Package ‘lidR’

September 3, 2021

Type Package

Title Airborne LiDAR Data Manipulation and Visualization for Forestry
Applications

Version 3.1.5

Date 2021-08-26

Description Airborne LiDAR (Light Detection and Ranging) interface for data
manipulation and visualization. Read/write 'las' and 'laz' files, computation
of metrics in area based approach, point filtering, artificial point reduction,
classification from geographic data, normalization, individual tree segmentation
and other manipulations.

URL https://github.com/Jean-Romain/1idR

BugReports https://github.com/Jean-Romain/1idR/issues

License GPL-3

Depends R (>= 3.4.0),methods,raster,sp (>= 1.4.2)

Imports data.table (>= 1.12.0), future, geometry, glue, grDevices,
lazyeval, Rcpp (>= 1.0.3), RCSF, rgeos, rgdal (>= 1.5.8), rgl,
rlas (>=1.3.5), sf, stats, tools, utils

Suggests EBImage, concaveman, crayon, gstat, hexbin, mapview, mapedit,
progress, testthat (>= 2.1.0), knitr, rmarkdown, covr

RoxygenNote 7.1.1

LinkingTo BH (>= 1.72.0),Rcpp,RcppArmadillo

Encoding UTF-8

ByteCompile true

VignetteBuilder knitr

biocViews

Collate 'Class-LASheader.R' 'Class-LAS.R' 'Class-LAScatalog.R’
'Class-LAScluster.R' 'ReppExports.R' 'add_attribute.R'
'algorithm-dec.R' 'algorithm-dsm.R'" 'algorithm-gnd.R'
'algorithm-itd.R' 'algorithm-its.R' 'algorithm-noi.R'
'algorithm-out.R' 'algorithm-shp.R' 'algorithm-snag.R’
'algorithm-spi.R' 'algorithm-trk.R' 'catalog_apply.R’
'catalog_fakerun.R' 'catalog_index.R' 'catalog_intersect.R'
'catalog_laxindex.R' 'catalog_makecluster.R'
'catalog_merge_results.R' 'catalog_overlaps.R'

1

https://github.com/Jean-Romain/lidR
https://github.com/Jean-Romain/lidR/issues

2 R topics documented:

'catalog_retile.R' 'catalog_select.R' 'classify_ground.R'
'classify_noise.R' 'clip_roi.R' 'cloud_metrics.R’
'clusters_apply.R' 'decimate_points.R' 'delineate_crowns.R’
'deprecated.R' 'doc-drivers.R' 'doc-lidR.R' 'doc-parallelism.R'
'filter_duplicates.R' 'filter_poi.R' 'filter_roi.R'
'filter_surfacepoints.R' 'find_localmaxima.R' 'find_trees.R’
'generate_las.R' 'grid_canopy.R' 'grid_density.R'
'grid_metrics.R' 'grid_terrain.R' 'hexbin_metrics.R'
'io_readLAS.R' 'io_readLAScatalog.R' 'io_readXLAS.R'
'fo_writeANY.R' 'io_writeLAS.R' 'las_check.R' 'las_tools.R'
'merge_las.R' 'merge_spatial. R' 'methods-LAS.R'
'methods-LAScatalog.R' 'methods-LAScluster.R'
'methods-LASheader.R' 'normalize_height.R’
'normalize_intensity.R' ‘plot.R' ‘plot.s3.R' ‘point_metrics.R’
'‘print.R’ 'projection.R' 'retrieve_info.R' 'segment_shapes.R'
'segment_snags.R' 'segment_trees.R' 'sensor_tracking.R'
'smooth_height.R' 'tree_metrics.R' 'utils_assertive.R'
'utils_catalog_options.R' 'utils_colors.R’
'utils_define_constant.R' 'utils_delaunay.R' 'utils_geometry.R'
'utils_is.R' 'utils_metrics.R' 'utils_misc.R' 'utils_raster.R'
'utils_spatial_index.R' 'utils_threads.R' 'utils_typecast.R’
'voxel_metrics.R' 'voxelize_points.R' 'zzz.R'

NeedsCompilation yes

Author Jean-Romain Roussel [aut, cre, cph],
David Auty [aut, ctb] (Reviews the documentation),
Florian De Boissieu [ctb] (Fixed bugs and improved catalog features),
Andrew Sinchez Meador [ctb] (Implemented wing2015() for
segment_snags()),
Bourdon Jean-Frangois [ctb] (Contributed to Roussel2020() for
track_sensor()),
Gatziolis Demetrios [ctb] (Implemented Gatziolis2019() for
track_sensor()),
Leon Steinmeier [ctb] (Contributed to parallelization management)

Maintainer Jean-Romain Roussel <jean-romain.roussel.1@ulaval.ca>

R topics documented:

lidR-package e 4
add_attribute L L e e e e e e e e e e 5
L 7
as.listLASheader e 9
as.spatialo L 9
ASPIS & o v e 10
catalog_apply e 11
catalog_Intersect e e e e e e 15
catalog_makechunks 16
catalog_options_tools L. 16
catalog_retile 18
catalog_select e 20
classify_ground 21

classify_noise L e 22

R topics documented: 3

Clip . . e 24
cloud_metrics e e e e e e 26
0 28
dalponte2016 e e e 29
decimate_points L. e 30
delineate _Crowns e 32
deprecated L e e 34
dsmtin e e e 37
ENITOPY .+« v v e 38
extent, LAS-method e 39
filters e e e 40
filter_duplicates 41
filter_poi. e 42
filter_surfacepoints 43
find_localmaxima e e e 44
find_trees e e e e e e e e e e 45
gap_fraction_profile L 46
Gatziolis2019 e e e e 47
grid_canopy e 48
grid_density 50
grid_metrics e e e e e 51
grid_terrain e 54
hexbin_metrics e 56
homogenize L e e e e 57
IS o o e 58
IVE e e e e e 59
knnidw e 60
kriging oL 60
LAD . . e e e 61
LAS-class e e e 62
LAScatalog-class 64
LASheader e e e e 67
LASheader-class e 68
las_check e 68
las_utilities e e e e e e e e e e e e e 69
L2012 . . . e 71
lidR-LAScatalog-drivers e 72
lidR-parallelism e 74
lidR-spatial-index 76
lidrpalettes e e e e e e e 79
Imf . e e e e 80
manual L e e e 81
MAaXIMA o v e o e 82
merge_spatial L 83
normalize_height 84
normalize_intensity L. L e e 87
P2r . o e 88
pitfree L 89
PlOt . o e e e e 91
plotlasmetrics3d 93
plot_3d . .. 93

4 lidR-package
POINE_MELIICS v o v vt e e e e e 95
PIINt . . . e 98
PIOJECHION i i e e e e e e 99
random e e e e e e e e 101
FANGe_COITECLION v o v v e bttt e e e e e e e 102
rbind.LAS 103
readLAS . . . L e e 103
readLAScatalog e e e e e e 105
readLASheader e 107
retrieve_pulses L e 108
Roussel2020 e e e e e 109
rumple_index 110
segment_shapes L 111
SEEMENT_SNAZS . « . v v v v v e 112
SEEMENT_LTEES . . o v v v v v v e 113
set_lidr threads e 115
shape_detection L 116
silva2016 117
smooth_height. 118
70) 119
stdmetrics L e e 120
15 123
track_SENSOr e s e 124
trE€_MEITICS . . . o v o o o o e e e e e e e e e 127
util_makeZhangParam L 129
VCI . e e e e 130
voxelize_points L. e 131
VOXEL_MELTICS . . . o o o o o e e e e e e e e 132
watershed L. e e e 133
wing2015 . . . Lo 135
writeLAS . . e e e e 137
$<-LAS-method 137

Index 139

lidR-package lidR: airborne LiDAR for forestry applications
Description

lidR provides a set of tools to manipulate airborne LiDAR data in forestry contexts. The package
works essentially with .las or .laz files. The toolbox includes algorithms for DSM, CHM, DTM,
ABA, normalisation, tree detection, tree segmentation and other tools, as well as an engine to pro-
cess wide LiDAR coverages split into many files.

Details

To learn more about lidR, start with the vignettes: browseVignettes(package = "lidR"). Users can
also find unofficial supplementary documentation in the lidR book. To ask "how to" questions
please ask on gis.stackexchange.com with the tag 1idr.

https://jean-romain.github.io/lidRbook/
https://gis.stackexchange.com/

add_attribute 5

Package options

lidR.progress Several functions have a progress bar for long operations (but not all). Should
lengthy operations show a progress bar? Default: TRUE

lidR.progress.delay The progress bar appears only for long operations. After how many sec-
onds of computation does the progress bar appear? Default: 2

lidR.verbose Make the package verbose. Default: FALSE

1idR.buildVRT The functions grid_x can write the rasters sequentially on the disk and load back
a virtual raster mosaic (VRT) instead of the list of written files. Should a VRT be built?
Default: TRUE

lidR.check.nested.parallelism The catalog processing engine (catalog_apply) checks the par-
allel strategy chosen by the user and verify if C++ parallelization with OpenMP should be dis-
abled to avoid nested parallel loops. Default: TRUE. If FALSE the catalog processing engine
will not check for nested parallelism and will respect the settings of set_lidr_threads.

Author(s)
Maintainer: Jean-Romain Roussel <jean-romain.roussel.1@ulaval.ca> [copyright holder]
Authors:
* David Auty (Reviews the documentation) [contributor]
Other contributors:

* Florian De Boissieu (Fixed bugs and improved catalog features) [contributor]

* Andrew Sanchez Meador (Implemented wing2015() for segment_snags()) [contributor]
* Bourdon Jean-Frangois (Contributed to Roussel2020() for track_sensor()) [contributor]
* Gatziolis Demetrios (Implemented Gatziolis2019() for track_sensor()) [contributor]

* Leon Steinmeier <Lenostatos@gmx.de> (Contributed to parallelization management) [con-
tributor]

See Also
Useful links:

e https://github.com/Jean-Romain/1idR
* Report bugs at https://github.com/Jean-Romain/1idR/issues

add_attribute Add attributes into a LAS object

Description

A LAS object represents a las file in R. According to the LAS specifications a las file contains a
core of defined attributes, such as XYZ coordinates, intensity, return number, and so on, for each
point. It is possible to add supplementary attributes.

https://github.com/Jean-Romain/lidR
https://github.com/Jean-Romain/lidR/issues
https://www.asprs.org/a/society/committees/standards/LAS_1_4_r13.pdf

6 add_attribute

Usage

add_attribute(las, x, name)
add_lasattribute(las, x, name, desc)

add_lasattribute_manual(
las,
X,
name,
desc,
type,
offset = NULL,
scale = NULL,
NA_value = NULL
)

add_lasrgb(las, R, G, B)

remove_lasattribute(las, name)

Arguments
las An object of class LAS
X a vector that needs to be added in the LAS object. For add_lasattributex it
can be missing (see details).
name character. The name of the extra bytes attribute to add in the file.
desc character. A short description of the extra bytes attribute to add in the file (32
characters).
type character. The data type of the extra bytes attribute. Can be "uchar”, "char”, "ushort”, "short”, "
scale, offset numeric. The scale and offset of the data. NULL if not relevant.
NA_value numeric or integer. NA is not a valid value in a las file. At time of writing it will
be replaced by this value that will be considered as NA. NULL if not relevant.
R, G, B integer. RGB values
Details

Users cannot assign names that are the same as the names of the core attributes. These functions are

dedicated to adding data that are not part of the LAS specification. For example, add_lasattribute(las,x,"R")
will fail because R is a name reserved for the red channel of a .las file that contains RGB attributes.

Use add_lasrgb instead.

add_attribute Simply adds a new column in the data but does not update the header. Thus the
LAS object is not strictly valid. These data will be temporarily usable at the R level but will
not be written in a las file with writeLAS.

add_lasattribute Does the same as add_attribute but automatically updates the header of the
LAS object. Thus, the LAS object is valid and the new data is considered as "extra bytes".
This new data will be written in a las file with writeLAS.

add_lasattribute_manual Allows the user to manually write all the extra bytes metadata. This
function is reserved for experienced users with a good knowledge of the LAS specifica-
tions. The function does not perform tests to check the validity of the information. When

area 7

using add_lasattribute and add_lasattribute_manual, x can only be of type numeric,
(integer or double). It cannot be of type character or logical as these are not supported
by the LAS specifications. The types that are supported in lidR are types O to 10 (Table 24 on
page 25 of the specification). Types greater than 10 are not supported.

add_lasrgb Adds 3 columns named RGB and updates the point format of the LAS object for a
format that supports RGB attributes. If the RGB values are ranging from O to 255 they are
automatically scaled on 16 bits.

Value

An object of class LAS

Examples

LASfile <- system.file("extdata"”, "example.laz", package="rlas")
las <- readLAS(LASfile, select = "xyz")

print(las)
print(las@header)

x <- 1:30

las <- add_attribute(las, x, "mydata”)
print(las) # The las object has a new attribute called "mydata”
print(las@header) # But the header has not been updated. This new data will not be written

las <- add_lasattribute(las, x, "mydata2”, "A new data")
print(las) # The las object has a new attribute called "mydata2”
print(las@header) # The header has been updated. This new data will be written

Optionally if the data is already in the LAS object you can update the header skipping the
parameter x

las <- add_lasattribute(las, name = "mydata”, desc = "Amplitude")

print(las@header)

Remove an extra bytes attribute

las <- remove_lasattribute(las, "mydata2")
print(las)

print(las@header)

las <- remove_lasattribute(las, "mydata")
print(las)
print(las@header)

area Surface covered by a LAS* object

Description

Surface covered by a LAS* object. For LAS point clouds it is computed based on the convex hull
of the points. For a LAScatalog it is computed as the sum of the bounding boxes of the files.
For overlapping tiles the value may be larger than the total covered area because some regions are
sampled twice. For a LASheader it is computed with the bounding box. The function npoints does

8 area

what the user may expect it to do and the function density is equivalent to npoints(x)/area(x).
As a consequence for the same file area applied on a LASheader or on a LAS can return slightly
different values.

Usage

area(x, ...)

S4 method for signature 'LAS'
area(x, ...)

S4 method for signature 'LASheader'
area(x, ...)

S4 method for signature 'LAScatalog'
area(x, ...)

npoints(x, ...)

S4 method for signature 'LAS'
npoints(x, ...)

S4 method for signature 'LASheader'
npoints(x, ...)

S4 method for signature 'LAScatalog'
npoints(x, ...)

density(x, ...)

S4 method for signature 'LAS'
density(x, ...)

S4 method for signature 'LASheader'
density(x, ...)

S4 method for signature 'LAScatalog'

density(x, ...)
Arguments
X An object of the class LAS*.
unused.
Value

numeric. A number. Notice that for area the measure is in the same units as the coordinate reference
system.

as.list. LASheader 9

as.list.LASheader Transform to a list

Description

Functions to construct, coerce and check for both kinds of R lists.

Usage

S3 method for class 'LASheader'
as.list(x, ...)

Arguments

X A LASheader object

unused

as.spatial Transform a LAS* object into an sp object

Description

LAS and LAScatalog objects are transformed into SpatialPointsDataFrame and SpatialPolygons-
DataFrame objects, respectively.

Usage

as.spatial(x)

Arguments

X an object from the 1idR package

Value

An object from sp

10

asprs

asprs

ASPRS LAS Classification

Description

A set of global variables corresponding to the point classification defined by the ASPRS for the
LAS format. Instead of remembering the classification table of the specification it is possible to use
one of these global variables.

Usage

LASNONCLASSIFIED

LASUNCLASSIFIED

LASGROUND

LASLOWVEGETATION

LASMEDIUMVEGETATION

LASHIGHVEGETATION

LASBUILDING

LASLOWPOINT

LASKEYPOINT

LASWATER

LASRAIL

LASROADSURFACE

LASWIREGUARD

LASWIRECONDUCTOR

LASTRANSMISSIONTOWER

LASBRIGDE

LASNOISE

Format

An object of class integer of length 1.
An object of class integer of length 1.
An object of class integer of length 1.

catalog_apply 11

An object of class integer of length 1.
An object of class integer of length 1.
An object of class integer of length 1.
An object of class integer of length 1.
An object of class integer of length 1.
An object of class integer of length 1.
An object of class integer of length 1.
An object of class integer of length 1.
An object of class integer of length 1.
An object of class integer of length 1.
An object of class integer of length 1.
An object of class integer of length 1.
An object of class integer of length 1.
An object of class integer of length 1.

Examples

LASfile <- system.file("extdata”, "Topography.laz", package="1idR")
las = readLAS(LASfile)
las2 = filter_poi(las, Classification %in% c(LASGROUND, LASWATER))

print (LASGROUND)

catalog_apply LAScatalog processing engine

Description

This function gives users access to the LAScatalog processing engine. It allows the application of a
user-defined routine over an entire catalog. The LAScatalog processing engine tool is explained in
the LAScatalog class

catalog_apply() is the core of the lidR package. It drives every single function that can pro-
cess a LAScatalog. It is flexible and powerful but also complex. catalog_sapply is the same with
the option automerge = TRUE enforced to simplify the output.

Warning: the LAScatalog processing engine has a mechanism to load buffered data ’on-the-fly’
to avoid edge artifacts, but no mechanism to remove the buffer after applying user-defined func-
tions, since this task is specific to each process. In other 1idR functions this task is performed
specifically for each function. In catalog_apply() the user’s function can return any output, thus
users must take care of this task themselves (See section "Edge artifacts")

Usage

catalog_apply(ctg, FUN, ..., .options = NULL)

catalog_sapply(ctg, FUN, ..., .options = NULL)

12 catalog_apply

Arguments
ctg A LAScatalog object.
FUN A user-defined function that respects a given template (see section function tem-
plate)
Optional arguments to FUN.
.options See dedicated section and examples.
Edge artifacts

It is important to take precautions to avoid ’edge artifacts’ when processing wall-to-wall tiles. If
the points from neighboring tiles are not included during certain processes, this could create edge
artifacts’ at the tile boundaries. For example, empty or incomplete pixels in a rasterization process,
or dummy elevations in a ground interpolation. The LAScatalog processing engine provides internal
tools to load buffered data ’on-the-fly’. However, there is no mechanism to remove the results
computed in the buffered area since this task depends on the output of the user-defined function.
The user must take care of this task (see examples) to prevent unexpected output with duplicated
entries or conflict between values computed twice.

Buffered data

The LAS objects read by the user function have a special attribute called *buffer’ that indicates, for
each point, if it comes from a buffered area or not. Points from non-buffered areas have a ’buffer’
value of 0, while points from buffered areas have a "buffer’ value of 1, 2, 3 or 4, where 1 is the
bottom buffer and 2, 3 and 4 are the left, top and right buffers, respectively. This allows for filtering
of buffer points if required.

Function template

The parameter FUN expects a function with a first argument that will be supplied automatically by
the LAScatalog processing engine. This first argument is a LAScluster. A LAScluster is an
internal undocumented class but the user needs to know only three things about this class:

* It represents a chunk of the catalog
¢ The function readLAS can be used with a LAScluster

* The function extent or bbox can be used with a LAScluster and it returns the bounding box of
the cluster without the buffer. It can be used to clip the output and remove the buffered region
(see examples).

A user-defined function must be templated like this:

myfun <- function(cluster, ...) {
las <- readlLAS(cluster)
if (is.empty(las)) return(NULL)
do something
remove the buffer of the output
return(something)

b

The line if(is.empty(las)) return(NULL) is important because some clusters (chunks) may
contain 0 points (we can’t know this before reading the file). In this case an empty point cloud
with 0 points is returned by readLAS() and this may fail in subsequent code. Thus, exiting early

catalog_apply 13

from the user-defined function by returning NULL indicates to the internal engine that the cluster was
empty.

From v3.0.0 if autoread = TRUE the following template is accepted because the engine takes care
of the above mentionned steps:

myfun <- function(las, bbox ...) {
do something

3

.options

Users may have noticed that some lidR functions throw an error when the processing options are
inappropriate. For example, some functions need a buffer and thus buffer = @ is forbidden. Users
can add the same constraints to protect against inappropriate options. The .options argument is a
1ist that allows users to tune the behavior of the processing engine.

drop_null = FALSE Not intended to be used by regular users. The engine does not remove
NULL outputs

need_buffer = TRUE the function complains if the buffer is 0.
need_output_file = TRUE the function complains if no output file template is provided.

raster_alignment = ... the function checks the alignment of the chunks. This option is
important if the output is a raster. See below for more details.

automerge = TRUE by defaut the engine returns a 1ist with one item per chunk. If automerge
= TRUE, it tries to merge the outputs into a single object: a Raster*, a Spatial*, a LAS* similar
to other functions of the package. This is a fail-safe option so in the worst case, if the merge
fails, the 1ist is returned.

autoread = TRUE. Introduced in v3.0.0 this option enables to get rid of the first steps of the
function i.e readLAS() and if (is.empty()). In this case the function must take two objects as
input, first a LAS object and second a Extent from raster.

When the function FUN returns a raster it is important to ensure that the chunks are aligned with
the raster to avoid edge artifacts. Indeed, if the edge of a chunk does not correspond to the edge of
the pixels, the output will not be strictly continuous and will have edge artifacts (that might not be
visible). Users can check this with the options raster_alignment, that can take the resolution of
the raster as input, as well as the starting point if needed. The following are accepted:

check if chunks are aligned with a raster of resolution 20
raster_alignment = 20
raster_alignment = list(res = 20)

check if chunks are aligned with a raster of resolution 20
that starts at (0,10)
raster_alignment = list(res = 20, start = c(0,10))

See also grid_metrics for more details.

Supported processing options

Supported processing options for a LAScatalog (in bold). For more details see the LAScatalog
engine documentation:

chunk_size: How much data is loaded at once.

14

catalog_apply

 chunk_buffer: Load chunks with a buffer.
chunk_alignment: Align the chunks.

progress: Displays a progress estimate.

output_files: The user-defined function outputs will be written to files instead of being returned
into R.
* laz_compression: write las or laz files only if the user-defined function returns a ‘LAS*
object.

select: Select only the data of interest to save processing memory.

* filter: Read only the points of interest.

Examples

More examples might be avaible in the official 1idR vignettes or
on the github book <https://jean-romain.github.io/lidRbook/>

#H#
Example 1: detect all the tree tops over an entire catalog

(this is basically a reproduction of the existing lidR function 'tree_detection')
##

1. Build the user-defined function that analyzes each chunk of the catalog.

The function's first argument is a LAScluster object. The other arguments can be freely

choosen by the user.

my_tree_detection_method <- function(cluster, ws)

{
The cluster argument is a LAScluster object. The user does not need to know how it works.
readLAS will load the region of interest (chunk) with a buffer around it, taking advantage of
point cloud indexation if possible. The filter and select options are propagated automatically
las <- readLAS(cluster)
if (is.empty(las)) return(NULL)

Find the tree tops using a user-developed method (here simply a LMF).
ttops <- find_trees(las, lmf(ws))

ttops is a SpatialPointsDataFrame that contains the tree tops in our region of interest
plus the trees tops in the buffered area. We need to remove the buffer otherwise we will get
some trees more than once.

bbox <- raster::extent(cluster)

ttops <- raster::crop(ttops, bbox)

return(ttops)

2. Build a project (here, a single file catalog for the purposes of this dummmy example).
LASfile <- system.file("extdata”, "MixedConifer.laz", package="1idR")

prj <- readLAScatalog(LASfile)

plot(prj)

3. Set some processing options.
For this dummy example, the chunk size is 100 m and the buffer is 10 m
opt_chunk_buffer(prj) <- 10

opt_chunk_size(prj) <- 100 # small because this is a dummy example.
opt_chunk_alignment(prj) <- c(-50, -35) # Align such as it creates 2 chunks only.
opt_select(prj) <- "xyz" # Read only the coordinates.

opt_filter(prj) <- "-keep_first" # Read only first returns.

catalog_intersect 15

4. Apply a user-defined function to take advantage of the internal engine

opt <- list(need_buffer = TRUE, # catalog_apply will throw an error if buffer = @
automerge = TRUE) # catalog_apply will merge the outputs into a single object

output <- catalog_apply(prj, my_tree_detection_method, ws = 5, .options = opt)

spplot(output)

Not run:

##
Example 2: compute a rumple index on surface points
#H#

rumple_index_surface = function(cluster, res)
{

las = readLAS(cluster)

if (is.empty(las)) return(NULL)

las <- filter_surfacepoints(las, 1)

rumple <- grid_metrics(las, ~rumple_index(X,Y,Z), res)
bbox <- raster::extent(cluster)

rumple <- raster::crop(rumple, bbox)

return(rumple)

}

LASfile <- system.file("extdata”, "Megaplot.laz", package="1idR")
prj <- readLAScatalog(LASfile)

opt_chunk_buffer(prj) <- 1

opt_chunk_size(prj) <- 140 # small because this is a dummy example.
opt_select(prj) <- "xyz" # read only the coordinates.
opt <- list(raster_alignment = 20, # catalog_apply will adjust the chunks if required

automerge = TRUE) # catalog_apply will merge the outputs into a single raster
output <- catalog_apply(prj, rumple_index_surface, res = 20, .options = opt)

plot(output, col = height.colors(50))

End(Not run)

catalog_intersect Subset a LAScatalog with a Spatial* object

Description

Subset a LAScatalog with a Spatial* object to keep only the tiles of interest. Internally, it uses the
function intersect from raster with a tweak to make it work with a LAScatalog. It can be used
to select tiles of interest that encompass Spatial* objects such as SpatialPoints, SpatialPolygons or
SpatialLines.

Usage

catalog_intersect(ctg, y)

16 catalog_options_tools

Arguments

ctg A LAScatalog object

y Extent, Raster*, SpatialPolygons*, SpatialLines* or SpatialPoints* object

Value

A LAScatalog

catalog_makechunks Subdivide a LAScatalog into chunks

Description

Virtually subdivide a LAScatalog into chunks. This function is an internal function exported to
users in version 3.0.0 because it might be useful for some debugging purposes. It might also be
useful for some advanced developers. Regular users are not expected to use this function. The
chunks are made according to the catalog processing options.

Usage

catalog_makechunks(ctg, realignment = FALSE, plot = opt_progress(ctg))

Arguments
ctg an object of class LAScatalog
realignment FALSE or list(res = x,start = c(y, z)). Sometimes the chunk must be aligned
with a raster, for example to ensure the continuity of the output. If the chunk
size is 800 and the expected product is a raster with a resolution of 35, 800 and
35 are not compatible and will create 2 different partial pixels on the edges. The
realignment option forces the chunk to fit the grid aligment.
plot logical. Displays the chunk pattern.
Value

A list containing objects of class LAScluster.

catalog_options_tools Get or set LAScatalog processing engine options

Description

The names of the options and their roles are documented in LAScatalog. The options are used by
all the functions that support a LAScatalog as input.

catalog_options_tools

Usage
opt_chunk_buffer(ctg)
opt_chunk_buffer(ctg) <- value
opt_chunk_size(ctg)
opt_chunk_size(ctg) <- value
opt_chunk_alignment(ctg)
opt_chunk_alignment(ctg) <- value
opt_progress(ctg)
opt_progress(ctg) <- value
opt_stop_early(ctg)
opt_stop_early(ctg) <- value
opt_wall_to_wall(ctg)
opt_wall_to_wall(ctg) <- value
opt_independent_files(ctg)
opt_independent_files(ctg) <- value
opt_output_files(ctg)
opt_output_files(ctg) <- value
opt_laz_compression(ctg)
opt_laz_compression(ctg) <- value
opt_merge(ctg)
opt_merge(ctg) <- value
opt_select(ctg)
opt_select(ctg) <- value
opt_filter(ctg)
opt_filter(ctg) <- value

Arguments

ctg An object of class LAScatalog

18 catalog_retile
value An appropriate value depending on the expected input.

Examples

LASfile <- system.file("extdata”, "Megaplot.laz"”, package="1idR")
ctg = readlLAScatalog(LASfile)

plot(ctg, chunk_pattern = TRUE)

opt_chunk_size(ctg) <- 150
plot(ctg, chunk_pattern = TRUE)

opt_chunk_buffer(ctg) <- 10
plot(ctg, chunk_pattern = TRUE)

opt_chunk_alignment(ctg) <- c(270,250)
plot(ctg, chunk_pattern = TRUE)

summary(ctg)

opt_output_files(ctg) <- "/path/to/folder/templated_filename_{XBOTTOM}_{ID}"
summary(ctg)

catalog_retile Retile a LAScatalog

Description

Splits or merges files to reshape the original catalog files (.las or .laz) into smaller or larger files.
It also enables the addition or removal of a buffer around the tiles. The function first displays the
layout of the new tiling pattern and then asks the user to validate the command.

Internally, the function reads and writes the clusters defined by the internal processing options of
a LAScatalog processing engine. Thus, the function is flexible and enables the user to retile the
dataset, retile while adding or removing a buffer (negative buffers are allowed), or optionally to
compress the data by retiling without changing the pattern but by changing the format (las/laz).

Note that this function is not actually very useful since 1idR manages everything (clipping, pro-
cessing, buffering, ...) internally using the proper options. Thus, retiling may be useful for working
in other software, for example, but not in 1idR.

Usage

catalog_retile(ctg)

Arguments

ctg A LAScatalog object

Value

A new LAScatalog object

catalog_retile 19

Working with a LAScatalog

This section appears in each function that supports a LAScatalog as input.

In 1idR when the input of a function is a LAScatalog the function uses the LAScatalog processing
engine. The user can modify the engine options using the available options. A careful reading of
the engine documentation is recommended before processing LAScatalogs. Each 1idR function
should come with a section that documents the supported engine options.

The LAScatalog engine supports .lax files that significantly improve the computation speed of
spatial queries using a spatial index. Users should really take advantage a . lax files, but this is not
mandatory.

Supported processing options

Supported processing options for a LAScatalog (in bold). For more details see the LAScatalog
engine documentation:

chunk_size: Size of the new tiles.
buffer: Load new tiles with a buffer. The expected value is usually O.
alignment: Alignment of the new tiles.

cores: The number of cores used. catalog_retile streams the data (nothing is loaded at th
R level). The maximum number of cores can be safely used.

progress: Displays a progress estimation.

output_files*: Mandatory. The new tiles will be written in new files.
laz_compression: save las or laz files.

select: catalog_retile preserve the file format anyway.

filter: Retile and save only the points of interest.

