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Abstract

Mapping Agricultural Production in New York City (M.A.P. NYC) is a project led by

Stern’s Center for Sustainable Business that aims to help the city and its partners reach equity

and sustainability goals by cataloging all food growers within the city and mapping their

attributes on a web-based platform. We use geospatial techniques and data gathered from

official sources to implement that goal and explore the relationships between urban agriculture

locations, socioeconomic factors, and health outcomes. Our platform provides administrative

infrastructure for the city, crowdsources new data for future academic research, and creates a

functional, user-driven interface between urban farmers, city agencies, and community

members. Additionally, our statistical analysis offers an innovative perspective of urban

agriculture as social infrastructure. Specifically, we focus on spatial relationships between

non-commercial agriculture and an approximate measure of subjective well-being across

census tracts in New York City. This research provides insight into the broad-reaching impact of

urban agriculture in the city, particularly on communities that have been disproportionately

affected by economic and health crises.

I. Introduction

A. Motivation

The United States Environmental Protection Agency defines urban agriculture as “part of

a local food system where food is produced within an urban area and marketed to consumers

within that area”, which includes “animal husbandry, beekeeping, aquaculture, aquaponics, and

non-food products such as producing seeds, cultivating seedlings, and growing flowers” (EPA,

2021). In the past several decades, this broad set of practices has emerged as a popular means

to strengthen vulnerable, yet critical, urban systems (Reynolds, 2019). Columbia’s Urban Design

Lab, a leading research center in the space, also supports this approach: “[urban agriculture]

lies at the nexus of a variety of issues which are seen as critical to the ongoing sustainability

and livability of our urban environments: public health, healthy food access, green space, air

and water quality, economic development, and community engagement.” (Ackerman, 2012).



While academic, political, and community interest in urban agriculture has proliferated,

information regarding what is being grown and where it is distributed has remained frustratingly

scarce at scale. New York City is home to the largest number of active farms and gardens of

any U.S. city, yet it lacks the metrics to quantify the impact of these assets, limiting its ability to

achieve its outlined equity and sustainability goals for food production, distribution, and disposal

networks (Food Forward, 2021). Despite persistent efforts from a diverse community of

participants and researchers, the tangible impact of urban agricultural efforts remains largely

unknown.

In 2016, researchers at the CUNY Urban Food Policy Institute pointed to this

measurement gap as one of the major challenges to expanding agricultural activity, noting “there

is no comprehensive, regularly updated urban agriculture database” in New York City (Cohen,

2016). Over five years later, there is still no such store of information, and the city still lacks the

resources to build and maintain the requisite digital infrastructure. Meanwhile, a global health

crisis has rendered urgent the need for food system resiliency and equitable access to healthy

produce.

B. M.A.P. NYC Platform

M.A.P. NYC is a vital first step in building a centralized public network, engaging city

farmers, and better informing researchers and policymakers focused on supporting and

expanding the city’s self-sufficiency. At its core, it is a directory of all known New York City farms

and gardens, with relevant details gathered from publicly available sources and an institutionally

approved survey. That information is stored in a database that is editable directly from our

permission based interface, and is presented visually with a design that facilitates exploration

and information sharing. The platform is built with a modern cloud-based technology stack

(Appendix Diagram 1) and makes extensive use of powerful visualization libraries for

user-friendly interactivity (Appendix Image 1).

M.A.P. NYC is designed to be an evolving repository, crowdsourcing the most up-to-date

information directly from farmers, gardeners, and city administrators, after initial database

population by our team (Appendix Image 2). This ensures that data is current and accurate

down to the weight of specific crops across thousands of agricultural lots in the city. The



interactive map shows farms and gardens alongside food pantries, and farmer’s market

locations as these are direct-to-consumer points of interest for food access. Location counts,

crop production, lot size are all aggregated to the community district level on the fly so as to

account for any new, user-submitted data. The map also allows users to explore spatial

relationships between agricultural production and select socioeconomic variables evaluated for

significance in our regression analysis below (Appendix Image 3).

