diff --git a/code/log_check.sh b/code/log_check.sh index 7d4c64e465..1e91376624 100755 --- a/code/log_check.sh +++ b/code/log_check.sh @@ -16,7 +16,6 @@ if [ -s $SWHS_PREF$log ]; then echo "- BETWEEN GENERATED AND STABLE OUTPUT FOUND" echo "-------------------------------------------" errors="yes" - exitval=1 fi if [ -s $TINY_PREF$log ]; then @@ -25,7 +24,6 @@ if [ -s $TINY_PREF$log ]; then echo "- BETWEEN GENERATED AND STABLE OUTPUT FOUND" echo "-------------------------------------------" errors="yes" - exitval=1 fi if [ -s $SSP_PREF$log ]; then @@ -34,7 +32,6 @@ if [ -s $SSP_PREF$log ]; then echo "- BETWEEN GENERATED AND STABLE OUTPUT FOUND" echo "-------------------------------------------" errors="yes" - exitval=1 fi if [ -s $GLASS_PREF$log ]; then @@ -59,7 +56,6 @@ if [ -s $NoPCM_PREF$log ]; then echo "- BETWEEN GENERATED AND STABLE OUTPUT FOUND" echo "-------------------------------------------" errors="yes" - exitval=1 fi if [ "$errors" = "no" ]; then @@ -71,6 +67,7 @@ else echo "- ERROR IN GENERATED OUTPUT SEE ABOVE FOR -" echo "- MORE DETAILS -" echo "-------------------------------------------" + exitval=1 fi exit $exitval \ No newline at end of file diff --git a/code/stable/gamephys/Chipmunk_SRS.html b/code/stable/gamephys/Chipmunk_SRS.html index 8cdc99f27b..dda892f818 100644 --- a/code/stable/gamephys/Chipmunk_SRS.html +++ b/code/stable/gamephys/Chipmunk_SRS.html @@ -235,7 +235,7 @@

IA -Moment of Inertia Of Rigid Body A +Moment of Inertia Of Rigid Body a kg⋅m2 @@ -356,7 +356,7 @@

mA -Mass Of Rigid Body A +Mass Of Rigid Body a kg @@ -620,7 +620,7 @@

viAB -Relative Velocity Between Rigid Bodies of A and B +Relative Velocity Between Rigid Bodies of a and B m/s @@ -631,7 +631,7 @@

vA -Velocity At Point A +Velocity At Point a m/s @@ -708,7 +708,7 @@

||rAP*n|| -Length of the Perpendicular Vector To the Contact Displacement Vector of Rigid Body A +Length of the Perpendicular Vector To the Contact Displacement Vector of Rigid Body a m @@ -807,7 +807,7 @@

ωA -Is the A Body's Angular Velocity +Is the a Body's Angular Velocity rad/s @@ -856,6 +856,14 @@