Examples

Not run:
ctg = readlLAScatalog("path/to/catalog")

Create a new set of .las files 500 x 500 wide in the folder
path/to/new/catalog/ and iteratively named Forest_1.las, Forest_2.las
Forest_3.las, and so on.

opt_chunk_buffer(ctg) <- @

opt_chunk_size(ctg) <- 500

opt_output_files(ctg) <- "path/to/new/catalog/Forest_{ID}
newctg = catalog_retile(ctg)

Create a new set of .las files equivalent to the original,
but extended with a 50 m buffer in the folder path/to/new/catalog/
and iteratively named named after the original files.

opt_chunk_buffer(ctg) <- 50

opt_chunk_size(ctg) <- @

opt_output_files(ctg) <- "path/to/new/catalog/{ORIGINALFILENAME} buffered
newctg = catalog_retile(ctg)

20 catalog_select

Create a new set of compressed .laz file equivalent to the original, keeping only
first returns above 2 m

opt_chunk_buffer(ctg) <- @

opt_chunk_size(ctg) <- @
opt_laz_compression(ctg) <- TRUE
opt_filter(ctg) <- "-keep_first -drop_z_below 2"
newctg = catalog_retile(ctg)

End(Not run)

catalog_select Select LAS files manually from a LAScatalog

Description

Select a set of LAS tiles from a LAScatalog interactively using the mouse. This function allows
users to subset a LAScatalog by clicking on a map of the file.

Usage
catalog_select(
Ctg ’
mapview = TRUE,
method = c("subset”, "flag_unprocessed”, "flag_processed”)
)
Arguments
ctg A LAScatalog object
mapview logical. If FALSE, use R base plot instead of mapview (no pan, no zoom, see also
plot)
method character. By default selecting tiles that are a subset of the catalog. It is also
possible to flag the files to maintain the catalog as a whole but process only a
subset of its content. flag_unprocessed enables users to point and click on
files that will not be processed. flag_processed enables users to point and
click on files that will be processed.
Value
A LAScatalog object
Examples
Not run:

ctg = readlLAScatalog("<Path to a folder containing a set of .las files>")
new_ctg = catalog_select(ctg)

End(Not run)

classify_ground 21

classify_ground Classify points as ’ground’

Description

Classify points as ’ground’ with several possible algorithms. The function updates the attribute
Classification of the LAS object. The points classified as ’ground’ are assigned a value of 2
according to las specifications.

Usage

classify_ground(las, algorithm, last_returns = TRUE)

Arguments
las An object of class LAS or LAScatalog.
algorithm a ground-segmentation function. 1idR has: pmf and csf. The lidRplugins pack-

age has 'mcc’.

last_returns logical. The algorithm will use only the last returns (including the first re-
turns in cases of a single return) to run the algorithm. If FALSE all the returns
are used. If the attribute 'ReturnNumber' or 'NumberOfReturns' are absent,
'last_returns' is turned to FALSE automatically.

Value

If the input is a LAS object, return a LAS object. If the input is a LAScatalog, returns a LAScatalog.

Working with a LAScatalog

This section appears in each function that supports a LAScatalog as input.

In 1idR when the input of a function is a LAScatalog the function uses the LAScatalog processing
engine. The user can modify the engine options using the available options. A careful reading of
the engine documentation is recommended before processing LAScatalogs. Each 1idR function
should come with a section that documents the supported engine options.

The LAScatalog engine supports .lax files that significantly improve the computation speed of
spatial queries using a spatial index. Users should really take advantage a . lax files, but this is not
mandatory.

Supported processing options

Supported processing options for a LAScatalog (in bold). For more details see the LAScatalog
engine documentation:
* chunk size: How much data is loaded at once.

e chunk buffer*: Mandatory to get a continuous output without edge effects. The buffer is
always removed once processed and will never be returned either in R or in files.

* chunk alignment: Align the processed chunks.

https://www.asprs.org/wp-content/uploads/2019/07/LAS_1_4_r15.pdf
https://github.com/Jean-Romain/lidRplugins

22 classify_noise

* progress: Displays a progression estimation.

* output files*: Mandatory because the output is likely to be too big to be returned in R and
needs to be written in las/laz files. Supported templates are {XLEFT}, {XRIGHT}, {YBOTTOM},
{YTOP}, {XCENTER}, {YCENTER} {ID} and, if chunk size is equal to O (processing by file),
{ORIGINALFILENAME}.

* select: The function will write files equivalent to the original ones. Thus select = "*" and
cannot be changed.

* filter: Read only points of interest.

Examples

LASfile <- system.file("extdata”, "Topography.laz", package="1idR")
las <- readLAS(LASfile, select = "xyzrn"”, filter = "-inside 273450 5274350 273550 5274450")

Using the Progressive Morphological Filter

(Parameters chosen mainly for speed)
ws <- seq(3,12, 4)
th <- seq(@.1, 1.5, length.out = length(ws))

las <- classify_ground(las, pmf(ws, th))
#plot(las, color = "Classification”)

#' # Using the Cloth Simulation Filter

(Parameters chosen mainly for speed)
mycsf <- csf(TRUE, 1, 1, time_step = 1)
las <- classify_ground(las, mycsf)
#plot(las, color = "Classification”)

classify_noise Classify points as ’'noise’

Description

Classify points as ’noise’ (outliers) with several possible algorithms. The function updates the
attribute Classification of the LAS object. The points classified as 'noise’ are assigned a value
of 18 according to las specifications.

Usage

classify_noise(las, algorithm)

Arguments
las An object of class LAS or LAScatalog.
algorithm a noise-segmentation function. 1idR has: sor, ivf.
Value

If the input is a LAS object, return a LAS object. If the input is a LAScatalog, returns a LAScatalog.

https://www.asprs.org/wp-content/uploads/2019/07/LAS_1_4_r15.pdf

classity_noise 23

Working with a LAScatalog

This section appears in each function that supports a LAScatalog as input.

In 1idR when the input of a function is a LAScatalog the function uses the LAScatalog processing
engine. The user can modify the engine options using the available options. A careful reading of
the engine documentation is recommended before processing LAScatalogs. Each 1idR function
should come with a section that documents the supported engine options.

The LAScatalog engine supports .lax files that significantly improve the computation speed of
spatial queries using a spatial index. Users should really take advantage a . lax files, but this is not
mandatory.

Supported processing options

Supported processing options for a LAScatalog (in bold). For more details see the LAScatalog
engine documentation:

chunk size: How much data is loaded at once.

chunk buffer*: Mandatory to get a continuous output without edge effects. The buffer is
always removed once processed and will never be returned either in R or in files.

chunk alignment: Align the processed chunks.
progress: Displays a progression estimation.

output files*: Mandatory because the output is likely to be too big to be returned in R and
needs to be written in las/laz files. Supported templates are {XLEFT}, {XRIGHT}, {YBOTTOM},
{YTOP}, {XCENTER}, {YCENTER} {ID} and, if chunk size is equal to O (processing by file),
{ORIGINALFILENAME}.

select: The function will write files equivalent to the original ones. Thus select = "*" and
cannot be changed.

filter: Read only points of interest.

Examples

LASfile <- system.file("extdata”, "Topography.laz", package="1idR")
las <- readlLAS(LASfile, filter = "-inside 273450 5274350 273550 5274450")

Add 20 artificial outliers
set.seed(314)

id =

round(runif (20, @, npoints(las)))

set.seed(42)
err = runif(20, -50, 50)
las$z[id] = las$z[id] + err

Using SOR
las <- classify_noise(las, sor(15,7))
#plot(las, color = "Classification”)
Using IVF

las <- classify_noise(las, ivf(5,2))

Remove outliers using filter_poi()
las_denoise <- filter_poi(las, Classification != LASNOISE)

24 clip

clip Clip points in regions of interest

Description

Clip points within a given region of interest (ROI) from a point cloud (LAS object) or a catalog
(LAScatalog object). With a LAS object, the user first reads and loads a point cloud into memory
and then can clip it to get a subset within a region of interest. With a LAScatalog object, the user
can extract any arbitrary ROI for a set of 1as/laz files, loading only the points of interest. This is
faster, easier and much more memory-efficient for extracting ROIs.

Usage

clip_roi(las, geometry, ...)

clip_rectangle(las, xleft, ybottom, xright, ytop, ...)

clip_polygon(las, xpoly, ypoly, ...)

clip_circle(las, xcenter, ycenter, radius, ...)

clip_transect(las, pl1, p2, width, xz = FALSE, ...)

Arguments

las An object of class LAS or LAScatalog.

geometry a geometric object. Many types are supported, see section ’supported geome-
tries’.
in clip_roi: optional supplementary options (see supported geometries). Un-
used in other functions

xleft numeric. left x coordinates of rectangles.

ybottom numeric. bottom y coordinates of rectangles.

xright numeric. right x coordinates of rectangles.

ytop numeric. top y coordinates of rectangles.

xpoly numeric. x coordinates of a polygon.

ypoly numeric. y coordinates of a polygon.

xcenter numeric. x coordinates of disc centers.

ycenter numeric. y coordinates of disc centers.

radius numeric. disc radius or radii.

p1, p2 numeric vectors of length 2 that gives the coordinates of two points that define
a transect

width numeric. width of the transect.

Xz bool. If TRUE the point cloud is reoriented to fit on XZ coordinates

clip 25

Value

If the input is a LAS object: an object of class LAS, or a 1ist of LAS objects if the query implies
several regions of interest will be returned.

If the input is a LAScatalog object: an object of class LAS, or a 1ist of LAS objects if the query
implies several regions of interest will be returned, or a LAScatalog if the queries are immediately
written into files without loading anything in R.

Supported geometries

* WKT string: describing a POINT, a POLYGON or a MULTIPOLY GON. If points, a parame-
ter ‘radius’ must be passed in . . .

* Polygon or Polygons
 SpatialPolygons or SpatialPolygonsDataFrame

* SpatialPoints or SpatialPointsDataFrame in that case a parameter 'radius’ must be passed in

» SimpleFeature that consistently contains POINT or POLYGON/MULTIPOLYGON. In case of POINT
a parameter ‘radius’ must be passed in . . .

¢ Extent

* matrix 2 x 2 describing a bounding box following this order:

min max
X 684816 684943
y 5017823 5017957

Working with a LAScatalog

This section appears in each function that supports a LAScatalog as input.

In 1idR when the input of a function is a LAScatalog the function uses the LAScatalog processing
engine. The user can modify the engine options using the available options. A careful reading of
the engine documentation is recommended before processing LAScatalogs. Each 1idR function
should come with a section that documents the supported engine options.

The LAScatalog engine supports .lax files that significantly improve the computation speed of
spatial queries using a spatial index. Users should really take advantage a . lax files, but this is not
mandatory.

Supported processing options

Supported processing options for a LAScatalog (in bold). For more details see the LAScatalog
engine documentation:

e chunk_size: Does not make sense here.

* buffer: Not supported yet.

* alignment: Does not makes sense here.

» progress: Displays a progress estimation.

https://en.wikipedia.org/wiki/Well-known_text

26 cloud_metrics

 output_files: If output_files’ is set in the catalog, the ROIs will not be returned in R. They will
be written immediately in files. See LAScatalog-class and examples. The allowed templates in
clip_* are {XLEFT},{XRIGHT},{YBOTTOM},{YTOP},{ID},{XCENTER},{YCENTER}. In addi-
tion clip_roi supports any names from the table of attributes of a spatial object given as
input such as {PLOTID}, {YEAR}, {SPECIES}, for examples, if these attributes exist. If empty
everything is returned into R.

* laz_compression: write las or laz files
¢ select: The function will write files equivalent to the originals. This option is not respected.

« filter: Read only the points of interest.

Examples

LASfile <- system.file("extdata”, "Megaplot.laz"”, package="1idR")

Load the file and clip the region of interest
las = readLAS(LASfile, select = "xyz", filter = "-keep_first")
subset1 = clip_rectangle(las, 684850, 5017850, 684900, 5017900)

Do not load the file(s), extract only the region of interest

from a bigger dataset

ctg = readLAScatalog(LASfile, progress = FALSE, filter = "-keep_first")
subset2 = clip_rectangle(ctg, 684850, 5017850, 684900, 5017900)

Extract all the polygons from a shapefile

f <- system.file("extdata”, "lake_polygons_UTM17.shp”, package = "1idR")
lakes <- sf::st_read(f, quiet = TRUE)

subset3 <- clip_roi(las, lakes)

Extract the polygons for a catalog, write them in files named
after the lake names, do not load anything in R
opt_output_files(ctg) <- paste@(tempfile(), "_{LAKENAME_13}")
new_ctg = clip_roi(ctg, lakes)

plot(new_ctg)

Extract a transect

pl <- c(684800, y = 5017800)

p2 <- c(684900, y = 5017900)

tr1 <- clip_transect(las, pl1, p2, width = 4)

Not run:

plot(subset1)

plot(subset2)

plot(subset3)

plot(tr1, axis = TRUE, clear_artifacts = FALSE)

End(Not run)

cloud_metrics Compute metrics for a cloud of points

cloud_metrics 27

Description

cloud_metrics computes a series of user-defined descriptive statistics for a LIDAR dataset. See
grid_metrics to compute metrics on a grid. Basically there are no predefined metrics. Users must
write their own functions to create metrics (see example). The following existing functions can
serve as a guide to help users compute their own metrics:

* stdmetrics

* entropy

* VCI

« LAD

Usage

cloud_metrics(las, func)

Arguments

las An object of class LAS

func formula. An expression to be applied to the point cloud (see example)
Value

It returns a 1ist containing the metrics

See Also

grid_metrics stdmetrics entropy VCI LAD

Other metrics: grid_metrics(), hexbin_metrics(), point_metrics(), tree_metrics(), voxel_metrics()

Examples

LASfile <- system.file("extdata”, "Megaplot.laz", package="1idR")
lidar = readlLAS(LASfile)

cloud_metrics(lidar, ~max(Z))
cloud_metrics(lidar, ~mean(Intensity))

Define your own new metrics
myMetrics = function(z, i)
{
metrics = list(
zwimean = sum(z*i)/sum(i), # Mean elevation weighted by intensities

zimean = mean(z*i), # Mean products of z by intensity
zsgmean = sqrt(mean(z*2)) # Quadratic mean

)

return(metrics)

metrics = cloud_metrics(lidar, ~myMetrics(Z, Intensity))

Predefined metrics
cloud_metrics(lidar, .stdmetrics)

28 csf

csf Ground Segmentation Algorithm

Description

This function is made to be used in classify_ground. It implements an algorithm for segmentation
of ground points base on a Cloth Simulation Filter. This method is a strict implementation of the
CSF algorithm made by Zhang et al. (2016) (see references) that relies on the authors’ original
source code written and exposed to R via the the RCSF package.

Usage

csf(
sloop_smooth = FALSE,
class_threshold = 0.5,
cloth_resolution = 0.5,
rigidness = 1L,
iterations = 500L,
time_step = 0.65

Arguments

sloop_smooth logical. When steep slopes exist, set this parameter to TRUE to reduce errors
during post-processing.
class_threshold

scalar. The distance to the simulated cloth to classify a point cloud into ground
and non-ground. The default is 0.5.

cloth_resolution

scalar. The distance between particles in the cloth. This is usually set to the
average distance of the points in the point cloud. The default value is 0.5.

rigidness integer. The rigidness of the cloth. 1 stands for very soft (to fit rugged terrain),
2 stands for medium, and 3 stands for hard cloth (for flat terrain). The default is
1.

iterations integer. Maximum iterations for simulating cloth. The default value is 500.

Usually, there is no need to change this value.

time_step scalar. Time step when simulating the cloth under gravity. The default value is
0.65. Usually, there is no need to change this value. It is suitable for most cases.
References

W. Zhang, J. Qi*, P. Wan, H. Wang, D. Xie, X. Wang, and G. Yan, “An Easy-to-Use Airborne
LiDAR Data Filtering Method Based on Cloth Simulation,” Remote Sens., vol. 8, no. 6, p. 501,
2016. (http://www.mdpi.com/2072-4292/8/6/501/htm)

See Also

Other ground segmentation algorithms: pmf ()

dalponte2016 29

Examples

LASfile <- system.file("extdata”, "Topography.laz", package="1idR")
las <- readLAS(LASfile, select = "xyzrn")

mycsf <- csf(TRUE, 1, 1, time_step = 1)
las <- classify_ground(las, mycsf)

#plot(las, color = "Classification”)
dalponte2016 Individual Tree Segmentation Algorithm
Description

This function is made to be used in segment_trees. It implements an algorithm for tree segmentation
based on the Dalponte and Coomes (2016) algorithm (see reference). This is a seeds + growing
region algorithm. This algorithm exists in the package itcSegment. This version has been written
from the paper in C++. Consequently it is hundreds to millions times faster than the original version.
Note that this algorithm strictly performs a segmentation, while the original method as implemented
in itcSegment and described in the manuscript also performs pre- and post-processing tasks. Here
these tasks are expected to be done by the user in separate functions.

Usage
dalponte2016(
chm,
treetops,
th_tree = 2,
th_seed = 0.45,
th_cr = 0.55,
max_cr = 10,
ID = "treelID"
)
Arguments
chm RasterLayer. Image of the canopy. Can be computed with grid_canopy or read
from an external file.
treetops SpatialPointsDataFrame. Can be computed with find_trees or read from an
external shapefile.
th_tree numeric. Threshold below which a pixel cannot be a tree. Default is 2.
th_seed numeric. Growing threshold 1. See reference in Dalponte et al. 2016. A pixel

is added to a region if its height is greater than the tree height multiplied by this
value. It should be between 0 and 1. Default is 0.45.

th_cr numeric. Growing threshold 2. See reference in Dalponte et al. 2016. A pixel
is added to a region if its height is greater than the current mean height of the
region multiplied by this value. It should be between 0 and 1. Default is 0.55.

max_cr numeric. Maximum value of the crown diameter of a detected tree (in pixels).
Default is 10.
ID character. If the SpatialPointsDataFrame contains an attribute with the ID for

each tree, the name of this attribute. This way, original IDs will be preserved. If
there is no such data trees will be numbered sequentially.

30 decimate_points

Details

Because this algorithm works on a CHM only there is no actual need for a point cloud. Sometimes
the user does not even have the point cloud that generated the CHM. 1idR is a point cloud-oriented
library, which is why this algorithm must be used in segment_trees to merge the result with the
point cloud. However the user can use this as a stand-alone function like this:

chm = raster("file/to/a/chm/")
ttops = find_trees(chm, 1mf(3))
crowns = dalponte2016(chm, ttops) ()

References

Dalponte, M. and Coomes, D. A. (2016), Tree-centric mapping of forest carbon density from air-
borne laser scanning and hyperspectral data. Methods Ecol Evol, 7: 1236-1245. doi:10.1111/2041-
210X.12575.

See Also

Other individual tree segmentation algorithms: 112012(), silva2016(), watershed()

Other raster based tree segmentation algorithms: silva2016(), watershed()

Examples

LASfile <- system.file("extdata"”, "MixedConifer.laz", package="1idR")
las <- readLAS(LASfile, select = "xyz", filter = "-drop_z_below 0")
col <- pastel.colors(200)

chm <- grid_canopy(las, 0.5, p2r(0.3))
ker <- matrix(1,3,3)
chm <- raster::focal(chm, w = ker, fun = mean, na.rm = TRUE)

ttops <- find_trees(chm, 1mf(4, 2))
las <- segment_trees(las, dalponte2016(chm, ttops))
#plot(las, color = "treeID”, colorPalette = col)

decimate_points Decimate a LAS object

Description

Reduce the number of points using several possible algorithms.

Usage

decimate_points(las, algorithm)

Arguments
las An object of class LAS or LAScatalog.
algorithm function. An algorithm of point decimation. 1idR have: random, homogenize

and highest.

decimate_points 31

Value

If the input is a LAS object, returns a LAS object. If the input is a LAScatalog, returns a LAScatalog.

Working with a LAScatalog

This section appears in each function that supports a LAScatalog as input.

In 1idR when the input of a function is a LAScatalog the function uses the LAScatalog processing
engine. The user can modify the engine options using the available options. A careful reading of
the engine documentation is recommended before processing LAScatalogs. Each 1idR function
should come with a section that documents the supported engine options.

The LAScatalog engine supports .lax files that significantly improve the computation speed of
spatial queries using a spatial index. Users should really take advantage a . lax files, but this is not
mandatory.

Supported processing options

Supported processing options for a LAScatalog (in bold). For more details see the LAScatalog
engine documentation:

¢ chunk size: How much data is loaded at once.

* chunk buffer: This function guarantee a strict wall-to-wall continuous output. The buffer
option is not considered.

* chunk alignment: Align the processed chunks.
 progress: Displays a progression estimation.

* output files*: Mandatory because the output is likely to be too big to be returned in R and
needs to be written in las/laz files. Supported templates are {XLEFT}, {XRIGHT}, { YBOTTOM3,
{YTOP}, {XCENTER}, {YCENTER} {ID} and, if chunk size is equal to O (processing by file),
{ORIGINALFILENAME}.

* select: The function will write files equivalent to the original ones. Thus select = "*" and
cannot be changed.

* filter: Read only points of interest.

Examples

LASfile <- system.file("extdata”, "Megaplot.laz", package="1idR")
las = readlLAS(LASfile, select = "xyz")

Select points randomly to reach an overall density of 1
thinnedl = decimate_points(las, random(1))
#plot(grid_density(las))

#plot(grid_density(thinned1))

Select points randomly to reach an homogeneous density of 1
thinned2 = decimate_points(las, homogenize(1,5))
#plot(grid_density(thinned2))

Select the highest point within each pixel of an overlayed grid
thinned3 = decimate_points(las, highest(5))
#plot(thinned3)

32 delineate_crowns

delineate_crowns Compute the hull of each tree.

Description

Compute the hull of each segmented tree. The hull can be convex, concave or a bounding box (see
details and references).

Usage
delineate_crowns(
las,
type = c("convex”, "concave", "bbox"),

concavity = 3,
length_threshold = 0,

func = NULL,
attribute = "treeID”
)
Arguments
las An object of class LAS or LAScatalog.
type character. Hull type. Can be ’convex’, ’concave’ or ’bbox’.
concavity numeric. If type = "concave”, a relative measure of concavity. 1 results in a

relatively detailed shape, Infinity results in a convex hull.

length_threshold
numeric. If type = "concave”, when a segment length is below this threshold,
no further detail is added. Higher values result in simpler shapes.

func formula. An expression to be applied to each tree. It works like in grid_metrics
voxel_metrics or tree_metrics and computes, in addition to the hulls a set of
metrics for each tree.

attribute character. The attribute where the ID of each tree is stored. In lidR, the default
is "treelD".
Details
The concave hull method under the hood is described in Park & Oh (2012). The function relies on
the concaveman function.
Value

A SpatialPolygonsDataFrame. If a tree has less than 4 points it is not considered.

Working with a LAScatalog

This section appears in each function that supports a LAScatalog as input.

In 1idR when the input of a function is a LAScatalog the function uses the LAScatalog processing
engine. The user can modify the engine options using the available options. A careful reading of
the engine documentation is recommended before processing LAScatalogs. Each 1idR function

delineate_crowns 33

should come with a section that documents the supported engine options.

The LAScatalog engine supports .lax files that significantly improve the computation speed of
spatial queries using a spatial index. Users should really take advantage a . lax files, but this is not
mandatory.

Supported processing options

Supported processing options for a LAScatalog (in bold). For more details see the LAScatalog
engine documentation:

chunk size: How much data is loaded at once.

chunk buffer*: Mandatory to get a continuous output without edge effects. The buffer is
always removed once processed and will never be returned either in R or in files.

chunk alignment: Align the processed chunks.
progress: Displays a progression estimation.

output files: Supported templates are {XLEFT}, {XRIGHT}, {YBOTTOM}, {YTOP}, {XCENTER},
{YCENTER} {ID} and, if chunk size is equal to O (processing by file), {ORIGINALFILENAME}.

select: Load only attributes of interest.

filter: Read only points of interest.

References

Park, J. S., & Oh, S. J. (2012). A new concave hull algorithm and concaveness measure for n-
dimensional datasets. Journal of Information science and engineering, 28(3), 587-600.

Examples

LASfile <- system.file("extdata"”, "MixedConifer.laz"”, package="1idR")

poi
las

= "-drop_z_below @ -inside 481280 3812940 481320 3812980"
= readLAS(LASfile, select = "xyz@", filter = poi)

NOTE: This dataset is already segmented

#plot(las, color = "treeID"”, colorPalette = pastel.colors(200))

Only the hulls
convex_hulls = delineate_crowns(las)
plot(convex_hulls)

The hulls + some user-defined metrics
convex_hulls = delineate_crowns(las, func = ~list(Zmean = mean(Z)))
convex_hulls

The bounding box
bbox_hulls = delineate_crowns(las, "bbox")
plot(bbox_hulls)

Not run:

With concave hull (longer to compute)
concave_hulls = delineate_crowns(las, "concave")
plot(concave_hulls)

34 deprecated

spplot(convex_hulls, "ZTOP")
spplot(convex_hulls, "Zmean")

End(Not run)

deprecated Deprecated functions in lidR

Description

These functions are provided for compatibility with older versions of lidR but are deprecated since
lidR version 3. They will progressively print a message, throw a warning and eventually be re-
moved. The links below point to the documentation of the new names

lasadd lascheck lasclip lasdetectshape lasfilter lasfiltersurfacepoints lasflightline lasground lasmerges-
patial lasnormalize laspulse lasrangecorrection lasflightline lasreoffset lasrescale lasscanlines lass-
mooth lassnags lastrees lasvoxelize sensor_tracking tree_detection tree_hull

Usage
lascheck(las)
lasclip(las, geometry, ...)
lasclipRectangle(las, xleft, ybottom, xright, ytop, ...)
lasclipPolygon(las, xpoly, ypoly, ...)
lasclipCircle(las, xcenter, ycenter, radius, ...)

lasdetectshape(las, algorithm, attribute = "Shape”, filter = NULL)
lasfilter(las, ...)

lasfilterfirst(las)

lasfilterfirstlast(las)

lasfilterfirstofmany(las)

lasfilterground(las)

lasfilterlast(las)

lasfilternth(las, n)

lasfiltersingle(las)

lasfilterdecimate(las, algorithm)

deprecated

lasfilterduplicates(las)
lasfiltersurfacepoints(las, res)
lasground(las, algorithm, last_returns = TRUE)
laspulse(las)
lasflightline(las, dt = 30)
lasscanline(las)
lasmergespatial(las, source, attribute = NULL)
lasnormalize(

las,

algorithm,

na.rm = FALSE,

use_class = c(2L, 9L),

add_lasattribute = FALSE

)
lasunnormalize(las)
lasrangecorrection(
las,
sensor,
Rs,
f =2.3,
gpstime = "gpstime”,
elevation = "72"
)

lasrescale(las, xscale, yscale, zscale)

lasreoffset(las, xoffset, yoffset, zoffset)

lassmooth(
las,
size,
method = c("average"”, "gaussian"),
shape = c("circle"”, "square"),
sigma = size/6

)

lasunsmooth(las)

lassnags(las, algorithm, attribute = "snagCls")

lastransform(las, CRSobj)

36

lastrees(las, algorithm, attribute = "treeID"”, uniqueness

lasadddata(las, x, name)
lasaddextrabytes(las, x, name, desc)

lasaddextrabytes_manual(
las,
X,
name,
desc,
type,
offset = NULL,
scale = NULL,
NA_value = NULL

)

lasremoveextrabytes(las, name)
lasvoxelize(las, res)

sensor_tracking(
las,
interval = 0.5,
pmin = 50,
extra_check = TRUE,
thin_pulse_with_time = 0.001
)

tree_detection(las, algorithm)

tree_hulls(
las,
type = c("convex”, "concave”, "bbox"),
concavity = 3,
length_threshold = 0,
func = NULL,
attribute = "treeID”

Arguments

las See the new functions that replace the old ones

geometry See the new functions that replace the old ones

o See the new functions that replace the old ones
xleft, ybottom, xright, ytop
See the new functions that replace the old ones

xpoly, ypoly See the new functions that replace the old ones
xcenter, ycenter, radius

See the new functions that replace the old ones

algorithm See the new functions that replace the old ones

deprecated

"incremental”)

dsmtin 37

attribute See the new functions that replace the old ones
filter See the new functions that replace the old ones
n, res, dt See the new functions that replace the old ones

last_returns See the new functions that replace the old ones

source See the new functions that replace the old ones

na.rm, use_class, add_lasattribute
See the new functions that replace the old ones

sensor, Rs, f, gpstime, elevation
See the new functions that replace the old ones

xscale, yscale, zscale, xoffset, yoffset, zoffset
See the new functions that replace the old ones

size, method, shape, sigma
See the new functions that replace the old ones
CRSobj See the new functions that replace the old ones

uniqueness See the new functions that replace the old ones
X, name, desc, type, offset, scale, NA_value

See the new functions that replace the old ones
interval, pmin, extra_check, thin_pulse_with_time

See the new functions that replace the old ones

concavity, length_threshold, func
See the new functions that replace the old ones

dsmtin Digital Surface Model Algorithm

Description

This function is made to be used in grid_canopy. It implements an algorithm for digital surface
model computation using a Delaunay triangulation of first returns with a linear interpolation within
each triangle.

Usage

dsmtin(max_edge = @)

Arguments
max_edge numeric. Maximum edge length of a triangle in the Delaunay triangulation. If
a triangle has an edge length greater than this value it will be removed to trim
dummy interpolation on non-convex areas. If max_edge = @ no trimming is done
(see examples).
See Also

Other digital surface model algorithms: p2r (), pitfree()

38 entropy

Examples

LASfile <- system.file("extdata”, "MixedConifer.laz", package="1idR")
las <- readlLAS(LASfile)
col <- height.colors(50)

Basic triangulation and rasterization of first returns
chm <- grid_canopy(las, res = 1, dsmtin())
plot(chm, col = col)

Not run:

Potentially complex concave subset of point cloud

X = c(481340, 481340, 481280, 481300, 481280, 481340)

y = (3812940, 3813000, 3813000, 3812960, 3812940, 3812940)
las2 = clip_polygon(las,x,y)

plot(las2)

Since the TIN interpolation is done within the convex hull of the point cloud

dummy pixels are interpolated that are strictly correct according to the interpolation method
used, but meaningless in our CHM

chm <- grid_canopy(las2, res = 0.5, dsmtin())

plot(chm, col = col)

Use 'max_edge' to trim dummy triangles
chm = grid_canopy(las2, res = 0.5, dsmtin(max_edge = 3))
plot(chm, col = col)

End(Not run)

entropy Normalized Shannon diversity index

Description

A normalized Shannon vertical complexity index. The Shannon diversity index is a measure for
quantifying diversity and is based on the number and frequency of species present. This index,
developed by Shannon and Weaver for use in information theory, was successfully transferred to
the description of species diversity in biological systems (Shannon 1948). Here it is applied to
quantify the diversity and the evenness of an elevational distribution of las points. It makes bins
between 0 and the maximum elevation. If there are negative values the function returns NA.

Usage
entropy(z, by = 1, zmax = NULL)

Arguments

z vector of positive z coordinates

by numeric. The thickness of the layers used (height bin)

zmax numeric. Used to turn the function entropy to the function VCIL
Value

A number between 0 and 1

extent,LAS-method 39

References

Pretzsch, H. (2008). Description and Analysis of Stand Structures. Springer Berlin Heidelberg.
http://doi.org/10.1007/978-3-540-88307-4 (pages 279-280) Shannon, Claude E. (1948), "A mathe-
matical theory of communication," Bell System Tech. Journal 27, 379-423, 623-656.