C. Urban Agriculture, Social Infrastructure, and Mental Health

While much research has focused on relationships between community agriculture and

food access, the lack of detailed production and distribution data limits opportunity for statistical

analysis. Moreover, when excluding the larger or more experimental commercial operations

from consideration, “the literature strongly shows that a primary motivation of gardeners,

managers and others was to produce fresh foods in a context of social interaction, community

building and welfare.” (Guitart et. al, 2012)

This means that non-commercial agriculture plays an important role not only as a

budding stem of New York City’s larger food system, but also as a pillar of the social

infrastructure that supports the wellbeing of its residents. Flagship research of this relatively new

concept comes from the work of sociologists Susan Lee Star and, more recently, Eric

Klinenberg, who writes:

Public institutions, such as libraries, schools, playgrounds, parks, athletic fields, and

swimming pools, are vital parts of the social infrastructure. So too are sidewalks,

courtyards, community gardens, and other spaces that invite people into the public

realm. Community organizations, including churches and civic associations, act as social

infrastructures when they have an established physical space where people can

assemble, as do regularly scheduled markets for food, furniture, clothing, art, and other

consumer goods.

(Klinenberg, 2018)

As urban agriculture continues to permeate into discourse around urban planning and

social equity, the role of non-commercial agriculture within the broader context of social

infrastructure has earned theoretical precedent. For example, the MIT Media Lab’s City Science



Group created a Well-Being Index using five social indicators—Community Connectedness,

Safety & Security, Physical Health, Mental Health, and Diversity—as a way to address the

impact of the built environment on overall psychological health at the city level (Orii, 2020),

explicitly mentioning the positive impact of community gardens and green spaces on residents’

subjective well-being (SWB). A case study in Melbourne, Australia corroborated this

relationship, confirming the positive impact of social infrastructure on SWB through a

distance-based GIS analysis of various educational, cultural, recreational, and health services

across sub-geographies (Davern et al., 2018).

Our analysis builds on this research by regressing similar components of New York City

social infrastructure (including non-commercial agriculture), along with various demographic and

socioeconomic variables, against perceived mental health status, a proxy for SWB. We also

incorporate a spatial component in the regression, expanding the theoretical basis of prior

research to account for the spatial collinearity that impacts nearly all urban phenomena: “Most

global statistical models require observations to be independent, but spatial phenomena,

including health outcomes, are usually spatially correlated” (Ha, 2018). Research by Houlden et

al. (2019) on the mental health effects of green spaces in London provides additional precedent

for the spatial modeling approach.

II. Data

A comprehensive list of farms and gardens in the city was compiled by our team, with

data from web searches, NYC Open Data, as well as shapefiles of NYCHA garden locations

provided by the Department of Parks and school gardens from GrowNYC, a non-profit

dedicated to food-related environmental programs. Tax lot sizes, an approximate measure of

agricultural area, were pulled from the Department of City Planning’s PLUTO database.

Locations that share borough, block, and lot attributes were considered duplicates and only

those originating from sources with the most spatially granular or reliable data were kept.

Measures of physical and mental health and socioeconomic data—some mentioned in

the SWB literature above—were gathered from the US Census Bureau, the Centers for Disease

Control and Prevention, and city agencies. Locations of educational, religious, cultural, and

recreational buildings, derived from PLUTO building classification codes, were used to quantify

the robustness of social infrastructure. For a full list of data sources, see Appendix Table 1. Data



was compiled at the Census tract level (around 2,000 data points in the city), allowing for

statistically meaningful regressions and providing a realistic understanding of distinct

neighborhoods across the city.

III. Data Ethics and Impact Considerations

There is a checkered history between urban farmers and city agencies, so naturally

privacy and ethics concerns arise when considering information-sharing initiatives. New York

City has previously reneged on agreements with community gardens and land security remains

a major concern for urban farmers, especially of minority communities (Guitart, et, al., 2012).