+2D + + +Two-Dimensional + + + + A @@ -872,6 +880,14 @@

+Chipmunk2D + + +Chipmunk2D game physics library + + + + DD @@ -942,14 +958,6 @@

Theoretical Model - - -2D - - -Two-Dimensional - - diff --git a/code/stable/gamephys/Chipmunk_SRS.tex b/code/stable/gamephys/Chipmunk_SRS.tex index a080613abf..1e3292ff27 100644 --- a/code/stable/gamephys/Chipmunk_SRS.tex +++ b/code/stable/gamephys/Chipmunk_SRS.tex @@ -74,7 +74,7 @@ \subsection{Table of Symbols} \\ $\mathbf{\hat{i}}$ & Horizontal Unit Vector & m \\ -${\mathbf{I}_{A}}$ & Moment of Inertia Of Rigid Body A & kg$\text{m}^{2}$ +${\mathbf{I}_{A}}$ & Moment of Inertia Of Rigid Body a & kg$\text{m}^{2}$ \\ ${\mathbf{I}_{B}}$ & Moment of Inertia Of Rigid Body B & kg$\text{m}^{2}$ \\ @@ -96,7 +96,7 @@ \subsection{Table of Symbols} \\ ${m_{2}}$ & Mass of the second body & kg \\ -${m_{A}}$ & Mass Of Rigid Body A & kg +${m_{A}}$ & Mass Of Rigid Body a & kg \\ ${m_{B}}$ & Mass Of Rigid Body B & kg \\ @@ -144,9 +144,9 @@ \subsection{Table of Symbols} \\ ${t_{0}}$ & Denotes the initial time & s \\ -${{\mathbf{v}_{i}}^{AB}}$ & Relative Velocity Between Rigid Bodies of A and B & $\frac{\text{m}}{\text{s}}$ +${{\mathbf{v}_{i}}^{AB}}$ & Relative Velocity Between Rigid Bodies of a and B & $\frac{\text{m}}{\text{s}}$ \\ -${\mathbf{v}_{A}}$ & Velocity At Point A & $\frac{\text{m}}{\text{s}}$ +${\mathbf{v}_{A}}$ & Velocity At Point a & $\frac{\text{m}}{\text{s}}$ \\ ${\mathbf{v}_{B}}$ & Velocity At Point B & $\frac{\text{m}}{\text{s}}$ \\ @@ -160,7 +160,7 @@ \subsection{Table of Symbols} \\ $||\mathbf{n}||$ & Length of the Normal Vector & m \\ -$||{\mathbf{r}_{AP}}*\mathbf{n}||$ & Length of the Perpendicular Vector To the Contact Displacement Vector of Rigid Body A & m +$||{\mathbf{r}_{AP}}*\mathbf{n}||$ & Length of the Perpendicular Vector To the Contact Displacement Vector of Rigid Body a & m \\ $||{\mathbf{r}_{BP}}*\mathbf{n}||$ & Length of the Perpendicular Vector To the Contact Displacement Vector of Rigid Body B & m \\ @@ -178,7 +178,7 @@ \subsection{Table of Symbols} \\ $\phi{}$ & Orientation & rad \\ -${\omega{}_{A}}$ & Is the A Body's Angular Velocity & $\frac{\text{rad}}{\text{s}}$ +${\omega{}_{A}}$ & Is the a Body's Angular Velocity & $\frac{\text{rad}}{\text{s}}$ \\ ${\omega{}_{B}}$ & Is the B Body's Angular Velocity & $\frac{\text{rad}}{\text{s}}$ \\ @@ -194,10 +194,14 @@ \subsection{Abbreviations and Acronyms} Symbol & Description \\ \midrule +2D & Two-Dimensional +\\ A & Assumption \\ CM & Centre of Mass \\ +Chipmunk2D & Chipmunk2D game physics library +\\ DD & Data Definition \\ GD & General Definition @@ -216,8 +220,6 @@ \subsection{Abbreviations and Acronyms} \\ T & Theoretical Model \\ -2D & Two-Dimensional -\\ \bottomrule \label{Table:AbbrandAcro} \end{longtable*} @@ -300,7 +302,7 @@ \subsubsection{Theoretical Models} \\ \midrule \\ Label & Newton's Second Law of Motion \\ \midrule \\ -Equation & $\mathbf{F}=m\mathbf{a}$ +Equation & $\mathbf{F}=m \mathbf{a}$ \\ \midrule \\ Description & The net force $\mathbf{F}$ (N) on a rigid body is proportional to the acceleration $\mathbf{a}$ ($\frac{\text{m}}{\text{s}^{2}}$) of the rigid body, where $m$ (kg) denotes the mass of the rigid body as the constant of proportionality. \\ \bottomrule \end{tabular} @@ -328,7 +330,7 @@ \subsubsection{Theoretical Models} \\ \midrule \\ Label & Newton's Law of Universal Gravitation \\ \midrule \\ -Equation & $\mathbf{F}=G\frac{{m_{1}}{m_{2}}}{||\mathbf{r}||^{2}}\mathbf{\hat{r}}=G\frac{{m_{1}}{m_{2}}}{||\mathbf{r}||^{2}}\frac{\mathbf{r}}{||\mathbf{r}||}$ +Equation & $\mathbf{F}=G \frac{{m_{1}} {m_{2}}}{||\mathbf{r}||^{2}} \mathbf{\hat{r}}=G \frac{{m_{1}} {m_{2}}}{||\mathbf{r}||^{2}} \frac{\mathbf{r}}{||\mathbf{r}||}$ \\ \midrule \\ Description & Two rigid bodies in the universe attract each other with a force $\mathbf{F}$ (N) that is directly proportional to the product of their masses, ${m_{1}}$ and ${m_{2}}$ (kg), and inversely proportional to the squared distance ${||\mathbf{r}||^{2}}$ ($\text{m}^{2}$) between them. The vector $\mathbf{r}$ (m) is the displacement between the centres of the rigid bodies and $||\mathbf{r}||$ (m) represents the Euclidean norm of the displacement, or absolute distance between the two. $\mathbf{\hat{r}}$ denotes the displacement unit vector, equivalent to the displacement divided by the Euclidean