See Also
VCI

Examples
z <- runif (10000, 0, 10)

expected to be close to 1. The highest diversity is given for a uniform distribution
entropy(z, by = 1)

z <- runif(10000, 9, 10)

Must be @. The lowest diversity is given for a unique possibility
entropy(z, by = 1)

z <- abs(rnorm(10000, 10, 1))

expected to be between @ and 1.
entropy(z, by = 1)

extent,LAS-method Extent

Description

Returns an Extent object of a LAS*.

Usage

S4 method for signature 'LAS'
extent(x, ...)

S4 method for signature 'LAScatalog'

extent(x, ...)
Arguments
X An object of the class LAS or LAScatalog
Unused
Value

Extent object from raster

See Also

raster::extent

40 filters

filters Predefined point of interest filters

Description

Select only some returns

Usage

filter_first(las)
filter_firstlast(las)
filter_firstofmany(las)
filter_ground(las)
filter_last(las)
filter_nth(las, n)

filter_single(las)

Arguments

las An object of class LAS

n the position in the return sequence
Details

e filter_first Select only the first returns.

e filter_firstlast Select only the first and last returns.

e filter_ground Select only the returns classified as ground according to LAS specification.
* filter_last Select only the last returns i.e. the last returns and the single returns.

* filter_nth Select the returns from their position in the return sequence.

* filter_firstofmany Select only the first returns from pulses which returned multiple points.

* filter_single Select only the returns that return only one point.

Value

An object of class LAS

See Also

Other filters: filter_duplicates(), filter_poi(), filter_surfacepoints()
Other filters: filter_duplicates(), filter_poi(), filter_surfacepoints()
Other filters: filter_duplicates(), filter_poi(), filter_surfacepoints()
Other filters: filter_duplicates(), filter_poi(), filter_surfacepoints()

filter_duplicates

Other filters: filter_duplicates(), filter_poi(), filter_surfacepoints()
Other filters: filter_duplicates(), filter_poi(), filter_surfacepoints()
Other filters: filter_duplicates(), filter_poi(), filter_surfacepoints()
Other filters: filter_duplicates(), filter_poi(), filter_surfacepoints()

Examples

LASfile <- system.file("extdata”, "Megaplot.laz"”, package="1idR")
lidar = readlLAS(LASfile)

firstReturns = filter_first(lidar)
groundReturns = filter_ground(lidar)

41

filter_duplicates Filter duplicated points

Description

Filter points that appear more than once in the point cloud according to their X Y Z coordinates

Usage

filter_duplicates(las)

Arguments

las An object of class LAS or LAScatalog.

Value

If the input is a LAS object, returns a LAS object. If the input is a LAScatalog, returns a LAScatalog.

Working with a LAScatalog

This section appears in each function that supports a LAScatalog as input.

In 1idR when the input of a function is a LAScatalog the function uses the LAScatalog processing
engine. The user can modify the engine options using the available options. A careful reading of
the engine documentation is recommended before processing LAScatalogs. Each 1idR function

should come with a section that documents the supported engine options.

The LAScatalog engine supports .lax files that significantly improve the computation speed of
spatial queries using a spatial index. Users should really take advantage a . lax files, but this is not

mandatory.

42 filter_poi

Supported processing options

Supported processing options for a LAScatalog (in bold). For more details see the LAScatalog
engine documentation:
* chunk size: How much data is loaded at once.

* chunk buffer: This function guarantee a strict wall-to-wall continuous output. The buffer
option is not considered.

* chunk alignment: Align the processed chunks.
* progress: Displays a progression estimation.

* output files*: Mandatory because the output is likely to be too big to be returned in R and
needs to be written in las/laz files. Supported templates are {XLEFT}, {XRIGHT}, {YBOTTOM},
{YTOP}, {XCENTER}, {YCENTER} {ID} and, if chunk size is equal to O (processing by file),
{ORIGINALFILENAME}.

* select: The function will write files equivalent to the original ones. Thus select = "*" and
cannot be changed.

* filter: Read only points of interest.

See Also

Other filters: filter_poi(), filter_surfacepoints(), filters

filter_poi Filter points of interest with matching conditions

Description

Filter points of interest (POI) from a LAS object where conditions are true.

Usage
filter_poi(las, ...)
Arguments
las An object of class LAS
Logical predicates. Multiple conditions are combined with &’ or ’,’
Value

An object of class LAS

See Also

Other filters: filter_duplicates(), filter_surfacepoints(), filters

filter_surfacepoints 43

Examples

LASfile <- system.file("extdata”, "Megaplot.laz", package="1idR")
lidar = readlLAS(LASfile)

Select the first returns classified as ground
firstground = filter_poi(lidar, Classification == 2L & ReturnNumber == 1L)

Multiple arguments are equivalent to &
firstground = filter_poi(lidar, Classification == 2L, ReturnNumber == 1L)

Multiple criteria
first_or_ground = filter_poi(lidar, Classification == 2L | ReturnNumber == 1L)

filter_surfacepoints Filter the surface points

Description

This function is superseded by the algorithm highest usable in decimate_points

Usage

filter_surfacepoints(las, res)

Arguments

las An object of class LAS or LAScatalog.

res numeric. The resolution of the grid used to filter the point cloud
Value

If the input is a LAS object, returns a LAS object. If the input is a LAScatalog, returns a LAScatalog.

Supported processing options

Supported processing options for a LAScatalog (in bold). For more details see the LAScatalog
engine documentation:
* chunk size: How much data is loaded at once.

* chunk buffer: This function guarantee a strict wall-to-wall continuous output. The buffer
option is not considered.

 chunk alignment: Align the processed chunks.
* progress: Displays a progression estimation.

* output files*: Mandatory because the output is likely to be too big to be returned in R and
needs to be written in las/laz files. Supported templates are {XLEFT}, {XRIGHT}, {YBOTTOM},
{YTOP}, {XCENTER}, {YCENTER} {ID} and, if chunk size is equal to O (processing by file),
{ORIGINALFILENAME}.

* select: The function will write files equivalent to the original ones. Thus select = "*" and
cannot be changed.

* filter: Read only points of interest.

44 find_localmaxima

See Also

Other filters: filter_duplicates(), filter_poi(), filters

find_localmaxima Local Maximum Filter

Description

Generic local maximum filter. For individual tree detection use find_trees with the Imf algorithm
that is more adequate for ITD. This function is a more generic method for multiple purposes other
than tree segmentation. This function is natively parallelized with OpenMP.

Usage

find_localmaxima(las, w, filter = NULL)

Arguments
las An object of class LAS
w numeric. Window shape. 1 number for the diameter of a disc, 2 numbers for
a rectangle (width, height), 3 numbers for an oriented rectangle (width, height,
angle). The angle must be in radians.
filter formula. Memory efficient way to work only with a subset of the data without
creating a copy of the data.
Value

SpatialPointsDataFrame with attributes from the corresponding point in the LAS object,

Examples

LASfile <- system.file("extdata”, "MixedConifer.laz", package="1idR")
las <- readlLAS(LASfile, select = "xyzi", filter = "-drop_z_below @ -keep_random_fraction @.5")

Using a 20x5 rectangle with a 45 degrees angle.

This won't find the tree properly in the general case
but may find some oriented structure.

Im = find_localmaxima(las, c(20, 5, pi/4))

plot(1lm)

find_trees 45

find_trees Individual tree detection

Description

Individual tree detection function that find the position of the trees using several possible algorithms.

Usage
find_trees(las, algorithm, uniqueness = "incremental")
Arguments
las An object of class LAS or LAScatalog. Can also be a RasterLayer representing
a canopy height model, in which case it is processed like a regularly-spaced
point cloud.
algorithm An algorithm for individual tree detection. lidR has: Imf and manual. More
experimental algorithms may be found in the package lidRplugins.
uniqueness character. A method to compute a unique ID. Can be ’incremental’, ’gpstime’
or ’bitmerge’. See section 'Uniqueness’. This feature must be considered as
“experimental’.
Value

A SpatialPointsDataFrame with an attribute Z for the tree tops and treeID with an individual ID for
each tree.

Uniqueness

By default the tree IDs are numbered from 1 to n, n being the number of trees found. The problem
with such incremental numbering is that, while it ensures a unique ID is assigned for each tree
in a given point-cloud, it also guarantees duplication of tree IDs in different tiles or chunks when
processing a LAScatalog. This is because each file is processed independently of the others and
potentially in parallel on different computers. Thus, the index always restarts at 1 on each file or
chunk. Worse, in a tree segmentation process, a tree that is located exactly between 2 files will have
two different IDs for its two halves.

This is why we introduced some uniqueness strategies that are all imperfect and that should be seen
as experimental. Please report any troubleshooting. Using a uniqueness-safe strategy ensures that
trees from different files will not share the same IDs. Moreover, it also means that two halves of a
tree on the edge of a processing chunk will be assigned the same ID.

incremental Number from O to n. This method does not ensure uniqueness of the IDs. This is the
legacy method.

gpstime This method uses the gpstime of the highest point of a tree (apex) to create a unique ID.
This ID is not an integer but a 64-bit decimal number which is suboptimal but at least it is
exepected to be unique if the gpstime attribute is consistent across files. If inconsistencies
with gpstime are reported (for example gpstime records the week time and was reset to 0 in
a coverage that takes more than a week to complete), there is a (low) probability to get ID
attribution errors.

https://github.com/Jean-Romain/lidRplugins

46

gap_fraction_profile

bitmerge This method uses the XY coordinates of the highest point (apex) of a tree to create a

single number with a bitwise operation. First, XY coordinates are converted to integers using
the scales and offsets of the point-cloud. Then the ID is computed with X * 2232 + Y to
combine twice the 32-bits of information into a 64-bit number. For example, if the apex is
at (10.32, 25.64) with a scale factor of 0.01 and an offset of 0, the integer coordinates are X
= 1032 and Y = 2564 and the ID is 4432406252036. Such methods return a 64-bit integer
but because 64-bit integers do not exist in R it is converted to a 64-bit decimal number that is
guaranteed to be unique if all files have the same offsets and scale factors.

All the proposed options are suboptimal because they either do not guarantee uniqueness in all
cases (inconsistencies in the collection of files), or they imply that IDs are based on non-integers or
meaningless numbers. But at the very least we expect this to work for simple cases.

Supported processing options

Supported processing options for a LAScatalog (in bold). For more details see the LAScatalog
engine documentation:

chunk size: How much data is loaded at once.

chunk buffer*: Mandatory to get a continuous output without edge effects. The buffer is
always removed once processed and will never be returned either in R or in files.

chunk alignment: Align the processed chunks.
progress: Displays a progression estimation.

output files: Supported templates are {XLEFT}, {XRIGHT}, {YBOTTOM}, {YTOP}, {XCENTER},
{YCENTER} {ID} and, if chunk size is equal to O (processing by file), {ORIGINALFILENAME?}.

select: Load only attributes of interest.

filter: Read only points of interest.

Examples

LASfile <- system.file("extdata”, "MixedConifer.laz", package="1idR")
las <- readLAS(LASfile, select = "xyz", filter = "-inside 481250 3812980 481300 3813030")

ttops <- find_trees(las, lmf(ws = 5))

#x =

plot(las)

#add_treetops3d(x, ttops)

gap_fraction_profile Gap fraction profile

Description

Computes the gap fraction profile using the method of Bouvier et al. (see reference)

Usage

gap_

fraction_profile(z, dz = 1, z0 = 2)

Gatziolis2019 47

Arguments
z vector of positive z coordinates
dz numeric. The thickness of the layers used (height bin)
z0 numeric. The bottom limit of the profile

Details

The function assesses the number of laser points that actually reached the layer z+dz and those that
passed through the layer [z, z+dz]. By definition the layer O will always return O because no returns
pass through the ground. Therefore, the layer O is removed from the returned results.

Value

A data.frame containing the bin elevations (z) and the gap fraction for each bin (gf)

References

Bouvier, M., Durrieu, S., Fournier, R. a, & Renaud, J. (2015). Generalizing predictive models of
forest inventory attributes using an area-based approach with airborne las data. Remote Sensing of
Environment, 156, 322-334. http://doi.org/10.1016/j.rse.2014.10.004

See Also
LAD

Examples

z <= c(rnorm(le4, 25, 6), rgamma(le3, 1, 8)*6, rgamma(5e2, 5,5)*10)
z <- z[z<45 & z>0]

hist(z, n=50)
gapFraction = gap_fraction_profile(z)

plot(gapFraction, type="1", xlab="Elevation"”, ylab="Gap fraction")

Gatziolis2019 Sensor tracking algorithm

Description

This function is made to be used in track_sensor. It implements an algorithm from Gatziolis and
McGaughey 2019 (see reference) for sensor tracking using multiple returns to estimate the posi-
tioning of the sensor by computing the intersection in space of the lines passing through the first
and last returns.

Usage
Gatziolis2@19(SEGLENFactor = 1.0059, AngleFactor = 0.8824, deltaT = 0.5)

48 grid_canopy

Arguments

SEGLENFactor scalar. Weighting factor for the distance b/w 1st and last pulse returns

AngleFactor scalar. Weighting factor for view angle of mother pulse of a return
deltaT scalar. TimeBlock duration (in seconds)
Details

In the original paper, two steps are described: (1) closest point approach (CPA) and (2) cubic spline
fitting. Technically, the cubic spline fitting step is a post-processing step and is not included in this
algorithm.

The source code of the algorithm is a slight modification of the original source code provided
with the paper to fit with the 1idR package.
Author(s)

Demetrios Gaziolis and Jean-Romain Roussel

References

Gatziolis, D., & McGaughey, R. J. (2019). Reconstructing Aircraft Trajectories from Multi-Return
Airborne Laser-Scanning Data. Remote Sensing, 11(19), 2258.

Examples

A valid file properly populated

LASfile <- system.file("extdata”, "Topography.laz", package="1idR")
las = readlLAS(LASfile)

flightlines <- track_sensor(las, Gatziolis2019())

plot(las@header)
plot(flightlines, add = TRUE)

grid_canopy Digital Surface Model

Description

Creates a digital surface model (DSM) using several possible algorithms. If the user provides a
normalised point cloud, the output is indeed a canopy height model (CHM).

Usage

grid_canopy(las, res, algorithm)

Arguments
las An object of class LAS or LAScatalog.
res numeric. The resolution of the output Raster. Can optionally be a RasterLayer.
In that case the RasterLayer is used as the layout.
algorithm function. A function that implements an algorithm to compute a digital surface

model. 1idR implements p2r, dsmtin, pitfree (see respective documentation and
examples).

grid_canopy 49

Value

A RasterLayer containing a numeric value in each cell. If the RasterLayers are written on disk
when running the function with a LAScatalog, a virtual raster mosaic is returned (see gdalbuildvrt)

Working with a LAScatalog

This section appears in each function that supports a LAScatalog as input.

In 1idR when the input of a function is a LAScatalog the function uses the LAScatalog processing
engine. The user can modify the engine options using the available options. A careful reading of
the engine documentation is recommended before processing LAScatalogs. Each 1idR function
should come with a section that documents the supported engine options.

The LAScatalog engine supports .lax files that significantly improve the computation speed of
spatial queries using a spatial index. Users should really take advantage a . lax files, but this is not
mandatory.

Supported processing options

Supported processing options for a LAScatalog in grid_= functions (in bold). For more details see
the LAScatalog engine documentation:

chunk size: How much data is loaded at once. The chunk size may be slightly modified
internally to ensure a strict continuous wall-to-wall output even when chunk size is equal to 0
(processing by file).

chunk buffer: This function guarantees a strict continuous wall-to-wall output. The buffer
option is not considered.

chunk alignment: Align the processed chunks. The alignment may be slightly modified
internally to ensure a strict continuous wall-to-wall output.

progress: Displays a progress estimate.

output files: Return the output in R or write each cluster’s output in a file. Supported templates
are {XLEFT}, {XRIGHT}, {YBOTTOM}, {YTOP}, {XCENTER}, { YCENTER} {ID} and, if chunk size
is equal to O (processing by file), {ORIGINALFILENAME}.

select: The grid_x functions usually "know’ what should be loaded and this option is not
considered. In grid_metrics this option is respected.

filter: Read only the points of interest.

Examples

LASfile <- system.file("extdata”, "MixedConifer.laz", package="1idR")
las <- readLAS(LASfile, filter = "-inside 481280 3812940 481330 3812990")
col <- height.colors(50)

Points-to-raster algorithm with a resolution of 1 meter
chm <- grid_canopy(las, res =1, p2r())
plot(chm, col = col)

Points-to-raster algorithm with a resolution of 0.5 meters replacing each
point by a 20-cm radius circle of 8 points
chm <- grid_canopy(las, res = 0.5, p2r(0.2))

https://gdal.org/programs/gdalbuildvrt.html

50 grid_density

plot(chm, col = col)

Basic triangulation and rasterization of first returns
chm <- grid_canopy(las, res = 0.5, dsmtin())
plot(chm, col = col)

Khosravipour et al. pitfree algorithm
chm <- grid_canopy(las, res = 0.5, pitfree(c(0,2,5,10,15), c(@, 1.5)))
plot(chm, col = col)

grid_density Map the pulse or point density

Description

Creates a map of the point density. If a "pulseID" attribute is found, also returns a map of the pulse
density.

Usage

grid_density(las, res = 4)

Arguments
las An object of class LAS or LAScatalog.
res numeric. The size of a grid cell in LIDAR data coordinates units. Default is 4 =
16 square meters.
Value

A RasterLayer or a RasterBrick containing a numeric value in each cell. If the RasterLayers
are written on disk when running the function with a LAScatalog, a virtual raster mosaic is returned
(see gdalbuildvrt)

Working with a LAScatalog

This section appears in each function that supports a LAScatalog as input.

In 1idR when the input of a function is a LAScatalog the function uses the LAScatalog processing
engine. The user can modify the engine options using the available options. A careful reading of
the engine documentation is recommended before processing LAScatalogs. Each 1idR function
should come with a section that documents the supported engine options.

The LAScatalog engine supports .lax files that significantly improve the computation speed of
spatial queries using a spatial index. Users should really take advantage a . lax files, but this is not
mandatory.

https://gdal.org/programs/gdalbuildvrt.html

grid_metrics 51

Supported processing options

Supported processing options for a LAScatalog in grid_x functions (in bold). For more details see
the LAScatalog engine documentation:

* chunk size: How much data is loaded at once. The chunk size may be slightly modified
internally to ensure a strict continuous wall-to-wall output even when chunk size is equal to 0
(processing by file).

e chunk buffer: This function guarantees a strict continuous wall-to-wall output. The buffer
option is not considered.

e chunk alignment: Align the processed chunks. The alignment may be slightly modified
internally to ensure a strict continuous wall-to-wall output.

* progress: Displays a progress estimate.

* output files: Return the output in R or write each cluster’s output in a file. Supported templates
are {XLEFT}, {XRIGHT}, {YBOTTOM}, {YTOP}, {XCENTER}, { YCENTER} {ID} and, if chunk size
is equal to O (processing by file), {ORIGINALFILENAME}.

* select: The grid_* functions usually ’know’ what should be loaded and this option is not
considered. In grid_metrics this option is respected.

* filter: Read only the points of interest.

Examples

LASfile <- system.file("extdata”, "Megaplot.laz", package="1idR")
las <- readLAS(LASfile, filter = "-inside 684800 5017800 684900 5017900")

d <- grid_density(las, 5)
plot(d)

las <- retrieve_pulses(las)
d <- grid_density(las)
plot(d)

grid_metrics Area-Based Approach

Description

Computes a series of user-defined descriptive statistics for a LIDAR dataset within each pixel of a
raster (area-based approach). The grid cell coordinates are pre-determined for a given resolution,
so the algorithm will always provide the same coordinates independently of the dataset. When start
=(0,0) and res = 20 grid_metrics will produce the following cell centers: (10,10), (10,30), (30,10)
etc. aligning the corner of a cell on (0,0). When start = (-10, -10) and res = 20 grid_metrics will
produce the following cell centers: (0,0), (0,20), (20,0) etc. aligning the corner of a cell on (-10,
-10).

Usage

grid_metrics(las, func, res = 20, start = c(@, 0), filter = NULL)

52 grid_metrics

Arguments
las An object of class LAS or LAScatalog.
func formula. An expression to be applied to each cell (see section "Parameter func").
res numeric. The resolution of the output Raster. Can optionally be a RasterLayer.
In that case the RasterLayer is used as the layout.
start vector of x and y coordinates for the reference raster. Default is (0,0) meaning
that the grid aligns on (0,0).
filter formula of logical predicates. Enables the function to run only on points of
interest in an optimized way. See examples.
Value

A RasterLayer or a RasterBrick containing a numeric value in each cell. If the RasterLayers
are written on disk when running the function with a LAScatalog, a virtual raster mosaic is returned
(see gdalbuildvrt)

Parameter func

The function to be applied to each cell is a classical function (see examples) that returns a labeled
list of metrics. For example, the following function f is correctly formed.

f = function(x) {list(mean = mean(x), max = max(x))}

And could be applied either on the Z coordinates or on the intensities. These two statements are
valid:

grid_metrics(las, ~f(Z), res = 20)
grid_metrics(las, ~f(Intensity), res = 20)

The following existing functions allow the user to compute some predefined metrics:

* stdmetrics
* entropy

* VCI

« LAD

But usually users must write their own functions to create metrics. grid_metrics will dispatch the
point cloud in the user’s function.

Working with a LAScatalog

This section appears in each function that supports a LAScatalog as input.

In 1idR when the input of a function is a LAScatalog the function uses the LAScatalog processing
engine. The user can modify the engine options using the available options. A careful reading of
the engine documentation is recommended before processing LAScatalogs. Each 1idR function
should come with a section that documents the supported engine options.

The LAScatalog engine supports .lax files that significantly improve the computation speed of
spatial queries using a spatial index. Users should really take advantage a . lax files, but this is not
mandatory.

https://gdal.org/programs/gdalbuildvrt.html

grid_metrics 53

Supported processing options

Supported processing options for a LAScatalog in grid_= functions (in bold). For more details see
the LAScatalog engine documentation:

* chunk size: How much data is loaded at once. The chunk size may be slightly modified
internally to ensure a strict continuous wall-to-wall output even when chunk size is equal to 0
(processing by file).

* chunk buffer: This function guarantees a strict continuous wall-to-wall output. The buffer
option is not considered.

* chunk alignment: Align the processed chunks. The alignment may be slightly modified
internally to ensure a strict continuous wall-to-wall output.

* progress: Displays a progress estimate.

* output files: Return the output in R or write each cluster’s output in a file. Supported templates
are {XLEFT}, {XRIGHT}, {YBOTTOM}, {YTOP}, {XCENTER}, { YCENTER} {ID} and, if chunk size
is equal to O (processing by file), {ORIGINALFILENAME}.

* select: The grid_#* functions usually ’know’ what should be loaded and this option is not
considered. In grid_metrics this option is respected.

* filter: Read only the points of interest.

See Also

Other metrics: cloud_metrics(), hexbin_metrics(), point_metrics(), tree_metrics(), voxel_metrics()

Examples

LASfile <- system.file("extdata”, "Megaplot.laz"”, package="1idR")

las = readLAS(LASfile)
col = height.colors(50)
=== Using all points ===

Mean height with 400 m*2 cells
metrics = grid_metrics(las, ~mean(Z), 20)
plot(metrics, col = col)

Define your own new metrics
myMetrics = function(z, i) {
metrics = list(
zwimean = sum(z*i)/sum(i), # Mean elevation weighted by intensities
zimean = mean(z*i), # Mean products of z by intensity
zsgmean = sqrt(mean(z*2))) # Quadratic mean

return(metrics)

3

metrics = grid_metrics(las, ~myMetrics(Z, Intensity))
plot(metrics, col = col)

#plot(metrics, "zwimean”, col = col)

#tplot(metrics, "zimean"”, col = col)

=== With point filters ===

54

grid_terrain

Compute using only some points: basic
first = filter_poi(las, ReturnNumber == 1)
metrics = grid_metrics(first, ~mean(Z), 20)

Compute using only some points: optimized
faster and uses less memory. No intermediate object
metrics = grid_metrics(las, ~mean(Z), 20, filter = ~ReturnNumber == 1)

Compute using only some points: best

~50% faster and uses ~10x less memory

las = readlLAS(LASfile, filter = "-keep_first")
metrics = grid_metrics(las, ~mean(Z), 20)

grid_terrain

Digital Terrain Model

Description

Interpolates the ground points and creates a rasterized digital terrain model. The algorithm uses the
points classified as "ground" and "water" (Classification = 2 and 9, respectively, according to LAS
file format specifications) to compute the interpolation.

How well the edges of the dataset are interpolated depends on the interpolation method used. A
buffer around the region of interest is always recommended to avoid edge effects.

Usage

grid_terrain(
las,
res =1,
algorithm,
keep_lowest
full_raster
use_class =

Arguments

las

res

algorithm

keep_lowest

FALSE,
FALSE,

c(aL, 9L),
Wdegenerated = TRUE,
is_concave = FALSE

An object of class LAS or LAScatalog.

numeric. The resolution of the output Raster. Can optionally be aRasterLayer.
In that case the RasterLayer is used as the layout.

function. A function that implements an algorithm to compute spatial interpola-
tion. 1idR implements knnidw, tin, and kriging (see respective documentation
and examples).

Unused

logical. This option forces the original lowest ground point of each cell (if it
exists) to be chosen instead of the interpolated values.

https://www.asprs.org/wp-content/uploads/2019/07/LAS_1_4_r15.pdf
https://www.asprs.org/wp-content/uploads/2019/07/LAS_1_4_r15.pdf

grid_terrain

full_raster

use_class

Wdegenerated

is_concave

Value

55

logical. By default the interpolation is made only within the convex hull of the
point cloud. This prevents meaningless interpolations where there is no data. If
TRUE, each pixel of the raster is interpolated.

integer vector. By default the terrain is computed by using ground points (class
2) and water points (class 9).

logical. The function always checks and removes degenerated ground points
for computing the DTM to avoid unexpected behaviours, such as infinite eleva-
tion. If TRUE, a warning is thrown to alert users to the presence of degenerated
ground points.

boolean. By default the function tries to compute a DTM that has the same shape
as the point cloud by interpolating only in the convex hull of the points. If the
point cloud is concave this may lead to weird values where there are no points.
Use is_concave = TRUE to use a concave hull. This is more computationally
-involved and requires the concaveman package.

A RasterLayer containing a numeric value in each cell. If the RasterLayers are written on disk
when running the function with a LAScatalog, a virtual raster mosaic is returned (see gdalbuildvrt)

Working with a LAScatalog

This section appears in each function that supports a LAScatalog as input.

In 1idR when the input of a function is a LAScatalog the function uses the LAScatalog processing
engine. The user can modify the engine options using the available options. A careful reading of
the engine documentation is recommended before processing LAScatalogs. Each 1idR function
should come with a section that documents the supported engine options.

The LAScatalog engine supports .lax files that significantly improve the computation speed of
spatial queries using a spatial index. Users should really take advantage a . lax files, but this is not

mandatory.

Supported processing options

Supported processing options for a LAScatalog in grid_= functions (in bold). For more details see
the LAScatalog engine documentation:

* chunk size: How much data is loaded at once. The chunk size may be slightly modified
internally to ensure a strict continuous wall-to-wall output even when chunk size is equal to 0
(processing by file).

 chunk buffer: This function guarantees a strict continuous wall-to-wall output. The buffer
option is not considered.

e chunk alignment: Align the processed chunks. The alignment may be slightly modified
internally to ensure a strict continuous wall-to-wall output.

* progress: Displays a progress estimate.

 output files: Return the output in R or write each cluster’s output in a file. Supported templates
are {XLEFT}, {XRIGHT}, {YBOTTOM}, {YTOP}, {XCENTER}, { YCENTER} {ID} and, if chunk size
is equal to O (processing by file), {ORIGINALFILENAME}.

* select: The function ’knows’ what should be loaded and this option is not considered.

* filter: Read only the points of interest.

https://gdal.org/programs/gdalbuildvrt.html

56 hexbin_metrics

Examples

LASfile <- system.file("extdata”, "Topography.laz", package="1idR")
las = readLAS(LASfile, filter = "-inside 273450 5274350 273550 5274450")
#plot(las)

dtm1 = grid_terrain(las, algorithm = knnidw(k = 6L, p = 2))
dtm2 = grid_terrain(las, algorithm = tin())

Not run:
dtm3 = grid_terrain(las, algorithm = kriging(k = 10L))

plot(dtm1)
plot(dtm2)
plot(dtm3)
plot_dtm3d(dtm1)
plot_dtm3d(dtm2)
plot_dtm3d(dtm3)

End(Not run)

hexbin_metrics Area-Based Approach in hexagonal cells.

Description

Computes a series of descriptive statistics for a LIDAR dataset within hexagonal cells. This function
is identical to grid_metrics but with hexagonal cells instead of square pixels. After all, we conduct
circular plot inventories and we map models on pixel-based maps. hexbin_metrics provides the
opportunity to test something else. Refer to grid_metrics for more information.

Usage

hexbin_metrics(las, func, res = 20)

Arguments
las An object of class LAS.
func formula. An expression to be applied to each hexagonal cell.
res numeric. To be consistent with grid_metrics, the square of res give the area of
the hexagonal cells, like in grid_metrics. The difference being the fact that for
square pixels this is obvious. Here res = 20 gives 400-square-meter hexagonal
cells.
Value

A hexbin object from package hexbin or a list of hexbin objects if several metrics are returned.

See Also

Other metrics: cloud_metrics(), grid_metrics(), point_metrics(), tree_metrics(), voxel_metrics()

homogenize 57

Examples

LASfile <- system.file("extdata”, "Megaplot.laz"”, package="1idR")
lidar = readlLAS(LASfile,filter = "-keep_random_fraction 0.5")

col = grDevices::colorRampPalette(c("blue”, "cyan2", "yellow”, "red"))

Maximum elevation with a resolution of 8 m
hm = hexbin_metrics(lidar, ~max(Z), 8)
hexbin::plot(hm, colramp = col, main = "Max Z")

Mean height with a resolution of 20 m
hm = hexbin_metrics(lidar, ~mean(Z), 20)
hexbin: :plot(hm, colramp = col, main = "Mean Z")

Define your own new metrics
myMetrics = function(z, i)
{
metrics = list(
zwimean = sum(z*i)/sum(i), # Mean elevation weighted by intensities

zimean = mean(z*i), # Mean products of z by intensity
zsqgmean = sqrt(mean(z”*2)) # Quadratic mean
)
return(metrics)
3

metrics = hexbin_metrics(lidar, ~myMetrics(Z, Intensity), 10)

hexbin::plot(metrics$zwimean, colramp = col, main = "zwimean")
#hexbin::plot(metrics$zimean, colramp = col, main = "zimean")
#thexbin: :plot(metrics$zsgmean, colramp = col, main = "zsgmean")
homogenize Point Cloud Decimation Algorithm
Description

This function is made to be used in decimate_points. It implements an algorithm that creates a grid
with a given resolution and filters the point cloud by randomly selecting some points in each cell. It
is designed to produce point clouds that have uniform densities throughout the coverage area. For
each cell, the proportion of points or pulses that will be retained is computed using the actual local
density and the desired density. If the desired density is greater than the actual density it returns
an unchanged set of points (it cannot increase the density). The cell size must be large enough to
compute a coherent local density. For example in a 2 points/m”2 point cloud, 25 square meters
would be feasible; however 1 square meter cells would not be feasible because density does not
have meaning at this scale.

