', 'float32', 'int64', 'int32']) +def test_linspace_dtype(start_dtype, stop_dtype): + start = numpy.array([1, 2, 3], dtype=start_dtype) + stop = numpy.array([11, 7, -2], dtype=stop_dtype) + dpnp.linspace(start, stop, 10) + + +@pytest.mark.parametrize("start", + [dpnp.array(1), dpnp.array([2.6]), numpy.array([[-6.7, 3]]), [1, -4], (3, 5)]) +@pytest.mark.parametrize("stop", + [dpnp.array([-4]), dpnp.array([[2.6], [- 4]]), numpy.array(2), [[-4.6]], (3,)]) +def test_linspace_arrays(start, stop): + func = lambda xp: xp.linspace(start, stop, 10) + assert func(numpy).shape == func(dpnp).shape + + +def test_linspace_complex(): + func = lambda xp: xp.linspace(0, 3 + 2j, num=1000) + assert_allclose(func(numpy), func(dpnp)) + + +@pytest.mark.parametrize("arrays", + [[], [[1]], [[1, 2, 3], [4, 5, 6]], [[1, 2], [3, 4], [5, 6]]], + ids=['[]', '[[1]]', '[[1, 2, 3], [4, 5, 6]]', '[[1, 2], [3, 4], [5, 6]]']) +@pytest.mark.parametrize("dtype", get_all_dtypes(no_float16=False)) +@pytest.mark.parametrize("indexing", + ["ij", "xy"], + ids=["ij", "xy"]) +def test_meshgrid(arrays, dtype, indexing): + func = lambda xp, xi: xp.meshgrid(*xi, indexing=indexing) + a = tuple(numpy.array(array, dtype=dtype) for array in arrays) + ia = tuple(dpnp.array(array, dtype=dtype) for array in arrays) + assert_array_equal(func(numpy, a), func(dpnp, ia)) diff --git a/tests/test_arraymanipulation.py b/tests/test_arraymanipulation.py index c0cd3e6c2b1..f22e8175c3b 100644 --- a/tests/test_arraymanipulation.py +++ b/tests/test_arraymanipulation.py @@ -1,16 +1,15 @@ import pytest +from .helper import get_all_dtypes import dpnp import numpy @pytest.mark.usefixtures("allow_fall_back_on_numpy") -@pytest.mark.parametrize("dtype", - [numpy.float64, numpy.float32, numpy.int64, numpy.int32], - ids=["float64", "float32", "int64", "int32"]) -@pytest.mark.parametrize("data", - [[1, 2, 3], [1., 2., 3.]], - ids=["[1, 2, 3]", "[1., 2., 3.]"]) +@pytest.mark.parametrize("dtype", get_all_dtypes()) +@pytest.mark.parametrize( + "data", [[1, 2, 3], [1.0, 2.0, 3.0]], ids=["[1, 2, 3]", "[1., 2., 3.]"] +) def test_asfarray(dtype, data): expected = numpy.asfarray(data, dtype) result = dpnp.asfarray(data, dtype) @@ -18,15 +17,12 @@ def test_asfarray(dtype, data): numpy.testing.assert_array_equal(result, expected) -@pytest.mark.parametrize("dtype", - [numpy.float64, numpy.float32, numpy.int64, numpy.int32], - ids=["float64", "float32", "int64", "int32"]) -@pytest.mark.parametrize("data", - [[1, 2, 3], [1., 2., 3.]], - ids=["[1, 2, 3]", "[1., 2., 3.]"]) -def test_asfarray2(dtype, data): - expected = numpy.asfarray(numpy.array(data), dtype) - result = dpnp.asfarray(dpnp.array(data), dtype) +@pytest.mark.parametrize("dtype", get_all_dtypes()) +@pytest.mark.parametrize("data", [[1.0, 2.0, 3.0]], ids=["[1., 2., 3.]"]) +@pytest.mark.parametrize("data_dtype", get_all_dtypes(no_none=True)) +def test_asfarray2(dtype, data, data_dtype): + expected = numpy.asfarray(numpy.array(data, dtype=data_dtype), dtype) + result = dpnp.asfarray(dpnp.array(data, dtype=data_dtype), dtype) numpy.testing.assert_array_equal(result, expected) @@ -59,7 +55,9 @@ def test_concatenate(self): numpy.testing.assert_array_equal(dpnp.concatenate((r4, r3)), r4 + r3) # Mixed sequence types numpy.testing.assert_array_equal(dpnp.concatenate((tuple(r4), r3)), r4 + r3) - numpy.testing.assert_array_equal(dpnp.concatenate((dpnp.array(r4), r3)), r4 + r3) + numpy.testing.assert_array_equal( + dpnp.concatenate((dpnp.array(r4), r3)), r4 + r3 + ) # Explicit axis specification numpy.testing.assert_array_equal(dpnp.concatenate((r4, r3), 0), r4 + r3) # Including negative diff --git a/tests/test_dot.py b/tests/test_dot.py index ae6341ea909..b9cb5659973 100644 --- a/tests/test_dot.py +++ b/tests/test_dot.py @@ -1,13 +1,16 @@ import pytest +from .helper import get_all_dtypes import dpnp as inp import numpy +from numpy.testing import ( + assert_allclose, + assert_array_equal +) -@pytest.mark.parametrize("type", - [numpy.float64, numpy.float32, numpy.int64, numpy.int32], - ids=['float64', 'float32', 'int64', 'int32']) +@pytest.mark.parametrize("type", get_all_dtypes(no_bool=True, no_complex=True)) def test_dot_ones(type): n = 10**5 a = numpy.ones(n, dtype=type) @@ -17,12 +20,10 @@ def test_dot_ones(type): result = inp.dot(ia, ib) expected = numpy.dot(a, b) - numpy.testing.assert_array_equal(expected, result) + assert_array_equal(expected, result) -@pytest.mark.parametrize("type", - [numpy.float64, numpy.float32, numpy.int64, numpy.int32], - ids=['float64', 'float32', 'int64', 'int32']) +@pytest.mark.parametrize("type", get_all_dtypes(no_bool=True, no_complex=True)) def test_dot_arange(type): n = 10**2 m = 10**3 @@ -33,12 +34,10 @@ def test_dot_arange(type): result = inp.dot(ia, ib) expected = numpy.dot(a, b) - numpy.testing.assert_allclose(expected, result) + assert_allclose(expected, result) -@pytest.mark.parametrize("type", - [numpy.float64, numpy.float32, numpy.int64, numpy.int32], - ids=['float64', 'float32', 'int64', 'int32']) +@pytest.mark.parametrize("type", get_all_dtypes(no_bool=True, no_complex=True)) def test_multi_dot(type): n = 16 a = inp.reshape(inp.arange(n, dtype=type), (4, 4)) @@ -53,4 +52,4 @@ def test_multi_dot(type): result = inp.linalg.multi_dot([a, b, c, d]) expected = numpy.linalg.multi_dot([a1, b1, c1, d1]) - numpy.testing.assert_array_equal(expected, result) + assert_array_equal(expected, result) diff --git a/tests/test_dparray.py b/tests/test_dparray.py index 62a0120f8a3..028d1201c0b 100644 --- a/tests/test_dparray.py +++ b/tests/test_dparray.py @@ -139,11 +139,11 @@ def test_print_dpnp_special_character(): expected = "[ 1. 0. nan 3.]" assert(result==expected) # inf - result = repr(dpnp.array([1., 0., numpy.inf, 3.])) + result = repr(dpnp.array([1., 0., dpnp.inf, 3.])) expected = "array([ 1., 0., inf, 3.])" assert(result==expected) - result = str(dpnp.array([1., 0., numpy.inf, 3.])) + result = str(dpnp.array([1., 0., dpnp.inf, 3.])) expected = "[ 1. 