
not be allocated the same PID. On modern UNIX-like systems (that comply with SUSv3 
specification in this respect), the following special case applies: if the parent explicitly ignores 
SIGCHLD by setting its handler to SIG_IGN (rather than simply ignoring the signal by default) or 

has the SA_NOCLDWAIT flag set, all child exit status information will be discarded and no zombie 

processes will be left.[1] 

Zombies can be identified in the output from the Unix ps command by the presence of a "Z" in the 

"STAT" column.[2] Zombies that exist for more than a short period of time typically indicate a bug 
in the parent program, or just an uncommon decision to not reap children (see example). If the 
parent program is no longer running, zombie processes typically indicate a bug in the operating 
system. As with other resource leaks, the presence of a few zombies is not worrisome in itself, but 
may indicate a problem that would grow serious under heavier loads. Since there is no memory 
allocated to zombie processes – the only system memory usage is for the process table entry itself – 
the primary concern with many zombies is not running out of memory, but rather running out of 
process table entries, concretely process ID numbers. 

To remove zombies from a system, the SIGCHLD signal can be sent to the parent manually, using 
the kill command. If the parent process still refuses to reap the zombie, and if it would be fine to 

terminate the parent process, the next step can be to remove the parent process. When a process 
loses its parent, init becomes its new parent. init periodically executes the wait system call to

reap any zombies with init as parent. 

When a process ends via exit, all of the memory and resources associated with it are deallocated 

so they can be used by other processes. However, the process's entry in the process table remains. 
The parent can read the child's exit status by executing the wait system call, whereupon the 

zombie is removed. The wait call may be executed in sequential code, but it is commonly 

executed in a handler for the SIGCHLD signal, which the parent receives whenever a child has 
died. 

After the zombie is removed, its process identifier (PID) and entry in the process table can then be 
reused. However, if a parent fails to call wait, the zombie will be left in the process table, causing 

a resource leak. In some situations this may be desirable – the parent process wishes to continue 
holding this resource – for example if the parent creates another child process it ensures that it will 
not be allocated the same PID. On modern UNIX-like systems (that comply with SUSv3 
specification in this respect), the following special case applies: if the parent explicitly ignores 
SIGCHLD by setting its handler to SIG_IGN (rather than simply ignoring the signal by default) or 

has the SA_NOCLDWAIT flag set, all child exit status information will be discarded and no zombie 

processes will be left.[1] 

Zombies can be identified in the output from the Unix ps command by the presence of a "Z" in the 

"STAT" column.[2] Zombies that exist for more than a short period of time typically indicate a bug 
in the parent program, or just an uncommon decision to not reap children (see example). If the 
parent program is no longer running, zombie processes typically indicate a bug in the operating 
system. As with other resource leaks, the presence of a few zombies is not worrisome in itself, but 
may indicate a problem that would grow serious under heavier loads. Since there is no memory 
allocated to zombie processes – the only system memory usage is for the process table entry itself – 

https://en.wikipedia.org/wiki/Zombie_process#cite_note-2
https://en.wikipedia.org/wiki/Command_(computing)
https://en.wikipedia.org/wiki/Ps_(Unix)
https://en.wikipedia.org/wiki/Zombie_process#cite_note-1
https://en.wikipedia.org/wiki/SUSv3
https://en.wikipedia.org/wiki/Resource_leak
https://en.wikipedia.org/wiki/Process_identifier
https://en.wikipedia.org/wiki/Signal_(computing)
https://en.wikipedia.org/wiki/SIGCHLD
https://en.wikipedia.org/wiki/Event_handler
https://en.wikipedia.org/wiki/System_call
https://en.wikipedia.org/wiki/Wait_(system_call)
https://en.wikipedia.org/wiki/Signal_(computing)
https://en.wikipedia.org/wiki/Zombie_process#cite_note-2
https://en.wikipedia.org/wiki/Command_(computing)
https://en.wikipedia.org/wiki/Ps_(Unix)
https://en.wikipedia.org/wiki/Zombie_process#cite_note-1
https://en.wikipedia.org/wiki/SUSv3
Arif Driessen
مرحبا بالعالم!