Usage

homogenize(density, res = 5, use_pulse = FALSE)

58 is

Arguments
density numeric. The desired output density.
res numeric. The resolution of the grid used to filter the point cloud
use_pulse logical. Decimate by removing random pulses instead of random points (re-
quires running retrieve_pulses first)
See Also

Other point cloud decimation algorithms: maxima, random()

Examples

LASfile <- system.file("extdata”, "Megaplot.laz", package="1idR")
las = readlLAS(LASfile, select = "xyz")

Select points randomly to reach an homogeneous density of 1
thinned = decimate_points(las, homogenize(1,5))
plot(grid_density(thinned, 10))

is A set of boolean tests on objects

Description

is.empty tests if a LAS object is a point cloud with O points.

is.overlapping tests if a LAScatalog has overlapping tiles.

is.indexed tests if the points of a LAScatalog are indexed with . lax files.

is.algorithm tests if an object is an algorithm of the lidR package.

is.parallelised tests if an algorithm of the lidR package is natively parallelised with OpenMP.
Returns TRUE if the algorithm is at least partially parallelised i.e. if some portion of the code is
computed in parallel.

Usage

is.empty(las)
is.overlapping(catalog)
is.indexed(catalog)
is.algorithm(x)

is.parallelised(algorithm)

Arguments
las A LAS object.
catalog A LAScatalog object.
X Any R object.

algorithm An algorithm object.

ivf 59

Value

TRUE or FALSE

Examples

LASfile <- system.file("extdata”, "example.laz", package="rlas")
las = readLAS(LASfile)
is.empty(las)

las = new("LAS")
is.empty(las)

f <- 1Imf(2)
is.parallelised(f)

g <- pitfree()
is.parallelised(g)

ctg <- readLAScatalog(LASfile)
is.indexed(ctg)

ivf Noise Segmentation Algorithm

Description

This function is made to be used in classify_noise. It implements an algorithm for outliers (noise)
segmentation based on isolated voxels filter (IVF). It is similar to lasnoise from lastools. The
algorithm finds points that have only a few other points in their surrounding 3 x 3 x 3 = 27 voxels.

Usage

ivf(res = 5, n = 6)

Arguments

res numeric. Resolution of the voxels

n integer. The maximal number of ’other points’ in the 27 voxels
See Also

Other noise segmentation algorithms: sor ()

Examples

LASfile <- system.file("extdata”, "Topography.laz", package="1idR")
las <- readLAS(LASfile, filter = "-inside 273450 5274350 273550 5274450")

Add some artificial outliers
set.seed(314)

id = round(runif (20, @, npoints(las)))
set.seed(42)

err = runif(20, -50, 50)

https://rapidlasso.com/lastools/lasnoise/

60 kriging

las$z[id] = las$z[id] + err

las <- classify_noise(las, ivf(5,2))

knnidw Spatial Interpolation Algorithm

Description

This function is made to be used in grid_terrain or normalize_height. It implements an algorithm
for spatial interpolation. Interpolation is done using a k-nearest neighbour (KNN) approach with an
inverse-distance weighting (IDW).

Usage
knnidw(k = 10, p = 2, rmax = 50)

Arguments
k integer. Number of k-nearest neighbours. Default 10.
p numeric. Power for inverse-distance weighting. Default 2.
rmax numeric. Maximum radius where to search for knn. Default 50.
See Also

Other spatial interpolation algorithms: kriging(), tin()

Examples

LASfile <- system.file("extdata”, "Topography.laz", package="1idR")
las = readlLAS(LASfile)

#plot(las)
dtm = grid_terrain(las, algorithm = knnidw(k = 6L, p = 2))

#plot(dtm, col = terrain.colors(50))
#plot_dtm3d(dtm)

kriging Spatial Interpolation Algorithm

Description

This function is made to be used in grid_terrain or classify_ground. It implements an algorithm
for spatial interpolation. Spatial interpolation is based on universal kriging using the krige function
from gstat. This method combines the KNN approach with the kriging approach. For each point
of interest it kriges the terrain using the k-nearest neighbour ground points. This method is more
difficult to manipulate but it is also the most advanced method for interpolating spatial data.

LAD 61

Usage
kriging(model = gstat::vgm(@.59, "Sph", 874), k = 10L)

Arguments
model A variogram model computed with vgm. If NULL it performs an ordinary or
weighted least squares prediction.
k numeric. Number of k-nearest neighbours. Default 10.
See Also

Other spatial interpolation algorithms: knnidw(), tin()

Examples
Not run:
LASfile <- system.file("extdata”, "Topography.laz", package="1idR")
las = readlLAS(LASfile)
plot(las)

dtm = grid_terrain(las, algorithm = kriging())

plot(dtm, col = terrain.colors(50))
plot_dtm3d(dtm)

End(Not run)

LAD Leaf area density

Description

Computes a leaf area density profile based on the method of Bouvier et al. (see reference)

Usage
LAD(z, dz = 1, k = 0.5, z0 = 2)

Arguments
z vector of positive z coordinates
dz numeric. The thickness of the layers used (height bin)
k numeric. is the extinction coefficient
z0 numeric. The bottom limit of the profile
Details

The function assesses the number of laser points that actually reached the layer z+dz and those
that passed through the layer [z, z+dz] (see gap_fraction_profile). Then it computes the log of this
quantity and divides it by the extinction coefficient k as described in Bouvier et al. By definition the
layer 0 will always return infinity because no returns pass through the ground. Therefore, the layer
0 is removed from the returned results.

62 LAS-class

Value

A data.frame containing the bin elevations (z) and leaf area density for each bin (lad)

References

Bouvier, M., Durrieu, S., Fournier, R. a, & Renaud, J. (2015). Generalizing predictive models of
forest inventory attributes using an area-based approach with airborne las data. Remote Sensing of
Environment, 156, 322-334. http://doi.org/10.1016/j.rse.2014.10.004

See Also

gap_fraction_profile

Examples

z <= c(rnorm(le4, 25, 6), rgamma(le3, 1, 8)*6, rgamma(5e2, 5,5)*10)
z <- z[z<45 & z>0]

lad <- LAD(2)

plot(lad, type="1", xlab="Elevation”, ylab="Leaf area density")

LAS-class An 84 class to represent a .las or .laz file

Description

Class LAS is the representation of a las/laz file according to the LAS file format specifications.

Usage

LAS(data, header = list(), proj4string = sp::CRS(), check = TRUE, index = NULL)

Arguments
data a data.table containing the data of a las or laz file.
header a list or a LASheader containing the header of a las or laz file.
proj4string projection string of class CRS-class.
check logical. Conformity tests while building the object.
index list with two elements 1ist(sensor = @L,index = @L). See spatial indexing
Details

A LAS object inherits a Spatial object from sp. Thus it is a Spatial object plus a data. table with
the data read from a las/1laz file and a LASheader (see the ASPRS documentation for the LAS file
format for more information). Because las files are standardized the table of attributes read from
the las/laz file is also standardized. Columns are named:

¢ X (numeric)

* Y (numeric)

https://www.asprs.org/wp-content/uploads/2019/07/LAS_1_4_r15.pdf
https://www.asprs.org/a/society/committees/standards/LAS_1_4_r13.pdf
https://www.asprs.org/a/society/committees/standards/LAS_1_4_r13.pdf

LAS-class 63

¢ Z (numeric)

e gpstime (numeric)

* Intensity (integer)

* ReturnNumber (integer)

* NumberOfReturns (integer)
* ScanDirectionFlag (integer)
* EdgeOfFlightline (integer)
* Classification (integer)

* Synthetic_flag (logical)

* Keypoint_flag (logical)

* Withheld_flag (logical)

* ScanAngleRank (integer)

e ScanAngle (numeric)

* UserData (integer)

* PointSourcelD (integer)

* R,G,B (integer)

* NIR (integer)

Value

An object of class LAS

Functions

* LAS: creates objects of class LAS. The original data is updated by reference to quantize the
coordinates according to the scale factor of the header if no header is provided. In this case
the scale factor is set to 0.001

Slots

bbox Object of class matrix, with bounding box

proj4string Object of class CRS, projection string

data Object of class data.table. Point cloud data according to the LAS file format
header Object of class LASheader. las file header according to the LAS file format

index list. See spatial indexing.

Extends

Class Spatial, directly.

See Also
readLAS

https://www.asprs.org/wp-content/uploads/2019/07/LAS_1_4_r15.pdf
https://www.asprs.org/wp-content/uploads/2019/07/LAS_1_4_r15.pdf

64 LAScatalog-class

Examples

Read a las/laz file

LASfile <- system.file("extdata"”, "example.laz
las <- readLAS(LASfile)

las

n

, package="rlas")

Creation of a LAS object out of external data
data <- data.frame(X = runif(100, 0, 100),

Y = runif(100, 0, 100),

Z = runif (100, 0, 20))

'data' has many decimal digits
data

Create a default header and quantize *by referencex*
the coordinates to fit with offset and scale factors
cloud <- LAS(data)

'data' has been updated and coordinates were quantized
data
cloud

Be careful when providing a header the function assumes that
it corresponds to the data and won't quantize the coordinates
data <- data.frame(X = runif(100, 0, 100),

Y = runif (100, 0, 100),

Z = runif(100, 0, 20))
header <- las@header

This works but triggers warnings and creates an invalid LAS object
cloud <- LAS(data, header)

las_check(cloud)

LAScatalog-class An S84 class to represent a catalog of .las or .laz files

Description

A LAScatalog object is a representation of a set of las/laz files. A LAScatalog is a way to manage
and process an entire dataset. It allows the user to process a large area, or to selectively clip data
from a large area without loading all the data into computer memory. A LAScatalog can be built
with the function readLAScatalog and is formally an extension of a SpatialPolygonsDataFrame
containing extra data to allow users greater control over how the dataset is processed (see details).

Details

A LAScatalog is formally a SpatialPolygonsDataFrame extended with new slots that contain
processing options. In 1idR, each function that supports a LAScatalog as input will respect these
processing options. Internally, processing a catalog is almost always the same and relies on just a
few steps:

1. Define chunks. A chunk is an arbitrarily-defined region of interest (ROI) of the catalog. Alto-
gether, the chunks are a wall-to-wall set of ROIs that encompass the whole dataset.

LAScatalog-class 65

2. Loop over each chunk (in parallel or not).

3. For each chunk, load the points inside the ROI into R, run some R functions, return the ex-
pected output.

4. Merge the outputs of the different chunks once they are all processed to build a continuous
(wall-to-wall) output.

So basically, a LAScatalog is an object that allows for batch processing but with the specificity that
1idR does not loop through las files, but loops seamlessly through chunks that do not necessarily
match with the file pattern. This way 1idR can sequentially process tiny ROIs even if each file may
be individually too big to fit in memory. This is also why point cloud indexation with lax files may
significantly speed-up the processing.

It is important to note that catalogs with files that overlap each other are not natively supported
by 1idR. When encountering such datasets the user should always filter any overlaps if possible.
This is possible if the overlapping points are flagged, for example in the *withheld’ attribute. Oth-
erwise 1idR will not be able to process the dataset correctly.

Slots

processing_options list. A list that contains some settings describing how the catalog will be
processed (see dedicated section).

chunk_options list. A list that contains some settings describing how the catalog will be sub-
divided into chunks to be processed (see dedicated section).

output_options list. A list that contains some settings describing how the catalog will return the
outputs (see dedicated section).

input_options list. A list of parameters to pass to readLAS (see dedicated section).

index list. See spatial indexing.

Processing options

The slot @processing_options contains a 1ist of options that determine how chunks (the sub-
areas that are sequentially processed) are processed.

 progress: boolean. Display a progress bar and a chart of progress. Default is TRUE. Progress
estimation can be enhanced by installing the package progress. See opt_progress.

* stop_early: boolean. Stop the processing if an error occurs in a chunk. If FALSE the process
can run until the end, removing chunks that failed. Default is TRUE and the user should have
no reason to change this. See opt_stop_early.

» wall.to.wall logical. The catalog processing engine always guarantees to return a continuous
output without edge effects, assuming that the catalog is a wall-to-wall catalog. To do so,
some options are checked internally to guard against bad settings, such as buffer = 0 for an
algorithm that requires a buffer. In rare cases it might be useful to disable these controls. If
wall.to.wall = FALSE controls are disabled and wall-to-wall outputs cannot be guaranteed.
See opt_wall_to_wall

Chunk options

The slot @chunk_options contains a 1ist of options that determine how chunks (the sub-areas that
are sequentially processed) are made.

66

LAScatalog-class

* chunk_size: numeric. The size of the chunks that will be sequentially processed. A small size
allows small amounts of data to be loaded at once, saving computer memory, and vice versa.
The computation is usually faster but uses much more memory. If chunk_size = @ the catalog
is processed sequentially by file i.e. a chunk is a file. Default is 0 i.e. by default the processing
engine respects the existing tiling pattern. See opt_chunk_size.

* buffer: numeric. Each chunk can be read with an extra buffer around it to ensure there are
no edge effects between two independent chunks and that the output is continuous. This is
mandatory for some algorithms. Default is 30. See opt_chunk_buffer.

« alignment: numeric. A vector of size 2 (x and y coordinates, respectively) to align the chunk
pattern. By default the alignment is made along (0,0), meaning that the edge of the first chunk
will belong on x = 0 and y = 0 and all the the other chunks will be multiples of the chunk size.
Not relevant if chunk_size = @. See opt_chunk_alignment.

Output options

The slot @output_options contains a 1ist of options that determine how chunks (the sub-areas
that are sequentially processed) are written. By "written" we mean written to files or written in R
memory.

nn

* output_files: string. If output_files =
is a string the outputs will be written to files. This is useful if the output is too big to be re-
turned in R. A path to a filename template without extension (the engine guesses it for you) is
expected. When several files are going to be written a single string is provided with a template
that is automatically filled. For example, the following file names are possible:

"/home/user/als/normalized/file_{ID}_segmented”
"C:/user/document/als/zone52_{XLEFT}_{YBOTTOM}_confidential”
"C:/user/document/als/{ORIGINALFILNAME}_normalized”

This option will generate as many filenames as needed with custom names for each file. The

list of allowed templates is described in the documentation for each function. See opt_output_files.

e drivers: list. This contains all the drivers required to seamlessly write Raster*, Spatial*, sf,
and LAS objects. It is recommended that only advanced users change this option. A dedicated
page describes the drivers in lidR-LAScatalog-drivers.

* merge: boolean. Multiple objects are merged into a single object at the end of the processing.

Input options

The slot @input_options contains a list of options that are passed to the function readLAS.
Indeed, the readLAS function is not called directly by the user but by the internal processing engine.
Users can propagate these options through the LAScatalog settings.

* select: string. The select option. Usually this option is not respected because each function
knows which data must be loaded or not. This is documented in each function. See opt_select.

« filter: string. The filter option. See opt_filter.

Examples

Not run:
Build a catalog
ctg <- readLAScatalog("filder/to/las/files/")

Set some options

outputs are returned in R. Otherwise, if output_files

LASheader 67

opt_filter(ctg) <- "-keep_first”

Summary gives a summary of how the catalog will be processed
summary(ctg)

We can seamlessly use 1lidR functions
hmean <- grid_metrics(ctg, mean(Z), 20)
ttops <- tree_detection(ctg, 1mf(5))

For low memory config it is probably advisable not to load entire files
and process chunks instead
opt_chunk_size(ctg) <- 500

Sometimes the output is likely to be very large
e.g. large coverage and small resolution
dtm <- grid_terrain(ctg, 1, tin())

In that case it is advisable to write the output(s) to files
opt_output_files(ctg) <- "path/to/folder/DTM_chunk_{XLEFT}_{YBOTTOM}"

Raster will be written to disk. The list of written files is returned
or, in this specific case, a virtual raster mosaic.
dtm <- grid_terrain(ctg, 1, tin())

When chunks are files the original names of the las files can be preserved
opt_chunk_size(ctg) <- @

opt_output_files(ctg) <- "path/to/folder/DTM_{ORIGINALFILENAME}"

dtm <- grid_terrain(ctg, 1, tin())

For some functions, files MUST be written to disk. Indeed, it is certain that R cannot
handle the entire output.

opt_chunk_size(ctg) <- @

opt_output_files(ctg) <- "path/to/folder/{ORIGINALFILENAME}_norm"”
opt_laz_compression(ctg) <- TRUE

new_ctg <- normalize_height(ctg, tin())

The user has access to the catalog engine through the function catalog_apply
output <- catalog_apply(ctg, FUN, ...)

End(Not run)

LASheader Create a LASheader object

Description

Create a LASheader object

Usage

LASheader(data = list())

Arguments

data a list containing the data from the header of a las file.

68 las_check

Value

An object of class LASheader

LASheader-class An 84 class to represent the header of .las or .laz files

Description

An S4 class to represent the header of .las or .laz files according to the LAS file format specifi-
cations. A LASheader object contains a list in the slot @PHB with the data read from the Public
Header Block and 1ist in the slot @VLR with the data read from the Variable Length Records

Slots

PHB list. Represents the Public Header Block
VLR list. Represents the Variable Length Records
EVLR list. Represents the Extended Variable Length Records

las_check Inspect a LAS object

Description

Performs a deep inspection of a LAS or LAScatalog object and prints a report.

For a LAS object it checks:

» if the point cloud is valid according to las specification

« if the header is valid according to las specification

* if the point cloud is in accordance with the header

« if the point cloud has duplicated points and degenerated ground points
* it the coordinate reference sytem is correctly recorded

* if some pre-processing, such as normalization or ground filtering, is already done.
For a LAScatalog object it checks:

« if the headers are consistent across files
« if the files are overlapping

* if some pre-processing, such as normalization, is already done.

For the pre-processing tests the function only makes an estimation and may not be correct.

Usage

las_check(las, print = TRUE, ...)

https://www.asprs.org/wp-content/uploads/2019/07/LAS_1_4_r15.pdf
https://www.asprs.org/wp-content/uploads/2019/07/LAS_1_4_r15.pdf

las_utilities

Arguments

las

print

Value

69

An object of class LAS or LAScatalog.

logical. By default, prints a report into standard ouptut. If print = FALSE the
functions returns a list with two elements named *warnings’ and "errors’ con-
taining a vector with the reported warnings and errors.

Use deep = TRUE on a LAScatalog only. Instead of a shallow inspection it reads
all the files and performs a deep inspection.

A list with three elements named message, warnings and errors. This list is returned invisibly if
print = TRUE. If deep = TRUE a nested list is returned with one element per file.

See Also

Other las utilities: las_utilities

Examples

LASfile <- system.file("extdata”, "Megaplot.laz"”, package="1idR")
las <- readLAS(LASfile)

las_check(las)

las_utilities

LAS utilities

Description

Tools to manipulate LAS objects maintaining compliance with ASPRS specification

Usage

las_rescale(las, xscale, yscale, zscale)

las_reoffset(las, xoffset, yoffset, zoffset)

las_quantize(las, by_reference = TRUE)

las_update(las)

quantize(x, scale, offset, by_reference = TRUE, ...)

is.quantized(x, scale, offset, ...)

count_not_quantized(x, scale, offset)

storable_coordinate_range(scale, offset)

https://www.asprs.org/wp-content/uploads/2019/07/LAS_1_4_r15.pdf

70 las_utilities
Arguments
las An object of class LAS
xscale, yscale, zscale
scalar. Can be missing if not relevant.
xoffset, yoffset, zoffset
scalar. Can be missing if not relevant.
by_reference bool. Update the data in place without allocating new memory.
X numeric. Coordinates vector
scale, offset scalar. scale and offset
Unused.
Details
In the specification of the LAS format the coordinates are expected to be given with a certain
precision e.g. 0.01 for a millimeter precision (or millifeet), meaning that a file records e.g. 123.46
not 123.45678. Also, coordinates are stored as integers. This is made possible with a scale and
offset factor. For example, 123.46 with an offset of 100 and a scale factor of 0.01 is actually stored
as (123.46 - 100)/0.01 = 2346. Storing 123.45678 with a scale factor of 0.01 and an offset of 100
is invalid because it does not convert to an integer: (123.45678-100)/0.01 = 2345.678. Having
an invalid LAS object may be critical in some lidR applications. When writing into a LAS file,
users will loose the extra precision without warning and some algorithms in lidR use the integer
conversion to make integer-based computation and thus speed-up some algorithms and use less
memory. Creation of an invalid LAS object may cause problems and incorrect outputs.
See Also
Other las utilities: 1las_check()
Examples

LASfile <- system.file("extdata”, "example.laz", package="rlas")
las = readLAS(LASfile)

Manual modification of the coordinates (e.g. rotation, re-alignment,
las@data$X <- las@data$X + 2/3
las@data$y <- las@data$y - 5/3

The point cloud is no longer valid
las_check(1las)

It is important to fix that
las_quantize(las)

Now the file is almost valid
las_check(1las)

Update the object to set up-to-date header data
las <- las_update(las)
las_check(las)

)

In practice the above code is not useful for regular users because the operators

$<- already perform such operations on-the-fly. Thus the following
syntax must be preferred and returns valid objects. Previous tools

1i2012 71

were only intended to be used in very specific cases.
las$X <- las$X + 2/3
las$Y <- las$Y - 5/3

Rescale and reoffset recompute the coordinates with

new scales and offsets according to LAS specification

las <- las_rescale(las, xscale = 0.01, yscale = 0.01)

las <- las_reoffset(las, xoffset = 300000, yoffset = 5248000)

1i2012 Individual Tree Segmentation Algorithm

Description

This functions is made to be used in segment_trees. It implements an algorithm for tree segmenta-
tion based on the Li et al. (2012) article (see reference). This method is a growing region method
working at the point cloud level. It is an implementation, as strict as possible, made by the 1idR
author but with the addition of a parameter hmin to prevent over-segmentation for objects that are
too low.

Usage

1i2012(dt1 = 1.5, dt2 = 2, R =2, Zu = 15, hmin = 2, speed_up = 10)

Arguments

dt1 numeric. Threshold number 1. See reference page 79 in Li et al. (2012). Default
is 1.5.

dt2 numeric. Threshold number 2. See reference page 79 in Li et al. (2012). Default
is 2.

R numeric. Search radius. See page 79 in Li et al. (2012). Defaultis 2. If R=10
all the points are automatically considered as local maxima and the search step
is skipped (much faster).

Zu numeric. If point elevation is greater than Zu, dt2 is used, otherwise dt1 is used.
See page 79 in Li et al. (2012). Default is 15.

hmin numeric. Minimum height of a detected tree. Default is 2.

speed_up numeric. Maximum radius of a crown. Any value greater than a crown is good
because this parameter does not affect the result. However, it greatly affects the
computation speed. The lower the value, the faster the method. Default is 10.

References

Li, W., Guo, Q., Jakubowski, M. K., & Kelly, M. (2012). A new method for segmenting individual
trees from the lidar point cloud. Photogrammetric Engineering & Remote Sensing, 78(1), 75-84.

See Also

Other individual tree segmentation algorithms: dalponte2016(), silva2016(), watershed()

72 lidR-LAScatalog-drivers

Examples

LASfile <- system.file("extdata”, "MixedConifer.laz", package="1idR")
las <- readLAS(LASfile, select = "xyz", filter = "-drop_z_below 0")
col <- pastel.colors(200)

las <- segment_trees(las, 1i2012(dt1 = 1.4))
#plot(las, color = "treeID”, colorPalette = col)

lidR-LAScatalog-drivers
LAScatalog drivers

Description

This document explains how objects are written on disk when processing a LAScatalog. As men-
tioned in LAScatalog-class, users can set a templated filename to store the outputs on disk instead
of in R memory. By defaut LAS objects are stored in .las files with writeLAS, Raster* objects
are stored in .tif files with writeRaster, Spatialx objects are stored in .shp files with writeOGR,
data. frame objects are stored in .csv files with fwrite, and other objects are not supported. How-
ever, users can modify all these default settings and even add new drivers. This manual page explain
how. One may also refer to some unofficial documentation here or here.

Generic form of a driver
A driver is stored in the @output_options slot of a LAScatalog. It is a list that contains:
write A function that receives an object and a path, and writes the object into a file using the path.
The function can also have extra options.
extension A string that gives the file extension.

object A string that gives the name of the argument used to pass the object to write in the function
used to write the object.

path A string that gives the name of the argument used to pass the path of the file to write in the
function used to write the object.

param A labelled list of extra parameters for the function used to write the object

For example, the driver to write a Rasterx is

list(

write = raster::writeRaster,
extension = ".tif",

object = "x",

path = "filename”,

param = list(format = "GTiff"))

And the driver to write a LAS is

list(

write = lidR::writelLAS,
extension = ".las",
object = "las",

path = "file",

param = list())

https://github.com/Jean-Romain/lidR/wiki/Modify-the-LAScatalog-drivers
https://gis.stackexchange.com/questions/325367/how-to-configure-lidr-catalog-to-save-raster-files

lidR-LAScatalog-drivers 73

Modify a driver (1/2)

Users can modify the drivers to write different file types than the default. For example, to write in
GeoPackage instead of shapefile, one must change the Spatial driver:

ctg@output_options$drivers$Spatial$extension <- ".gpkg"
To write in .grd files instead of .tif files one must change the Raster driver:

ctg@output_options$drivers$Raster$extension <- ".grd"
ctg@output_options$drivers$Raster$param$format <- "raster”

To write in .laz files instead of .las files one must change the LAS driver:

ctg@output_options$drivers$LAS$extension <- ".laz"

Add a new driver

The drivers allow LAS, Spatial*, Rasterx and data.frame objects to be written. When using the
engine (catalog_apply) to build new tools, users may need to be able to write other objects such as
a list. To do that users need to add a 1ist element into the output_options:

ctg@output_options$drivers$list = list(
write = base::saveRDS,

object = "object”,

path = "file",

extension = ".rds",
param = list(compress = TRUE))

The LAScatalog now has a new driver capable of writing a 1ist.

Modify a driver (2/2)

It is also possible to completely overwrite an existing driver. By default SpatialPointsDataFrame
objects are written into ESRI shapefiles with writtOGR. writeOGR can write into other file types,
such as GeoPackage or GeoJSON and even as SQLlIite database objects. But it cannot add data into
an existing SQLIlite database. Let’s create our own driver for a SpatialPointsDataFrame. First
we need a function able to write and append a SpatialPointsDataFrame into a SQLIlite database
from the object and the path.

dbWrite_SpatialPointsDataFrame = function(x, path, name)
{

x <- as.data.frame(x)

con <- RSQLite::dbConnect(RSQLite::SQLite(), path)
RSQLite: :dbWriteTable(con, name, x, append = TRUE)
RSQLite: :dbDisconnect(con)

3

Then we create the driver. User-defined drivers supersede default drivers:

ctg@output_options$drivers$SpatialPointsDataFrame = list(
write = dbWrite_SpatialPointsDataFrame,

extension = ".sqlite”,
object = "x",
path = "path”,

param = list(name = "layername"))

74 lidR-parallelism
Then to be sure that we do not write several .sqlite files, we don’t use templated filename.
opt_output_files(ctg) <- paste@(tempdir(), "/mysqglitefile")

And all the SpatialPointsDataFrame will be appended in a single database.

lidR-parallelism Parallel computation in lidR

Description

This document explain how to process point clouds taking advantage of parallel processing in the
lidR package. The lidR package has two levels of parallelism, which is why it is difficult to under-
stand how it works. This page aims to provide users with a clear overview of how to take advantage
of multicore processing even if they are not comfortable with the parallelism concept.

Algorithm-based parallelism

When processing a point cloud we are applying an algorithm on data. This algorithm may or may
not be natively parallel. In lidR some algorithms are fully computed in parallel, but some are not
because they are not parallelizable, while some are only partially parallelized. It means that some
portions of the code are computed in parallel and some are not. When an algorithm is natively
parallel in lidR it is always a C++ based parallelization with OpenMP. The advantage is that the
computation is faster without any consequence for memory usage because the memory is shared
between the processors In short, algorithm-based parallelism provides a significant gain without
any cost for your R session and your system (but obviously there is a greater workload for the
processors). By default lidR uses half of your cores but you can control this with set_lidr_threads.
For example, the Imf algorithm is natively parallel. The following code is computed in parallel:

las <- readLAS("file.las")
tops <- tree_detection(las, 1Imf(2))

However, as stated above, not all algorithms are parallelized or even parallelizable. For example,
1i2012 is not parallelized. The following code is computed in serial:

las <- readLAS("file.las")
dtm <- segment_trees(las, 1i2012())

To know which algorithms are parallelized users can refer to the documentation or use the function
is.parallelised.

is.parallelised(1Imf(2)) #> TRUE
is.parallelised(1i2012()) #> FALSE

chunk-based parallelism

When processing a LAScatalog, the internal engine splits the dataset into chunks and each chunk is
read and processed sequentially in a loop. But actually this loop can be parallelized with the future
package. By defaut the chunks are processed sequentially, but they can be processed in parallel by
registering an evaluation strategy. For example, the following code is evaluated sequentially:

lidR-parallelism 75

ctg <- readlLAScatalog(”folder/")
out <- grid_metrics(ctg, mean(Z))

But this one is evaluated in parallel with two cores:

library(future)

plan(multisession, workers = 2L)
ctg <- readlLAScatalog(”"folder/")
out <- grid_metrics(ctg, mean(Z))

With chunk-based parallelism any algorithm can be parallelized by processing several subsets of a
dataset. However, there is a strong cost associated with this type of parallelism. When processing
several chunks at a time, the computer needs to load the corresponding point clouds. Assuming the
user processes one square kilometer chunks in parallel with 4 cores, then 4 chunks are loaded in the
computer memory. This may be too much and the speed-up is not guaranteed since there is some
overhead involved in reading several files at a time. Once this point is understood, chunk-based
parallelism is very powerful since all the algorithms can be parallelized whether or not they are
natively parallel. It also allows to parallelize the computation on several machines on the network
or to work on a HPC.

Nested parallelism - part 1

Previous sections stated that some algorithms are natively parallel, such as Imf, and some are not,
such as 1i2012. Anyway, users can split the dataset into chunks to process them simultaneously
with the LAScatalog processing engine. Let’s assume that the user’s computer has four cores, what
happens in this case:

library(future)

plan(multisession, workers = 4L)
set_lidr_threads(4L)

ctg <- readlLAScatalog(”folder/")
out <- tree_detection(ctg, Imf(2))

Here the catalog will be split into chunks that will be processed in parallel. And each computation
itself implies a parallelized task. This is a nested parallelism task and it is dangerous! Hopefully
the 1idR package handles such cases and chooses by default to give precedence to chunk-based
parallelism. In this case chunks will be processed in parallel and the points will be processed
serially by disabling OpenMP.