0. inf 3.]" assert(result==expected) diff --git a/tests/test_logic.py b/tests/test_logic.py index 425106fd2ef..b2a545a118f 100644 --- a/tests/test_logic.py +++ b/tests/test_logic.py @@ -10,7 +10,7 @@ ) -@pytest.mark.parametrize("type", get_all_dtypes(no_complex=True)) +@pytest.mark.parametrize("type", get_all_dtypes()) @pytest.mark.parametrize("shape", [(0,), (4,), (2, 3), (2, 2, 2)], ids=['(0,)', '(4,)', '(2,3)', '(2,2,2)']) @@ -63,7 +63,7 @@ def test_allclose(type): assert_allclose(dpnp_res, np_res) -@pytest.mark.parametrize("type", get_all_dtypes(no_complex=True)) +@pytest.mark.parametrize("type", get_all_dtypes()) @pytest.mark.parametrize("shape", [(0,), (4,), (2, 3), (2, 2, 2)], ids=['(0,)', '(4,)', '(2,3)', '(2,2,2)']) diff --git a/tests/test_mathematical.py b/tests/test_mathematical.py index 78f62890833..e58e129c03b 100644 --- a/tests/test_mathematical.py +++ b/tests/test_mathematical.py @@ -1,5 +1,9 @@ import pytest -from .helper import get_all_dtypes +from .helper import ( + get_all_dtypes, + is_cpu_device, + is_win_platform +) import dpnp @@ -8,6 +12,7 @@ assert_allclose, assert_array_almost_equal, assert_array_equal, + assert_equal, assert_raises ) @@ -66,7 +71,7 @@ def test_diff(array): @pytest.mark.parametrize("dtype1", get_all_dtypes()) @pytest.mark.parametrize("dtype2", get_all_dtypes()) @pytest.mark.parametrize("func", - ['add', 'multiply', 'subtract', 'divide']) + ['add', 'divide', 'multiply', 'power', 'subtract']) @pytest.mark.parametrize("data", [[[1, 2], [3, 4]]], ids=['[[1, 2], [3, 4]]']) @@ -84,7 +89,7 @@ def test_op_multiple_dtypes(dtype1, func, dtype2, data): else: result = getattr(dpnp, func)(dpnp_a, dpnp_b) expected = getattr(numpy, func)(np_a, np_b) - assert_array_equal(result, expected) + assert_allclose(result, expected) @pytest.mark.parametrize("rhs", [[[1, 2, 3], [4, 5, 6]], [2.0, 1.5, 1.0], 3, 0.3]) @@ -116,7 +121,7 @@ def _test_mathematical(self, name, dtype, lhs, rhs): else: result = getattr(dpnp, name)(a_dpnp, b_dpnp) expected = getattr(numpy, name)(a_np, b_np) - assert_allclose(result, expected, atol=1e-4) + assert_allclose(result, expected, rtol=1e-6) @pytest.mark.parametrize("dtype", get_all_dtypes()) def test_add(self, dtype, lhs, rhs): @@ -170,8 +175,7 @@ def test_multiply(self, dtype, lhs, rhs): def test_remainder(self, dtype, lhs, rhs): self._test_mathematical('remainder', dtype, lhs, rhs) - @pytest.mark.usefixtures("allow_fall_back_on_numpy") - @pytest.mark.parametrize("dtype", get_all_dtypes(no_bool=True, no_complex=True)) + @pytest.mark.parametrize("dtype", get_all_dtypes()) def test_power(self, dtype, lhs, rhs): self._test_mathematical('power', dtype, lhs, rhs) @@ -186,7 +190,7 @@ def test_subtract(self, dtype, lhs, rhs): ids=['bool', 'int', 'float']) @pytest.mark.parametrize("data_type", get_all_dtypes()) @pytest.mark.parametrize("func", - ['add', 'multiply', 'subtract', 'divide']) + ['add', 'divide', 'multiply', 'power', 'subtract']) @pytest.mark.parametrize("val", [0, 1, 5], ids=['0', '1', '5']) @@ -206,6 +210,13 @@ def test_op_with_scalar(array, val, func, data_type, val_type): dpnp_a = dpnp.array(array, dtype=data_type) val_ = val_type(val) + if func == 'power': + if val_ == 0 and numpy.issubdtype(data_type, numpy.complexfloating): + pytest.skip("(0j ** 0) is different: (NaN + NaNj) in dpnp and (1 + 0j) in numpy") + elif is_cpu_device() and data_type == dpnp.complex128: + # TODO: discuss the bahavior with OneMKL team + pytest.skip("(0j ** 5) is different: (NaN + NaNj) in dpnp and (0j) in numpy") + if func == 'subtract' and val_type == bool and data_type == dpnp.bool: with pytest.raises(TypeError): result = getattr(dpnp, func)(dpnp_a, val_) @@ -216,11 +227,11 @@ def test_op_with_scalar(array, val, func, data_type, val_type): else: result = getattr(dpnp, func)(dpnp_a, val_) expected = getattr(numpy, func)(np_a, val_) - assert_allclose(result, expected) + assert_allclose(result, expected, rtol=1e-6) result = getattr(dpnp, func)(val_, dpnp_a) expected = getattr(numpy, func)(val_, np_a) - assert_allclose(result, expected) + assert_allclose(result, expected, rtol=1e-6) @pytest.mark.parametrize("shape", @@ -275,6 +286,23 @@ def test_divide_scalar(shape, dtype): assert_allclose(result, expected) +@pytest.mark.parametrize("shape", + [(), (3, 2)], + ids=['()', '(3, 2)']) +@pytest.mark.parametrize("dtype", get_all_dtypes()) +def test_power_scalar(shape, dtype): + np_a = numpy.ones(shape, dtype=dtype) + dpnp_a = dpnp.ones(shape, dtype=dtype) + + result = 4.2 ** dpnp_a ** -1.3 + expected = 4.2 ** np_a ** -1.3 + assert_allclose(result, expected, rtol=1e-6) + + result **= dpnp_a + expected **= np_a + assert_allclose(result, expected, rtol=1e-6) + + @pytest.mark.usefixtures("allow_fall_back_on_numpy") @pytest.mark.parametrize("array", [[1, 2, 3, 4, 5], [1, 2, numpy.nan, 4, 5], @@ -314,12 +342,11 @@ def test_negative(data, dtype): assert_array_equal(result, expected) -@pytest.mark.usefixtures("allow_fall_back_on_numpy") -@pytest.mark.parametrize("val_type", get_all_dtypes(no_bool=True, no_complex=True, no_none=True)) -@pytest.mark.parametrize("data_type", get_all_dtypes(no_bool=True, no_complex=True)) +@pytest.mark.parametrize("val_type", get_all_dtypes(no_none=True)) +@pytest.mark.parametrize("data_type", get_all_dtypes()) @pytest.mark.parametrize("val", - [0, 1, 5], - ids=['0', '1', '5']) + [1.5, 1, 5], + ids=['1.5', '1', '5']) @pytest.mark.parametrize("array", [[[0, 0], [0, 0]], [[1, 2], [1, 2]], @@ -335,9 +362,14 @@ def test_power(array, val, data_type, val_type): np_a = numpy.array(array, dtype=data_type) dpnp_a = dpnp.array(array, dtype=data_type) val_ = val_type(val) + + if is_cpu_device() and dpnp.complex128 in (data_type, val_type): + # TODO: discuss the behavior with OneMKL team + pytest.skip("(0j ** 5) is different: (NaN + NaNj) in dpnp and (0j) in numpy") + result = dpnp.power(dpnp_a, val_) expected = numpy.power(np_a, val_) - assert_array_equal(expected, result) + assert_allclose(expected, result, rtol=1e-6) class TestEdiff1d: @@ -622,13 +654,10 @@ def test_power(self): assert_array_equal(expected, result) - @pytest.mark.parametrize("dtype", - [numpy.float32, numpy.int64, numpy.int32], - ids=['numpy.float32', 'numpy.int64', 'numpy.int32']) + @pytest.mark.parametrize("dtype", get_all_dtypes(no_complex=True, no_none=True)) def test_invalid_dtype(self, dtype): - - dp_array1 = dpnp.arange(10, dtype=dpnp.float64) - dp_array2 = dpnp.arange(5, 15, dtype=dpnp.float64) + dp_array1 = dpnp.arange(10, dtype=dpnp.complex64) + dp_array2 = dpnp.arange(5, 15, dtype=dpnp.complex64) dp_out = dpnp.empty(10, dtype=dtype) with pytest.raises(ValueError): @@ -638,10 +667,60 @@ def test_invalid_dtype(self, dtype): [(0,), (15, ), (2, 2)], ids=['(0,)', '(15, )', '(2,2)']) def test_invalid_shape(self, shape): - dp_array1 = dpnp.arange(10, dtype=dpnp.float64) dp_array2 = dpnp.arange(5, 15, dtype=dpnp.float64) dp_out = dpnp.empty(shape, dtype=dpnp.float64) with pytest.raises(ValueError): dpnp.power(dp_array1, dp_array2, out=dp_out) + + @pytest.mark.parametrize("out", + [4, (), [], (3, 7), [2, 4]], + ids=['4', '()', '[]', '(3, 7)', '[2, 4]']) + def test_invalid_out(self, out): + a = dpnp.arange(10) + + assert_raises(TypeError, dpnp.power, a, 2, out) + assert_raises(TypeError, numpy.power, a.asnumpy(), 2, out) + + @pytest.mark.usefixtures("suppress_invalid_numpy_warnings") + def test_complex_values(self): + np_arr = numpy.array([0j, 1+1j, 0+2j, 1+2j, numpy.nan, numpy.inf]) + dp_arr = dpnp.array(np_arr) + func = lambda x: x ** 2 + + # Linux: ((inf + 0j) ** 2) == (Inf + NaNj) in dpnp and == (NaN + NaNj) in numpy + # Win: ((inf + 0j) ** 2) == (Inf + 0j) in dpnp and == (Inf + NaNj) in numpy + if is_win_platform(): + assert_equal(func(dp_arr)[5], numpy.inf) + else: + assert_equal(func(dp_arr)[5], (numpy.inf + 0j) * 1) + assert_allclose(func(np_arr)[:5], func(dp_arr).asnumpy()[:5], rtol=1e-6) + + @pytest.mark.parametrize("val", [0, 1], ids=['0', '1']) + @pytest.mark.parametrize("dtype", [dpnp.int32, dpnp.int64]) + def test_integer_power_of_0_or_1(self, val, dtype): + np_arr = numpy.arange(10, dtype=dtype) + dp_arr = dpnp.array(np_arr) + func = lambda x: 1 ** x + + assert_equal(func(np_arr), func(dp_arr)) + + @pytest.mark.parametrize("dtype", [dpnp.int32, dpnp.int64]) + def test_integer_to_negative_power(self, dtype): + ones = dpnp.ones(10, dtype=dtype) + a = dpnp.arange(2, 10, dtype=dtype) + b = dpnp.full(10, -2, dtype=dtype) + + assert_array_equal(ones ** (-2), ones) + assert_equal(a ** (-3), 0) # positive integer to negative integer power + assert_equal(b ** (-4), 0) # negative integer to negative integer power + + def test_float_to_inf(self): + a = numpy.array([1, 1, 2, 2, -2, -2, numpy.inf, -numpy.inf], dtype=numpy.float32) + b = numpy.array([numpy.inf, -numpy.inf, numpy.inf, -numpy.inf, + numpy.inf, -numpy.inf, numpy.inf, -numpy.inf], dtype=numpy.float32) + numpy_res = a ** b + dpnp_res = dpnp.array(a) ** dpnp.array(b) + + assert_allclose(numpy_res, dpnp_res.asnumpy()) diff --git a/tests/test_random_state.py b/tests/test_random_state.py index 0d1752c744e..5ce1b759879 100644 --- a/tests/test_random_state.py +++ b/tests/test_random_state.py @@ -174,9 +174,9 @@ def test_fallback(self, loc, scale): @pytest.mark.parametrize("dtype", [dpnp.float16, float, dpnp.integer, dpnp.int64, dpnp.int32, dpnp.int, int, - dpnp.longcomplex, dpnp.complex128, dpnp.complex64, dpnp.bool, dpnp.bool_], + numpy.longcomplex, dpnp.complex128, dpnp.complex64, dpnp.bool, dpnp.bool_], ids=['dpnp.float16', 'float', 'dpnp.integer', 'dpnp.int64', 'dpnp.int32', 'dpnp.int', 'int', - 'dpnp.longcomplex', 'dpnp.complex128', 'dpnp.complex64', 'dpnp.bool', 'dpnp.bool_']) + 'numpy.longcomplex', 'dpnp.complex128', 'dpnp.complex64', 'dpnp.bool', 'dpnp.bool_']) def test_invalid_dtype(self, dtype): # dtype must be float32 or float64 assert_raises(TypeError, RandomState().normal, dtype=dtype) @@ -834,9 +834,9 @@ def test_fallback(self, low, high): @pytest.mark.parametrize("dtype", [dpnp.float16, float, dpnp.integer, dpnp.int64, dpnp.int, int, - dpnp.longcomplex, dpnp.complex128, dpnp.complex64, dpnp.bool, dpnp.bool_], + numpy.longcomplex, dpnp.complex128, dpnp.complex64, dpnp.bool, dpnp.bool_], ids=['dpnp.float16', 'float', 'dpnp.integer', 'dpnp.int64', 'dpnp.int', 'int', - 'dpnp.longcomplex', 'dpnp.complex128', 'dpnp.complex64', 'dpnp.bool', 'dpnp.bool_']) + 'numpy.longcomplex', 'dpnp.complex128', 'dpnp.complex64', 'dpnp.bool', 'dpnp.bool_']) def test_invalid_dtype(self, dtype): if dtype in (dpnp.int, dpnp.integer) and dtype == dpnp.dtype('int32'): pytest.skip("dtype is alias on dpnp.int32 on the target OS, so no error here") diff --git a/tests/test_special.py b/tests/test_special.py index da9938d75e9..21810661687 100644 --- a/tests/test_special.py +++ b/tests/test_special.py @@ -7,7 +7,7 @@ def test_erf(): a = numpy.linspace(2.0, 3.0, num=10) ia = dpnp.linspace(2.0, 3.0, num=10) - numpy.testing.assert_array_equal(a, ia) + numpy.testing.assert_allclose(a, ia) expected = numpy.empty_like(a) for idx, val in enumerate(a): diff --git a/tests/test_strides.py b/tests/test_strides.py index 02e8c868975..e56e9befeee 100644 --- a/tests/test_strides.py +++ b/tests/test_strides.py @@ -20,10 +20,10 @@ def _getattr(ex, str_): @pytest.mark.parametrize("func_name", ['abs', ]) -@pytest.mark.parametrize("dtype", get_all_dtypes(no_bool=True, no_complex=True)) +@pytest.mark.parametrize("dtype", get_all_dtypes()) def test_strides(func_name, dtype): shape = (4, 4) - a = numpy.arange(shape[0] * shape[1], dtype=dtype).reshape(shape) + a = numpy.ones(shape[0] * shape[1], dtype=dtype).reshape(shape) a_strides = a[0::2, 0::2] dpa = dpnp.array(a) dpa_strides = dpa[0::2, 0::2] diff --git a/tests/test_sycl_queue.py b/tests/test_sycl_queue.py index 1bffa18111b..42cbe745951 100644 --- a/tests/test_sycl_queue.py +++ b/tests/test_sycl_queue.py @@ -1,5 +1,8 @@ import pytest -from .helper import get_all_dtypes +from .helper import ( + get_all_dtypes, + is_win_platform +) import dpnp import dpctl @@ -90,6 +93,9 @@ def vvsort(val, vec, size, xp): pytest.param("eye", [4, 2], {}), + pytest.param("linspace", + [0, 4, 8], + {}), pytest.param("ones", [(2,2)], {}), @@ -134,13 +140,63 @@ def test_empty_like(device_x, device_y): @pytest.mark.parametrize( - "func, kwargs", + "func, args, kwargs", + [ + pytest.param("full_like", + ['x0'], + {'fill_value': 5}), + pytest.param("ones_like", + ['x0'], + {}), + pytest.param("zeros_like", + ['x0'], + {}), + pytest.param("tril", + ['x0.reshape((2,2))'], + {}), + pytest.param("triu", + ['x0.reshape((2,2))'], + {}), + pytest.param("linspace", + ['x0', '4', '4'], + {}), + pytest.param("linspace", + ['1', 'x0', '4'], + {}) + ]) +@pytest.mark.parametrize("device", + valid_devices, + ids=[device.filter_string for device in valid_devices]) +def test_array_creation_follow_device(func, args, kwargs, device): + x_orig = numpy.array([1, 2, 3, 4]) + numpy_args = [eval(val, {'x0' : x_orig}) for val in args] + y_orig = getattr(numpy, func)(*numpy_args, **kwargs) + + x = dpnp.array([1, 2, 3, 4], device=device) + dpnp_args = [eval(val, {'x0' : x}) for val in args] + + y = getattr(dpnp, func)(*dpnp_args, **kwargs) + numpy.testing.assert_allclose(y_orig, y) + assert_sycl_queue_equal(y.sycl_queue, x.sycl_queue) + + +@pytest.mark.parametrize( + "func, args, kwargs", [ pytest.param("full_like", + ['x0'], {'fill_value': 5}), pytest.param("ones_like", + ['x0'], {}), pytest.param("zeros_like", + ['x0'], + {}), + pytest.param("linspace", + ['x0', '4', '4'], + {}), + pytest.param("linspace", + ['1', 'x0', '4'], {}) ]) @pytest.mark.parametrize("device_x", @@ -149,32 +205,38 @@ def test_empty_like(device_x, device_y): @pytest.mark.parametrize("device_y", valid_devices, ids=[device.filter_string for device in valid_devices]) -def test_array_creation_like(func, kwargs, device_x, device_y): - x_orig = numpy.ndarray([1, 2, 3]) - y_orig = getattr(numpy, func)(x_orig, **kwargs) +def test_array_creation_cross_device(func, args, kwargs, device_x, device_y): + if func is 'linspace' and is_win_platform(): + pytest.skip("CPU driver experiences an instability on Windows.") - x = dpnp.ndarray([1, 2, 3], device=device_x) + x_orig = numpy.array([1, 2, 3, 4]) + numpy_args = [eval(val, {'x0' : x_orig}) for val in args] + y_orig = getattr(numpy, func)(*numpy_args, **kwargs) - y = getattr(dpnp, func)(x, **kwargs) - numpy.testing.assert_array_equal(y_orig, y) - assert_sycl_queue_equal(y.sycl_queue, x.sycl_queue) + x = dpnp.array([1, 2, 3, 4], device=device_x) + dpnp_args = [eval(val, {'x0' : x}) for val in args] dpnp_kwargs = dict(kwargs) dpnp_kwargs['device'] = device_y + + y = getattr(dpnp, func)(*dpnp_args, **dpnp_kwargs) + numpy.testing.assert_allclose(y_orig, y) - y = getattr(dpnp, func)(x, **dpnp_kwargs) - numpy.testing.assert_array_equal(y_orig, y) assert_sycl_queue_equal(y.sycl_queue, x.to_device(device_y).sycl_queue) -@pytest.mark.parametrize("func", ["tril", "triu"], ids=["tril", "triu"]) -@pytest.mark.parametrize("device", +@pytest.mark.parametrize("device_x", + valid_devices, + ids=[device.filter_string for device in valid_devices]) +@pytest.mark.parametrize("device_y", valid_devices, ids=[device.filter_string for device in valid_devices]) -def test_tril_triu(func, device): - x0 = dpnp.ones((3,3), device=device) - x = getattr(dpnp, func)(x0) - assert_sycl_queue_equal(x.sycl_queue, x0.sycl_queue) +def test_meshgrid(device_x, device_y): + x = dpnp.arange(100, device = device_x) + y = dpnp.arange(100, device = device_y) + z = dpnp.meshgrid(x, y) + assert_sycl_queue_equal(z[0].sycl_queue, x.sycl_queue) + assert_sycl_queue_equal(z[1].sycl_queue, y.sycl_queue) @pytest.mark.usefixtures("allow_fall_back_on_numpy") @@ -235,7 +297,7 @@ def test_1in_1out(func, data, device): x = dpnp.array(data, device=device) result = getattr(dpnp, func)(x) - numpy.testing.assert_array_equal(result, expected) + assert_array_equal(result, expected) expected_queue = x.get_array().sycl_queue result_queue = result.get_array().sycl_queue @@ -258,6 +320,9 @@ def test_1in_1out(func, data, device): pytest.param("divide", [0., 1., 2., 3., 4.], [4., 4., 4., 4., 4.]), + pytest.param("dot", + [[0., 1., 2.], [3., 4., 5.]], + [[4., 4.], [4., 4.], [4., 4.]]), pytest.param("floor_divide", [1., 2., 3., 4.], [2.5, 2.5, 2.5, 2.5]), @@ -302,7 +367,7 @@ def test_2in_1out(func, data1, data2, device): x2 = dpnp.array(data2, device=device) result = getattr(dpnp, func)(x1, x2) - numpy.testing.assert_array_equal(result, expected) + assert_array_equal(result, expected) assert_sycl_queue_equal(result.sycl_queue, x1.sycl_queue) assert_sycl_queue_equal(result.sycl_queue, x2.sycl_queue) @@ -477,6 +542,9 @@ def test_random_state(func, args, kwargs, device, usm_type): pytest.param("divide", [0., 1., 2., 3., 4.], [4., 4., 4., 4., 4.]), + pytest.param("dot", + [[0., 1., 2.], [3., 4., 5.]], + [[4., 4.], [4., 4.], [4., 4.]]), pytest.param("floor_divide", [1., 2., 3., 4.], [2.5, 2.5, 2.5, 2.5]), @@ -509,20 +577,20 @@ def test_random_state(func, args, kwargs, device, usm_type): def test_out(func, data1, data2, device): x1_orig = numpy.array(data1) x2_orig = numpy.array(data2) - expected = numpy.empty(x1_orig.size) - numpy.add(x1_orig, x2_orig, out=expected) + np_out = getattr(numpy, func)(x1_orig, x2_orig) + expected = numpy.empty_like(np_out) + getattr(numpy, func)(x1_orig, x2_orig, out=expected) x1 = dpnp.array(data1, device=device) x2 = dpnp.array(data2, device=device) - result = dpnp.empty(x1.size, device=device) - dpnp.add(x1, x2, out=result) + dp_out = getattr(dpnp, func)(x1, x2) + result = dpnp.empty_like(dp_out) + getattr(dpnp, func)(x1, x2, out=result) - numpy.testing.assert_array_equal(result, expected) + assert_array_equal(result, expected) - expected_queue = x1.get_array().sycl_queue - result_queue = result.get_array().sycl_queue - - assert_sycl_queue_equal(result_queue, expected_queue) + assert_sycl_queue_equal(result.sycl_queue, x1.sycl_queue) + assert_sycl_queue_equal(result.sycl_queue, x2.sycl_queue) @pytest.mark.parametrize("device", @@ -848,8 +916,7 @@ def test_from_dlpack(arr_dtype, shape, device): Y = dpnp.from_dlpack(X) assert_array_equal(X, Y) assert X.__dlpack_device__() == Y.__dlpack_device__() - assert X.sycl_device == Y.sycl_device - assert X.sycl_context == Y.sycl_context + assert_sycl_queue_equal(X.sycl_queue, Y.sycl_queue) assert X.usm_type == Y.usm_type if Y.ndim: V = Y[::-1] @@ -868,6 +935,5 @@ def test_from_dlpack_with_dpt(arr_dtype, device): assert_array_equal(X, Y) assert isinstance(Y, dpnp.dpnp_array.dpnp_array) assert X.__dlpack_device__() == Y.__dlpack_device__() - assert X.sycl_device == Y.sycl_device - assert X.sycl_context == Y.sycl_context assert X.usm_type == Y.usm_type + assert_sycl_queue_equal(X.sycl_queue, Y.sycl_queue) diff --git a/tests/test_usm_type.py b/tests/test_usm_type.py index 1a33a1d655d..96d55f6875c 100644 --- a/tests/test_usm_type.py +++ b/tests/test_usm_type.py @@ -63,6 +63,21 @@ def test_coerced_usm_types_divide(usm_type_x, usm_type_y): assert z.usm_type == du.get_coerced_usm_type([usm_type_x, usm_type_y]) +@pytest.mark.parametrize("usm_type_x", list_of_usm_types, ids=list_of_usm_types) +@pytest.mark.parametrize("usm_type_y", list_of_usm_types, ids=list_of_usm_types) +def test_coerced_usm_types_power(usm_type_x, usm_type_y): + x = dp.arange(70, usm_type = usm_type_x).reshape((7, 5, 2)) + y = dp.arange(70, usm_type = usm_type_y).reshape((7, 5, 2)) + + z = 2 ** x ** y ** 1.5 + z **= x + z **= 1.7 + + assert x.usm_type == usm_type_x + assert y.usm_type == usm_type_y + assert z.usm_type == du.get_coerced_usm_type([usm_type_x, usm_type_y]) + + @pytest.mark.parametrize( "func, args", [ @@ -76,6 +91,10 @@ def test_coerced_usm_types_divide(usm_type_x, usm_type_y): ['x0']), pytest.param("empty_like", ['x0']), + pytest.param("linspace", + ['x0[0:2]', '4', '4']), + pytest.param("linspace", + ['0', 'x0[3:5]', '4']), ]) @pytest.mark.parametrize("usm_type_x", list_of_usm_types, ids=list_of_usm_types) @pytest.mark.parametrize("usm_type_y", list_of_usm_types, ids=list_of_usm_types) @@ -90,7 +109,15 @@ def test_array_creation(func, args, usm_type_x, usm_type_y): assert y.usm_type == usm_type_y -@pytest.mark.skip() +@pytest.mark.parametrize("usm_type_start", list_of_usm_types, ids=list_of_usm_types) +@pytest.mark.parametrize("usm_type_stop", list_of_usm_types, ids=list_of_usm_types) +def test_linspace_arrays(usm_type_start, usm_type_stop): + start = dp.asarray([0, 0], usm_type=usm_type_start) + stop = dp.asarray([2, 4], usm_type=usm_type_stop) + res = dp.linspace(start, stop, 4) + assert res.usm_type == du.get_coerced_usm_type([usm_type_start, usm_type_stop]) + + @pytest.mark.parametrize("func", ["tril", "triu"], ids=["tril", "triu"]) @pytest.mark.parametrize("usm_type", list_of_usm_types, ids=list_of_usm_types) def test_tril_triu(func, usm_type): @@ -117,3 +144,32 @@ def test_coerced_usm_types_logic_op(op, usm_type_x, usm_type_y): assert x.usm_type == zx.usm_type == usm_type_x assert y.usm_type == zy.usm_type == usm_type_y assert z.usm_type == du.get_coerced_usm_type([usm_type_x, usm_type_y]) + + +@pytest.mark.parametrize("usm_type_x", list_of_usm_types, ids=list_of_usm_types) +@pytest.mark.parametrize("usm_type_y", list_of_usm_types, ids=list_of_usm_types) +def test_meshgrid(usm_type_x, usm_type_y): + x = dp.arange(100, usm_type = usm_type_x) + y = dp.arange(100, usm_type = usm_type_y) + z = dp.meshgrid(x, y) + assert z[0].usm_type == usm_type_x + assert z[1].usm_type == usm_type_y + +@pytest.mark.parametrize( + "func,data1,data2", + [ + pytest.param("dot", + [[0., 1., 2.], [3., 4., 5.]], + [[4., 4.], [4., 4.], [4., 4.]]), + ], +) +@pytest.mark.parametrize("usm_type_x", list_of_usm_types, ids=list_of_usm_types) +@pytest.mark.parametrize("usm_type_y", list_of_usm_types, ids=list_of_usm_types) +def test_2in_1out(func, data1, data2, usm_type_x, usm_type_y): + x = dp.array(data1, usm_type = usm_type_x) + y = dp.array(data2, usm_type = usm_type_y) + z = getattr(dp, func)(x, y) + + assert x.usm_type == usm_type_x + assert y.usm_type == usm_type_y + assert z.usm_type == du.get_coerced_usm_type([usm_type_x, usm_type_y]) diff --git a/tests/third_party/cupy/creation_tests/test_ranges.py b/tests/third_party/cupy/creation_tests/test_ranges.py index 4d5bc03f81b..ac94297354f 100644 --- a/tests/third_party/cupy/creation_tests/test_ranges.py +++ b/tests/third_party/cupy/creation_tests/test_ranges.py @@ -1,371 +1,371 @@ -import math -import sys -import unittest - -import numpy -import pytest - -import dpnp as cupy -from tests.third_party.cupy import testing - - -@testing.gpu -class TestRanges(unittest.TestCase): - - @testing.for_all_dtypes(no_bool=True) - @testing.numpy_cupy_array_equal() - def test_arange(self, xp, dtype): - return xp.arange(10, dtype=dtype) - - @testing.for_all_dtypes(no_bool=True) - @testing.numpy_cupy_array_equal() - def test_arange2(self, xp, dtype): - return xp.arange(5, 10, dtype=dtype) - - @testing.for_all_dtypes(no_bool=True) - @testing.numpy_cupy_array_equal() - def test_arange3(self, xp, dtype): - return xp.arange(1, 11, 2, dtype=dtype) - - @testing.for_all_dtypes(no_bool=True) - @testing.numpy_cupy_array_equal() - def test_arange4(self, xp, dtype): - return xp.arange(20, 2, -3, dtype=dtype) - - @testing.for_all_dtypes(no_bool=True) - @testing.numpy_cupy_array_equal() - def test_arange5(self, xp, dtype): - return xp.arange(0, 100, None, dtype=dtype) - - @testing.for_all_dtypes() - @testing.numpy_cupy_array_equal() - def test_arange6(self, xp, dtype): - return xp.arange(0, 2, dtype=dtype) - - @testing.for_all_dtypes() - @testing.numpy_cupy_array_equal() - def test_arange7(self, xp, dtype): - return xp.arange(10, 11, dtype=dtype) - - @testing.for_all_dtypes() - @testing.numpy_cupy_array_equal() - def test_arange8(self, xp, dtype): - return xp.arange(10, 8, -1, dtype=dtype) - - def test_arange9(self): - for xp in (numpy, cupy): - with pytest.raises((ValueError, TypeError)): - xp.arange(10, dtype=xp.bool_) - - @testing.numpy_cupy_array_equal() - def test_arange_no_dtype_int(self, xp): - return xp.arange(1, 11, 2) - - @testing.numpy_cupy_array_equal() - def test_arange_no_dtype_float(self, xp): - return xp.arange(1.0, 11.0, 2.0) - - @testing.numpy_cupy_array_equal() - def test_arange_negative_size(self, xp): - return xp.arange(3, 1) - - @testing.for_all_dtypes(no_bool=True) - @testing.numpy_cupy_array_equal() - def test_linspace(self, xp, dtype): - return xp.linspace(0, 10, 5, dtype=dtype) - - @testing.for_all_dtypes(no_bool=True) - @testing.numpy_cupy_array_equal() - def test_linspace2(self, xp, dtype): - return xp.linspace(10, 0, 5, dtype=dtype) - - @testing.for_all_dtypes(no_bool=True) - @testing.numpy_cupy_array_equal() - def test_linspace_zero_num(self, xp, dtype): - return xp.linspace(0, 10, 0, dtype=dtype) - - @testing.for_all_dtypes(no_bool=True) - @testing.numpy_cupy_array_equal() - def test_linspace_zero_num_no_endopoint_with_retstep(self, xp, dtype): - x, step = xp.linspace(0, 10, 0, dtype=dtype, endpoint=False, - retstep=True) - self.assertTrue(math.isnan(step)) - return x - - @testing.with_requires('numpy>=1.18') - @testing.for_all_dtypes(no_bool=True) - @testing.numpy_cupy_array_equal() - def test_linspace_one_num_no_endopoint_with_retstep(self, xp, dtype): - start, stop = 3, 7 - x, step = xp.linspace(start, stop, 1, dtype=dtype, endpoint=False, - retstep=True) - self.assertEqual(step, stop - start) - return x - - @testing.for_all_dtypes(no_bool=True) - @testing.numpy_cupy_array_equal() - def test_linspace_one_num(self, xp, dtype): - return xp.linspace(0, 2, 1, dtype=dtype) - - @testing.for_all_dtypes(no_bool=True) - @testing.numpy_cupy_array_equal() - def test_linspace_no_endpoint(self, xp, dtype): - return xp.linspace(0, 10, 5, dtype=dtype, endpoint=False) - - @testing.for_all_dtypes(no_bool=True) - @testing.numpy_cupy_array_equal() - def test_linspace_with_retstep(self, xp, dtype): - x, step = xp.linspace(0, 10, 5, dtype=dtype, retstep=True) - self.assertEqual(step, 2.5) - return x - - @testing.numpy_cupy_allclose() - def test_linspace_no_dtype_int(self, xp): - return xp.linspace(0, 10) - - @testing.numpy_cupy_allclose() - def test_linspace_no_dtype_float(self, xp): - return xp.linspace(0.0, 10.0) - - @testing.numpy_cupy_allclose() - def test_linspace_float_args_with_int_dtype(self, xp): - return xp.linspace(0.1, 9.1, 11, dtype=int) - - def test_linspace_neg_num(self): - for xp in (numpy, cupy): - with pytest.raises(ValueError): - xp.linspace(0, 10, -1) - - @testing.numpy_cupy_allclose() - def test_linspace_float_overflow(self, xp): - return xp.linspace(0., sys.float_info.max / 5, 10, dtype=float) - - @testing.numpy_cupy_array_equal() - def test_linspace_float_underflow(self, xp): - # find minimum subnormal number - x = sys.float_info.min - while x / 2 > 0: - x /= 2 - return xp.linspace(0., x, 10, dtype=float) - - @testing.with_requires('numpy>=1.16') - @testing.for_all_dtypes_combination(names=('dtype_range', 'dtype_out'), - no_bool=True, no_complex=True) - @testing.numpy_cupy_array_equal() - def test_linspace_array_start_stop(self, xp, dtype_range, dtype_out): - start = xp.array([0, 120], dtype=dtype_range) - stop = xp.array([100, 0], dtype=dtype_range) - return xp.linspace(start, stop, num=50, dtype=dtype_out) - - @testing.with_requires('numpy>=1.16') - @testing.for_all_dtypes_combination(names=('dtype_range', 'dtype_out'), - no_bool=True, no_complex=True) - @testing.numpy_cupy_array_equal() - def test_linspace_mixed_start_stop(self, xp, dtype_range, dtype_out): - start = 0.0 - if xp.dtype(dtype_range).kind in 'u': - stop = xp.array([100, 16], dtype=dtype_range) - else: - stop = xp.array([100, -100], dtype=dtype_range) - return