Concerted efforts must be made to ensure that the value generated from this project is

distributed equitably, especially since much of the requisite data has been collected from

underserved areas throughout the city. To this end, our platform is designed not only for

researchers and policymakers, but also as a community-building tool for urban growers to foster

relationships with city officials, city residents, and among themselves.

Furthermore, it is important to consider methodological biases present in survey

information collected from these populations. The social impact of urban agriculture is a primary

concern for our analysis and the data used to develop our models may be disproportionately or

inaccurately representing marginalized communities. For example, our dataset contains NYPD

violent crime records, which may reflect crimes reported rather than crimes committed.

Moreover, self-reported physical and mental health information is extremely subjective,

especially when conducted on a broad scale and distilled into a single metric, as is the case with

the CDC data we obtained. Finally, demographic information may be distorted by both the

wording of subjective self-identifying categories as well as reticence by marginalized groups

who lack trust in governmental institutions. Any conclusions or assessments derived from these

metrics must take into account the nuanced context in which they were obtained.

IV. Methodology

A. Spatial Preprocessing

Each observation in our dataset represents, depending on the variable, either a census

tract or service area buffer of half-mile radius around each tract population centroid in New York



City. We used centroids of 2010 vintage, as 2020 data has yet to be released by the Census

Bureau. This circular area defines a widely used and accepted threshold of walkable distance to

reach public spaces (Davern et al., 2018). Partially overlapping buffer areas ensure that social

infrastructure is reachable by a larger swath of the population than simple tract boundaries.

Other variables were obtained at, or aggregated to, Census tract level.

After excluding tracts in Staten Island, whose urban environment we deemed

incomparable to the other boroughs, and those with low population (<1,000) and low walkability

scores (<10), we were ultimately left with 1,818 out of 2,100 tracts with complete data across 26

variables, although just 19 were used for modeling. For a detailed explanation of our filtering

methodology, see Appendix Figure 1.

B. Dependent Variable - Mental Health Status

In lieu of a more direct measure of SWB—obtained, for example, through a target survey

encapsulating perceived “standard of living; health; achievements; personal relationships;

community connectedness; safety and future security” (Davern et al., 2018)— we employed

perceived mental health status from the ongoing CDC PLACES project as a proxy. This variable

is also used by The Trust for Public Land to promote the expansion of green space in

underserved areas (Chapman et al, 2021), and is one of the few mental health measures

available at the census tract granularity. It represents the percentage of adults who responded

as having poor mental health for at least 14 days over the last 30 days. Therefore, a higher

value represents worse mental health and explanatory variables with positive correlations have

an implied negative impact on mental health.

C. Independent Variable Preprocessing

After finalizing the list of independent variables deemed relevant to our analysis based

on research cited above, we implemented a number of data processing steps to prepare for

modeling. We then normalized all social infrastructure (SI) variables, i.e. counts of PLUTO

classified buildings/open space and non-commercial agriculture, by population.

D. Modeling



With this dataset we built three types of regression models using Python modules:

Lasso, Random Forest, and geographic weighted regression (GWR). For description of models,

see Appendix Table 2.  All three enjoy high interpretability - the first representing a hyperplane,

and the second utilizing an ensemble of variable splits, the third providing localized

interdependence measures. High interpretability is crucial in serving our primary objective of

evaluating relative feature importance. We split the data 80/20 into training and test datasets,

and used 5-fold cross validations to find optimal parameters for both the Lasso and Random

Forest models (Appendix Table 2).

In preparing the GWR model, we performed a principal component decomposition (PCA)

for the variables with high explanatory power and severe multicollinearity since a regularization

penalty is not available for this spatial regression package. As a result, variables cdc_physical,

acs_income_log, and acs_bachelors were replaced with a single PCA feature. Using the

“sel_BW” feature of the mgwr package in Python, the GWR was fitted across the entirety of the

dataset using a spherical coordinate parameter, applying the optimal bandwidth value of 215.