Nested parallelism - part 2

We explained rules of precedence. But actually the user can tune the engine more accurately. Let’s
define the following function:

myfun = function(cluster, ...)

{
las <- readlLAS(cluster)
if (is.empty(las)) return(NULL)
las <- normalize_height(las, tin())
tops <- tree_detection(las, 1mf(2))
bbox <- extent(cluster)
tops <- crop(tops, bbox)
return(tops)

76 lidR-spatial-index

3
out <- catalog_apply(ctg, myfun, ws = 5)

This function used two algorithms, one is partially parallelized (tin) and one is fully parallelized
Imf. The user can manually use both OpenMP and future. By default the engine will give prece-
dence to chunk-based parallelism because it works in all cases but the user can impose something
else. In the following 2 workers are attributed to future and 2 workers are attributed to OpenMP.

plan(multisession, workers = 2L)
set_lidr_threads(2L)
catalog_apply(ctg, myfun, ws = 5)

The rule is simple. If the number of workers needed is greater than the number of available workers
then OpenMP is disabled. Let suppose we have a 4 cores:

2 chunks 2 threads: OK
plan(multisession, workers = 2L)
set_lidr_threads(2L)

4 chunks 1 threads: OK
plan(multisession, workers = 4L)
set_lidr_threads(1L)

1 chunks 4 threads: OK
plan(sequential)
set_lidr_threads(4L)

3 chunks 2 threads: NOT OK

Needs 6 workers, OpenMP threads are set to 1 i.e. sequential processing
plan(multisession, workers = 3L)

set_lidr_threads(2L)

Complex computing architectures

For more complex processing architectures such as multiple computers controlled remotely or HPC
a finer tuning might be necessary. Using

options(lidR.check.nested.parallelism = FALSE)

lidR will no longer check for nested parallelism and will never automatically disable OpenMP.

lidR-spatial-index Spatial index

Description

This document explains how to process point-clouds taking advantage of different spatial indices
available in the lidR package. lidR can use several types of spatial indexes to apply algorithms (that
need a spatial indexing) as fast as possible. The choice of the spatial index depends on the type of
point-cloud that is processed and the algorithm that is performed. lidR can use a grid partition, a
voxel partition, a quadtree or an octree. See details.

lidR-spatial-index 77
Usage

sensor(las, h = FALSE)

sensor(las) <- value

index(las, h = FALSE)

index(las) <- value

Arguments
las An object of class LAS or LAScatalog.
h boolean. Human readable. Everything is stored as integers that are understood
internally. Use h = TRUE for user readable output.
value integer or character. A code for referring to a sensor type or a spatial index
type. Use one of "unknown”, "als”, "tls", "uav”, "dap”, "multispectral”
for sensor type and one of "auto”, "gridpartition”, "voxelpartition”,
"quadtree”, "octree" for spatial index type.
Details

From lidR (>=3.1.0), a LAS object records the sensor used to sample the point-cloud (ALS, TLS,
UAV, DAP) as well as the spatial index that must be used for processing the point cloud. This can
be set manually by the user but the simplest is to use one of the read*LAS() functions. By default
a point-cloud is associated to a sensor and the best spatial index is chosen on-the-fly depending on
the algorithm applied. It is possible to force the use of a specific spatial index.

Information relative to the spatial indexing is stored in slot @index that contains a 1ist with two
elements:

* sensor: an integer that records the sensor type

* index: an integer that records the spatial index to be used

By default the spatial index code is 0 ("automatic") meaning that each function is free to choose a
different spatial index depending on the recorded sensor. If the code is not O then each function will
be forced to used the spatial index that is imposed. This, obviously, applies only to functions that
use spatial indexing.

LAScatalog objects also record such information that is automatically propagated to the LAS ob-
jects when processing.

Note: before version 3.1.0, point-clouds were all considered as ALS because lidR was originally
designed for ALS. Consequently, for legacy and backwards-compatibility reasons, readLAS() and
readALSLAS() are actually equivalent. readLAS() tags the point cloud with "unknown" sensor
while readALSLAS () tags it with *ALS’. Both behave the same and this is especially true compared
with versions < 3.1. As a consequence, using readLAS() provides the same performance (no degra-
dation) than in previous versions, while using one of the read*LAS() functions may improve the
performance.

Examples

LASfile <- system.file("extdata”, "example.laz", package="rlas")
las <- readLAS(LASfile)

By default the sensor and spatial index codes are @

78

lidR-spatial-index

sensor(las)
index(las)

Codes are used internally and not intended to be known by users
Use h option for human readable output

sensor(las, h = TRUE)

index(las, h = TRUE)

Modification of the sensor enables users to select a better spatial index
when processing the point-cloud.

sensor(las) <- "tls"

sensor(las, h = TRUE)

index(las, h = TRUE)

Modification of the spatial index forces users to choose one of the available
spatial indexes.

index(las) <- "quadtree”

sensor(las, h = TRUE)

index(las, h = TRUE)

The simplest way to take advantage of appropriate spatial indexing is
to use one of the read*LAS() functions.

las <- readTLSLAS(LASfile)

sensor(las, h = TRUE)

index(las, h = TRUE)

But for some specific point-clouds / algorithms it might be advisable to force
the use of a specific spatial index to perform the computation faster
index(las) <- "voxelpartition”

index(las, h = TRUE)

With a LAScatalog, spatial indexing information is propagated to the
different chunks

ctg = readTLSLAScatalog(LASfile)

index(ctg) <- "voxelpartition”

sensor(ctg, h = TRUE)

index(ctg, h = TRUE)

#

PERFORMANCE TESTS

#

Not run:

Performance tests on TLS

The package does not include TLS data

so we can generate something that looks TLS-ish

>O>S>>>>>>>

X = runif (50, -25, 25)

Y = runif(50, -25, 25)

X = as.numeric(sapply(X, function(x) rnorm(2000, x, 2)))
Y = as.numeric(sapply(Y, function(x) rnorm(2000, x, 2)))
Z = abs(rnorm(length(Y), 10, 5))

veg = data.frame(X,Y,Z)
X = runif (5000, -30, 30)
Y = runif(5000, -30, 30)

lidrpalettes 79

Z = runif(5000, 0, 1)

ground = data.frame(X,Y,Z2)

X = runif(30, -30, 30)

Y = runif (30, -30, 30)

Z = runif (30, 0, 30)

noise = data.frame(X,Y,Z)

las = LAS(rbind(ground, veg, noise))
#<<LLLLLLLLLLKL

plot(las)

If read with readALSLAS()

sensor(las) <- "als”
system.time(classify_noise(las, sor(20, 8)))
#> 1.5 sec

If read with readTLSLAS()

sensor(las) <- "tls"

system. time(classify_noise(las, sor(20, 8)))
#> 0.6 sec

Performance tests on ALS

The package does not include large ALS data

so we can generate something that looks ALS-ish

>O>O>>>>>>>>

X = runif(4e5, 0, 1000)

Y = runif(4e5, 0, 1000)

Z = 40*xsin(0.01xX) + 50*cos(0.005%Y) + abs(rnorm(length(Y), 10, 5))
veg = data.frame(X,Y,Z)

X = runif(100, @, 1000)

Y = runif (100, 0, 1000)

Z = 40*sin(0.01%X) + 50*cos(0.005xY) + abs(rnorm(length(Y), 10, 5)) + runif (100, 30, 70)
noise = data.frame(X,Y,Z)

las = LAS(rbind(veg, noise))

#<<<LLLLLLLL K

plot(las)

If read with readALSLAS()

sensor(las) <- "als”
system.time(classify_noise(las, sor(15, 8)))
#> 3 sec

If read with readTLSLAS()

sensor(las) <- "tls"
system.time(classify_noise(las, sor(15, 8)))
#> 4.3 sec

End(Not run)

lidrpalettes Palettes

80 Imf

Description

Create a vector of n contiguous (or not) colors
Usage

height.colors(n)

forest.colors(n)

random. colors(n)

pastel.colors(n)

Arguments
n The number of colors (> 1) to be in the palette
Imf Individual Tree Detection Algorithm
Description

This function is made to be used in find_trees. It implements an algorithm for tree detection based
on a local maximum filter. The windows size can be fixed or variable and its shape can be square or
circular. The internal algorithm works either with a raster or a point cloud. It is deeply inspired by
Popescu & Wynne (2004) (see references).

Usage
Imf(ws, hmin = 2, shape = c("circular”, "square"))
Arguments
WS numeric or function. Length or diameter of the moving window used to detect
the local maxima in the units of the input data (usually meters). If it is numeric
a fixed window size is used. If it is a function, the function determines the size
of the window at any given location on the canopy. The function should take the
height of a given pixel or point as its only argument and return the desired size
of the search window when centered on that pixel/point.
hmin numeric. Minimum height of a tree. Threshold below which a pixel or a point
cannot be a local maxima. Default is 2.
shape character. Shape of the moving window used to find the local maxima. Can be
"square" or "circular".
References

Popescu, Sorin & Wynne, Randolph. (2004). Seeing the Trees in the Forest: Using Lidar and Mul-
tispectral Data Fusion with Local Filtering and Variable Window Size for Estimating Tree Height.
Photogrammetric Engineering and Remote Sensing. 70. 589-604. 10.14358/PERS.70.5.589.

manual 81

See Also

Other individual tree detection algorithms: manual ()

Examples

LASfile <- system.file("extdata”, "MixedConifer.laz", package="1idR")
las <- readLAS(LASfile, select = "xyz", filter = "-inside 481250 3812980 481300 3813050")

point-cloud-based
#

5x5 m fixed window size
ttops <- find_trees(las, 1lmf(5))

#x <- plot(las)
#add_treetops3d(x, ttops)

variable windows size
f <- function(x) { x * 0.07 + 3}
ttops <- find_trees(las, 1mf(f))

#x <- plot(las)
#add_treetops3d(x, ttops)

raster-based
chm <- grid_canopy(las, res = 1, p2r(0.15))
ttops <- find_trees(chm, 1mf(5))

plot(chm, col = height.colors(30))
plot(ttops, add = TRUE)

variable window size
f <= function(x) { x *x .07 + 3 }
ttops <- find_trees(chm, 1mf(f))

plot(chm, col = height.colors(30))
plot(ttops, add = TRUE)

manual Individual Tree Detection Algorithm

Description

This function is made to be used in find_trees. It implements an algorithm for manual tree detection.
Users can pinpoint the tree top positions manually and interactively using the mouse. This is only
suitable for small-sized plots. First the point cloud is displayed, then the user is invited to select a
rectangular region of interest in the scene using the mouse button. Within the selected region the
highest point will be flagged as ’tree top’ in the scene. Once all the trees are labelled the user can
exit the tool by selecting an empty region. Points can also be unflagged. The goal of this tool is
mainly for minor correction of automatically-detected tree outputs.

82 maxima

Usage
manual (detected = NULL, radius = 0.5, color = "red”, button = "middle”, ...)
Arguments
detected SpatialPointsDataFrame of already found tree tops that need manual correc-
tion.
radius numeric. Radius of the spheres displayed on the point cloud (aesthetic purposes
only).
color character. Colour of the spheres displayed on the point cloud (aesthetic purposes
only).
button Which button to use for selection. One of "left", "middle", "right". 1idR using
left for rotation and right for dragging using one of left or right will disable
either rotation or dragging
supplementary parameters to be passed to plot.
See Also

Other individual tree detection algorithms: 1mf ()

Examples

Not run:
LASfile <- system.file("extdata”, "MixedConifer.laz", package="1idR")
las = readLAS(LASfile)

Full manual tree detection
ttops = find_trees(las, manual())

Automatic detection with manual correction
ttops = find_trees(las, 1mf(5))
ttops = find_trees(las, manual(ttops))

End(Not run)

maxima Point Cloud Decimation Algorithm

Description

These functions are made to be used in decimate_points. They implements algorithms that creates
a grid with a given resolution and filters the point cloud by selecting the highest/lowest point within
each cell.

Usage
highest(res = 1)

lowest(res = 1)

merge_spatial 83

Arguments

res numeric. The resolution of the grid used to filter the point cloud

See Also

Other point cloud decimation algorithms: homogenize(), random()

Other point cloud decimation algorithms: homogenize (), random()

Examples

LASfile <- system.file("extdata”, "Megaplot.laz"”, package="1idR")
las = readlLAS(LASfile, select = "xyz")

Select the highest point within each cell of an overlayed grid
thinned = decimate_points(las, highest(4))
#plot(thinned)

Select the lowest point within each cell of an overlayed grid
thinned = decimate_points(las, lowest(4))
#plot(thinned)

merge_spatial Merge a point cloud with a source of spatial data

Description

Merge a point cloud with a source of spatial data. It adds an attribute along each point based
on a value found in the spatial data. Sources of spatial data can be a SpatialPolygons*) , a sf
data.frame or a Rasterx.

* SpatialPolygons*,sf: it checks if the points belongs within each polygon. If the parameter
attribute is the name of an attribute in the table of attributes it assigns to the points the
values of that attribute. Otherwise it classifies the points as boolean. TRUE if the points are
in a polygon, FALSE otherwise.

* RasterLayer: it attributes to each point the value found in each pixel of the RasterLayer.

* RasterStack or RasterBrick must have 3 channels for RGB colors. It colorizes the point
cloud with RGB values.

Usage

merge_spatial (las, source, attribute = NULL)

Arguments
las An object of class LAS
source An object of class SpatialPolygons#* or sf or RasterLayer or a RasterStack
or RasterBrick with RGB colors.
attribute character. The name of an attribute in the table of attributes of the shapefile or

the name of a new column in the LAS object. Not relevant for RGB colorization.

84 normalize_height

Value

An object of the class LAS.

Examples

LASfile <- system.file("extdata”, "Megaplot.laz", package="1idR")
shp <- system.file("extdata”, "lake_polygons_UTM17.shp", package = "1idR")

las <- readLAS(LASfile, filter = "-keep_random_fraction 0.1")
lakes <- sf::st_read(shp)

The attribute "inlake" does not exist in the shapefile.
Points are classified as TRUE if in a polygon

las <- merge_spatial(las, lakes, "inlakes") # New attribute 'inlakes' is added.
forest <- filter_poi(las, inlakes == FALSE)
#tplot(forest)

The attribute "LAKENAME_1" exists in the shapefile.
Points are classified with the values of the polygons

las <- merge_spatial(las, lakes, "LAKENAME_1") # New column 'LAKENAME_1' is added.
normalize_height Remove the topography from a point cloud
Description

Subtract digital terrain model (DTM) from LiDAR point cloud to create a dataset normalized with
the ground at 0. The DTM can originate from an external file or can be computed by the user. It can
also be computed on-the-fly. In this case the algorithm does not use rasterized data and each point
is interpolated. There is no inaccuracy due to the discretization of the terrain and the resolution of
the terrain is virtually infinite.

How well the edges of the dataset are interpolated depends on the interpolation method used. Thus,
a buffer around the region of interest is always recommended to avoid edge effects.

The attribute Z of the returned LAS object is the normalized elevation. A new attribute *Zref’
records the former elevation values, which enables the use of unnormalize_height to restore origi-
nal point elevations.

Usage

normalize_height(
las,
algorithm,
na.rm = FALSE,
use_class = c(2L, 9L),
add_lasattribute = FALSE,
Wdegenerated = TRUE

normalize_height 85

unnormalize_height(las)

S4 method for signature 'LAS,RasterLayer'’
el - e2

S4 method for signature 'LAS,lidRAlgorithm’

el - e2
Arguments

las An object of class LAS or LAScatalog.

algorithm a spatial interpolation function. 1idR have tin, kriging, knnidw or a RasterLayer
representing a digital terrain model (can be computed with grid_terrain)

na.rm logical. When using a RasterLayer as DTM, by default the function fails if
a point fall in an empty pixel because a Z elevation cannot be NA. If na.rm =
TRUE points with an elevation of NA are filtered. Be careful this creates a copy
of the point cloud.

use_class integer vector. By default the terrain is computed by using ground points (class
2) and water points (class 9). Relevant only for a normalisation without a raster
DTM.
If algorithm is a RasterlLayer, ... is propagated to extract. Typically one

may use method = "bilinear”.

add_lasattribute
logical. By default the above see level elevation is retained in a new attribute.
However this new attribute will be discared at write time. If TRUE it is maintained
as an extrabytes attribute. See also add_lasattribute.

Wdegenerated logical. The function always check and remove degenerated ground points for
computing the DTM to avoid unexpected behaviours such as infinite elevation.
If TRUE a warning in thrown to alert about the presence of degenerated ground

points.
el a LAS object
e2 RasterLayer representing a digital terrain model (can be computed with grid_terrain)

or a spatial interpolation function. 1idR has tin, kriging, and knnidw.

Value

If the input is a LAS object, return a LAS object. If the input is a LAScatalog, returns a LAScatalog.

Working with a LAScatalog

This section appears in each function that supports a LAScatalog as input.

In 1idR when the input of a function is a LAScatalog the function uses the LAScatalog processing
engine. The user can modify the engine options using the available options. A careful reading of
the engine documentation is recommended before processing LAScatalogs. Each 1idR function
should come with a section that documents the supported engine options.

The LAScatalog engine supports .lax files that significantly improve the computation speed of
spatial queries using a spatial index. Users should really take advantage a . lax files, but this is not

86 normalize_height

mandatory.

Supported processing options

Supported processing options for a LAScatalog (in bold). For more details see the LAScatalog
engine documentation:
* chunk size: How much data is loaded at once.

e chunk buffer*: Mandatory to get a continuous output without edge effects. The buffer is
always removed once processed and will never be returned either in R or in files.

* chunk alignment: Align the processed chunks.
* progress: Displays a progression estimation.

* output files*: Mandatory because the output is likely to be too big to be returned in R and
needs to be written in las/laz files. Supported templates are {XLEFT}, {XRIGHT}, {YBOTTOM},
{YTOP}, {XCENTER}, {YCENTER} {ID} and, if chunk size is equal to O (processing by file),
{ORIGINALFILENAME}

* select: The function will write files equivalent to the original ones. Thus select = "*" and
cannot be changed.

* filter: Read only points of interest.

See Also
grid_terrain

Other normalize: normalize_intensity()

Examples

LASfile <- system.file("extdata”, "Topography.laz", package="1idR")
las <- readLAS(LASfile, filter = "-inside 273450 5274350 273550 5274450")

#plot(las)

First option: use a RasterLayer as DTM
#

dtm <- grid_terrain(las, 1, knnidw(k = 6L, p = 2))
las <- normalize_height(las, dtm)

plot(dtm)
#plot(las)

restore original elevations
las <- unnormalize_height(las)
#plot(las)

operator - can be used. This is equivalent to the previous
las <- las - dtm

#plot(las)

restore original elevations
las <- unnormalize_height(las)

Second option: interpolate each point (no discretization)

normalize_intensity 87

#

las <- normalize_height(las, tin())
#plot(las)

operator - can be used. This is equivalent to the previous
las <- unnormalize_height(las)
las <- las - tin()

Not run:

All the following syntaxes are correct

las <- normalize_height(las, knnidw())

las <- normalize_height(las, knnidw(k = 8, p = 2))
las <- las - knnidw()

las <- las - knnidw(k = 8)

las <- normalize_height(las, kriging())

las <- las - kriging(k = 8)

End(Not run)

normalize_intensity Normalize intensity

Description

Normalize intensity values using multiple methods.

Usage

normalize_intensity(las, algorithm)

Arguments

las An object of class LAS or LAScatalog.

algorithm an intensity normalizaton algorithm. 1idR currently has range_correction.
Value

Returns an object of class LAS. The attribute ’Intensity’ records the normalized intensity. An extra
attribute named 'RawlIntensity’ records the original intensities.

Working with a LAScatalog

This section appears in each function that supports a LAScatalog as input.

In 1idR when the input of a function is a LAScatalog the function uses the LAScatalog processing
engine. The user can modify the engine options using the available options. A careful reading of
the engine documentation is recommended before processing LAScatalogs. Each 1idR function
should come with a section that documents the supported engine options.

The LAScatalog engine supports .lax files that significantly improve the computation speed of
spatial queries using a spatial index. Users should really take advantage a . lax files, but this is not

88 p2r

mandatory.

Supported processing options

Supported processing options for a LAScatalog (in bold). For more details see the LAScatalog
engine documentation:

* chunk size: How much data is loaded at once.

¢ chunk buffer: No buffer needed. A buffer of O is used and cannot be changed

* chunk alignment: Align the processed chunks.

* progress: Displays a progression estimation.

* output files*: Mandatory because the output is likely to be too big to be returned in R and
needs to be written in las/laz files. Supported templates are {XLEFT}, {XRIGHT}, { YBOTTOM},
{YTOP}, {XCENTER}, {YCENTER} {ID} and, if chunk size is equal to O (processing by file),
{ORIGINALFILENAME}.

* select: The function will write files equivalent to the original ones. Thus select = "*" and
cannot be changed.

* filter: Read only points of interest.

See Also

Other normalize: normalize_height ()

Examples

A valid file properly populated
LASfile <- system.file("extdata”, "Topography.laz", package="1idR")
las <- readLAS(LASfile)

pmin = 15 because it is an extremely small file
strongly decimated to reduce its size. There are
actually few multiple returns

sensor <- track_sensor(las, Roussel2020(pmin = 15))

Here the effect is virtually null because the size of
the sample is too small to notice any effect of range
las <- normalize_intensity(las, range_correction(sensor, Rs = 2000))

p2r Digital Surface Model Algorithm

Description

This function is made to be used in grid_canopy. It implements an algorithm for digital surface
model computation based on a points-to-raster method: for each pixel of the output raster the func-
tion attributes the height of the highest point found. The subcircle tweak replaces each point with
8 points around the original one. This allows for virtual ’emulation’ of the fact that a lidar point
is not a point as such, but more realistically a disc. This tweak densifies the point cloud and the
resulting canopy model is smoother and contains fewer ’pits’ and empty pixels.

pitfree 89

Usage
p2r(subcircle = @, na.fill = NULL)

Arguments
subcircle numeric. Radius of the circles. To obtain fewer empty pixels the algorithm can
replace each return with a circle composed of 8 points (see details).
na.fill function. A function that implements an algorithm to compute spatial interpo-
lation to fill the empty pixel often left by points-to-raster methods. 1idR has
knnidw, tin, and kriging (see also grid_terrain for more details).
See Also

Other digital surface model algorithms: dsmtin(), pitfree()

Examples

LASfile <- system.file("extdata”, "MixedConifer.laz”, package="1idR")
las <- readlLAS(LASfile)
col <- height.colors(50)

Points-to-raster algorithm with a resolution of 1 meter
chm <- grid_canopy(las, res = 1, p2r())
plot(chm, col = col)

Points-to-raster algorithm with a resolution of 0.5 meters replacing each
point by a 20 cm radius circle of 8 points

chm <- grid_canopy(las, res = 0.5, p2r(0.2))

plot(chm, col = col)

Not run:
chm <- grid_canopy(las, res = 0.5, p2r(0.2, na.fill = tin()))
plot(chm, col = col)

End(Not run)

pitfree Digital Surface Model Algorithm

Description

This function is made to be used in grid_canopy. It implements the pit-free algorithm developed by
Khosravipour et al. (2014), which is based on the computation of a set of classical triangulations at
different heights (see references). The subcircle tweak replaces each point with 8 points around
the original one. This allows for virtual ’emulation’ of the fact that a lidar point is not a point as
such, but more realistically a disc. This tweak densifies the point cloud and the resulting canopy
model is smoother and contains fewer ’pits’ and empty pixels.

Usage
pitfree(thresholds = c(@, 2, 5, 10, 15), max_edge = c(0@, 1), subcircle = 0)

90 pitfree

Arguments
thresholds numeric. Set of height thresholds according to the Khosravipour et al. (2014)
algorithm description (see references)
max_edge numeric. Maximum edge length of a triangle in the Delaunay triangulation. If
a triangle has an edge length greater than this value it will be removed. The
first number is the value for the classical triangulation (threshold = 0, see also
dsmtin), the second number is the value for the pit-free algorithm (for thresholds
> (). If max_edge = @ no trimming is done (see examples).
subcircle numeric. radius of the circles. To obtain fewer empty pixels the algorithm can
replace each return with a circle composed of 8 points (see details).
References

Khosravipour, A., Skidmore, A. K., Isenburg, M., Wang, T., & Hussin, Y. A. (2014). Generating pit-
free canopy height models from airborne lidar. Photogrammetric Engineering & Remote Sensing,
80(9), 863-872.

See Also

Other digital surface model algorithms: dsmtin(), p2r()

Examples

LASfile <- system.file("extdata”, "MixedConifer.laz", package="1idR")
poi = "-drop_z_below @ -inside 481280 3812940 481330 3812990"

las <- readLAS(LASfile, filter = poi)

col <- height.colors(50)

Basic triangulation and rasterization of first returns
chm <- grid_canopy(las, res = 0.5, dsmtin())
plot(chm, col = col)

Khosravipour et al. pitfree algorithm
chm <- grid_canopy(las, res = 0.5, pitfree(c(90,2,5,10,15), c(@, 1.5)))
plot(chm, col = col)

Not run:

Potentially complex concave subset of point cloud

x = c(481340, 481340, 481280, 481300, 481280, 481340)

y = c(3812940, 3813000, 3813000, 3812960, 3812940, 3812940)
las2 = clip_polygon(las,x,y)

plot(las2)

Since the TIN interpolation is done within the convex hull of the point cloud

dummy pixels are interpolated that are strictly correct according to the interpolation method
used, but meaningless in our CHM

chm <- grid_canopy(las2, res = 0.5, pitfree())

plot(chm, col = col)

chm = grid_canopy(las2, res = 0.5, pitfree(max_edge = c(3, 1.5)))
plot(chm, col = col)

End(Not run)

plot

91

plot Plot a LAS* object

Description

Plot displays a 3D interactive windows-based on rgl for LAS objects

Plot displays an interactive view for LAScatalog objects with pan and zoom capabilities based
on mapview. If the coordinate reference system (CRS) of the LAScatalog is non empty, the plot
can be displayed on top of base maps (satellite data, elevation, street, and so on).

Plot displays a LASheader object exactly like it displays a LAScatalog object.

Usage

plot(x, vy, ...)

S4 method for signature 'LAS,missing'’

plot(
X,
y)
color = "Z",
colorPalette = "auto”,
bg = "black”,
trim = Inf,

backend = "rgl”,
clear_artifacts = TRUE,

nbits = 16,
axis = FALSE,
legend = FALSE,
add = FALSE,

)

S4 method for signature 'LAScatalog,missing'
plot(x, y, mapview = FALSE, chunk_pattern = FALSE, overlaps = FALSE,

S4 method for signature 'LASheader,missing'’

plot(x, y, mapview = FALSE, ...)
Arguments
X A LAS* object
y Unused (inherited from R base)
Will be passed to points3d (LAS) or plot if mapview = FALSE or to mapview if
mapview = TRUE (LAScatalog).
color characters. The attribute used to color the point cloud. Default is Z coordinates.

RGB is an allowed string even if it refers to three attributes simultaneously.

92

colorPalette

bg
trim

backend

clear_artifacts

nbits

axis
legend
add

mapview
chunk_pattern

overlaps

Examples

plot

characters. A vector of colors such as that generated by heat.colors, topo.colors,
terrain.colors or similar functions. Default is "auto” providing an automatic
coloring depending on the argument color

The color for the background. Default is black.

numeric. Enables trimming of values when outliers break the color palette range.
Every point with a value higher than trim will be plotted with the highest color.

character. Canbe "rgl” or "1idRviewer"”. If "rgl” is chosen the display relies
on the rgl package. If "1idRviewer"” is chosen it relies on the 1lidRviewer
package, which is much more efficient and can handle million of points using
less memory. 1idRviewer is not available on CRAN yet and should be installed
from github (see. https://github.com/Jean-Romain/1lidRviewer).

logical. It is a known and documented issue that the 3D visualisation with rgl
displays artifacts. The points look aligned and/or regularly spaced in some view
angles. This is because rgl computes with single precision float. To fix that
the point cloud is shifted to (0,0) to reduce the number of digits needed to rep-
resent its coordinates. The drawback is that the point cloud is not plotted at its
actual coordinates.

integer. If color = RGB it assumes that RGB colors are coded on 16 bits as de-
scribed in the LAS format specification. However, this is not always respected.
If the colors are stored on 8 bits set this parameter to 8.

logical. Display axis on XYZ coordinates.

logical. Display a gradient color legend.

If FALSE normal behaviour otherwise must be the output of a prior plot function
to enable the alignment of a second point cloud.

logical. If FALSE the catalog is displayed in a regular plot from R base.

logical. Display the current chunk pattern used to process the catalog.

logical. Highlight the overlaps between files.

LASfile <- system.file("extdata”, "MixedConifer.laz"”, package="1idR")
las <- readlLAS(LASfile)

plot(las)

plot(las, color = "Intensity")

Not run:

If outliers break the color range, use the trim parameter

plot(las, color

plot(las, color

"Intensity”, trim = 150)

"Classification”)

This dataset is already tree segmented
plot(las, color = "treeID")

End(Not run)

single file LAScatalog using data provided in 1lidR
ctg = readlLAScatalog(LASfile)

plot(ctg)

https://github.com/Jean-Romain/lidRviewer

plot.lasmetrics3d 93

plot.lasmetrics3d Plot voxelized LiDAR data

Description

This function implements a 3D plot method for ’lasmetrics3d’ objects

Usage

S3 method for class 'lasmetrics3d'
plot(x, vy, ...)

Arguments
X An object of the class 'lasmetrics3d’
y Unused (inherited from R base)
Supplementary parameters for plot. The function internally uses the same plot
function than LAS objects.
Examples

LASfile <- system.file("extdata"”, "Megaplot.laz"”, package="1idR")
lidar = readLAS(LASfile)

voxels = voxel_metrics(lidar, list(Imean = mean(Intensity)), res = 5)

plot(voxels, color = "Imean", colorPalette = heat.colors(50), trim=60)
plot_3d Add a spatial object to a point cloud scene
Description

Add a RasterLayer object that represents a digital terrain model or a SpatialPointsDataFrame
that represents tree tops to a point cloud scene. To add elements to a scene with a point cloud plotted
with the function plot from lidR, the functions add_x take as first argument the output of the plot
function (see examples), because the plot function does not plot the actual coordinates of the point
cloud, but offsetted values. See function plot and its argument clear_artifacts for more details.
It works only with rgl i.e. backend = "rgl” which is the default.

Usage
plot_dtm3d(dtm, bg = "black”, clear_artifacts = TRUE, ...)
add_dtm3d(x, dtm, ...)
add_treetops3d(x, ttops, z = "Z", ...)

add_flightlines3d(x, flightlines, z = "Z", ...)