xp.linspace(start, stop, num=50, dtype=dtype_out) - - @testing.with_requires('numpy>=1.16') - @testing.for_all_dtypes_combination(names=('dtype_range', 'dtype_out'), - no_bool=True, no_complex=True) - @testing.numpy_cupy_array_equal() - def test_linspace_mixed_start_stop2(self, xp, dtype_range, dtype_out): - if xp.dtype(dtype_range).kind in 'u': - start = xp.array([160, 120], dtype=dtype_range) - else: - start = xp.array([-120, 120], dtype=dtype_range) - stop = 0 - return xp.linspace(start, stop, num=50, dtype=dtype_out) - - @testing.with_requires('numpy>=1.16') - @testing.for_all_dtypes_combination(names=('dtype_range', 'dtype_out'), - no_bool=True, no_complex=True) - @testing.numpy_cupy_array_equal() - def test_linspace_array_start_stop_axis1(self, xp, dtype_range, dtype_out): - start = xp.array([0, 120], dtype=dtype_range) - stop = xp.array([100, 0], dtype=dtype_range) - return xp.linspace(start, stop, num=50, dtype=dtype_out, axis=1) - - @testing.with_requires('numpy>=1.16') - @testing.for_complex_dtypes() - @testing.numpy_cupy_array_equal() - def test_linspace_complex_start_stop(self, xp, dtype): - start = xp.array([0, 120], dtype=dtype) - stop = xp.array([100, 0], dtype=dtype) - return xp.linspace(start, stop, num=50, dtype=dtype) - - @testing.with_requires('numpy>=1.16') - @testing.for_all_dtypes(no_bool=True) - @testing.numpy_cupy_array_equal() - def test_linspace_start_stop_list(self, xp, dtype): - start = [0, 0] - stop = [100, 16] - return xp.linspace(start, stop, num=50, dtype=dtype) - - @pytest.mark.usefixtures("allow_fall_back_on_numpy") - @testing.for_all_dtypes(no_bool=True) - @testing.numpy_cupy_allclose() - def test_logspace(self, xp, dtype): - return xp.logspace(0, 2, 5, dtype=dtype) - - @pytest.mark.usefixtures("allow_fall_back_on_numpy") - @testing.for_all_dtypes(no_bool=True) - @testing.numpy_cupy_allclose() - def test_logspace2(self, xp, dtype): - return xp.logspace(2, 0, 5, dtype=dtype) - - @testing.for_all_dtypes(no_bool=True) - @testing.numpy_cupy_allclose() - def test_logspace_zero_num(self, xp, dtype): - return xp.logspace(0, 2, 0, dtype=dtype) - - @pytest.mark.usefixtures("allow_fall_back_on_numpy") - @testing.for_all_dtypes(no_bool=True) - @testing.numpy_cupy_allclose() - def test_logspace_one_num(self, xp, dtype): - return xp.logspace(0, 2, 1, dtype=dtype) - - @pytest.mark.usefixtures("allow_fall_back_on_numpy") - @testing.for_all_dtypes(no_bool=True) - @testing.numpy_cupy_allclose() - def test_logspace_no_endpoint(self, xp, dtype): - return xp.logspace(0, 2, 5, dtype=dtype, endpoint=False) - - @pytest.mark.usefixtures("allow_fall_back_on_numpy") - @testing.numpy_cupy_allclose() - def test_logspace_no_dtype_int(self, xp): - return xp.logspace(0, 2) - - @pytest.mark.usefixtures("allow_fall_back_on_numpy") - @testing.numpy_cupy_allclose() - def test_logspace_no_dtype_float(self, xp): - return xp.logspace(0.0, 2.0) - - @pytest.mark.usefixtures("allow_fall_back_on_numpy") - @testing.numpy_cupy_allclose() - def test_logspace_float_args_with_int_dtype(self, xp): - return xp.logspace(0.1, 2.1, 11, dtype=int) - - def test_logspace_neg_num(self): - for xp in (numpy, cupy): - with pytest.raises(ValueError): - xp.logspace(0, 10, -1) - - @pytest.mark.usefixtures("allow_fall_back_on_numpy") - @testing.for_all_dtypes(no_bool=True) - @testing.numpy_cupy_allclose() - def test_logspace_base(self, xp, dtype): - return xp.logspace(0, 2, 5, base=2.0, dtype=dtype) - - -@testing.parameterize( - *testing.product({ - 'indexing': ['xy', 'ij'], - 'sparse': [False, True], - 'copy': [False, True], - }) -) -@testing.gpu -class TestMeshgrid(unittest.TestCase): - - @testing.for_all_dtypes() - def test_meshgrid0(self, dtype): - out = cupy.meshgrid(indexing=self.indexing, sparse=self.sparse, - copy=self.copy) - assert(out == []) - - @testing.for_all_dtypes() - @testing.numpy_cupy_array_equal() - def test_meshgrid1(self, xp, dtype): - x = xp.arange(2).astype(dtype) - return xp.meshgrid(x, indexing=self.indexing, sparse=self.sparse, - copy=self.copy) - - @testing.for_all_dtypes() - @testing.numpy_cupy_array_equal() - def test_meshgrid2(self, xp, dtype): - x = xp.arange(2).astype(dtype) - y = xp.arange(3).astype(dtype) - return xp.meshgrid(x, y, indexing=self.indexing, sparse=self.sparse, - copy=self.copy) - - @testing.for_all_dtypes() - @testing.numpy_cupy_array_equal() - def test_meshgrid3(self, xp, dtype): - x = xp.arange(2).astype(dtype) - y = xp.arange(3).astype(dtype) - z = xp.arange(4).astype(dtype) - return xp.meshgrid(x, y, z, indexing=self.indexing, sparse=self.sparse, - copy=self.copy) - - -@testing.gpu -class TestMgrid(unittest.TestCase): - - @testing.numpy_cupy_array_equal() - def test_mgrid0(self, xp): - return xp.mgrid[0:] - - @testing.numpy_cupy_array_equal() - def test_mgrid1(self, xp): - return xp.mgrid[-10:10] - - @testing.numpy_cupy_array_equal() - def test_mgrid2(self, xp): - return xp.mgrid[-10:10:10j] - - @testing.numpy_cupy_array_equal() - def test_mgrid3(self, xp): - x = xp.zeros(10)[:, None] - y = xp.ones(10)[:, None] - return xp.mgrid[x:y:10j] - - @testing.numpy_cupy_array_equal() - def test_mgrid4(self, xp): - # check len(keys) > 1 - return xp.mgrid[-10:10:10j, -10:10:10j] - - @testing.numpy_cupy_array_equal() - def test_mgrid5(self, xp): - # check len(keys) > 1 - x = xp.zeros(10)[:, None] - y = xp.ones(10)[:, None] - return xp.mgrid[x:y:10j, x:y:10j] - - -@testing.gpu -class TestOgrid(unittest.TestCase): - - @testing.numpy_cupy_array_equal() - def test_ogrid0(self, xp): - return xp.ogrid[0:] - - @testing.numpy_cupy_array_equal() - def test_ogrid1(self, xp): - return xp.ogrid[-10:10] - - @testing.numpy_cupy_array_equal() - def test_ogrid2(self, xp): - return xp.ogrid[-10:10:10j] - - @testing.numpy_cupy_array_equal() - def test_ogrid3(self, xp): - x = xp.zeros(10)[:, None] - y = xp.ones(10)[:, None] - return xp.ogrid[x:y:10j] - - @testing.numpy_cupy_array_equal() - def test_ogrid4(self, xp): - # check len(keys) > 1 - return xp.ogrid[-10:10:10j, -10:10:10j] - - @testing.numpy_cupy_array_equal() - def test_ogrid5(self, xp): - # check len(keys) > 1 - x = xp.zeros(10)[:, None] - y = xp.ones(10)[:, None] - return xp.ogrid[x:y:10j, x:y:10j] +import math +import sys +import unittest + +import numpy +import pytest + +import dpnp as cupy +from tests.third_party.cupy import testing + + +@testing.gpu +class TestRanges(unittest.TestCase): + + @testing.for_all_dtypes(no_bool=True) + @testing.numpy_cupy_array_equal() + def test_arange(self, xp, dtype): + return xp.arange(10, dtype=dtype) + + @testing.for_all_dtypes(no_bool=True) + @testing.numpy_cupy_array_equal() + def test_arange2(self, xp, dtype): + return xp.arange(5, 