norm of the displacement, as shown above. Finally, $G$ is the gravitational constant (6.673 * 10E-11) ($\frac{\text{m}^{3}}{(\text{kg}\text{s}^{2})}$). \\ \bottomrule \end{tabular} @@ -356,7 +358,7 @@ \subsubsection{Theoretical Models} \\ \midrule \\ Label & Newton's Second Law for Rotational Motion \\ \midrule \\ -Equation & $\tau{}=\mathbf{I}\alpha{}$ +Equation & $\tau{}=\mathbf{I} \alpha{}$ \\ \midrule \\ Description & The net torque $\tau{}$ (Nm) on a rigid body is proportional to its angular acceleration $\alpha{}$ ($\frac{\text{rad}}{\text{s}^{2}}$). Here, $\mathbf{I}$ (kg$\text{m}^{2}$) denotes the moment of inertia of the rigid body. We also assume that all rigid bodies involved are two-dimensional (A2). \\ \bottomrule \end{tabular} @@ -376,7 +378,7 @@ \subsubsection{Instance Models} \\ \midrule \\ Label & Force on the Translational Motion of a Set of 2d Rigid Bodies \\ \midrule \\ -Equation & ${\mathbf{a}_{i}}=\frac{d{\mathbf{v}_{i}}\left(t\right)}{dt}=g+\frac{\mathbf{F}\left(t\right)}{{m_{j}}}$ +Equation & ${\mathbf{a}_{i}}=\frac{d {\mathbf{v}_{i}}\left(t\right)}{d t}=g+\frac{\mathbf{F}\left(t\right)}{{m_{j}}}$ \\ \midrule \\ Description & The above equation expresses the total acceleration of the rigid body (A1, A2) i as the sum of gravitational acceleration (GD3) and acceleration due to applied force Fi(t) (T1). The resultant outputs are then obtained from this equation using DD2, DD3 and DD4. It is currently assumed that there is no damping (A6) or constraints (A7) involved. ${m_{i}}$ is the mass of the i-th rigid body (kg). $g$ is the gravitational acceleration ($\frac{\text{m}}{\text{s}^{2}}$). $t$ is the point in time (s). ${t_{0}}$ is the denotes the initial time (s). ${\mathbf{p}_{CM}}$ is the the mass-weighted average position of a rigid body's particles (m). $\mathbf{a}$ is the acceleration ($\frac{\text{m}}{\text{s}^{2}}$). $\mathbf{v}$ is the velocity ($\frac{\text{m}}{\text{s}}$). $\mathbf{F}$ is the force applied to the i-th body at time t (N). \\ \bottomrule \end{tabular} @@ -390,7 +392,7 @@ \subsubsection{Instance Models} \\ \midrule \\ Label & Force on the Rotational Motion of a Set of 2D Rigid Body \\ \midrule \\ -Equation & $\alpha{}=\frac{d\omega{}\left(t\right)}{dt}=\frac{{\tau{}_{i}}\left(t\right)}{\mathbf{I}}$ +Equation & $\alpha{}=\frac{d \omega{}\left(t\right)}{d t}=\frac{{\tau{}_{i}}\left(t\right)}{\mathbf{I}}$ \\ \midrule \\ Description & The above equation for the total angular acceleration of the rigid body (A1, A2) i is derived from T5, and the resultant outputs are then obtained from this equation using DD5, DD6 and DD7. It is currently assumed that there is no damping (A6) or constraints (A7) involved. ${m_{i}}$ is the mass of the i-th rigid body (kg). $g$ is the gravitational acceleration ($\frac{\text{m}}{\text{s}^{2}}$). $t$ is the point in time (s). ${t_{0}}$ is the denotes the initial time (s). $\phi{}$ is the orientation (rad). $\omega{}$ is the angular velocity ($\frac{\text{rad}}{\text{s}}$). $\alpha{}$ is the angular acceleration ($\frac{\text{rad}}{\text{s}^{2}}$). ${\tau{}_{i}}$ is the is the torque applied to the i-th body (Nm). ${\mathbf{I}_{k}}$ is the moment of inertia of the k-th rigid body (kg$\text{m}^{2}$). \\ \bottomrule \end{tabular} @@ -404,7 +406,7 @@ \subsubsection{Instance Models} \\ \midrule \\ Label & Collisions on 2D Rigid Bodies \\ \midrule \\ -Equation & ${\mathbf{v}_{A}}\left({t_{c}}\right)={\mathbf{v}_{A}}\left(t\right)+\frac{j}{{m_{A}}}\mathbf{n}$ +Equation & ${\mathbf{v}_{A}}\left({t_{c}}\right)={\mathbf{v}_{A}}\left(t\right)+\frac{j}{{m_{A}}} \mathbf{n}$ \\ \midrule \\ Description & This instance model is based on our assumptions regarding rigid body (A1, A2) collisions (A5). Again, this does not take damping (A6) or constraints (A7) into account. ${m_{i}}$ is the mass of the i-th rigid body (kg). ${\mathbf{I}_{k}}$ is the moment of inertia of the k-th rigid body (kg$\text{m}^{2}$). $t$ is the point in time (s). ${t_{0}}$ is the denotes the initial time (s). ${t_{c}}$ is the denotes the time at collision (s). ${\mathbf{p}_{CM}}$ is the the mass-weighted average position of a rigid body's particles (m). $\mathbf{v}$ is the velocity ($\frac{\text{m}}{\text{s}}$). $\phi{}$ is the orientation (rad). $\omega{}$ is the angular velocity ($\frac{\text{rad}}{\text{s}}$). $\mathbf{n}$ is the