94 pmf

Arguments
dtm An object of the class RasterlLayer
bg The color for the background. Default is black.

clear_artifacts
logical. It is a known and documented issue that 3D visualisation with rgl
displays artifacts. The points and lines are inaccurately positioned in the space
and thus the rendering may look false or weird. This is because rgl computes
with single precision float. To fix this, the objects are shifted to (0,0) to reduce
the number of digits needed to represent their coordinates. The drawback is that
the objects are not plotted at their actual coordinates.

Supplementary parameters for surface3d or spheres3d.

X The output of the function plot used with a LAS object.
ttops A SpatialPointsDataFrame that contains tree tops coordinates.
z character. The name of the attribute that contains the height of the tree tops or
of the flightlines.
flightlines A SpatialPointsDataFrame that contains flightlines coordinates.
Examples

LASfile <- system.file("extdata”, "Topography.laz", package="1idR")
las = readLAS(LASfile, filter = "-keep_xy 273450 273600 5274450 5274600")

dtm = grid_terrain(las, algorithm = tin())
ttops <- find_trees(las, lmf(ws = 5))

plot_dtm3d(dtm)

x = plot(las)

add_dtm3d(x, dtm)

add_treetops3d(x, ttops)

Not run:

library(magrittr)

plot(las) %>% add_dtm3d(dtm) %>% add_treetops3d(ttops)

End(Not run)

pmf Ground Segmentation Algorithm

Description

This function is made to be used in classify_ground. It implements an algorithm for segmentation
of ground points based on a progressive morphological filter. This method is an implementation of
the Zhang et al. (2003) algorithm (see reference). Note that this is not a strict implementation of
Zhang et al. This algorithm works at the point cloud level without any rasterization process. The
morphological operator is applied on the point cloud, not on a raster. Also, Zhang et al. proposed
some formulas (eq. 4, 5 and 7) to compute the sequence of windows sizes and thresholds. Here,
these parameters are free and specified by the user. The function util_makeZhangParam enables
computation of the parameters according to the original paper.

point_metrics 95

Usage
pmf (ws, th)
Arguments
WS numeric. Sequence of windows sizes to be used in filtering ground returns. The
values must be positive and in the same units as the point cloud (usually meters,
occasionally feet).
th numeric. Sequence of threshold heights above the parameterized ground surface
to be considered a ground return. The values must be positive and in the same
units as the point cloud.
References

Zhang, K., Chen, S. C., Whitman, D., Shyu, M. L., Yan, J., & Zhang, C. (2003). A progressive mor-
phological filter for removing nonground measurements from airborne LIDAR data. IEEE Transac-
tions on Geoscience and Remote Sensing, 41(4 PART I), 872—882. http:#doi.org/10.1109/TGRS.2003.810682.

See Also

Other ground segmentation algorithms: csf ()

Examples

LASfile <- system.file("extdata"”, "Topography.laz", package="1idR")
las <- readLAS(LASfile, select = "xyzrn", filter = "-inside 273450 5274350 273550 5274450")

ws <- seq(3,12, 3)
th <- seq(@.1, 1.5, length.out = length(ws))

las <- classify_ground(las, pmf(ws, th))

#plot(las, color = "Classification”)
point_metrics Point-based metrics
Description

Computes a series of user-defined descriptive statistics for a LiDAR dataset for each point. This
function is very similar to grid_metrics but computes metrics for each point based on its k-nearest
neighbours or its sphere neighbourhood.

Usage

point_metrics(las, func, k, r, xyz = FALSE, filter = NULL, ...)

96 point_metrics

Arguments

las An object of class LAS

func formula. An expression to be applied to each point neighbourhood (see section
"Parameter func").

k, r integer and numeric respectively for k-nearest neighbours and radius of the
neighborhood sphere. If k is given and r is missing, computes with the knn,
if r is given and k is missing computes with a sphere neighborhood, if k and r
are given computes with the knn and a limit on the search distance.

Xyz logical. Coordinates of each point are returned in addition to each metric. If
filter = NULL coordinates are references to the original coordinates and do not
occupy additional memory. If filter !=NULL it obviously takes memory.

filter formula of logical predicates. Enables the function to run only on points of
interest in an optimized way. See examples.
unused.

Details

When the neighbourhood is knn the user-defined function is fed with the current processed point and
its k-1 neighbours. The current point being considered as the 1-neighbour with a distance 0 to the
reference point. The points are ordered by distance to the central point. When the neighbourhood is
a sphere the processed point is also included in the query but points are coming in a random order.

Performances

It is important to bear in mind that this function is very fast for the feature it provides i.e. mapping
a user-defined function at the point level using optimized memory management. However, it is still
computationally demanding.

To help users to get an idea of how computationally demanding this function is, let’s compare it
to grid_metrics. Assuming we want to apply mean(Z) on a 1 km? tile with 1 point/m? with a resolu-
tion of 20 m (400 m? cells), then the function mean is called roughly 2500 times (once per cell). On
the contrary, with point_metrics, mean is called 1000000 times (once per point). So the function
is expected to be more than 400 times slower in this specific case (but it does not provide the same
feature).

This is why the user-defined function is expected to be well-optimized, otherwise it might dras-
tically slow down this already heavy computation. See examples.

Last but not least, grid_metrics() relies on the data.table package to compute a user-defined
function in each pixel. point_metrics() relies on a similar method but with a major difference: it
does not rely on data. table and thus has not been tested over many years by thousands of people.
Please report bugs, if any.

Parameter func

The function to be applied to each cell is a classical function (see examples) that returns a labeled
list of metrics. For example, the following function f is correctly formed.

f = function(x) {list(mean = mean(x), max = max(x))}

And could be applied either on the Z coordinates or on the intensities. These two statements are
valid:

point_metrics 97

point_metrics(las, ~f(Z), k = 8)
point_metrics(las, ~f(Intensity), k = 5)

Everything that works in grid_metrics should also work in point_metrics but sometimes might be
meaningless. For example, computing the quantile of elevation does not really makes sense here.

See Also

Other metrics: cloud_metrics(), grid_metrics(), hexbin_metrics(), tree_metrics(), voxel_metrics()

Examples

Not run:
LASfile <- system.file("extdata”, "Topography.laz"”, package="1idR")

Read only 0.5 points/m*2 for the purposes of this example
las = readlLAS(LASfile, filter = "-thin_with_grid 2")

Computes the eigenvalues of the covariance matrix of the neighbouring
points and applies a test on these values. This function simulates the
'shp_plane()' algorithm from 'segment_shape()'
plane_metrics1 = function(x,y,z, thl = 25, th2 = 6) {
xyz <- cbind(x,y,z)
cov_m <- cov(xyz)
eigen_m <- eigen(cov_m)$value
is_planar <- eigen_m[2] > (thlxeigen_m[3]) && (th2xeigen_m[2]) > eigen_m[1]
return(list(planar = is_planar))

}

Apply a user-defined function
M <- point_metrics(las, ~plane_metrics1(X,Y,Z), k = 25)
#> Computed in 6.3 seconds

We can verify that it returns the same as 'shp_plane'
las <- segment_shape(las, shp_plane(k = 25), "planar”)
#> Computed in @0.1 seconds

all.equal(M$planar, las$planar)

At this stage we can be clever and find that the bottleneck is

the eigenvalue computation. Let's write a C++ version of it with
Rcpp and RcppArmadillo

Rcpp: : sourceCpp(code = "

#include <RcppArmadillo.h>

// [[Rcpp: :depends(RcppArmadillo)]]

// [[Rcpp: :export]l]

SEXP eigen_values(arma::mat A) {

arma: :mat coeff;

arma::mat score;

arma::vec latent;

arma: :princomp(coeff, score, latent, A);
return(Rcpp: :wrap(latent));

)

plane_metrics2 = function(x,y,z, thl = 25, th2 = 6) {
xyz <- cbind(x,y,z)

98 print

eigen_m <- eigen_values(xyz)
is_planar <- eigen_m[2] > (thixeigen_m[3]) && (th2xeigen_m[2]) > eigen_m[1]
return(list(planar = is_planar))

3

M <- point_metrics(las, ~plane_metrics2(X,Y,Z), k = 25)
#> Computed in 0.5 seconds

all.equal(M$planar, las$planar)
Here we can see that the optimized version is way better but is still 5-times slower
because of the overhead of calling R functions and switching back and forth from R to C++.

Use the filter argument to process only first returns
M1 <- point_metrics(las, ~plane_metrics2(X,Y,Z), k = 25, filter = ~ReturnNumber == 1)
dim(M1) # 13894 instead of 17182 previously.

is a memory-optimized equivalent to:

first = filter_first(las)

M2 <- point_metrics(first, ~plane_metrics2(X,Y,Z), k = 25)
all.equal(M1, M2)

End(Not run)

print Summary and Print for LAS* objects

Description

Summary and Print for LAS* objects

Usage

print(x, ...)

S4 method for signature 'LAS'
summary (object, ...)

S4 method for signature 'LAS'
print(x)

S4 method for signature 'LAScatalog'
summary (object, ...)

S3 method for class 'lidRAlgorithm'
print(x, ...)
Arguments

Unused

object, x A LAS* object or other lidR related objects.

projection

projection Get or set the projection of a LAS* object

Description

Get or set the projection of a LAS* object.
Usage

epsg(object, ...)

epsg(object) <- value

S4 method for signature 'LASheader'
epsg(object, ...)

S4 replacement method for signature 'LASheader'
epsg(object) <- value

S4 method for signature 'LAS'
epsg(object)

S4 replacement method for signature 'LAS'
epsg(object) <- value

wkt(object) <- value

S4 method for signature 'LASheader'
wkt(obj)

S4 replacement method for signature 'LASheader'
wkt(object) <- value

S4 method for signature 'LAS'
wkt(obj)

S4 replacement method for signature 'LAS'
wkt(object) <- value

S4 method for signature 'LASheader'
projection(x, asText = TRUE)

S4 method for signature 'LAS'
projection(x, asText = TRUE)

S4 replacement method for signature 'LAS'
projection(x) <- value

S4 method for signature 'LAScatalog'
projection(x, asText = TRUE)

100 projection

S4 method for signature 'LASheader'
crs(x, asText = FALSE)

S4 method for signature 'LAS'
crs(x, asText = FALSE)

S4 replacement method for signature 'LAS'
crs(x, ...) <- value

S4 method for signature 'LAScatalog'
crs(x, asText = FALSE)
Arguments

object, x, obj An object of class LAS or eventually LASheader (regular users don’t need to
manipulate LASheader objects).

Unused.
value A CRS object or a proj4string string or WKT string or an EPSG code.
asText logical. If TRUE, the projection is returned as text. Otherwise a CRS object is
returned.

Details
There are two ways to store the CRS of a point cloud in a LAS file:

¢ Store an EPSG code (for LAS 1.0 to 1.3)

 Store a WTK string (for LAS 1.4)
On the other hand, R sptial packages use a proj4string to store the CRS (but the ecosystem is
moving to WKT). This is why the CRS is duplicated in a LAS object. The information belongs

within the header in a format that can be written in a LAS file and in the slot proj4string in a
format that can be understood by R packages.

* projection<-: assigns a CRS from a CRS (sp), a crs (sf), a WKT string, a proj4string or an
epsg code. It updates the header of the LAS object either with the EPSG code for LAS formats
< 1.4 or with a WKT string for LAS format 1.4 and updates the proj4string slot.

e projection: returns the CRS in sp format

* crs and crs<- are equivalent to projection and projection<-
* epsg<-, wkt<- : legacy functions superseded by projection<-
* sf::st_crsreturn the CRS in sf format.

* epsg: reads the epsg code from the header.

* wkt: reads the WKT string from the header.

Examples

LASfile <- system.file("extdata”, "Megaplot.laz"”, package="1idR")
las <- readLAS(LASfile)

Get the EPSG code stored in the header (returns @ if not recorded)
epsg(las)

Get the WKT string stored in the header (LAS >= 1.4)

random 101

wkt(las)

if (rgdal::new_proj_and_gdal())

{
Get the WKT of the CRS
sp::wkt(crs(las))
Recorded CRS is "NAD83 / UTM zone 17N”
sf::st_crs(las)$input

3

Overwrite the CRS (but does not reproject)
crs <- sp::CRS("+init=epsg:26918")
projection(las) <- crs
sf::st_crs(las)$input

Uses the EPSG code
projection(las) <- 26919
sf::st_crs(las)$input

Uses a crs from sf
crs <- sf::st_crs(3035)
projection(las) <- crs

random Point Cloud Decimation Algorithm

Description

This function is made to be used in decimate_points. It implements an algorithm that randomly
removes points or pulses to reach the desired density over the whole area (see area).

Usage
random(density, use_pulse = FALSE)

Arguments
density numeric. The desired output density.
use_pulse logical. Decimate by removing random pulses instead of random points (re-
quires running retrieve_pulses first)
See Also

Other point cloud decimation algorithms: homogenize (), maxima

Examples

LASfile <- system.file("extdata”, "Megaplot.laz", package="1idR")
las = readlLAS(LASfile, select = "xyz")

Reach a pulse density of 1 on the overall dataset
thinnedl = decimate_points(las, random(1))

102 range_correction

plot(grid_density(las))
plot(grid_density(thinned1))

range_correction Intensity normalization algorithm

Description

This function is made to be used in normalize_intensity. It corrects intensity with a range correction
according to the formula (see references):

R
Ino’rm = Iobs(E)f)

To achieve the range correction the position of the sensor must be known at different discrete times.
Using the *gpstime’ of each point, the position of the sensor is interpolated from the reference and
a range correction is applied.

Usage

2.3, gpstime = "gpstime"”, elevation = "Z")

range_correction(sensor, Rs, f

get_range(las, sensor, gpstime = "gpstime”, elevation = "Z")
Arguments
sensor SpatialPointsDataDrame object containing the coordinates of the sensor at

different timepoints t. The time and elevation are stored as attributes (default
names are “gpstime’ and *Z’). It can be computed with track_sensor.

Rs numeric. Range of reference.

f numeric. Exponent. Usually between 2 and 3 in vegetation contexts.

gpstime, elevation
character. The name of the attributes that store the gpstime of the position and
the elevation of the sensor respectively. If elevation = NULL the Z coordinates
are searched in the third column of the coordinates matrix of the SpatialPoints-
DataFrame. This is useful if read from a format that supports 3 coordinates
points.

las an object of class LAS. get_range() is a regular function documented here for
convenience.

References

Gatziolis, D. (2011). Dynamic Range-based Intensity Normalization for Airborne, Discrete Return
Lidar Data of Forest Canopies. Photogrammetric Engineering & Remote Sensing, 77(3), 251-259.
https://doi.org/10.14358/pers.77.3.251

rbind. LAS 103

Examples

A valid file properly populated
LASfile <- system.file("extdata"”, "Topography.laz", package="1idR")
las <- readLAS(LASfile)

pmin = 15 because it is an extremely tiny file

strongly decimated to reduce its size. There are
actually few multiple returns

sensor <- track_sensor(las, Roussel2020(pmin = 15))

Here the effect is virtually null because the size of
the sample is too small to notice any effect of range
las <- normalize_intensity(las, range_correction(sensor, Rs = 2000))

This might be useful for some applications
R = get_range(las, sensor)

rbind.LAS Merge LAS objects

Description

Merge LAS objects

Usage
S3 method for class 'LAS'
rbind(...)
Arguments
LAS objects
readLAS Read .las or .laz files
Description

Reads .las or .1az files into an object of class LAS. If several files are read at once the returned LAS
object is considered as one LAS file. The optional parameters enable the user to save a substantial
amount of memory by choosing to load only the attributes or points of interest. LAS formats 1.1 to
1.4 are supported. Point Data Record Format 0,1,2,3,5,6,7,8 are supported.

readLAS is the original function and always works. Using one of the read*LAS functions adds
information to the returned object to register a point-cloud type. Registering the correct point type
may improve the performance of some functions by enabling users to select an appropriate spa-
tial index. See spatial indexing. Notice that by legacy and for backwards-compatibility reasons,
readLAS() and readALSLAS() are equivalent because lidR was originally designed for ALS and
thus the original function readLAS() was (supposedly) used for ALS. Reading a TLS dataset with
readLAS() instead of readTLSLAS() is perfectly valid and performs similarly to versions <= 3.0.0,
with neither performance degradation nor improvements.

104 readLAS

Usage

readLAS(files, select = "*" filter = "")

readALSLAS(files, select = "%", filter = "")

readTLSLAS(files, select = "x", filter = "")
readUAVLAS(files, select = "x", filter = "")
readDAPLAS(files, select = "x", filter = "")
readMSLAS(files1, files2, files3, select = "x" filter = "")
Arguments
files characters. Path(s) to one or several a file(s). Can also be a LAScatalog object.
select character. Read only attributes of interest to save memory (see details).
filter character. Read only points of interest to save memory (see details).

files1, files2, files3
characters. Path(s) to one or several a file(s). Each argument being one channel
(see section "Multispectral data’).

Details

Select: the ’select’ argument specifies the data that will actually be loaded. For example, ’xyzia’
means that the x, y, and z coordinates, the intensity and the scan angle will be loaded. The sup-
ported entries are t - gpstime, a - scan angle, i - intensity, n - number of returns, r - return number,
¢ - classification, s - synthetic flag, k - keypoint flag, w - withheld flag, o - overlap flag (format
6+), u - user data, p - point source ID, e - edge of flight line flag, d - direction of scan flag, R -
red channel of RGB color, G - green channel of RGB color, B - blue channel of RGB color, N -
near-infrared channel. C - scanner channel (format 6+). Also numbers from 1 to 9 for the extra
bytes data numbers 1 to 9. 0 enables all extra bytes to be loaded and **’ is the wildcard that enables
everything to be loaded from the LAS file.

Note that x, y, z are implicit and always loaded. "xyzia’ is equivalent to ’ia’.

Filter: the ’filter’ argument allows filtering of the point cloud while reading files. This is much
more efficient than filter_poi in many ways. If the desired filters are known before reading the file,
the internal filters should always be preferred. The available filters are those from LAS1ib and can be
found by running the following command: readLAS(filter = "-help"”). (see also rlas::read.las).
From rlas v1.3.6 the transformation commands can also be passed via the argument filter.

Value

A LAS object

Multispectral data

Multispectral laser data are often stored in 3 different files. If this is the case readMSLAS reads the
Jas or .laz files of each channel and merges them into an object of class LAS and takes care of
attributing an ID to each channel. If the multisprectral point cloud is already stored in a single file
leave file2 and file3 missing.

readLAScatalog 105

Examples

LASfile <- system.file("extdata”, "Megaplot.laz"”, package="1idR")

las = readlLAS(LASfile)

las = readLAS(LASfile, select = "xyz")

las = readLAS(LASfile, select = "xyzi", filter = "-keep_first"”)

las = readlLAS(LASfile, select = "xyziar", filter = "-keep_first -drop_z_below 0")

Negation of attributes is also possible (all except intensity and angle)
las = readlLAS(LASfile, select = "x -i -a")

readLAScatalog Create an object of class LAScatalog

Description

Create an object of class LAScatalog from a folder or a collection of filenames. A LAScatalog is
a representation of a collection of las/laz files. A computer cannot load all the data at once. A
LAScatalog is a simple way to manage all the files sequentially. Most functions from 1idR can
be used seamlessly with a LAScatalog using the internal LAScatalog processing engine. To take
advantage of the LAScatalog processing engine the user must first adjust some processing options
using the appropriate functions. Careful reading of the LAScatalog class documentation is required
to use the LAScatalog class correctly.

readLAScatalog is the original function and always works. Using one of the read*LAScatalog
functions adds information to the returned object to register a point-cloud type. Registering the cor-
rect point type may improve the performance of some functions by enabling users to select an ap-
propriate spatial index. See spatial indexing. Notice that by legacy and for backwards-compatibility
reasons readLAScatalog() and readALSLAScatalog() are equivalent because lidR was originally
designed for ALS and thus the original function readLAScatalog() was (supposedly) used for
ALS.

Usage

readLAScatalog(
folder,
progress = TRUE,
select = "x",
filter = "",
chunk_size = 0,

chunk_buffer = 30,

readALSLAScatalog(
folder,
progress = TRUE,
select = "x",
filter = "",
chunk_size = 0,

chunk_buffer = 30,

106 readLAScatalog

)

readTLSLAScatalog(
folder,
progress = TRUE,
select = "x"
filter = "",
chunk_size = 0,
chunk_buffer =

’

30,
)

readUAVLAScatalog(
folder,
progress = TRUE,
select = "x",
filter = "",
chunk_size = 0,
chunk_buffer = 30,

)

readDAPLAScatalog(
folder,
progress = TRUE,
select = "x",
filter = "",
chunk_size = 0,

chunk_buffer = 30,

)

catalog(folder, ...)

Arguments
folder string. The path of a folder containing a set of las/laz files. Can also be a vector
of file paths.
progress, select, filter, chunk_size, chunk_buffer

Easily accessible processing options tuning. See LAScatalog-class and cata-
log_options_tools.

Extra parameters to list.files. Typically recursive = TRUE.

Value

A LAScatalog object

Examples

A single file LAScatalog using data provided with the package
LASfile <- system.file("extdata"”, "Megaplot.laz"”, package="1idR")
ctg = readLAScatalog(LASfile)

plot(ctg)

readlLASheader 107

Not run:
ctg <- readlLAScatalog("/path/to/a/folder/of/las/files")

Internal engine will sequentially process chunks of size 500 x 500 m
opt_chunk_size(ctg) <- 500

Internal engine will align the 500 x 500 m chunks on x = 250 and y = 300
opt_alignment(ctg) <- c(250, 300)

Internal engine will not display a progress estimation
opt_progress(ctg) <- FALSE

Internal engine will not return results into R. Instead it will write results in files.
opt_output_files(ctg) <- "/path/to/folder/templated_filename_{XBOTTOM}_{ID}"

More details in the documentation
help("LAScatalog-class”, "1lidR")
help("”catalog_options_tools"”, "l1idR")

End(Not run)

readLASheader Read a .las or .laz file header

Description

Reads a .las or .laz file header into an object of class LASheader. This function strictly reads the
header while the function readLAS can alter the header to fit the actual data loaded.

Usage
readLASheader (file)

Arguments

file characters. Path to one file.

Value

A LASheader object

Examples

LASfile <- system.file("extdata”, "Megaplot.laz"”, package="1idR")
header = readLASheader (LASfile)

print(header)
plot(header)

Not run:
plot(header, mapview = TRUE)
End(Not run)

108 retrieve_pulses

retrieve_pulses Retrieve individual pulses, flightlines or scanlines

Description

Retrieve each individual pulse, individual flightline or individual scanline and assigns a number to
each point. The LAS object must be properly populated according to LAS specifications otherwise
users could find unexpected outputs.

Usage

retrieve_pulses(las)
retrieve_flightlines(las, dt = 30)

retrieve_scanlines(las)

Arguments

las A LAS object

dt numeric. The threshold time-lag used to retrieve flightlines
Details

retrieve_pulses Retrieves each individual pulse. It uses GPS time. An attribute pulselD is
added in the LAS object

retrieve_scanlines Retrieves each individual scanline. When data are sampled according to a
saw-tooth pattern (oscillating mirror), a scanline is one line, or row of data. The function relies
on the GPS field time to order the data. Then, the ScanDirectionFlag attribute is used to
retrieve each scanline. An attribute scanlinelD is added in the LAS object

retrieve_flightlines Retrieves each individual flightline. It uses GPS time. In a continuous
dataset, once points are ordered by GPS time, the time between two consecutive points does
not exceed a few milliseconds. If the time between two consecutive points is too long it means
that the second point is from a different flightline. The default threshold is 30 seconds. An
attribute flightlinelID is added in the LAS object.

Value

An object of class LAS

Examples

LASfile <- system.file("extdata”, "Megaplot.laz"”, package="1idR")
las <- readLAS(LASfile)

las <- retrieve_pulses(las)
las

las <- retrieve_flightlines(las)
#plot(las, color = "flightlineID")

Roussel2020 109

Roussel2020 Sensor tracking algorithm

Description

This function is made to be used in track_sensor. It implements an algorithm from Roussel et al.
2020 (see reference) for sensor tracking using multiple returns to estimate the positioning of the
sensor by computing the intersection in space of the lines passing through the first and last returns.

Usage

Roussel2020@(interval = 0.5, pmin = 50)

Arguments
interval numeric. Interval used to bin the gps times and group the pulses to compute a
position at a given timepoint t.
pmin integer. Minimum number of pulses needed to estimate a sensor position. For
a given interval, the sensor position is not computed if the number of pulses is
lower than pmin.
Details

When multiple returns from a single pulse are detected, the sensor computes their positions as
being in the center of the footprint and thus all aligned. Because of that behavior, a line drawn
between and beyond those returns must cross the sensor. Thus, several consecutive pulses emitted
in a tight interval (e.g. 0.5 seconds) can be used to approximate an intersection point in the sky
that corresponds to the sensor position given that the sensor carrier hasn’t moved much during this
interval. A weighted least squares method gives an approximation of the intersection by minimizing
the squared sum of the distances between the intersection point and all the lines.

References

Roussel Jean-Romain, Bourdon Jean-Francois, Achim Alexis, (2020) Range-based intensity nor-
malization of ALS data over forested areas using a sensor tracking method from multiple returns
(preprint) Retrieved from eartharxiv.org/k32qw

Examples

A valid file properly populated
LASfile <- system.file("extdata”, "Topography.laz", package="1idR")
las = readLAS(LASfile)

pmin = 15 because it is an extremely tiny file

strongly decimated to reduce its size. There are

actually few multiple returns

flightlines <- track_sensor(las, Roussel2020(pmin = 15))

plot(las@header)
plot(flightlines, add = TRUE)

110 rumple_index

rumple_index Rumple index of roughness

Description

Computes the roughness of a surface as the ratio between its area and its projected area on the
ground. If the input is a gridded object (raster) the function computes the surfaces using Jenness’s
algorithm (see references). If the input is a point cloud the function uses a Delaunay triangulation
of the points and computes the area of each triangle.

Usage
rumple_index(x, y = NULL, z = NULL, ...)
Arguments
X A ’RasterLayer’ or a vector of x point coordinates.
y numeric. If x is a vector of coordinates: the associated y coordinates.
z numeric. If x is a vector of coordinates: the associated z coordinates.
unused
Value

numeric. The computed Rumple index.

References

Jenness, J. S. (2004). Calculating landscape surface area from digital elevation models. Wildlife
Society Bulletin, 32(3), 829-839.

Examples

X <- runif(20, 0, 100)
y <- runif(20, 0, 100)

Perfectly flat surface, rumple_index = 1
z <- rep(10, 20)
rumple_index(x, vy, z)

Rough surface, rumple_index > 1
z <- runif(20, 0, 10)
rumple_index(x, vy, z)

Rougher surface, rumple_index increases
z <- runif(20, 0, 50)
rumple_index(x, y, z)

Measure of roughness is scale-dependent
rumple_index(x, y, z)

rumple_index(x/1@, y/10, z)

Use with a canopy height model

segment_shapes 111

LASfile <- system.file("extdata”, "Megaplot.laz", package="1idR")
las <- readLAS(LASfile)

chm <- grid_canopy(las, 2, p2r())

rumple_index(chm)

segment_shapes Estimation of the shape of the points neighborhood

Description

Computes the eigenvalues of the covariance matrix of the neighbouring points using several pos-
sible algorithms. The points that meet a given criterion based on the eigenvalue are labeled as
approximately coplanar/colinear or any other shape supported.

Usage

segment_shapes(las, algorithm, attribute = "Shape”, filter = NULL)

Arguments
las an object of class LAS
algorithm An algorithm for shape detection. 1idR has: shp_plane, shp_hplane and shp_line.
attribute character. The name of the new column to add into the LAS object.
filter formula of logical predicates. Enables the function to run only on points of
interest in an optimized way. See also examples.
Value

A LAS object with a new column named after the argument attribute that indicates those points
that are part of a neighborhood that is approximately of the shape searched (TRUE) or not (FALSE).

Examples

Not run:
LASfile <- system.file("extdata”, "Megaplot.laz", package="1idR")
las <- readlLAS(LASfile)

las <- segment_shapes(las, shp_plane(k = 15), "Coplanar")
#plot(las, color = "Coplanar")

Drop ground point at runtime
las <- segment_shapes(las, shp_plane(k = 15), "Coplanar”, filter = ~Classification != 2L)

#plot(las, color = "Coplanar")

End(Not run)

112 segment_snags

segment_snags Snag classification

Description

Snag classification/segmentation using several possible algorithms (see details). The function at-
tributes a number identifying a snag class (snagCls attribute) to each point of the point cloud. The
classification/segmentation is done at the point cloud level and currently only one algorithm imple-
mented, which uses LiDAR intensity thresholds and specified neighborhoods to differentiate bole
and branch from foliage points (see details).

Usage
segment_snags(las, algorithm, attribute = "snagCls")
Arguments
las An object of class LAS or LAScatalog.
algorithm function. An algorithm for snag segmentation. 1idR has wing2015.
attribute character. The returned LAS object automatically has a new attribute (a new
column). This parameter is the name of this new attribute.
Value

If the input is a LAS object, return a LAS object. If the input is a LAScatalog, returns a LAScatalog.

Working with a LAScatalog

This section appears in each function that supports a LAScatalog as input.

In 1idR when the input of a function is a LAScatalog the function uses the LAScatalog processing
engine. The user can modify the engine options using the available options. A careful reading of
the engine documentation is recommended before processing LAScatalogs. Each 1idR function
should come with a section that documents the supported engine options.

The LAScatalog engine supports .lax files that significantly improve the computation speed of
spatial queries using a spatial index. Users should really take advantage a . lax files, but this is not
mandatory.

Supported processing options

Supported processing options for a LAScatalog (in bold). For more details see the LAScatalog
engine documentation:
* chunk size: How much data is loaded at once.

* chunk buffer*: Mandatory to get a continuous output without edge effects. The buffer is
always removed once processed and will never be returned either in R or in files.

* chunk alignment: Align the processed chunks.

* progress: Displays a progression estimation.

segment_trees 113

* output files*: Mandatory because the output is likely to be too big to be returned in R and
needs to be written in las/laz files. Supported templates are {XLEFT}, {XRIGHT}, { YBOTTOM},
{YTOP}, {XCENTER}, {YCENTER} {ID} and, if chunk size is equal to O (processing by file),
{ORIGINALFILENAME?}

* select: The function will write files equivalent to the original ones. Thus select = "*" and
cannot be changed.

* filter: Read only points of interest.