10, dtype=dtype) + + @testing.for_all_dtypes(no_bool=True) + @testing.numpy_cupy_array_equal() + def test_arange3(self, xp, dtype): + return xp.arange(1, 11, 2, dtype=dtype) + + @testing.for_all_dtypes(no_bool=True) + @testing.numpy_cupy_array_equal() + def test_arange4(self, xp, dtype): + return xp.arange(20, 2, -3, dtype=dtype) + + @testing.for_all_dtypes(no_bool=True) + @testing.numpy_cupy_array_equal() + def test_arange5(self, xp, dtype): + return xp.arange(0, 100, None, dtype=dtype) + + @testing.for_all_dtypes() + @testing.numpy_cupy_array_equal() + def test_arange6(self, xp, dtype): + return xp.arange(0, 2, dtype=dtype) + + @testing.for_all_dtypes() + @testing.numpy_cupy_array_equal() + def test_arange7(self, xp, dtype): + return xp.arange(10, 11, dtype=dtype) + + @testing.for_all_dtypes() + @testing.numpy_cupy_array_equal() + def test_arange8(self, xp, dtype): + return xp.arange(10, 8, -1, dtype=dtype) + + def test_arange9(self): + for xp in (numpy, cupy): + with pytest.raises((ValueError, TypeError)): + xp.arange(10, dtype=xp.bool_) + + @testing.numpy_cupy_array_equal() + def test_arange_no_dtype_int(self, xp): + return xp.arange(1, 11, 2) + + @testing.numpy_cupy_array_equal() + def test_arange_no_dtype_float(self, xp): + return xp.arange(1.0, 11.0, 2.0) + + @testing.numpy_cupy_array_equal() + def test_arange_negative_size(self, xp): + return xp.arange(3, 1) + + @testing.for_all_dtypes(no_bool=True) + @testing.numpy_cupy_array_equal() + def test_linspace(self, xp, dtype): + return xp.linspace(0, 10, 5, dtype=dtype) + + @testing.for_all_dtypes(no_bool=True) + @testing.numpy_cupy_array_equal() + def test_linspace2(self, xp, dtype): + return xp.linspace(10, 0, 5, dtype=dtype) + + @testing.for_all_dtypes(no_bool=True) + @testing.numpy_cupy_array_equal() + def test_linspace_zero_num(self, xp, dtype): + return xp.linspace(0, 10, 0, dtype=dtype) + + @testing.for_all_dtypes(no_bool=True) + @testing.numpy_cupy_array_equal() + def test_linspace_zero_num_no_endopoint_with_retstep(self, xp, dtype): + x, step = xp.linspace(0, 10, 0, dtype=dtype, endpoint=False, + retstep=True) + self.assertTrue(math.isnan(step)) + return x + + @testing.with_requires('numpy>=1.18') + @testing.for_all_dtypes(no_bool=True) + @testing.numpy_cupy_array_equal() + def test_linspace_one_num_no_endopoint_with_retstep(self, xp, dtype): + start, stop = 3, 7 + x, step = xp.linspace(start, stop, 1, dtype=dtype, endpoint=False, + retstep=True) + self.assertEqual(step, stop - start) + return x + + @testing.for_all_dtypes(no_bool=True) + @testing.numpy_cupy_array_equal() + def test_linspace_one_num(self, xp, dtype): + return xp.linspace(0, 2, 1, dtype=dtype) + + @testing.for_all_dtypes(no_bool=True) + @testing.numpy_cupy_allclose() + def test_linspace_no_endpoint(self, xp, dtype): + return xp.linspace(0, 10, 5, dtype=dtype, endpoint=False) + + @testing.for_all_dtypes(no_bool=True) + @testing.numpy_cupy_array_equal() + def test_linspace_with_retstep(self, xp, dtype): + x, step = xp.linspace(0, 10, 5, dtype=dtype, retstep=True) + self.assertEqual(step, 2.5) + return x + + @testing.numpy_cupy_allclose() + def test_linspace_no_dtype_int(self, xp): + return xp.linspace(0, 10, 50) + + @testing.numpy_cupy_allclose() + def test_linspace_no_dtype_float(self, xp): + return xp.linspace(0.0, 10.0, 50) + + @testing.numpy_cupy_array_equal() + def test_linspace_float_args_with_int_dtype(self, xp): + return xp.linspace(0.1, 9.1, 11, dtype=int) + + def test_linspace_neg_num(self): + for xp in (numpy, cupy): + with pytest.raises(ValueError): + xp.linspace(0, 10, -1) + + @testing.numpy_cupy_allclose() + def test_linspace_float_overflow(self, xp): + return xp.linspace(0., sys.float_info.max / 5, 10, dtype=float) + + @testing.numpy_cupy_array_equal() + def test_linspace_float_underflow(self, xp): + # find minimum subnormal number + x = sys.float_info.min + while x / 2 > 0: + x /= 2 + return xp.linspace(0., x, 10, dtype=float) + + @testing.with_requires('numpy>=1.16') + @testing.for_all_dtypes_combination(names=('dtype_range', 'dtype_out'), + no_bool=True, no_complex=True) + @testing.numpy_cupy_allclose() + def test_linspace_array_start_stop(self, xp, dtype_range, dtype_out): + start = xp.array([0, 120], dtype=dtype_range) + stop = xp.array([100, 0], dtype=dtype_range) + return xp.linspace(start, stop, num=50, dtype=dtype_out) + + @testing.with_requires('numpy>=1.16') + @testing.for_all_dtypes_combination(names=('dtype_range', 'dtype_out'), + no_bool=True, no_complex=True) + @testing.numpy_cupy_array_equal() + def test_linspace_mixed_start_stop(self, xp, dtype_range, dtype_out): + start = 0.0 + if xp.dtype(dtype_range).kind in 'u': + stop = xp.array([100, 16], dtype=dtype_range) + else: + stop = xp.array([100, -100], dtype=dtype_range) + return xp.linspace(start, stop, num=50, dtype=dtype_out) + + @testing.with_requires('numpy>=1.16') + @testing.for_all_dtypes_combination(names=('dtype_range', 'dtype_out'), + no_bool=True, no_complex=True) + @testing.numpy_cupy_allclose() + def test_linspace_mixed_start_stop2(self, xp, dtype_range, dtype_out): + if xp.dtype(dtype_range).kind in 'u': + start = xp.array([160, 120], dtype=dtype_range) + else: + start = xp.array([-120, 120], dtype=dtype_range) + stop = 0 + return xp.linspace(start, stop, num=50, dtype=dtype_out) + + @testing.with_requires('numpy>=1.16') + @testing.for_all_dtypes_combination(names=('dtype_range', 'dtype_out'), + no_bool=True, no_complex=True) + @testing.numpy_cupy_array_equal() + def test_linspace_array_start_stop_axis1(self, xp, dtype_range, dtype_out): + start = xp.array([0, 120], dtype=dtype_range) + stop = xp.array([100, 0], dtype=dtype_range) + return xp.linspace(start, stop, num=50, dtype=dtype_out, axis=1) + + @testing.with_requires('numpy>=1.16') + @testing.for_complex_dtypes() + @testing.numpy_cupy_array_equal() + def test_linspace_complex_start_stop(self, xp, dtype): + start = xp.array([0, 120], dtype=dtype) + stop = xp.array([100, 0], dtype=dtype) + return xp.linspace(start, stop, num=50, dtype=dtype) + + @testing.with_requires('numpy>=1.16') + @testing.for_all_dtypes(no_bool=True) + @testing.numpy_cupy_array_equal() + def test_linspace_start_stop_list(self, xp, dtype): + start = [0, 0] + stop = [100, 16] + return xp.linspace(start, stop, num=50, dtype=dtype) + + @pytest.mark.usefixtures("allow_fall_back_on_numpy") + @testing.for_all_dtypes(no_bool=True) + @testing.numpy_cupy_allclose() + def test_logspace(self, xp, dtype): + return xp.logspace(0, 2, 5, dtype=dtype) + + @pytest.mark.usefixtures("allow_fall_back_on_numpy") + @testing.for_all_dtypes(no_bool=True) + @testing.numpy_cupy_allclose() + def test_logspace2(self, xp, dtype): + return xp.logspace(2, 0, 5, dtype=dtype) + + @testing.for_all_dtypes(no_bool=True) + @testing.numpy_cupy_allclose() + def