collision normal vector (m). $j$ is the collision impulse (scalar) (Ns). $P$ is the point of collision (m). ${\mathbf{r}_{kP}}$ is the displacement vector between the centre of mass of rigid body k and contact point P (m). \\ \bottomrule \end{tabular} @@ -423,7 +425,7 @@ \subsubsection{Data Definitions} \\ \midrule \\ Units & m \\ \midrule \\ -Equation & ${\mathbf{p}_{CM}}$ = $\frac{\displaystyle\sum{\left[{m_{j}}{\mathbf{p}_{j}}\right]}}{M}$ +Equation & ${\mathbf{p}_{CM}}$ = $\frac{\displaystyle\sum{\left[{m_{j}} {\mathbf{p}_{j}}\right]}}{M}$ \\ \midrule \\ Description & ${\mathbf{p}_{CM}}$ is the the mass-weighted average position of a rigid body's particles (m)\newline${m_{j}}$ is the mass of the j-th particle (kg)\newline${\mathbf{p}_{j}}$ is the position vector of the j-th particle (m)\newline$M$ is the total mass of the rigid body (kg) \\ \bottomrule \end{tabular} @@ -439,7 +441,7 @@ \subsubsection{Data Definitions} \\ \midrule \\ Units & m \\ \midrule \\ -Equation & $\mathbf{r}(t)$ = $\frac{d\mathbf{p}\left(t\right)}{dt}$ +Equation & $\mathbf{r}(t)$ = $\frac{d \mathbf{p}\left(t\right)}{d t}$ \\ \midrule \\ Description & $\mathbf{r}(t)$ is the linear displacement (m)\newline$\mathbf{p}$ is the position (m)\newline$t$ is the time (s) \\ \bottomrule \end{tabular} @@ -455,7 +457,7 @@ \subsubsection{Data Definitions} \\ \midrule \\ Units & $\frac{\text{m}}{\text{s}}$ \\ \midrule \\ -Equation & $\mathbf{v}(t)$ = $\frac{d\mathbf{r}\left(t\right)}{dt}$ +Equation & $\mathbf{v}(t)$ = $\frac{d \mathbf{r}\left(t\right)}{d t}$ \\ \midrule \\ Description & $\mathbf{v}(t)$ is the linear velocity ($\frac{\text{m}}{\text{s}}$)\newline$\mathbf{r}$ is the displacement (m)\newline$t$ is the time (s) \\ \bottomrule \end{tabular} @@ -471,7 +473,7 @@ \subsubsection{Data Definitions} \\ \midrule \\ Units & $\frac{\text{m}}{\text{s}^{2}}$ \\ \midrule \\ -Equation & $\mathbf{a}(t)$ = $\frac{d\mathbf{v}\left(t\right)}{dt}$ +Equation & $\mathbf{a}(t)$ = $\frac{d \mathbf{v}\left(t\right)}{d t}$ \\ \midrule \\ Description & $\mathbf{a}(t)$ is the linear acceleration ($\frac{\text{m}}{\text{s}^{2}}$)\newline$\mathbf{v}$ is the velocity ($\frac{\text{m}}{\text{s}}$)\newline$t$ is the time (s) \\ \bottomrule \end{tabular} @@ -487,7 +489,7 @@ \subsubsection{Data Definitions} \\ \midrule \\ Units & rad \\ \midrule \\ -Equation & $\theta{}$ = $\frac{d\phi{}\left(t\right)}{dt}$ +Equation & $\theta{}$ = $\frac{d \phi{}\left(t\right)}{d t}$ \\ \midrule \\ Description & $\theta{}$ is the angular displacement (rad)\newline$\phi{}$ is the orientation (rad)\newline$t$ is the time (s) \\ \bottomrule \end{tabular} @@ -503,7 +505,7 @@ \subsubsection{Data Definitions} \\ \midrule \\ Units & $\frac{\text{rad}}{\text{s}}$ \\ \midrule \\ -Equation & $\omega{}$ = $\frac{d\theta{}\left(t\right)}{dt}$ +Equation & $\omega{}$ = $\frac{d \theta{}\left(t\right)}{d t}$ \\ \midrule \\ Description & $\omega{}$ is the angular velocity ($\frac{\text{rad}}{\text{s}}$)\newline$\theta{}$ is the angular displacement (rad)\newline$t$ is the time (s) \\ \bottomrule \end{tabular} @@ -519,7 +521,7 @@ \subsubsection{Data Definitions} \\ \midrule \\ Units & $\frac{\text{rad}}{\text{s}^{2}}$ \\ \midrule \\ -Equation & $\alpha{}$ = $\frac{d\omega{}\left(t\right)}{dt}$ +Equation & $\alpha{}$ = $\frac{d \omega{}\left(t\right)}{d t}$ \\ \midrule \\ Description & $\alpha{}$ is the angular acceleration ($\frac{\text{rad}}{\text{s}^{2}}$)\newline$\omega{}$ is the angular velocity ($\frac{\text{rad}}{\text{s}}$)\newline$t$ is the time (s) \\ \bottomrule \end{tabular} @@ -535,8 +537,8 @@ \subsubsection{Data Definitions} \\ \midrule \\ Units & Ns \\ \midrule \\ -Equation & $j$ = $\frac{\left(-1+{C_{R}}\right){{\mathbf{v}_{i}}^{AB}}\cdot{}\mathbf{n}}{\begin{multlined} -\left(1/{m_{A}}+1/{m_{B}}\right)||\mathbf{n}||^{2} +Equation & $j$ = $\frac{\left(-1+{C_{R}}\right) {{\mathbf{v}_{i}}^{AB}}\cdot{}\mathbf{n}}{\begin{multlined} +\left(1/{m_{A}}+1/{m_{B}}\right) ||\mathbf{n}||^{2} \\+ ||{\mathbf{r}_{AP}}*\mathbf{n}||^{2}/{\mathbf{I}_{A}}+||{\mathbf{r}_{BP}}*\mathbf{n}||^{2}/{\mathbf{I}_{B}} \end{multlined} diff --git a/code/stable/glassbr/GlassBR_SRS.html b/code/stable/glassbr/GlassBR_SRS.html index f06b41cceb..e1cd6eac31 100644 --- a/code/stable/glassbr/GlassBR_SRS.html +++ b/code/stable/glassbr/GlassBR_SRS.html @@ -647,14 +647,6 @@