Examples

Not run:
LASfile <- system.file("extdata”, "MixedConifer.laz", package="1idR")
las <- readlLAS(LASfile, select = "xyzi", filter="-keep_first"”) # Wing also included -keep_single

For the Wing2015 method, supply a matrix of snag BranchBolePtRatio conditional
assessment thresholds (see Wing et al. 2015, Table 2, pg. 172)
bbpr_thresholds <- matrix(c(0.80, 0.80, 0.70,

0.85, 0.85, 0.60,

0.80, 0.80, 0.60,

0.90, 0.90, 0.55),

nrow =3, ncol = 4)

Run snag classification and assign classes to each point
las <- segment_snags(las, wing2015(neigh_radii = c(1.5, 1, 2), BBPRthrsh_mat = bbpr_thresholds))

Plot it all, tree and snag points...
plot(las, color="snagCls", colorPalette = rainbow(5))

Filter and plot snag points only
snags <- filter_poi(las, snagCls > 0)

plot(snags, color="snagCls", colorPalette = rainbow(5)[-11)

Wing et al's (2015) methods ended with performing tree segmentation on the
classified and filtered point cloud using the watershed method

End(Not run)

segment_trees Individual tree segmentation

Description

Individual tree segmentation with several possible algorithms. The returned point cloud has a new
extra byte attribute named after the parameter attribute independently of the algorithm used.

Usage

segment_trees(las, algorithm, attribute = "treelID", uniqueness = "incremental”)

114 segment_trees

Arguments
las An object of class LAS or LAScatalog.
algorithm function. An algorithm of individual tree segmentation. 1idR has: dalponte2016,
watershed, 112012 and silva2016. More experimental algorithms may be found
in the package lidRplugins.
attribute character. The returned LAS object as a new extra byte attribute (in a new
column). This parameter controls the name of the new attribute. Default is
"treelD".
uniqueness character. A method to compute a unique ID. Can be ’incremental’, ’gpstime’
or ’bitmerge’. See section 'Uniqueness’. This feature must be considered as
“experimental’.
Value

If the input is a LAS object, return a LAS object. If the input is a LAScatalog, returns a LAScatalog.

Uniqueness

By default the tree IDs are numbered from 1 to n, n being the number of trees found. The problem
with such incremental numbering is that, while it ensures a unique ID is assigned for each tree
in a given point-cloud, it also guarantees duplication of tree IDs in different tiles or chunks when
processing a LAScatalog. This is because each file is processed independently of the others and
potentially in parallel on different computers. Thus, the index always restarts at 1 on each file or
chunk. Worse, in a tree segmentation process, a tree that is located exactly between 2 files will have
two different IDs for its two halves.

This is why we introduced some uniqueness strategies that are all imperfect and that should be seen
as experimental. Please report any troubleshooting. Using a uniqueness-safe strategy ensures that
trees from different files will not share the same IDs. Moreover, it also means that two halves of a
tree on the edge of a processing chunk will be assigned the same ID.

incremental Number from O to n. This method does not ensure uniqueness of the IDs. This is the
legacy method.

gpstime This method uses the gpstime of the highest point of a tree (apex) to create a unique ID.
This ID is not an integer but a 64-bit decimal number which is suboptimal but at least it is
exepected to be unique if the gpstime attribute is consistent across files. If inconsistencies
with gpstime are reported (for example gpstime records the week time and was reset to 0 in
a coverage that takes more than a week to complete), there is a (low) probability to get ID
attribution errors.

bitmerge This method uses the XY coordinates of the highest point (apex) of a tree to create a
single number with a bitwise operation. First, XY coordinates are converted to integers using
the scales and offsets of the point-cloud. Then the ID is computed with X * 2432 + Y to
combine twice the 32-bits of information into a 64-bit number. For example, if the apex is
at (10.32, 25.64) with a scale factor of 0.01 and an offset of 0, the integer coordinates are X
= 1032 and Y = 2564 and the ID is 4432406252036. Such methods return a 64-bit integer
but because 64-bit integers do not exist in R it is converted to a 64-bit decimal number that is
guaranteed to be unique if all files have the same offsets and scale factors.

All the proposed options are suboptimal because they either do not guarantee uniqueness in all
cases (inconsistencies in the collection of files), or they imply that IDs are based on non-integers or
meaningless numbers. But at the very least we expect this to work for simple cases.

https://github.com/Jean-Romain/lidRplugins

set_lidr_threads 115

Working with a LAScatalog

This section appears in each function that supports a LAScatalog as input.

In 1idR when the input of a function is a LAScatalog the function uses the LAScatalog processing
engine. The user can modify the engine options using the available options. A careful reading of
the engine documentation is recommended before processing LAScatalogs. Each 1idR function
should come with a section that documents the supported engine options.

The LAScatalog engine supports .lax files that significantly improve the computation speed of
spatial queries using a spatial index. Users should really take advantage a . lax files, but this is not
mandatory.

Supported processing options

Supported processing options for a LAScatalog (in bold). For more details see the LAScatalog
engine documentation:
* chunk size: How much data is loaded at once.

e chunk buffer*: Mandatory to get a continuous output without edge effects. The buffer is
always removed once processed and will never be returned either in R or in files.

* chunk alignment: Align the processed chunks.
* progress: Displays a progression estimation.

 output files*: Mandatory because the output is likely to be too big to be returned in R and
needs to be written in las/laz files. Supported templates are {XLEFT}, {XRIGHT}, {YBOTTOM},
{YTOP}, {XCENTER}, {YCENTER} {ID} and, if chunk size is equal to O (processing by file),
{ORIGINALFILENAME?}.

* select: The function will write files equivalent to the original ones. Thus select = "*" and
cannot be changed.

« filter: Read only points of interest.

Examples

LASfile <- system.file("extdata”, "MixedConifer.laz", package="1idR")
las <- readLAS(LASfile, select = "xyz", filter = "-drop_z_below 0")

Using Li et al. (2012)
las <- segment_trees(las, 1i2012(R = 3, speed_up = 5))
plot(las, color = "treeID")

set_lidr_threads Set or get number of threads that lidR should use

Description

Set and get number of threads to be used in lidR functions that are parallelized with OpenMP.
0 means to utilize all CPU available. get_lidr_threads() returns the number of threads that
will be used. This affects 1idR package but also the data.table package by internally calling
setDTthreads because several functions of 1idR rely on data. table but it does not change R itself
or other packages using OpenMP.

116 shape_detection

Usage

set_lidr_threads(threads)

get_lidr_threads()

Arguments
threads Positve scala. Default O means use all CPU available. Values > 1 mean using n
cores, values in]0, 1[mean using a fraction of the cores e.g. 0.5 = half.
See Also

lidR-parallelism

shape_detection Algorithms for shape detection of the local point neighborhood

Description

These functions are made to be used in segment_shapes. They implement algorithms for local
neighborhood shape estimation.

Usage
shp_plane(thl = 25, th2 =6, k = 8)

shp_hplane(th1l = 25, th2 = 6, th3 = 0.98, k = 8)
shp_line(thl = 10, k = 8)

Arguments

th1, th2, th3 numeric. Threshold values (see details)

k integer. Number of neighbours used to estimate the neighborhood.

Details

In the following, al, a2, a3 denote the eigenvalues of the covariance matrix of the neighbouring
points in ascending order. th1,th2,th3 denote a set of threshold values. Points are labelled TRUE if
they meet the following criteria. FALSE otherwise.

shp_plane Detection of plans based on criteria defined by Limberger & Oliveira (2015) (see refer-
ences). A point is labelled TRUE if the neighborhood is approximately planar, that is:

a2 > (thl x al)and(th2 * a2) > a3

shp_hplane The same as ’plane’ but with an extra test on the orientation of the Z vector of the
principal components to test the horizontality of the surface.

a2 > (thl x al)and(th2 x a2) > a3and|Z| > th3

In theory IZI should be exactly equal to 1. In practice 0.98 or 0.99 should be fine

silva2016 117
shp_line Detection of lines inspired by the Limberger & Oliveira (2015) criterion. A point is
labelled TRUE if the neighborhood is approximately linear, that is:

thl x a2 < a3andthl x al < a3

References

Limberger, F. A., & Oliveira, M. M. (2015). Real-time detection of planar regions in unorganized
point clouds. Pattern Recognition, 48(6), 2043—2053. https://doi.org/10.1016/j.patcog.2014.12.020

silva2016 Individual Tree Segmentation Algorithm

Description

This functions is made to be used in segment_trees. It implements an algorithm for tree segmenta-
tion based on the Silva et al. (2016) article (see reference). This is a simple method based on seed +
voronoi tesselation (equivalent to nearest neighbour). This algorithm is implemented in the package
rLiDAR. This version is not the version from rLiDAR. It is code written from the original article by
the lidR authors and is considerably (between 250 and 1000 times) faster.

Usage
silva2016(chm, treetops, max_cr_factor = 0.6, exclusion = 0.3, ID = "treelID")
Arguments
chm RasterLayer. Image of the canopy. Can be computed with grid_canopy or read
from an external file.
treetops SpatialPointsDataFrame. Can be computed with find_trees or read from an

external shapefile.

max_cr_factor numeric. Maximum value of a crown diameter given as a proportion of the tree
height. Default is 0.6, meaning 60% of the tree height.

exclusion numeric. For each tree, pixels with an elevation lower than exclusion multi-
plied by the tree height will be removed. Thus, this number belongs between 0
and 1.

ID character. If the SpatialPointsDataFrame contains an attribute with the ID for

each tree, the name of this column. This way, original IDs will be preserved. If
there is no such data trees will be numbered sequentially.

Details

Because this algorithm works on a CHM only there is no actual need for a point cloud. Sometimes
the user does not even have the point cloud that generated the CHM. 1idR is a point cloud-oriented
library, which is why this algorithm must be used in segment_trees to merge the result into the point
cloud. Howeyver, the user can use this as a stand-alone function like this:

chm = raster("file/to/a/chm/")
ttops = find_trees(chm, 1mf(3))
crowns = silva2016(chm, ttops)()

118 smooth_height

References

Silva, C. A., Hudak, A. T., Vierling, L. A., Loudermilk, E. L., O’Brien, J. J., Hiers, J. K., Khos-
ravipour, A. (2016). Imputation of Individual Longleaf Pine (Pinus palustris Mill.) Tree At-
tributes from Field and LiDAR Data. Canadian Journal of Remote Sensing, 42(5), 554-573.
https://doi.org/10.1080/07038992.2016.1196582.

See Also

Other individual tree segmentation algorithms: dalponte2016(), 112012(), watershed()

Other raster based tree segmentation algorithms: dalponte2016(), watershed()

Examples

LASfile <- system.file("extdata”, "MixedConifer.laz", package="1idR")
poi <- "-drop_z_below @ -inside 481280 3812940 481320 3812980"

las <- readLAS(LASfile, select = "xyz", filter = poi)

col <- pastel.colors(200)

chm <- grid_canopy(las, res = 0.5, p2r(0.3))
ker <- matrix(1,3,3)
chm <- raster::focal(chm, w = ker, fun = mean, na.rm = TRUE)

ttops <- find_trees(chm, 1mf(4, 2))
las <- segment_trees(las, silva2016(chm, ttops))
#plot(las, color = "treeID"”, colorPalette = col)

smooth_height Smooth a point cloud

Description

Point cloud-based smoothing algorithm. Two methods are available: average within a window and
Gaussian smooth within a window. The attribute Z of the returned LAS object is the smoothed Z.
A new attribute Zraw is added to store the original values and can be used to restore the point cloud
with unsmooth_height.

Usage
smooth_height(
las,
size,
method = c("average”, "gaussian"),
shape = c("circle", "square"),
sigma = size/6

)

unsmooth_height(las)

sor 119

Arguments

las An object of class LAS

size numeric. The size of the windows used to smooth.

method character. Smoothing method. Can be ’average’ or ’gaussian’.

shape character. The shape of the windows. Can be circle or square.

sigma numeric. The standard deviation of the gaussian if the method is gaussian.
Details

This method does not use raster-based methods to smooth the point cloud. This is a true point cloud
smoothing. It is not really useful by itself but may be interesting in combination with filters such as
filter_surfacepoints, for example to develop new algorithms.

Value

An object of the class LAS.

Examples

LASfile <- system.file("extdata”, "Megaplot.laz"”, package="1idR")
las <- readLAS(LASfile, select = "xyz")

las <- filter_surfacepoints(las, 1)
#plot(las)

las <- smooth_height(las, 5, "gaussian”, "circle”, sigma = 2)
#plot(las)

las <- unsmooth_height(las)
#plot(las)

sor Noise Segmentation Algorithm

Description

This function is made to be used in classify_noise. It implements an algorithm for outliers (noise)
segmentation based on Statistical Outliers Removal (SOR) methods first described in the PCL li-
brary and also implemented in CloudCompare (see references). For each point, it computes the
mean distance to all its k-nearest neighbours. The points that are farther than the average distance
plus a number of times (multiplier) the standard deviation are considered noise.

Usage

sor(k = 10, m = 3, quantile = FALSE)

120 stdmetrics

Arguments
k numeric. The number of neighbours
m numeric. Multiplier. The maximum distance will be: avg distance + m * std de-
viation. If quantile = TRUE, m becomes the quantile threshold.
quantile boolean. Modification of the original SOR to use a quantile threshold instead
of a standard deviation multiplier. In this case the maximum distance will be:
quantile(distances,probs =m)
References

https://pointclouds.org/documentation/tutorials/statistical_outlier.html
https://www.cloudcompare.org/doc/wiki/index.php?title=SOR_filter

See Also

Other noise segmentation algorithms: ivf ()

Examples

LASfile <- system.file("extdata”, "Topography.laz", package="1idR")
las <- readLAS(LASfile, filter = "-inside 273450 5274350 273550 5274450")

Add some artificial outliers because the original
dataset is 'clean’

set.seed(314)

id = round(runif(20, @, npoints(las)))

set.seed(42)

err = runif(20, -50, 50)

las$z[id] = las$z[id] + err

las <- classify_noise(las, sor(15,7))

stdmetrics Predefined standard metrics functions

Description

Predefined metrics functions intendend to me used in *x_metrics function such as grid_metrics,
hexbin_metrics, cloud_metrics, tree_metrics, voxel_metrics or point_metrics. Each function comes
with a convenient shortcuts for lazy coding. The 1idR package aims to provide an easy way to
compute user-defined metrics rather than to provide them. However, for efficiency and to save time,
sets of standard metrics have been predefined (see details). Every function can be computed by
every *_metrics functions however stdmetrics are more pixel-based metrics, stdtreemetrics
are more tree-based metrics and stdshapemetrics are more point-based metrics. For example the
metric zmean computed by stdmetrics_z makes sense when computed at the pixel level but brings
no information at the voxel level.

stdmetrics

Usage

stdmetrics(x, y, z, i, rn, class, dz

stdmetrics_z(z, dz = 1, th = 2, zmin

121

1, th = 2, zmin = 0)

0)

stdmetrics_i(i, z = NULL, class = NULL, rn = NULL)

stdmetrics_rn(rn, class = NULL)

stdmetrics_pulse(pulselID, rn)

stdmetrics_ctrl(x, y, z)

stdtreemetrics(x, y, z)

stdshapemetrics(x, y, z)

.stdmetrics

.stdmetrics_z

.stdmetrics_i

.stdmetrics_rn

.stdmetrics_pulse

.stdmetrics_ctrl

.stdtreemetrics
.stdshapemetrics
Arguments
X, Yy, z,1 Coordinates of the points, Intensity
rn, class ReturnNumber, Classification
dz numeric. Layer thickness metric entropy
th numeric. Threshold for metrics pzabovex. Can be a vector to compute with
several thresholds.
zmin numeric. Lower bound of the integral for zpcumx metrics. See wiki page and
Wood et al. (2008) reference.
pulselD The number referencing each pulse
Format

An object of class formula of length 2.

An object of class formula of length 2.

An object of class formula of length 2.

An object of class formula of length 2.

https://github.com/Jean-Romain/lidR/wiki/stdmetrics

122

stdmetrics

An object of class formula of length 2.

An object of class formula of length 2.

An object of class formula of length 2.

An object of class formula of length 2.

Details

The function names, their parameters and the output names of the metrics rely on a nomenclature
chosen for brevity:

z: refers to the elevation

i: refers to the intensity

rn: refers to the return number

q: refers to quantile

a: refers to the ScanAngleRank or ScanAngle
n: refers to a number (a count)

p: refers to a percentage

For example the metric named zq60 refers to the elevation, quantile, 60 i.e. the 60th percentile of
elevations. The metric pground refers to a percentage. It is the percentage of points classified as
ground. The function stdmetric_i refers to metrics of intensity. A description of each existing
metric can be found on the lidR wiki page.

Some functions have optional parameters. If these parameters are not provided the function com-
putes only a subset of existing metrics. For example, stdmetrics_i requires the intensity values,
but if the elevation values are also provided it can compute additional metrics such as cumulative
intensity at a given percentile of height.

Each function has a convenient associated variable. It is the name of the function, with a dot
before the name. This enables the function to be used without writing parameters. The cost of such
a feature is inflexibility. It corresponds to a predefined behaviour (see examples)

stdmetrics isacombination of stdmetrics_ctrl + stdmetrics_z + stdmetrics_i + stdmetrics_rn

stdtreemetrics is a special function that works with tree_metrics. Actually, it won’t fail with

other functions but the output makes more sense if computed at the individual tree level.

stdshapemetrics is a set of eigenvalue based feature described in Lucas et al, 2019 (see refer-

ences).

References

M. Woods, K. Lim, and P. Treitz. Predicting forest stand variables from LiDAR data in the Great
Lakes — St. Lawrence forest of Ontario. The Forestry Chronicle. 84(6): 827-839. https://doi.org/10.5558/tfc84827-

6

Lucas, C., Bouten, W., Koma, Z., Kissling, W. D., & Seijmonsbergen, A. C. (2019). Identification
of Linear Vegetation Elements in a Rural Landscape Using LiDAR Point Clouds. Remote Sensing,
11(3), 292.

See Also

cloud_metrics grid_metrics hexbin_metrics voxel_metrics tree_metrics point_metrics

https://github.com/Jean-Romain/lidR/wiki/stdmetrics

tin 123

Examples

LASfile <- system.file("extdata”, "Megaplot.laz"”, package="1idR")
las <- readLAS(LASfile, select = "%", filter = "-keep_random_fraction 0.5")

All the predefined metrics
ml <- grid_metrics(las, ~stdmetrics(X,Y,Z,Intensity,ReturnNumber,Classification,dz=1), res = 40)

Convenient shortcut
m2 <- grid_metrics(las, .stdmetrics, res = 40)

Basic metrics from intensities
m3 <- grid_metrics(las, ~stdmetrics_i(Intensity), res = 40)

All the metrics from intensities
m4 <- grid_metrics(las, ~stdmetrics_i(Intensity, Z, Classification, ReturnNumber), res = 40)

Convenient shortcut for the previous example
m5 <- grid_metrics(las, .stdmetrics_i, res = 40)

Works also with cloud_metrics and hexbin_metrics
m6 <- cloud_metrics(las, .stdmetrics)
m7 <- hexbin_metrics(las, .stdmetrics)

Combine some predefined function with your own new metrics
Here convenient shortcuts are no longer usable.
myMetrics = function(z, i, rn)
{
first <-rn == 1L
zfirst <- z[first]
nfirst <- length(zfirst)
above2 <- sum(z > 2)

x <- above2/nfirstx100

User's metrics
metrics <- list(

above2abovenist = x, # Num of returns above 2 divided by num of 1st returns
zimean = mean(z*i), # Mean products of z by intensity
zsqgmean = sqrt(mean(z”2)) # Quadratic mean of z

)
Combined with standard metrics
return(c(metrics, stdmetrics_z(z)))
mi1@ <- grid_metrics(las, ~myMetrics(Z, Intensity, ReturnNumber), res = 40)
Users can write their own convenient shorcuts like this:

.myMetrics = ~myMetrics(Z, Intensity, ReturnNumber)
ml1 <- grid_metrics(las, .myMetrics, res = 40)

tin Spatial Interpolation Algorithm

124

Description

track sensor

This function is made to be used in grid_terrain or normalize_height. It implements an algorithm
for spatial interpolation. Spatial interpolation is based on a Delaunay triangulation, which performs
a linear interpolation within each triangle. There are usually a few points outside the convex hull,
determined by the ground points at the very edge of the dataset, that cannot be interpolated with a
triangulation. Extrapolation is done using the nearest neighbour approach.

Usage

tin(..., extrapolate = knnidw(3, 1, 50))

Arguments

extrapolate

See Also

unused

There are usually a few points outside the convex hull, determined by the ground
points at the very edge of the dataset, that cannot be interpolated with a trian-
gulation. Extrapolation is done using the nearest neighbour approach by default
using knnidw.

Other spatial interpolation algorithms: knnidw(), kriging()

Examples

LASfile <- system.file("extdata”, "Topography.laz", package="1idR")
las = readlLAS(LASfile, filter = "-inside 273450 5274350 273550 5274450")

#plot(las)

dtm = grid_terrain(las, algorithm = tin())

plot(dtm, col = terrain.colors(50))

#plot_dtm3d(dtm)

track_sensor

Reconstruct the trajectory of the LiDAR sensor using multiple returns

Description

Use multiple returns to estimate the positioning of the sensor by computing the intersection in space
of the line passing through the first and last returns. To work, this function requires a dataset where
the ’gpstime’, ’ReturnNumber’, "NumberOfReturns’ and "PointSourcelD’ attributes are properly
populated, otherwise the output may be incorrect or weird. For LAScatalog processing it is recom-
mended to use large chunks and large buffers (e.g. a swath width). The point cloud must not be

normalized.

track_sensor 125

Usage

track_sensor(
las,
algorithm,
extra_check = TRUE,
thin_pulse_with_time = 0.001,
multi_pulse = FALSE

)
Arguments
las An object of class LAS or LAScatalog.
algorithm function. An algorithm to compute sensor tracking. l1idR implements Rous-
sel2020 and Gatziolis2019 (see respective documentation and examples).
extra_check boolean. Datasets are rarely perfectly populated, leading to unexpected errors.

Time-consuming checks of data integrity are performed. These checks can be
skipped as they account for an significant proportion of the computation time.
See also section "Tests of data integrity’.

thin_pulse_with_time
numeric. In practice, it is not useful to compute the position using all multiple re-
turns. It is more computationally demanding but not necessarily more accurate.
This keeps only one pulse every x seconds. Set to O to use all multiple returns.
Use 0 if the file has already been read with filter = "-thin_pulses_with_time
0.001".

multi_pulse logical. TRUE only for systems with multiple pulses. Pulse ID must be recorded
in the UserData attribute.

Value

A SpatialPointsDataFrame with the Z elevation stored in the table of attributes. Information about
the time interval and the score of the positioning (according to the method used) are also in the table
of attributes.

Test of data integrity

In theory, sensor tracking is a simple problem to solve as long as each pulse is properly identified
from a well-populated dataset. In practice, many problems may arise from datasets that are pop-
ulated incorrectly. Here is a list of problems that may happen. Those with a * denote problems
already encountered and internally checked to remove weird points:

 “gpstime’ does not record the time at which pulses were emitted and thus pulses are not iden-
tifiable

* *A pulse (two or more points that share the same gpstime) is made of points from different
flightlines (different PointSourcelD). This is impossible and denotes an improperly populated
PointSourcelD attribute.

e ’ReturnNumber’ and *NumberOfReturns’ are wrongly populated with either some Return-

Number > NumberOfReturn or several first returns by pulses

For a given time interval, when weird points are not filtered, the position is not computed for this
interval.

126 track_sensor

Working with a LAScatalog

This section appears in each function that supports a LAScatalog as input.

In 1idR when the input of a function is a LAScatalog the function uses the LAScatalog processing
engine. The user can modify the engine options using the available options. A careful reading of
the engine documentation is recommended before processing LAScatalogs. Each 1idR function
should come with a section that documents the supported engine options.

The LAScatalog engine supports .lax files that significantly improve the computation speed of
spatial queries using a spatial index. Users should really take advantage a . lax files, but this is not
mandatory.

Supported processing options

Supported processing options for a LAScatalog (in bold). For more details see the LAScatalog
engine documentation:
* chunk size: How much data is loaded at once.

e chunk buffer*: Mandatory to get a continuous output without edge effects. The buffer is
always removed once processed and will never be returned either in R or in files.

* chunk alignment: Align the processed chunks.
* progress: Displays a progression estimation.

* output_files: Saving intermediate results is disabled in ’sensor_tracking’ because the output
must be post-processed as a whole.

* laz_compression: write las or laz files
* select: is not supported. It is set by default to "xyzrntp"

« filter: Read only points of interest. By default it uses "-drop_single" and "-thin_pulses_with_time"
to reduce the number of points loaded.

Author(s)

Jean-Francois Bourdon & Jean-Romain Roussel

Examples

A valid file properly populated
LASfile <- system.file("extdata”, "Topography.laz", package="1idR")
las = readLAS(LASfile,

select = "xyzrntp",

filter = "-drop_single -thin_pulses_with_time 0.001")
#plot(las)

pmin = 15 because it is an extremely small file

strongly decimated to reduce its size. There are

actually few multiple returns

flightlines <- track_sensor(las, Roussel2020(pmin = 15))

plot(las@header)
plot(flightlines, add = TRUE)

tree_metrics 127

#x <- plot(las)
#add_flightlines3d(x, flightlines, radius = 10)

Not run:

With a LAScatalog "-drop_single” and "-thin_pulses_with_time"
are used by default

ctg = readLAScatalog("folder/")

flightlines <- track_sensor(ctg, Roussel2020(pmin = 15))
plot(flightlines)

End(Not run)

tree_metrics Compute metrics for each tree

Description

Once the trees are segmented, i.e. attributes exist in the point cloud that reference each tree, com-
putes a set of user-defined descriptive statistics for each individual tree. This is the "tree version" of
grid_metrics.

Usage
tree_metrics(las, func = ~max(Z), attribute = "treeID")
Arguments
las An object of class LAS or LAScatalog.
func formula. An expression to be applied to each tree. It works like in grid_metrics
voxel_metrics or delineate_crowns and computes, in addition to tree locations a
set of metrics for each tree.
attribute character. The column name of the attribute containing tree IDs. Default is
"treeID”
Details

By default the function computes the xyz-coordinates of the highest point of each tree and uses xy
as tree coordinates in SpatialPoinsDataFrame. z is stored in the table of attributes along with the
id of each tree. All the other attributes are user-defined attributes:

The following existing functions contain a small set of pre-defined metrics:
¢ stdmetrics_tree

Users must write their own functions to create their own metrics. tree_metrics will dispatch the
LiDAR data for each segmented tree in the user-defined function. Functions are defined without the
need to consider each segmented tree i.e. only the point cloud (see examples).

Value

A SpatialPoinsDataFrame that references the xy-position with a table of attributes that associates
the z-elevation (highest points) of the trees and the id of the trees, plus the metrics defined by the
user.

128 tree_metrics

Working with a LAScatalog

This section appears in each function that supports a LAScatalog as input.

In 1idR when the input of a function is a LAScatalog the function uses the LAScatalog processing
engine. The user can modify the engine options using the available options. A careful reading of
the engine documentation is recommended before processing LAScatalogs. Each 1idR function
should come with a section that documents the supported engine options.

The LAScatalog engine supports .lax files that significantly improve the computation speed of
spatial queries using a spatial index. Users should really take advantage a . lax files, but this is not
mandatory.

Supported processing options

Supported processing options for a LAScatalog (in bold). For more details see the LAScatalog
engine documentation:
* chunk size: How much data is loaded at once.

e chunk buffer*: Mandatory to get a continuous output without edge effects. The buffer is
always removed once processed and will never be returned either in R or in files.

* chunk alignment: Align the processed chunks.
* progress: Displays a progression estimation.

 output files: Supported templates are {XLEFT}, {XRIGHT}, {YBOTTOM}, {YTOP}, {XCENTER},
{YCENTER} {ID} and, if chunk size is equal to O (processing by file), {ORIGINALFILENAME}.

* select: Load only attributes of interest.

* filter: Read only points of interest.

See Also

Other metrics: cloud_metrics(), grid_metrics(), hexbin_metrics(), point_metrics(), voxel_metrics()

Examples

LASfile <- system.file("extdata"”, "MixedConifer.laz"”, package="1idR")
las = readlLAS(LASfile, filter = "-drop_z_below 0")

NOTE: This dataset is already segmented
plot(las, color = "treeID"”, colorPalette = pastel.colors(200))

Default computes only Z max
metrics = tree_metrics(las)

User-defined metrics - mean height and mean intensity for each tree
metrics = tree_metrics(las, ~list(Zmean = mean(Z), Imean = mean(Intensity)))

Define your own new metrics function
myMetrics = function(z, i)
{
metrics = list(
imean = mean(i),
imax = max(i),

util_makeZhangParam 129
npoint = length(z)
)

return(metrics)

3
metrics = tree_metrics(las, ~myMetrics(Z, Intensity))

predefined metrics (see ?stdmetrics)
metrics = tree_metrics(las, .stdtreemetrics)

util_makeZhangParam Parameters for progressive morphological filter

Description

The function classify_ground with the progressive morphological filter allows for any sequence of
parameters. This function enables computation of the sequences using equations (4), (5) and (7)
from Zhang et al. (see reference and details).

Usage
util_makeZhangParam(
b =2,
dho = 0.5,
dhmax = 3,
s =1,
max_ws = 20,
exp = FALSE
)
Arguments
b numeric. This is the parameter b in Zhang et al. (2003) (eq. 4 and 5).
dho numeric. This is dhg in Zhang et al. (2003) (eq. 7).
dhmax numeric. This is dh,, 4, in Zhang et al. (2003) (eq. 7).
s numeric. This is s in Zhang et al. (2003) (eq. 7).
max_ws numeric. Maximum window size to be used in filtering ground returns. This
limits the number of windows created.
exp logical. The window size can be increased linearly or exponentially (eq. 4 or 5).
Details

In the original paper the windows size sequence is given by eq. 4 or 5:

wk:ka+1

or

130 VCI

wk:2bk+1

In the original paper the threshold sequence is given by eq. 7:
thy = s * (wg — wr—1) * ¢+ thy

Because the function classify_ground applies the morphological operation at the point cloud level
the parameter c is set to 1 and cannot be modified.
Value

A list with two components: the windows size sequence and the threshold sequence.

References

Zhang, K., Chen, S. C., Whitman, D., Shyu, M. L., Yan, J., & Zhang, C. (2003). A progressive mor-
phological filter for removing nonground measurements from airborne LIDAR data. IEEE Transac-
tions on Geoscience and Remote Sensing, 41(4 PART I), 872-882. http:#doi.org/10.1109/TGRS.2003.810682.

Examples

p = util_makeZhangParam()

VCI Vertical Complexity Index

Description

A fixed normalization of the entropy function (see references)

Usage

VCI(z, zmax, by = 1)

Arguments
z vector of z coordinates
zmax numeric. Used to turn the function entropy to the function vci.
by numeric. The thickness of the layers used (height bin)

Value

A number between 0 and 1

References

van Ewijk, K. Y., Treitz, P. M., & Scott, N. A. (2011). Characterizing Forest Succession in Central
Ontario using LAS-derived Indices. Photogrammetric Engineering and Remote Sensing, 77(3),
261-269. Retrieved from <Go to ISI>://WOS:000288052100009

voxelize_points 131

See Also

entropy
Examples
z <- runif (10000, 0, 10)
VCI(z, by = 1, zmax = 20)
z <- abs(rnorm(10000, 10, 1))

expected to be closer to 0.
VCI(z, by = 1, zmax = 20)

voxelize_points Voxelize a point cloud

Description

Reduce the number of points by voxelizing the point cloud. If the Intensity is part of the attributes
it is preserved and aggregated as mean(Intensity). Other attributes cannot be aggregated and are
lost.