V. Results

A. Non-spatial Regression

Both the non-spatial OLS and tree-based models yielded high accuracy results: less

than 0.7% out-of-sample error and 0.91 out-of-sample R2 score (Appendix Figure 2). This

implies that reportedly poor mental health, at the census tract level, is quite predictable given

certain information. Physical health, income, foreign born, and education variables have an

outsized impact in both models and provide useful validation of existing literature relating

socioeconomic factors to health outcomes.

The presence of certain social infrastructure, or lack thereof in the case of vacant lots,

also explained more of the variance in mental health than random noise. Notably,

non-commercial agriculture (nc_agriculture) had a significant role in the models (inline Figure 1,

below), but in the opposite direction than expected. Along with churches and other outdoor

spaces, they were associated with negative impacts (positive correlation with poor mental

health), while cultural centers, schools, and vacant lots had a positive impact (negative

correlation). Importantly, the random forest model has a slightly higher accuracy, but does not



associate features with a sign relative to the outcome, because the relationship is non-linear.

This may imply that the linear model does not adequately account for non-linear structure in

social infrastructure.

Figure 1: Regression Feature Importances

B. Spatial Analysis

Moreover, the Global Moran’s I of the target variable, calculated in ArcGIS, was 0.544

with a near-zero p-value, signaling a very high likelihood of positive spatial autocorrelation

(Appendix Figure 3). Calculation of Local Moran’s I values, performed using spatial analysis

software GeoDa, also identified significant clustering (inline Figure 2, below). This spatial

dependence may explain some of the counterintuitive results produced by the standard

regression models, which treat census tracts as individual observations untethered to

geographic location and relative distance.



Figure 2: Mental Health Local Moran’s I Plot

Conditional Local Moran’s I cluster maps reveal different clustering patterns when

controlling for high and low levels of certain variables. Among the lowest income tracts in our

analysis, a high number of farms and gardens correlates with clusters of worse mental health

outcomes, despite correlating with clusters of better mental health among high income tracts

(top left and right small multiples in inline Figure 3, below). This same pattern appears for

education and physical health and for all PLUTO counts (Appendix Figures 4a-f), implying that

non-commercial agriculture may have a compounding effect on other explanatory variables of

mental health.

Figure 3 - Mental Health Local Moran’s I Plot

Conditional on income and non-commercial agriculture



C. Geographic Weighted Regression

Results from the geographic weighted regression confirmed the spatial non-linearity of

our variables (Appendix Figure 5). While a standard OLS regression yielded an R2 value of

0.90, the GWR model increased the R2 value to 0.96 and reduced the residual sum of squares

(RSS) by more than half. Outside of the three most significant features, nearly all variables,

including community gardens (inline Figure 4, below) and each of the PLUTO counts (Appendix

Figure 6) had both positive and negative relationships with mental health depending on

geographic location.



Figure 4: Spatial Distribution of GWR Coefficients for Non-commercial agriculture

VI. Discussion

The impact of social infrastructure variables (including non-commercial agriculture) on

mental health outcomes are significant across nearly all regression models. Moreover, these

features are strongly spatially clustered, exhibiting positive correlations with mental health in

some areas while demonstrating negative correlations in others. Despite the strong spatial

autocorrelation, prevailing assumptions do not necessarily explain the spatial behavior exhibited

by the variables.

To glean further insight, we separated census tracts by the sign of their coefficient

values for each SI feature, visualizing the comparative mean values for each independent

variable in the dataset (inline Figure 5, below). Tracts where farms and gardens strongly



correlated with better mental health (negative coefficient) had higher income, higher education

attainment, better physical health, fewer vacant lots, and a much higher percentage of white

residents than those with a positive coefficient. While far from conclusive, this seems to further

suggest that farms and gardens have compounding effects, improving mental health in

advantaged areas while deteriorating it in more disadvantaged ones.

Figure 5: Mean Variable Values by Non-commercial Agriculture Coefficient Sign

Another possible explanation for our results is that gardens and certain types of social

infrastructure tend to cluster around populations that are more vulnerable from a health

perspective. In other words, the causal impact is flipped. In some instances, new community

gardens are built as a social investment in response to adverse economic conditions or physical

urban decay. In this case, there may be some time lag before the effects on individual and

collective well-being are reversed. Unfortunately, at present, we do not have a large enough set

of farm/garden founding dates to test this hypothesis.