-LDF - - -Load Duration Factor - - - - LG @@ -663,22 +655,6 @@

-LR - - -Load Resistance - - - - -LSF - - -Load Share Factor - - - - N/A @@ -687,14 +663,6 @@

-NFL - - -Non-Factored Load - - - - PS @@ -1163,6 +1131,16 @@

+ + + +
+Number + +

+T +

+
Label @@ -1199,6 +1177,16 @@

+ + + +
+Number + +

+T +

+
Label @@ -1255,6 +1243,16 @@

+ + + + @@ -1308,6 +1306,16 @@

+Number + +

+DD +

+
Label @@ -1287,7 +1285,7 @@

(ab)m − 1 - ((E) (h)2)mLDF eJ + ((E 1000) (h)2)mLDF eJ

+ + + +
+Number + +

+DD +

+
Label @@ -1425,6 +1433,16 @@

+ + + +
+Number + +

+DD +

+
Label @@ -1478,6 +1496,16 @@

+ + + +
+Number + +

+DD +

+
Label @@ -1531,6 +1559,16 @@

+ + + +
+Number + +

+DD +

+
Label @@ -1596,6 +1634,16 @@

+ + + +
+Number + +

+DD +

+
Label @@ -1626,7 +1674,7 @@

q (ab)2 -Eh4GTF +Eh4GTF @@ -1649,6 +1697,16 @@

+ + + +
+Number + +

+DD +

+
Label @@ -1702,6 +1760,16 @@

+ + + +
+Number + +

+DD +

+
Label @@ -1739,7 +1807,7 @@

(ab)m − 1 -k ((E (h)2))mLDF +k ((E 1000 (h)2))mLDF ) @@ -1772,6 +1840,16 @@

+ + + +
+Number + +

+T +

+
Label @@ -1808,6 +1886,16 @@

+ + + + @@ -1844,6 +1932,16 @@

+Number + +

+T +

+
Label @@ -1823,7 +1911,7 @@

-LR = NFLGTFLSF +LR = NFLGTFLSF
+ + + + @@ -1884,7 +1982,7 @@

Data Constraints

-Table:InpuDataCons and Table:OutpDataCons shows the data constraints on the input and output variables, respectively. The column for physical constraints gives the physical limitations on the range of values that can be taken by the variable. The uncertainty column provides an estimate of the confidence with which the physical quantities can be measured. This information would be part of the input if one were performing an uncertainty quantification exercise. The constraints are conservative, to give the user of the model the flexibility to experiment with unusual situations. The column of typical values is intended to provide a feel for a common scenario. Sec:ValuofAuxiCons gives the values of the specification parameters used in Table:InpuDataCons. Table:OutpDataCons shows the constraints that must be satisfied by the output. +Table:InpuDataCons, and Table:OutpDataCons shows the data constraints on the input and output variables, respectively. The column for physical constraints gives the physical limitations on the range of values that can be taken by the variable. The uncertainty column provides an estimate of the confidence with which the physical quantities can be measured. This information would be part of the input if one were performing an uncertainty quantification exercise. The constraints are conservative, to give the user of the model the flexibility to experiment with unusual situations. The column of typical values is intended to provide a feel for a common scenario. Sec:ValuofAuxiCons gives the values of the specification parameters used in Table:InpuDataCons. Table:OutpDataCons shows the constraints that must be satisfied by the output.

+Number + +

+T +

+
Label @@ -1870,7 +1968,7 @@

-q or demand, is the 3 second duration equivalent pressure obtained from Figure 2 by interpolation using stand off distance (SD) and wTNT as parameters. wTNT is defined as wTNT = wTNT. w is the charge weight. TNT is the TNT equivalent factor. SD is the stand off distance where SD = √(SDx2 + SDy2 + SDz2) where (SDx, SDy, SDz) are coordinates. +q or demand, is the 3 second duration equivalent pressure obtained from Figure 2 by interpolation using stand off distance (SD) and wTNT as parameters. wTNT is defined as wTNT. w is the charge weight. TNT is the TNT equivalent factor. SD is the stand off distance where √(SDx2 + SDy2 + SDz2) where (SDx, SDy, SDz) are coordinates.