Usage

voxelize_points(las, res)

Arguments
las An object of class LAS or LAScatalog.
res numeric. The resolution of the voxels. res =1 for a 1x1x1 cubic voxels. Op-
tionally res = c(1, 2) for non-cubic voxels (1x1x2 cuboid voxel).
Value

If the input is a LAS object, returns a LAS object. If the input is a LAScatalog, returns a LAScatalog.

Working with a LAScatalog

This section appears in each function that supports a LAScatalog as input.

In 1idR when the input of a function is a LAScatalog the function uses the LAScatalog processing
engine. The user can modify the engine options using the available options. A careful reading of
the engine documentation is recommended before processing LAScatalogs. Each 1idR function
should come with a section that documents the supported engine options.

The LAScatalog engine supports .lax files that significantly improve the computation speed of
spatial queries using a spatial index. Users should really take advantage a . lax files, but this is not
mandatory.

132

voxel _metrics

Supported processing options

Supported processing options for a LAScatalog (in bold). For more details see the LAScatalog
engine documentation:

chunk size: How much data is loaded at once.

chunk buffer*: Mandatory to get a continuous output without edge effects. The buffer is
always removed once processed and will never be returned either in R or in files.

chunk alignment: Align the processed chunks.
progress: Displays a progression estimation.

output files*: Mandatory because the output is likely to be too big to be returned in R and
needs to be written in las/laz files. Supported templates are {XLEFT}, {XRIGHT}, {YBOTTOM},
{YTOP}, {XCENTER}, {YCENTER} {ID} and, if chunk size is equal to O (processing by file),
{ORIGINALFILENAME?}.

select: The function will write files equivalent to the original ones. Thus select = "*" and
cannot be changed.

filter: Read only points of interest.

Examples

LASfile <- system.file("extdata”, "Megaplot.laz"”, package="1idR")
las = readlLAS(LASfile, select = "xyz")

las2 = voxelize_points(las, 2)
#plot(las2)

voxel_metrics Voxelize the space and compute metrics for each voxel

Description

This is a 3D version of grid_metrics. It creates a 3D matrix of voxels with a given resolution. It
creates a voxel from the cloud of points if there is at least one point in the voxel. For each voxel the
function allows computation of one or several derived metrics in the same way as the grid_metrics
functions. The function will dispatch the LiDAR data for each voxel in the user’s function (see
grid_metrics).

Usage
voxel_metrics(las, func, res = 1, ..., all_voxels = FALSE)
Arguments
las An object of class LAS.
func formula. An expression to be applied to each voxel (see also grid_metrics).
res numeric. The resolution of the voxels. res =1 for a I1x1x1 cubic voxels. Op-
tionally res = c(1, 2) for non-cubic voxels (1x1x2 cuboid voxel).
Unused
all_voxels boolean. By default the function returns only voxels that contain 1 or more

points. Empty voxels do not exist as the metrics are undefined. If all_voxels
= TRUE all the voxels are returned and metrics are NA for voxels with O points.

watershed 133

Value

Itreturns a data. table containing the metrics for each voxel. The table has the class lasmetrics3d
enabling easier plotting. It also has an attribute res that stores the resolution.

See Also

Other metrics: cloud_metrics(), grid_metrics(), hexbin_metrics(), point_metrics(), tree_metrics()

Examples

LASfile <- system.file("extdata”, "Megaplot.laz", package="1idR")
las <- readLAS(LASfile)

Cloud of points is voxelized with a 8-meter resolution and in each voxel
the number of points is computed.
vm <- voxel_metrics(las, ~length(Z), 8)

Cloud of points is voxelized with a 8-meter resolution and in each voxel
the mean intensity of points is computed.

vm <- voxel_metrics(las, ~mean(Intensity), 8)

#plot(vm, color = "V1", colorPalette = heat.colors(50), trim = 60)

Define your own metric function
myMetrics = function(i)

{
ret = list(
npoints = length(i),
imean = mean(i)
)
return(ret)
3

voxels <- voxel_metrics(las, ~myMetrics(Intensity), 8)

#plot(voxels, color = "imean", colorPalette = heat.colors(50), trim = 60)
#etc.

attr(voxels, "res")

watershed Individual Tree Segmentation Algorithm

Description

This function is made to be used in segment_trees. It implements an algorithm for tree segmentation
based on a watershed or a marker-controlled watershed.

» Simple watershed is based on the bioconductor package EBIimage. You need to install this
package to run this method (see its github page). Internally, the function EBImage::watershed
is called.

* Marker-controlled watershed is based on the imager package and has been removed be-
cause imager is an orphaned package.

https://github.com/aoles/EBImage

134

Usage

watershed

watershed(chm, th_tree = 2, tol = 1, ext = 1)

mcwatershed(chm, treetops, th_tree = 2, ID = "treelD")

Arguments

chm RasterLayer. Image of the canopy. Can be computed with grid_canopy or read
from an external file.

th_tree numeric. Threshold below which a pixel cannot be a tree. Default is 2.

tol numeric. Tolerance see 7EBImage::watershed.

ext numeric. see JEBImage::watershed.

treetops SpatialPointsDataFrame. Can be computed with find_trees or read from an
external shapefile.

ID character. If the SpatialPointsDataFrame contains an attribute with the ID for
each tree, the name of this column. This way, original IDs will be preserved. If
there is no such data trees will be numbered sequentially.

Details

Because this algorithm works on a CHM only there is no actual need for a point cloud. Sometimes
the user does not even have the point cloud that generated the CHM. 1idR is a point cloud-oriented
library, which is why this algorithm must be used in segment_trees to merge the result into the point
cloud. However, the user can use this as a stand-alone function like this:

chm

raster("file/to/a/chm/")

ttops = find_trees(chm, 1Imf(3))
crowns = watershed(chm) ()

See Also

Other individual tree segmentation algorithms: dalponte2016(), 112012(), silva2016()

Other raster based tree segmentation algorithms: dalponte2016(), silva2016()

Examples

LASfile <- system.file("”extdata”, "MixedConifer.laz", package="1idR")

poi
las
col

chm
ker
chm
las

<-

"-drop_z_below @ -inside 481280 3812940 481320 3812980"
readLAS(LASfile, select = "xyz", filter = poi)
pastel.colors(250)

grid_canopy(las, res = 0.5, p2r(0.3))

matrix(1,3,3)

raster::focal(chm, w = ker, fun = mean, na.rm = TRUE)
segment_trees(las, watershed(chm))

plot(las, color = "treeID"”, colorPalette = col)

wing2015

135

wing2015

Snags Segmentation Algorithm

Description

This function is made to be used in segment_snags. It implements an algorithms for snags segmen-
tation based on Wing et al (2015) (see references). This is an automated filtering algorithm that
utilizes three dimensional neighborhood lidar point-based intensity and density statistics to remove
lidar points associated with live trees and retain lidar points associated with snags.

neigh_radii = c(1.5, 1, 2),

Usage
wing2015(
low_int_thrsh = 50,
uppr_int_thrsh = 170,
pt_den_req = 3,
BBPRthrsh_mat = NULL
)
Arguments

neigh_radii

low_int_thrsh

uppr_int_thrsh

pt_den_req

BBPRthrsh_mat

Details

numeric. A vector of three radii used in quantifying local-area centered neigh-
borhoods. See Wing et al. (2015) reference page 171 and Figure 4. Defaults are
1.5, 1, and 2 for the sphere, small cylinder and large cylinder neighborhoods,
respectively.

numeric. The lower intensity threshold filtering value. See Wing et al. (2015)
page 171. Default is 50.

numeric. The upper intensity threshold filtering value. See Wing et al. (2015)
page 171. Default is 170.

numeric. Point density requirement based on plot-level point density defined
classes. See Wing et al. (2015) page 172. Default is 3.

matrix. A 3x4 matrix providing the four average BBPR (branch and bole point
ratio) values for each of the three neighborhoods (sphere, small cylinder and
large cylinder) to be used for conditional assessments and classification into the
following four snag classes: 1) general snag 2) small snag 3) live crown edge
snag 4) high canopy cover snag. See Wing et al. (2015) page 172 and Table 2.
This matrix must be provided by the user.

Note that this algorithm strictly performs a classification based on user input while the original
publication’s methods also included a segmentation step and some pre- (filtering for first and single
returns only) and post-process (filtering for only the snag classified points prior to segmentation)
tasks which are now expected to be performed by the user. Also, this implementation may have
some differences compared with the original method due to potential mis-interpretation of the Wing
et al. manuscript, specifically Table 2 where they present four groups of conditional assessments
with their required neighborhood point density and average BBPR values (BBPR = branch and bole
point ratio; PDR = point density requirement).

136 wing2015

This algorithm attributes each point in the point cloud (snagCls column) into the following five
snag classes:

* 0: live tree - not a snag

* 1: general snag - the broadest range of snag point situations

* 2: small snag - isolated snags with lower point densities

* 3: live crown edge snag - snags located directly adjacent or intermixing with live trees crowns

* 4: high canopy cover snag - snags protruding above the live canopy in dense conditions (e.g.,
canopy cover >= 55%).

Author(s)

Implementation by Andrew Sdnchez Meador & Jean-Romain Roussel

References

Wing, Brian M.; Ritchie, Martin W.; Boston, Kevin; Cohen, Warren B.; Olsen, Michael J. 2015.
Individual snag detection using neighborhood attribute filtered airborne lidar data. Remote Sensing
of Environment. 163: 165-179 https://doi.org/10.1016/j.rse.2015.03.013

Examples

LASfile <- system.file("extdata”, "MixedConifer.laz", package="1idR")
Wing also included -keep_single

poi ="-keep_first -inside 481260 3812920 481310 3812960"

las <- readLAS(LASfile, select = "xyzi", filter = poi)

For the Wing2015 method, supply a matrix of snag BranchBolePtRatio conditional
assessment thresholds (see Wing et al. 2015, Table 2, pg. 172)
bbpr_thresholds <- matrix(c(0.80, 0.80, 0.70,

0.85, 0.85, 0.60,

0.80, 0.80, 0.60,

0.90, 0.90, 0.55),

nrow =3, ncol = 4)

Run snag classification and assign classes to each point
las <- segment_snags(las, wing2015(neigh_radii = c(1.5, 1, 2), BBPRthrsh_mat = bbpr_thresholds))

Plot it all, tree and snag points...
#plot(las, color="snagCls", colorPalette = rainbow(5))

Filter and plot snag points only
snags <- filter_poi(las, snagCls > 0)
#plot(snags, color="snagCls"”, colorPalette = rainbow(5)[-1])

Wing et al's (2015) methods ended with performing tree segmentation on the
classified and filtered point cloud using the watershed method

writeLAS 137

writelAS Write a .las or .laz file

Description

Write a LAS object into a binary .las or .1az file (compression specified in filename)

Usage
writeLAS(las, file, index = FALSE)

Arguments

las an object of class LAS.

file character. A character string naming an output file.

index boolean. Also write a lax file to index the points in the files
Value

Nothing. This function is used for its side-effect of writing a file.

Examples

LASfile <- system.file("extdata”, "Megaplot.laz"”, package="1idR")
las = readLAS(LASfile)
subset = clip_rectangle(las, 684850, 5017850, 684900, 5017900)

writeLAS(subset, tempfile(fileext = ".laz"))
$<-,LAS-method Inherited but modified methods from sp
Description

LAS* objects are Spatial objects so they inherit several methods from sp. However, some have
modified behaviors to prevent some irrelevant modifications. Indeed, a LAS* object cannot contain
anything, as the content is restricted by the LAS specifications. If a user attempts to use one of these
functions inappropriately an informative error will be thrown.

Usage
S4 replacement method for signature 'LAS'

x$name <- value

S4 replacement method for signature 'LAS,ANY,missing'
x[[i, j11 <- value

S4 method for signature 'LAS,numeric,ANY'
x[i]

138 $<-,LAS-method

S4 method for signature 'LAScatalog,ANY,ANY'
x[i, j, ..., drop = TRUE]

S4 replacement method for signature 'LAScatalog,ANY,ANY'
x[[i, j11 <- value

S4 replacement method for signature 'LAScatalog'
x$name <- value

Arguments
X A LAS* object
name A literal character string or a name (possibly backtick quoted).
value typically an array-like R object of a similar class as x.
i string, name of elements to extract or replace.
Jj Unused.
Unused
drop Unused
Examples
Not run:

LASfile <- system.file("extdata”, "Megaplot.laz"”, package="1idR")
las = readlLAS(LASfile)

las$zZ = 2L
las[["Z2"]1] = 1:10
las$NewCol = @
las[["NewCol"]1] = @

End(Not run)

Index

* cast
as.spatial, 9
+ datasets
asprs, 10
stdmetrics, 120
x digital surface model algorithms

dsmtin, 37

p2r, 88

pitfree, 89
« filters

filter_duplicates, 41
filter_poi, 42
filter_surfacepoints, 43
filters, 40

* ground segmentation algorithms
csf, 28
pmf, 94

* individual tree detection algorithms

1Imf, 80
manual, 81

x individual tree segmentation algorithms

dalponte2016, 29
1i2012,71
silva2016, 117
watershed, 133

x las utilities
las_check, 68
las_utilities, 69

x lidrpalettes
lidrpalettes, 79

* metrics
cloud_metrics, 26
grid_metrics, 51
hexbin_metrics, 56
point_metrics, 95
tree_metrics, 127
voxel_metrics, 132

* noise segmentation algorithms
ivf, 59
sor, 119

+ normalize
normalize_height, 84
normalize_intensity, 87

139

* point cloud decimation algorithms
homogenize, 57
maxima, 82
random, 101
+ point-cloud based tree segmentation
algorithms
1i2012,71
* range
track_sensor, 124
* raster based tree segmentation algorithms
dalponte2016, 29
silva2016, 117
watershed, 133
* snags segmentation algorithms
wing2015, 135
+ spatial interpolation algorithms
knnidw, 60
kriging, 60
tin, 123
-,LAS,RasterLayer-method
(normalize_height), 84
-,LAS,1idRAlgorithm-method
(normalize_height), 84
.stdmetrics (stdmetrics), 120
.stdmetrics_ctrl (stdmetrics), 120
.stdmetrics_i (stdmetrics), 120
.stdmetrics_pulse (stdmetrics), 120
.stdmetrics_rn (stdmetrics), 120
.stdmetrics_z (stdmetrics), 120
.stdshapemetrics (stdmetrics), 120
.stdtreemetrics (stdmetrics), 120
[,LAS,numeric,ANY-method
($<-,LAS-method), 137
[,LAScatalog, ANY, ANY-method
($<-,LAS-method), 137
[[<-,LAS,ANY,missing-method
($<-,LAS-method), 137
[[<-,LAScatalog,ANY, ANY-method
($<-,LAS-method), 137
$<-,LAS-method, 137
$<-,LAScatalog-method ($<-,LAS-method),
137

add_attribute, 5

140

add_dtm3d (plot_3d), 93

add_flightlines3d (plot_3d), 93

add_lasattribute, 85

add_lasattribute (add_attribute), 5

add_lasattribute_manual
(add_attribute), 5

add_lasrgb (add_attribute), 5

add_treetops3d (plot_3d), 93

appropriate functions, /105

area, 7, 101

area,LAS-method (area), 7

area,LAScatalog-method (area), 7

area,LASheader-method (area), 7

as.list.LASheader, 9

as.spatial, 9

asprs, 10

available options, 19, 21, 23, 25, 31, 32,
41,49, 50, 52, 55, 85,87, 112, 115,
126, 128, 131

bbox, 12

catalog (readlLAScatalog), 105

catalog processing options, 16

catalog_apply, 5, 11,73

catalog_intersect, 15

catalog_makechunks, 16

catalog_options_tools, 16, 106

catalog_retile, 18

catalog_sapply (catalog_apply), 11

catalog_select, 20

classify_ground, 21, 28, 60, 94, 129, 130

classify_noise, 22, 59, 119

clip, 24

clip_circle(clip), 24

clip_polygon (clip), 24

clip_rectangle (clip), 24

clip_roi (clip), 24

clip_transect (clip), 24

cloud_metrics, 26, 53, 56, 97, 120, 122, 128,
133

concaveman, 32

count_not_quantized (las_utilities), 69

CRS, 63

crs,LAS-method (projection), 99

crs,LAScatalog-method (projection), 99

crs,LASheader-method (projection), 99

CRS-class, 62

crs<-,LAS-method (projection), 99

csf, 21,28, 95

dalponte2016,29, 71,114,118, 134
data.table, 62, 63

INDEX

decimate_points, 30,43, 57, 82, 101
delineate_crowns, 32, 127

density (area), 7
density,LAS-method (area), 7
density,LAScatalog-method (area), 7
density,LASheader-method (area), 7
deprecated, 34

dsmtin, 37, 48, 89, 90

engine documentation, 19, 21, 23, 25, 31,
32,41, 49, 50, 52, 55, 85,87, 112,
115,126,128, 131

entropy, 27,38, 52, 121, 131

epsg (projection), 99

epsg,LAS-method (projection), 99

epsg,LASheader-method (projection), 99

epsg<- (projection), 99

epsg<-,LAS-method (projection), 99

epsg<-,LASheader-method (projection), 99

Extent, 25

extent, 12

extent,LAS-method, 39

extent,LAScatalog-method
(extent,LAS-method), 39

extract, 85

filter_duplicates, 40, 41,41, 42, 44
filter_first (filters), 40
filter_firstlast (filters), 40
filter_firstofmany (filters), 40
filter_ground (filters), 40
filter_last (filters), 40
filter_nth (filters), 40
filter_poi, 4042, 42,44, 104
filter_single (filters), 40
filter_surfacepoints, 40-42,43, 119
filters, 40, 42,44
find_localmaxima, 44
find_trees, 29,44, 45, 80, 81,117, 134
forest.colors (lidrpalettes), 79
fwrite, 72

gap_fraction_profile, 46, 61, 62
Gatziolis2019, 47, 125
get_lidr_threads (set_lidr_threads), 115
get_range (range_correction), 102
grid_canopy, 29, 37,48, 88, 89, 117, 134
grid_density, 50
grid_metrics, 13,27, 32,49, 51, 51, 53, 56,
95-97, 120, 122, 127, 128, 132, 133
grid_terrain, 54, 60, 85, 86, 89, 124

height.colors (lidrpalettes), 79

INDEX

hexbin, 56

hexbin_metrics, 27, 53, 56, 97, 120, 122,
128,133

highest, 30, 43

highest (maxima), 82

homogenize, 30, 57, 83, 101

index (1lidR-spatial-index), 76
index<- (1lidR-spatial-index), 76
intersect, 15

is, 58

is.parallelised, 74
is.quantized (las_utilities), 69
ivf, 22,59, 120

knnidw, 54, 60, 61, 85, 89, 124
krige, 60
kriging, 54, 60, 60, 85, 89, 124

LAD, 27,47, 52, 61

LAS, 5-7, 21, 22, 24, 30, 32, 40-43, 48, 50, 52,
54,69,77,85,87,91,103, 104, 112,
114,125,127,131, 137

LAS (LAS-class), 62

LAS-class, 62

las_check, 68, 70

las_quantize (las_utilities), 69

las_reoffset (las_utilities), 69

las_rescale (las_utilities), 69

las_update (las_utilities), 69

las_utilities, 69, 69

lasadd, 34

lasadddata (deprecated), 34

lasaddextrabytes (deprecated), 34

lasaddextrabytes_manual (deprecated), 34

LASBRIGDE (asprs), 10

LASBUILDING (asprs), 10

LAScatalog, 11, 12, 16-25,30-32, 41,43,
48-50, 52, 54, 55, 69, 77, 85, 87, 91,
104, 105,112,114, 115, 125-128,
131

LAScatalog class, /1

LAScatalog class documentation, 105

LAScatalog engine documentation, 13, 19,
21,23,25,31,33,42, 43, 46,49, 51,
53,55,86,88, 112,115, 126, 128,
132

LAScatalog-class, 26, 64, 72, 106

lascheck, 34

lascheck (deprecated), 34

lasclip, 34

lasclip (deprecated), 34

lasclipCircle (deprecated), 34

141

lasclipPolygon (deprecated), 34
lasclipRectangle (deprecated), 34
lasdetectshape, 34

lasdetectshape (deprecated), 34
lasfilter, 34

lasfilter (deprecated), 34
lasfilterdecimate (deprecated), 34
lasfilterduplicates (deprecated), 34
lasfilterfirst (deprecated), 34
lasfilterfirstlast (deprecated), 34
lasfilterfirstofmany (deprecated), 34
lasfilterground (deprecated), 34
lasfilterlast (deprecated), 34
lasfilternth (deprecated), 34
lasfiltersingle (deprecated), 34
lasfiltersurfacepoints, 34
lasfiltersurfacepoints (deprecated), 34
lasflightline, 34

lasflightline (deprecated), 34
LASGROUND (asprs), 10

lasground, 34

lasground (deprecated), 34
LASheader, 62, 63, 67, 91, 107
LASheader-class, 68
LASHIGHVEGETATION (asprs), 10
LASKEYPOINT (asprs), 10

LASLOWPOINT (asprs), 10
LASLOWVEGETATION (asprs), 10
LASMEDIUMVEGETATION (asprs), 10
lasmergespatial, 34
lasmergespatial (deprecated), 34
LASNOISE (asprs), 10
LASNONCLASSIFIED (asprs), 10
lasnormalize, 34

lasnormalize (deprecated), 34
laspulse, 34

laspulse (deprecated), 34

LASRAIL (asprs), 10
lasrangecorrection, 34
lasrangecorrection (deprecated), 34
lasremoveextrabytes (deprecated), 34
lasreoffset, 34

lasreoffset (deprecated), 34
lasrescale, 34

lasrescale (deprecated), 34
LASROADSURFACE (asprs), 10
lasscanline (deprecated), 34
lasscanlines, 34

lassmooth, 34

lassmooth (deprecated), 34
lassnags, 34

lassnags (deprecated), 34

142

lastransform (deprecated), 34
LASTRANSMISSIONTOWER (asprs), 10
lastrees, 34

lastrees (deprecated), 34
LASUNCLASSIFIED (asprs), 10
lasunnormalize (deprecated), 34
lasunsmooth (deprecated), 34
lasvoxelize, 34

lasvoxelize (deprecated), 34
LASWATER (asprs), 10
LASWIRECONDUCTOR (asprs), 10
LASWIREGUARD (asprs), 10
112012, 30,71, 74, 75, 114, 118, 134
1lidR (1idR-package), 4
lidR-LAScatalog-drivers, 66, 72
lidR-package, 4
lidR-parallelism, 74, 116
lidR-spatial-index, 76
lidrpalettes, 79
list.files, 106

1mf, 44, 45, 74, 75, 80, 82

lowest (maxima), 82

manual, 45, 81, 81

mapview, 97

matrix, 25
maxima, 58, 82, 101
mcwatershed (watershed), 133
merge_spatial, 83

normalize_height, 60, 84, 88, 124
normalize_intensity, 86, 87, 102
npoints (area), 7
npoints,LAS-method (area), 7
npoints,LAScatalog-method (area), 7
npoints,LASheader-method (area), 7

opt_chunk_alignment, 66
opt_chunk_alignment
(catalog_options_tools), 16
opt_chunk_alignment<-
(catalog_options_tools), 16
opt_chunk_buffer, 66
opt_chunk_buffer
(catalog_options_tools), 16
opt_chunk_buffer<-
(catalog_options_tools), 16
opt_chunk_size, 66
opt_chunk_size (catalog_options_tools),
16
opt_chunk_size<-
(catalog_options_tools), 16
opt_filter, 66

INDEX

opt_filter (catalog_options_tools), 16

opt_filter<-(catalog_options_tools), 16

opt_independent_files
(catalog_options_tools), 16

opt_independent_files<-
(catalog_options_tools), 16

opt_laz_compression
(catalog_options_tools), 16

opt_laz_compression<-
(catalog_options_tools), 16

opt_merge (catalog_options_tools), 16

opt_merge<- (catalog_options_tools), 16

opt_output_files, 66

opt_output_files
(catalog_options_tools), 16

opt_output_files<-
(catalog_options_tools), 16

opt_progress, 65

opt_progress (catalog_options_tools), 16

opt_progress<- (catalog_options_tools),
16

opt_select, 66

opt_select (catalog_options_tools), 16

opt_select<- (catalog_options_tools), 16

opt_stop_early, 65

opt_stop_early (catalog_options_tools),
16

opt_stop_early<-
(catalog_options_tools), 16

opt_wall_to_wall, 65

opt_wall_to_wall
(catalog_options_tools), 16

opt_wall_to_wall<-
(catalog_options_tools), 16

p2r, 37,48, 88, 90

pastel.colors (lidrpalettes), 79

pitfree, 37, 48, 89, 89

plot, 20, 82, 91,91, 93

plot,LAS,missing-method (plot), 91

plot,LAScatalog,missing-method (plot),
91

plot,LASheader,missing-method (plot), 91

plot.lasmetrics3d, 93

plot_3d, 93

plot_dtm3d (plot_3d), 93

pmf, 21, 28, 94

point_metrics, 27, 53, 56, 95, 120, 122, 128,
133

points3d, 91

Polygon, 25

Polygons, 25

print, 98

INDEX

print,LAS-method (print), 98
print.lidRAlgorithm (print), 98
projection, 99
projection, LAS-method (projection), 99
projection,LAScatalog-method
(projection), 99
projection,LASheader-method
(projection), 99
projection<-,LAS-method (projection), 99

quantize (las_utilities), 69

random, 30, 58, 83, 101

random. colors (lidrpalettes), 79

range_correction, 87, 102

raster::extent, 39

RasterLayer, 85

rbind.LAS, 103

read*LAS(), 77

readALSLAS (readLAS), 103

readALSLAScatalog (readlLAScatalog), 105

readDAPLAS (readLAS), 103

readDAPLAScatalog (readlLAScatalog), 105

readLAS, 12, 63, 65, 66, 103, 107

readLAScatalog, 64, 105

readLASheader, 107

readMSLAS (readLAS), 103

readTLSLAS (readLAS), 103

readTLSLAScatalog (readLAScatalog), 105

readUAVLAS (readLAS), 103

readUAVLAScatalog (readLAScatalog), 105

remove_lasattribute (add_attribute), 5

retrieve_flightlines (retrieve_pulses),
108

retrieve_pulses, 58, 101, 108

retrieve_scanlines (retrieve_pulses),
108

rlas::read.las, 104

Roussel?2020, 109, 125

rumple_index, 110

segment_shapes, 111, 116
segment_snags, 112, 135
segment_trees, 29, 30, 71,113,117, 133, 134
sensor (lidR-spatial-index), 76
sensor<- (1lidR-spatial-index), 76
sensor_tracking, 34
sensor_tracking (deprecated), 34
set_lidr_threads, 5, 74, 115
setDTthreads, 115
shape_detection, 116
shp_hplane, 111

shp_hplane (shape_detection), 116

143

shp_line, 111
shp_line (shape_detection), 116
shp_plane, 111
shp_plane (shape_detection), 116
silva2e16, 30,71, 114, 117, 134
SimpleFeature, 25
smooth_height, 118
sor, 22,59, 119
Spatial, 62, 63, 137
spatial indexing, 62, 63, 65, 103, 105
SpatialPoints, 25
SpatialPointsDataFrame, 25
SpatialPolygons, 25
SpatialPolygonsDataFrame, 25
spheres3d, 94
stdmetrics, 27, 52, 120
stdmetrics_ctrl (stdmetrics), 120
stdmetrics_i (stdmetrics), 120
stdmetrics_pulse (stdmetrics), 120
stdmetrics_rn (stdmetrics), 120
stdmetrics_tree, 127
stdmetrics_z (stdmetrics), 120
stdshapemetrics (stdmetrics), 120
stdtreemetrics (stdmetrics), 120
storable_coordinate_range
(las_utilities), 69
summary (print), 98
summary,LAS-method (print), 98
summary,LAScatalog-method (print), 98
surface3d, 94

tin, 54, 60, 61, 85, 89, 123

track_sensor, 47, 102, 109, 124

tree_detection, 34

tree_detection (deprecated), 34

tree_hull, 34

tree_hulls (deprecated), 34

tree_metrics, 27, 32, 53, 56, 97, 120, 122,
127, 133

unnormalize_height, 84

unnormalize_height (normalize_height),
84

unsmooth_height (smooth_height), 118

util_makeZhangParam, 94, 129

VCI, 27, 38, 39, 52, 130

vgm, 61

voxel_metrics, 27, 32, 53, 56, 97, 120, 122,
127, 128, 132

voxelize_points, 131

watershed, 30, 71, 114, 118, 133

144

wing2015, 112, 135

wkt,LAS-method (projection), 99
wkt,LASheader-method (projection), 99
wkt<- (projection), 99

wkt<-,LAS-method (projection), 99
wkt<-,LASheader-method (projection), 99
writelAS, 6, 72, 137

writeOGR, 72, 73

writeRaster, 72

INDEX

	lidR-package
	add_attribute
	area
	as.list.LASheader
	as.spatial
	asprs
	catalog_apply
	catalog_intersect
	catalog_makechunks
	catalog_options_tools
	catalog_retile
	catalog_select
	classify_ground
	classify_noise
	clip
	cloud_metrics
	csf
	dalponte2016
	decimate_points
	delineate_crowns
	deprecated
	dsmtin
	entropy
	extent,LAS-method
	filters
	filter_duplicates
	filter_poi
	filter_surfacepoints
	find_localmaxima
	find_trees
	gap_fraction_profile
	Gatziolis2019
	grid_canopy
	grid_density
	grid_metrics
	grid_terrain
	hexbin_metrics
	homogenize
	is
	ivf
	knnidw
	kriging
	LAD
	LAS-class
	LAScatalog-class
	LASheader
	LASheader-class
	las_check
	las_utilities
	li2012
	lidR-LAScatalog-drivers
	lidR-parallelism
	lidR-spatial-index
	lidrpalettes
	lmf
	manual
	maxima
	merge_spatial
	normalize_height
	normalize_intensity
	p2r
	pitfree
	plot
	plot.lasmetrics3d
	plot_3d
	pmf
	point_metrics
	print
	projection
	random
	range_correction
	rbind.LAS
	readLAS
	readLAScatalog
	readLASheader
	retrieve_pulses
	Roussel2020
	rumple_index
	segment_shapes
	segment_snags
	segment_trees
	set_lidr_threads
	shape_detection
	silva2016
	smooth_height
	sor
	stdmetrics
	tin
	track_sensor
	tree_metrics
	util_makeZhangParam
	VCI
	voxelize_points
	voxel_metrics
	watershed
	wing2015
	writeLAS
	$<-,LAS-method
	Index

