From c80e404e4f7f8865d3ea5d7fc9ef4851805daf28 Mon Sep 17 00:00:00 2001 From: Vahid Tavanashad Date: Thu, 21 Sep 2023 11:30:12 -0500 Subject: [PATCH] add new tests --- tests/test_mathematical.py | 324 +++++++++++++++++++++++++++++++++++++ 1 file changed, 324 insertions(+) diff --git a/tests/test_mathematical.py b/tests/test_mathematical.py index 5bd1fe6f988..2ef1923f1a3 100644 --- a/tests/test_mathematical.py +++ b/tests/test_mathematical.py @@ -940,6 +940,330 @@ def test_invalid_out(self, out): assert_raises(TypeError, numpy.add, a.asnumpy(), 2, out) +class TestFmax: + @pytest.mark.parametrize( + "dtype", get_all_dtypes(no_bool=True, no_complex=True, no_none=True) + ) + def test_fmax(self, dtype): + array1_data = numpy.arange(10) + array2_data = numpy.arange(5, 15) + out = numpy.empty(10, dtype=dtype) + + # DPNP + dp_array1 = dpnp.array(array1_data, dtype=dtype) + dp_array2 = dpnp.array(array2_data, dtype=dtype) + dp_out = dpnp.array(out, dtype=dtype) + result = dpnp.fmax(dp_array1, dp_array2, out=dp_out) + + # original + np_array1 = numpy.array(array1_data, dtype=dtype) + np_array2 = numpy.array(array2_data, dtype=dtype) + expected = numpy.fmax(np_array1, np_array2, out=out) + + assert_allclose(expected, result) + assert_allclose(out, dp_out) + + @pytest.mark.parametrize( + "dtype", get_all_dtypes(no_bool=True, no_complex=True, no_none=True) + ) + def test_out_dtypes(self, dtype): + size = 10 + + np_array1 = numpy.arange(size, 2 * size, dtype=dtype) + np_array2 = numpy.arange(size, dtype=dtype) + np_out = numpy.empty(size, dtype=numpy.float32) + expected = numpy.fmax(np_array1, np_array2, out=np_out) + + dp_array1 = dpnp.arange(size, 2 * size, dtype=dtype) + dp_array2 = dpnp.arange(size, dtype=dtype) + with pytest.raises(TypeError): + dpnp.fmax(dp_array1, dp_array2, out=np_out) + + dp_out = dpnp.empty(size, dtype=dpnp.float32) + result = dpnp.fmax(dp_array1, dp_array2, out=dp_out) + assert_array_equal(expected, result) + + @pytest.mark.parametrize( + "dtype", get_all_dtypes(no_bool=True, no_complex=True, no_none=True) + ) + def test_out_overlap(self, dtype): + size = 15 + # DPNP + dp_a = dpnp.arange(2 * size, dtype=dtype) + dpnp.fmax(dp_a[size::], dp_a[::2], out=dp_a[:size:]) + + # original + np_a = numpy.arange(2 * size, dtype=dtype) + numpy.fmax(np_a[size::], np_a[::2], out=np_a[:size:]) + + assert_allclose(np_a, dp_a) + + @pytest.mark.parametrize( + "shape", [(0,), (15,), (2, 2)], ids=["(0,)", "(15, )", "(2,2)"] + ) + def test_invalid_shape(self, shape): + dp_array1 = dpnp.arange(10) + dp_array2 = dpnp.arange(5, 15) + dp_out = dpnp.empty(shape) + + with pytest.raises(ValueError): + dpnp.fmax(dp_array1, dp_array2, out=dp_out) + + @pytest.mark.parametrize( + "out", + [4, (), [], (3, 7), [2, 4]], + ids=["4", "()", "[]", "(3, 7)", "[2, 4]"], + ) + def test_invalid_out(self, out): + a = dpnp.arange(10) + + assert_raises(TypeError, dpnp.fmax, a, 2, out) + assert_raises(TypeError, numpy.fmax, a.asnumpy(), 2, out) + + +class TestFmin: + @pytest.mark.parametrize( + "dtype", get_all_dtypes(no_bool=True, no_complex=True, no_none=True) + ) + def test_fmin(self, dtype): + array1_data = numpy.arange(10) + array2_data = numpy.arange(5, 15) + out = numpy.empty(10, dtype=dtype) + + # DPNP + dp_array1 = dpnp.array(array1_data, dtype=dtype) + dp_array2 = dpnp.array(array2_data, dtype=dtype) + dp_out = dpnp.array(out, dtype=dtype) + result = dpnp.fmin(dp_array1, dp_array2, out=dp_out) + + # original + np_array1 = numpy.array(array1_data, dtype=dtype) + np_array2 = numpy.array(array2_data, dtype=dtype) + expected = numpy.fmin(np_array1, np_array2, out=out) + + assert_allclose(expected, result) + assert_allclose(out, dp_out) + + @pytest.mark.parametrize( + "dtype", get_all_dtypes(no_bool=True, no_complex=True, no_none=True) + ) + def test_out_dtypes(self, dtype): + size = 10 + + np_array1 = numpy.arange(size, 2 * size, dtype=dtype) + np_array2 = numpy.arange(size, dtype=dtype) + np_out = numpy.empty(size, dtype=numpy.float32) + expected = numpy.fmin(np_array1, np_array2, out=np_out) + + dp_array1 = dpnp.arange(size, 2 * size, dtype=dtype) + dp_array2 = dpnp.arange(size, dtype=dtype) + with pytest.raises(TypeError): + dpnp.fmin(dp_array1, dp_array2, out=np_out) + + dp_out = dpnp.empty(size, dtype=dpnp.float32) + result = dpnp.fmin(dp_array1, dp_array2, out=dp_out) + assert_array_equal(expected, result) + + @pytest.mark.parametrize( + "dtype", get_all_dtypes(no_bool=True, no_complex=True, no_none=True) + ) + def test_out_overlap(self, dtype): + size = 15 + # DPNP + dp_a = dpnp.arange(2 * size, dtype=dtype) + dpnp.fmin(dp_a[size::], dp_a[::2], out=dp_a[:size:]) + + # original + np_a = numpy.arange(2 * size, dtype=dtype) + numpy.fmin(np_a[size::], np_a[::2], out=np_a[:size:]) + + assert_allclose(np_a, dp_a) + + @pytest.mark.parametrize( + "shape", [(0,), (15,), (2, 2)], ids=["(0,)", "(15, )", "(2,2)"] + ) + def test_invalid_shape(self, shape): + dp_array1 = dpnp.arange(10) + dp_array2 = dpnp.arange(5, 15) + dp_out = dpnp.empty(shape) + + with pytest.raises(ValueError): + dpnp.fmin(dp_array1, dp_array2, out=dp_out) + + @pytest.mark.parametrize( + "out", + [4, (), [], (3, 7), [2, 4]], + ids=["4", "()", "[]", "(3, 7)", "[2, 4]"], + ) + def test_invalid_out(self, out): + a = dpnp.arange(10) + + assert_raises(TypeError, dpnp.fmin, a, 2, out) + assert_raises(TypeError, numpy.fmin, a.asnumpy(), 2, out) + + +class TestMaximum: + @pytest.mark.parametrize("dtype", get_all_dtypes(no_none=True)) + def test_maximum(self, dtype): + array1_data = numpy.arange(10) + array2_data = numpy.arange(5, 15) + out = numpy.empty(10, dtype=dtype) + + # DPNP + dp_array1 = dpnp.array(array1_data, dtype=dtype) + dp_array2 = dpnp.array(array2_data, dtype=dtype) + dp_out = dpnp.array(out, dtype=dtype) + result = dpnp.maximum(dp_array1, dp_array2, out=dp_out) + + # original + np_array1 = numpy.array(array1_data, dtype=dtype) + np_array2 = numpy.array(array2_data, dtype=dtype) + expected = numpy.maximum(np_array1, np_array2, out=out) + + assert_allclose(expected, result) + assert_allclose(out, dp_out) + + @pytest.mark.parametrize("dtype", get_all_dtypes(no_none=True)) + def test_out_dtypes(self, dtype): + size = 2 if dtype == dpnp.bool else 10 + + np_array1 = numpy.arange(size, 2 * size, dtype=dtype) + np_array2 = numpy.arange(size, dtype=dtype) + np_out = numpy.empty(size, dtype=numpy.complex64) + expected = numpy.maximum(np_array1, np_array2, out=np_out) + + dp_array1 = dpnp.arange(size, 2 * size, dtype=dtype) + dp_array2 = dpnp.arange(size, dtype=dtype) + + dp_out = dpnp.empty(size, dtype=dpnp.complex64) + if dtype != dpnp.complex64: + # dtype of out mismatches types of input arrays + with pytest.raises(TypeError): + dpnp.maximum(dp_array1, dp_array2, out=dp_out) + + # allocate new out with expected type + dp_out = dpnp.empty(size, dtype=dtype) + + result = dpnp.maximum(dp_array1, dp_array2, out=dp_out) + assert_array_equal(expected, result) + + @pytest.mark.parametrize("dtype", get_all_dtypes(no_none=True)) + def test_out_overlap(self, dtype): + size = 1 if dtype == dpnp.bool else 15 + # DPNP + dp_a = dpnp.arange(2 * size, dtype=dtype) + dpnp.maximum(dp_a[size::], dp_a[::2], out=dp_a[:size:]) + + # original + np_a = numpy.arange(2 * size, dtype=dtype) + numpy.maximum(np_a[size::], np_a[::2], out=np_a[:size:]) + + assert_allclose(np_a, dp_a) + + @pytest.mark.parametrize( + "shape", [(0,), (15,), (2, 2)], ids=["(0,)", "(15, )", "(2,2)"] + ) + def test_invalid_shape(self, shape): + dp_array1 = dpnp.arange(10) + dp_array2 = dpnp.arange(5, 15) + dp_out = dpnp.empty(shape) + + with pytest.raises(ValueError): + dpnp.maximum(dp_array1, dp_array2, out=dp_out) + + @pytest.mark.parametrize( + "out", + [4, (), [], (3, 7), [2, 4]], + ids=["4", "()", "[]", "(3, 7)", "[2, 4]"], + ) + def test_invalid_out(self, out): + a = dpnp.arange(10) + + assert_raises(TypeError, dpnp.maximum, a, 2, out) + assert_raises(TypeError, numpy.maximum, a.asnumpy(), 2, out) + + +class TestMinimum: + @pytest.mark.parametrize("dtype", get_all_dtypes(no_none=True)) + def test_minimum(self, dtype): + array1_data = numpy.arange(10) + array2_data = numpy.arange(5, 15) + out = numpy.empty(10, dtype=dtype) + + # DPNP + dp_array1 = dpnp.array(array1_data, dtype=dtype) + dp_array2 = dpnp.array(array2_data, dtype=dtype) + dp_out = dpnp.array(out, dtype=dtype) + result = dpnp.minimum(dp_array1, dp_array2, out=dp_out) + + # original + np_array1 = numpy.array(array1_data, dtype=dtype) + np_array2 = numpy.array(array2_data, dtype=dtype) + expected = numpy.minimum(np_array1, np_array2, out=out) + + assert_allclose(expected, result) + assert_allclose(out, dp_out) + + @pytest.mark.parametrize("dtype", get_all_dtypes(no_none=True)) + def test_out_dtypes(self, dtype): + size = 2 if dtype == dpnp.bool else 10 + + np_array1 = numpy.arange(size, 2 * size, dtype=dtype) + np_array2 = numpy.arange(size, dtype=dtype) + np_out = numpy.empty(size, dtype=numpy.complex64) + expected = numpy.minimum(np_array1, np_array2, out=np_out) + + dp_array1 = dpnp.arange(size, 2 * size, dtype=dtype) + dp_array2 = dpnp.arange(size, dtype=dtype) + + dp_out = dpnp.empty(size, dtype=dpnp.complex64) + if dtype != dpnp.complex64: + # dtype of out mismatches types of input arrays + with pytest.raises(TypeError): + dpnp.minimum(dp_array1, dp_array2, out=dp_out) + + # allocate new out with expected type + dp_out = dpnp.empty(size, dtype=dtype) + + result = dpnp.minimum(dp_array1, dp_array2, out=dp_out) + assert_array_equal(expected, result) + + @pytest.mark.parametrize("dtype", get_all_dtypes(no_none=True)) + def test_out_overlap(self, dtype): + size = 1 if dtype == dpnp.bool else 15 + # DPNP + dp_a = dpnp.arange(2 * size, dtype=dtype) + dpnp.minimum(dp_a[size::], dp_a[::2], out=dp_a[:size:]) + + # original + np_a = numpy.arange(2 * size, dtype=dtype) + numpy.minimum(np_a[size::], np_a[::2], out=np_a[:size:]) + + assert_allclose(np_a, dp_a) + + @pytest.mark.parametrize( + "shape", [(0,), (15,), (2, 2)], ids=["(0,)", "(15, )", "(2,2)"] + ) + def test_invalid_shape(self, shape): + dp_array1 = dpnp.arange(10) + dp_array2 = dpnp.arange(5, 15) + dp_out = dpnp.empty(shape) + + with pytest.raises(ValueError): + dpnp.minimum(dp_array1, dp_array2, out=dp_out) + + @pytest.mark.parametrize( + "out", + [4, (), [], (3, 7), [2, 4]], + ids=["4", "()", "[]", "(3, 7)", "[2, 4]"], + ) + def test_invalid_out(self, out): + a = dpnp.arange(10) + + assert_raises(TypeError, dpnp.minimum, a, 2, out) + assert_raises(TypeError, numpy.minimum, a.asnumpy(), 2, out) + + class TestMultiply: @pytest.mark.parametrize("dtype", get_all_dtypes(no_none=True)) def test_multiply(self, dtype):