diff --git a/code/stable/glassbr/GlassBR_SRS.tex b/code/stable/glassbr/GlassBR_SRS.tex index d4ace49042..8a936080c6 100644 --- a/code/stable/glassbr/GlassBR_SRS.tex +++ b/code/stable/glassbr/GlassBR_SRS.tex @@ -61,13 +61,13 @@ \subsection{Table of Symbols} \midrule $a$ & Plate length (long dimension) & m \\ -${AR_{max}}$ & Maximum aspect ratio & +${AR_{max}}$ & Maximum aspect ratio & \\ -$AR$ & Aspect ratio & +$AR$ & Aspect ratio & \\ $b$ & Plate width (short dimension) & m \\ -$B$ & Risk of failure & +$B$ & Risk of failure & \\ ${d_{max}}$ & Maximum value for one of the dimensions of the glass plate & mm \\ @@ -75,41 +75,41 @@ \subsection{Table of Symbols} \\ $E$ & Modulus of elasticity of glass & Pa \\ -$g$ & Glass type $g\in{}\{AN, FT, HS\}$ & +$g$ & Glass type $g\in{}\{AN, FT, HS\}$ & \\ -$GTF$ & Glass type factor & +$GTF$ & Glass type factor & \\ $h$ & Actual thickness & m \\ -$is\_safe1$ & True when calculated probability is less than tolerable probability & +$is\_safe1$ & True when calculated probability is less than tolerable probability & \\ -$is\_safe2$ & True when load resistance (capacity) is greater than load (demand) & +$is\_safe2$ & True when load resistance (capacity) is greater than load (demand) & \\ -$J$ & Stress distribution factor (Function) & +$J$ & Stress distribution factor (Function) & \\ -${J_{tol}}$ & Stress distribution factor (Function) based on Pbtol & +${J_{tol}}$ & Stress distribution factor (Function) based on Pbtol & \\ $k$ & Surface flaw parameter & $\frac{\text{m}^{12}}{\text{N}^{7}}$ \\ -$LDF$ & Load duration factor & +$LDF$ & Load duration factor & \\ -$LR$ & Load resistance & +$LR$ & Load resistance & \\ -$LSF$ & Load share factor & +$LSF$ & Load share factor & \\ $m$ & Surface flaw parameter & $\frac{\text{m}^{12}}{\text{N}^{7}}$ \\ -$NFL$ & Non-factored load & +$NFL$ & Non-factored load & \\ -${P_{b}}$ & Probability of breakage & +${P_{b}}$ & Probability of breakage & \\ -${P_{btol}}$ & Tolerable probability of breakage & +${P_{btol}}$ & Tolerable probability of breakage & \\ $q$ & Applied load (demand) & kPa \\ -$\hat{q}$ & Dimensionless load & +$\hat{q}$ & Dimensionless load & \\ -${\hat{q}_{tol}}$ & Tolerable load & +${\hat{q}_{tol}}$ & Tolerable load & \\ $SD$ & Stand off distance & m \\ @@ -127,7 +127,7 @@ \subsection{Table of Symbols} \\ ${t_{d}}$ & Duration of load & s \\ -$TNT$ & TNT equivalent factor & +$TNT$ & TNT equivalent factor & \\ $w$ & Charge weight & kg \\ @@ -147,12 +147,12 @@ \subsection{Abbreviations and Acronyms} Symbol & Description \\ \midrule +A & Assumption +\\ AN & Annealed Glass \\ AR & Aspect Ratio \\ -A & Assumption -\\ DD & Data Definition \\ FT & Fully Tempered Glass @@ -169,18 +169,10 @@ \subsection{Abbreviations and Acronyms} \\ LC & Likely Change \\ -LDF & Load Duration Factor -\\ LG & Laminated Glass \\ -LR & Load Resistance -\\ -LSF & Load Share Factor -\\ N/A & Not Applicable \\ -NFL & Non-Factored Load -\\ PS & Physical System Description \\ R & Requirement @@ -353,7 +345,7 @@ \subsubsection{Theoretical Models} \noindent \begin{minipage}{\textwidth} \begin{tabular}{p{0.2\textwidth} p{0.73\textwidth}} \toprule \textbf{Refname} & \textbf{T:t1SafetyReq} -\phantomsection +\phantomsection \label{T:t1SafetyReq} \\ \midrule \\ Label & Safety Requirement-1 @@ -367,7 +359,7 @@ \subsubsection{Theoretical Models} \noindent \begin{minipage}{\textwidth} \begin{tabular}{p{0.2\textwidth} p{0.73\textwidth}} \toprule \textbf{Refname} & \textbf{T:t2SafetyReq} -\phantomsection +\phantomsection \label{T:t2SafetyReq} \\ \midrule \\ Label & Safety Requirement-2 @@ -387,32 +379,30 @@ \subsubsection{Data Definitions} \noindent \begin{minipage}{\textwidth} \begin{tabular}{p{0.2\textwidth} p{0.73\textwidth}} \toprule \textbf{Refname} & \textbf{DD:risk.fun} -\phantomsection +\phantomsection \label{DD:risk.fun} \\ \midrule \\ Label & Risk of Failure \\ \midrule \\ Units & Unitless \\ \midrule \\ -Equation & $B$ = $\frac{k}{\left(ab\right)^{m-1}}\left(\left(E\right)\left(h\right)^{2}\right)^{m}\cdot{}LDFe^{J}$ +Equation & $B$ = $\frac{k}{\left(a b\right)^{m-1}} \left(\left(E 1000\right) \left(h\right)^{2}\right)^{m} LDF e^{J}$ \\ \midrule \\ Description & $B$ is the risk of failure\newline$k$ is the