test_logspace_zero_num(self, xp, dtype): + return xp.logspace(0, 2, 0, dtype=dtype) + + @pytest.mark.usefixtures("allow_fall_back_on_numpy") + @testing.for_all_dtypes(no_bool=True) + @testing.numpy_cupy_allclose() + def test_logspace_one_num(self, xp, dtype): + return xp.logspace(0, 2, 1, dtype=dtype) + + @pytest.mark.usefixtures("allow_fall_back_on_numpy") + @testing.for_all_dtypes(no_bool=True) + @testing.numpy_cupy_allclose() + def test_logspace_no_endpoint(self, xp, dtype): + return xp.logspace(0, 2, 5, dtype=dtype, endpoint=False) + + @pytest.mark.usefixtures("allow_fall_back_on_numpy") + @testing.numpy_cupy_allclose() + def test_logspace_no_dtype_int(self, xp): + return xp.logspace(0, 2) + + @pytest.mark.usefixtures("allow_fall_back_on_numpy") + @testing.numpy_cupy_allclose() + def test_logspace_no_dtype_float(self, xp): + return xp.logspace(0.0, 2.0) + + @pytest.mark.usefixtures("allow_fall_back_on_numpy") + @testing.numpy_cupy_allclose() + def test_logspace_float_args_with_int_dtype(self, xp): + return xp.logspace(0.1, 2.1, 11, dtype=int) + + def test_logspace_neg_num(self): + for xp in (numpy, cupy): + with pytest.raises(ValueError): + xp.logspace(0, 10, -1) + + @pytest.mark.usefixtures("allow_fall_back_on_numpy") + @testing.for_all_dtypes(no_bool=True) + @testing.numpy_cupy_allclose() + def test_logspace_base(self, xp, dtype): + return xp.logspace(0, 2, 5, base=2.0, dtype=dtype) + + +@testing.parameterize( + *testing.product({ + 'indexing': ['xy', 'ij'], + 'sparse': [False, True], + 'copy': [False, True], + }) +) +@testing.gpu +class TestMeshgrid(unittest.TestCase): + + @testing.for_all_dtypes() + def test_meshgrid0(self, dtype): + out = cupy.meshgrid(indexing=self.indexing, sparse=self.sparse, + copy=self.copy) + assert(out == []) + + @testing.for_all_dtypes() + @testing.numpy_cupy_array_equal() + def test_meshgrid1(self, xp, dtype): + x = xp.arange(2).astype(dtype) + return xp.meshgrid(x, indexing=self.indexing, sparse=self.sparse, + copy=self.copy) + + @testing.for_all_dtypes() + @testing.numpy_cupy_array_equal() + def test_meshgrid2(self, xp, dtype): + x = xp.arange(2).astype(dtype) + y = xp.arange(3).astype(dtype) + return xp.meshgrid(x, y, indexing=self.indexing, sparse=self.sparse, + copy=self.copy) + + @testing.for_all_dtypes() + @testing.numpy_cupy_array_equal() + def test_meshgrid3(self, xp, dtype): + x = xp.arange(2).astype(dtype) + y = xp.arange(3).astype(dtype) + z = xp.arange(4).astype(dtype) + return xp.meshgrid(x, y, z, indexing=self.indexing, sparse=self.sparse, + copy=self.copy) + + +@testing.gpu +class TestMgrid(unittest.TestCase): + + @testing.numpy_cupy_array_equal() + def test_mgrid0(self, xp): + return xp.mgrid[0:] + + @testing.numpy_cupy_array_equal() + def test_mgrid1(self, xp): + return xp.mgrid[-10:10] + + @testing.numpy_cupy_array_equal() + def test_mgrid2(self, xp): + return xp.mgrid[-10:10:10j] + + @testing.numpy_cupy_array_equal() + def test_mgrid3(self, xp): + x = xp.zeros(10)[:, None] + y = xp.ones(10)[:, None] + return xp.mgrid[x:y:10j] + + @testing.numpy_cupy_array_equal() + def test_mgrid4(self, xp): + # check len(keys) > 1 + return xp.mgrid[-10:10:10j, -10:10:10j] + + @testing.numpy_cupy_array_equal() + def test_mgrid5(self, xp): + # check len(keys) > 1 + x = xp.zeros(10)[:, None] + y = xp.ones(10)[:, None] + return xp.mgrid[x:y:10j, x:y:10j] + + +@testing.gpu +class TestOgrid(unittest.TestCase): + + @testing.numpy_cupy_array_equal() + def test_ogrid0(self, xp): + return xp.ogrid[0:] + + @testing.numpy_cupy_array_equal() + def test_ogrid1(self, xp): + return xp.ogrid[-10:10] + + @testing.numpy_cupy_array_equal() + def test_ogrid2(self, xp): + return xp.ogrid[-10:10:10j] + + @testing.numpy_cupy_array_equal() + def test_ogrid3(self, xp): + x = xp.zeros(10)[:, None] + y = xp.ones(10)[:, None] + return xp.ogrid[x:y:10j] + + @testing.numpy_cupy_array_equal() + def test_ogrid4(self, xp): + # check len(keys) > 1 + return xp.ogrid[-10:10:10j, -10:10:10j] + + @testing.numpy_cupy_array_equal() + def test_ogrid5(self, xp): + # check len(keys) > 1 + x = xp.zeros(10)[:, None] + y = xp.ones(10)[:, None] + return xp.ogrid[x:y:10j, x:y:10j] diff --git a/tests/third_party/cupy/linalg_tests/test_product.py b/tests/third_party/cupy/linalg_tests/test_product.py index 2a97fa79b7c..d25cebbfa67 100644 --- a/tests/third_party/cupy/linalg_tests/test_product.py +++ b/tests/third_party/cupy/linalg_tests/test_product.py @@ -31,7 +31,6 @@ 'trans_a': [True, False], 'trans_b': [True, False], })) -@pytest.mark.usefixtures("allow_fall_back_on_numpy") @testing.gpu class TestDot(unittest.TestCase): diff --git a/tests/third_party/cupy/math_tests/test_arithmetic.py b/tests/third_party/cupy/math_tests/test_arithmetic.py index 027722d8bef..39dc3e10f72 100644 --- a/tests/third_party/cupy/math_tests/test_arithmetic.py +++ b/tests/third_party/cupy/math_tests/test_arithmetic.py @@ -153,7 +153,7 @@ def check_binary(self, xp): is_int_float = lambda _x, _y: numpy.issubdtype(_x, numpy.integer) and numpy.issubdtype(_y, numpy.floating) is_same_type = lambda _x, _y, _type: numpy.issubdtype(_x, _type) and numpy.issubdtype(_y, _type) - if self.name in ('add', 'multiply', 'subtract'): + if self.name in ('add', 'multiply', 'power', 'subtract'): if is_array_arg1 and is_array_arg2: # If both inputs are arrays where one is of floating type and another - integer, # NumPy will return an output array of always "float64" type, diff --git a/tests/third_party/cupy/sorting_tests/test_search.py b/tests/third_party/cupy/sorting_tests/test_search.py index 838f559ed8c..17751aed75c 100644 --- a/tests/third_party/cupy/sorting_tests/test_search.py +++ b/tests/third_party/cupy/sorting_tests/test_search.py @@ -262,17 +262,20 @@ def test_argminmax_dtype(self, in_dtype, result_dtype): {'cond_shape': (2, 3, 4), 'x_shape': (2, 3, 4), 'y_shape': (3, 4)}, {'cond_shape': (3, 4), 'x_shape': (2, 3, 4), 'y_shape': (4,)}, ) +@pytest.mark.usefixtures("allow_fall_back_on_numpy") @testing.gpu class TestWhereTwoArrays(unittest.TestCase): @testing.for_all_dtypes_combination( names=['cond_type', 'x_type', 'y_type']) - @testing.numpy_cupy_allclose() + @testing.numpy_cupy_allclose(type_check=False) def test_where_two_arrays(self, xp, cond_type, x_type, y_type): m = testing.shaped_random(self.cond_shape, xp, xp.bool_) # Almost all values of a matrix `shaped_random` makes are not zero. # To make a sparse matrix, we need multiply `m`. cond = testing.shaped_random(self.cond_shape, xp, cond_type) * m + if xp is cupy: + cond = cond.astype(cupy.bool) x = testing.shaped_random(self.x_shape, xp, x_type, seed=0) y = testing.shaped_random(self.y_shape, xp, y_type, seed=1) return xp.where(cond, x, y)