surface flaw parameter ($\frac{\text{m}^{12}}{\text{N}^{7}}$)\newline$a$ is the plate length (long dimension) (m)\newline$b$ is the plate width (short dimension) (m)\newline$m$ is the surface flaw parameter ($\frac{\text{m}^{12}}{\text{N}^{7}}$)\newline$E$ is the modulus of elasticity of glass (Pa)\newline$h$ is the actual thickness (m)\newline$LDF$ is the load duration factor\newline$J$ is the stress distribution factor (Function) -\\ \midrule \\ -Source & [7] \\ \bottomrule \end{tabular} \end{minipage}\\ ~\newline \noindent \begin{minipage}{\textwidth} \begin{tabular}{p{0.2\textwidth} p{0.73\textwidth}} \toprule \textbf{Refname} & \textbf{DD:act.thick} -\phantomsection +\phantomsection \label{DD:act.thick} \\ \midrule \\ Label & Actual Thickness \\ \midrule \\ Units & m \\ \midrule \\ -Equation & $h$ = $\frac{1}{1000}\begin{cases} +Equation & $h$ = $\frac{1}{1000} \begin{cases} 2.16, & t=2.5\\ 2.59, & t=2.7\\ 2.92, & t=3.0\\ @@ -434,7 +424,7 @@ \subsubsection{Data Definitions} \noindent \begin{minipage}{\textwidth} \begin{tabular}{p{0.2\textwidth} p{0.73\textwidth}} \toprule \textbf{Refname} & \textbf{DD:stressDistFac} -\phantomsection +\phantomsection \label{DD:stressDistFac} \\ \midrule \\ Label & Stress Distribution Factor (Function) @@ -450,14 +440,14 @@ \subsubsection{Data Definitions} \noindent \begin{minipage}{\textwidth} \begin{tabular}{p{0.2\textwidth} p{0.73\textwidth}} \toprule \textbf{Refname} & \textbf{DD:nFL} -\phantomsection +\phantomsection \label{DD:nFL} \\ \midrule \\ Label & Non-Factored Load \\ \midrule \\ Units & Unitless \\ \midrule \\ -Equation & $NFL$ = $\frac{{\hat{q}_{tol}}Eh^{4}}{\left(ab\right)^{2}}$ +Equation & $NFL$ = $\frac{{\hat{q}_{tol}} E h^{4}}{\left(a b\right)^{2}}$ \\ \midrule \\ Description & $NFL$ is the non-factored load\newline${\hat{q}_{tol}}$ is the tolerable load\newline$E$ is the modulus of elasticity of glass (Pa)\newline$h$ is the actual thickness (m)\newline$a$ is the plate length (long dimension) (m)\newline$b$ is the plate width (short dimension) (m) \\ \bottomrule \end{tabular} @@ -466,7 +456,7 @@ \subsubsection{Data Definitions} \noindent \begin{minipage}{\textwidth} \begin{tabular}{p{0.2\textwidth} p{0.73\textwidth}} \toprule \textbf{Refname} & \textbf{DD:gTF} -\phantomsection +\phantomsection \label{DD:gTF} \\ \midrule \\ Label & Glass Type Factor @@ -486,14 +476,14 @@ \subsubsection{Data Definitions} \noindent \begin{minipage}{\textwidth} \begin{tabular}{p{0.2\textwidth} p{0.73\textwidth}} \toprule \textbf{Refname} & \textbf{DD:dimlessLoad} -\phantomsection +\phantomsection \label{DD:dimlessLoad} \\ \midrule \\ Label & Dimensionless Load \\ \midrule \\ Units & Unitless \\ \midrule \\ -Equation & $\hat{q}$ = $\frac{q\left(ab\right)^{2}}{Eh^{4}\cdot{}GTF}$ +Equation & $\hat{q}$ = $\frac{q \left(a b\right)^{2}}{E h^{4} GTF}$ \\ \midrule \\ Description & $\hat{q}$ is the dimensionless load\newline$q$ is the applied load (demand) (kPa)\newline$a$ is the plate length (long dimension) (m)\newline$b$ is the plate width (short dimension) (m)\newline$E$ is the modulus of elasticity of glass (Pa)\newline$h$ is the actual thickness (m)\newline$GTF$ is the glass type factor \\ \bottomrule \end{tabular} @@ -525,7 +515,7 @@ \subsubsection{Data Definitions} \\ \midrule \\ Units & Unitless \\ \midrule \\ -Equation & ${J_{tol}}$ = $\log\left(\log\left(\frac{1}{1-{P_{btol}}}\right)\frac{\left(ab\right)^{m-1}}{k\left(\left(E\left(h\right)^{2}\right)\right)^{m}\cdot{}LDF}\right)$ +Equation & ${J_{tol}}$ = $\log\left(\log\left(\frac{1}{1-{P_{btol}}}\right) \frac{\left(a b\right)^{m-1}}{k \left(\left(E 1000 \left(h\right)^{2}\right)\right)^{m} LDF}\right)$ \\ \midrule \\ Description & ${J_{tol}}$ is the stress distribution factor (Function) based on Pbtol\newline${P_{btol}}$ is the tolerable probability of breakage\newline$a$ is the plate length (long dimension) (m)\newline$b$ is the plate width (short dimension) (m)\newline$m$ is the surface flaw parameter ($\frac{\text{m}^{12}}{\text{N}^{7}}$)\newline$k$ is the surface flaw parameter ($\frac{\text{m}^{12}}{\text{N}^{7}}$)\newline$E$ is the modulus of elasticity of glass (Pa)\newline$h$ is the actual thickness (m)\newline$LDF$ is the load duration factor \\ \bottomrule \end{tabular} @@ -556,7 +546,7 @@ \subsubsection{Instance Models} \\ \midrule \\ Label & Calculation of Capacity(LR) \\ \midrule \\ -Equation & $LR=NFL\cdot{}GTF\cdot{}LSF$ +Equation & $LR=NFL GTF LSF$ \\ \midrule \\ Description & $LR$ is the load resistance, which is also called capacity. $NFL$ is the non-factored load. $GTF$ is the glass type factor. $LSF$ is the load share factor. Follows A2 and A1 (``In the development of this procedure, it was assumed that all four edges of the glass are simply supported and free to slip in the plane of the glass. This boundary condition has been shown to be typical of many glass installations") from [4 (pg. 53)]. \\ \bottomrule \end{tabular} @@ -572,12 +562,12 @@ \subsubsection{Instance Models} \\ \midrule \\ Equation & $q=q\left({w_{TNT}},SD\right)$ \\ \midrule \\ -Description & $q$ or demand, is the 3 second duration equivalent pressure obtained from Figure 2 by interpolation using stand off distance ($SD$) and ${w_{TNT}}$ as parameters. ${w_{TNT}}$ is defined as ${w_{TNT}}=wTNT$. $w$ is the charge weight. $TNT$ is the TNT equivalent factor. $SD$ is the stand off distance where $SD=\sqrt{{SD_{x}}^{2}+{SD_{y}}^{2}+{SD_{z}}^{2}}$ where (${SD_{x}}$, ${SD_{y}}$, ${SD_{z}}$) are coordinates. +Description & $q$ or demand, is the 3 second duration equivalent pressure obtained from Figure 2 by interpolation using stand off distance ($SD$) and ${w_{TNT}}$ as parameters. ${w_{TNT}}$ is defined as $w TNT$. $w$ is the charge weight. $TNT$ is the TNT equivalent factor. $SD$ is the stand off distance where $\sqrt{{SD_{x}}^{2}+{SD_{y}}^{2}+{SD_{z}}^{2}}$ where (${SD_{x}}$, ${SD_{y}}$, ${SD_{z}}$) are coordinates. \\ \bottomrule \end{tabular} \end{minipage}\\ \subsubsection{Data Constraints} \label{Sec:DataCons} -Table~\ref{Table:InpuDataCons} and Table~\ref{Table:OutpDataCons} shows the data constraints on the input and output variables, respectively. The column for physical constraints gives the physical limitations on the range of values that can be taken by the variable. The uncertainty column provides an estimate of the confidence with which the physical quantities can be measured. This information would be part of the input if one were performing an uncertainty quantification exercise. The constraints are conservative, to give the user of the model the flexibility to experiment with unusual situations. The column of typical values is intended to provide a feel for a common scenario. Section~\ref{Sec:ValuofAuxiCons} gives the values of the specification parameters used in Table~\ref{Table:InpuDataCons}. Table~\ref{Table:OutpDataCons} shows the constraints that must be satisfied by the output. +Table~\ref{Table:InpuDataCons}, and Table~\ref{Table:OutpDataCons} shows the data constraints on the input and output variables, respectively. The column for physical constraints gives the physical limitations on the range of values that can be taken by the variable. The uncertainty column provides an estimate of the confidence with which the physical quantities can be measured. This information would be part of the input if one were performing an uncertainty quantification exercise. The constraints are conservative, to give the user of the model the flexibility to experiment with unusual situations. The column of typical values is intended to provide a feel for a common scenario. Section~\ref{Sec:ValuofAuxiCons} gives the values of the specification parameters used in Table~\ref{Table:InpuDataCons}. Table~\ref{Table:OutpDataCons} shows the constraints that must be satisfied by the output. \begin{longtable}{l l l l l} \toprule Var & Physical Constraints & Software Constraints & Typical Value & TU @@ -844,9 +834,9 @@ \section{Values of Auxiliary Constants} \midrule $m$ & surface flaw parameter & $7$ & $\frac{\text{m}^{12}}{\text{N}^{7}}$ \\ -$k$ & surface flaw parameter & $\left(2.86\right)10^{-53}$ & $\frac{\text{m}^{12}}{\text{N}^{7}}$ +$k$ & surface flaw parameter & $\left(2.86\right) 10^{-53}$ & $\frac{\text{m}^{12}}{\text{N}^{7}}$ \\ -$E$ & modulus of elasticity of glass & $\left(7.17\right)10^{7}$ & Pa +$E$ & modulus of elasticity of glass & $\left(7.17\right) 10^{7}$ & Pa \\ ${t_{d}}$ & duration of load & $3$ & s \\