While there is ample theoretical precedent linking community gardens to improvement in

social cohesion and subjective well-being, these outcomes are difficult to measure and require

complex methodologies that differ across studies. Some prior academic literature has claimed a

positive impact on mental health specifically both from proximate greenspaces (Houlden, 2019)

and from green transformations of vacant lots (South, 2018), but these fall short of providing

quantitative correlation between mental health wellness and community gardens specifically.

Similarly, while quantitative studies on social infrastructure have found positive impacts

on SWB, their definition of wellbeing enompasses more than reported mental health status. Our

methodology attempted to account for some of this nuance by incorporating socioeconomic

status and built environmental features into our regressions as independent features, but the

models proved difficult to interpret in the context of a real urban system. Future research should

attempt to develop a metric that better reflects the perceived social wellbeing of New Yorkers

while limiting the number of explanatory variables used in any model built to determine its

influencing factors.

Conclusion

Our capstone project provides the city, NYU Stern’s Invest NYC SDG Initiative, and other

partnered organizations an easily updatable and interactive web tool to assist in their efforts to

promote urban agriculture. Through collaborative research and statistical analysis, we have

created the most comprehensive catalog of urban farms and gardens in New York City and

produced novel research on the mental health impact of social infrastructure on communities at

the census tract level. Results from spatial analysis and geographic weighted regression reveal

strong spatial clustering among mental health outcomes, corroborating previous spatial

analyses of health metrics. Our results suggest that the quantifiable impact of community farms

and gardens varies greatly by geographic location and community characteristics of a given

census tract. While future research is needed to better isolate the impact community farms and

gardens have on subjective well being, this research provides insight into the broad-reaching

impact of social agriculture and will hopefully inform future efforts to effectively and equitably

harness the power of urban agriculture for a better New York City.
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APPENDIX

Diagram 1 - Architecture of M.A.P. NYC web application



Image 1 - Screenshot of the M.A.P. NYC interface

Showing farm and garden locations colored by type and sized by tax lot area



Image 2 - Screenshot of M.A.P. interface

Showing part of data collection form



Image 3 - Screenshot of the M.A.P. NYC interface

Showing community district aggregates and socioeconomic layers



Table 1 - Data Sources

Data Source

Urban Agriculture Data

GreenThumb Gardens NYC OpenData (Green Thumb)

NYCHA gardens CSV Provided by NYC Department of Parks

School Gardens CSV Provided by GrowNYC

Data from ~100 large farms and gardens Survey responses with supplementary data
from public websites and reports

Community garden list curated by CUSP
team

GrowNYC, Brooklyn Queens Land Trust,
Bronx Land Trust, Manhattan Land Trust

Potential garden locations NYC Open Data (Local Law 46, 2018)

Modeling Data

2018 NYC PLUTO tax lot sizes NYC Department of City Planning

Health, demographic, and housing data Data2Go (American Community Survey)

CDC PLACES Physical and Mental Health
Data

CDC Open Data

Census Self-Response Rate Census API

NYPD Violent Crime Data NYC OpenData (NYPD), filtered by NYS
Penal Code, aggregated to census tract

Voter Participation Score NYC OpenData (CFB), aggregated to census
tract

EPA Walkability Score edg.epa.gov

https://data.cityofnewyork.us/browse?Data-Collection_Data-Collection=GreenThumb+Gardens&q=greenthumb
https://www.grownyc.org/gardens/our-community-gardens
https://bqlt.org/
https://www.bronxlandtrust.org/
http://www.manhattanlandtrust.org/
https://data.cityofnewyork.us/Environment/City-owned-sites-that-are-available-and-potentiall/qchy-end3
https://www1.nyc.gov/site/planning/data-maps/open-data/districts-download-metadata.page
https://data2go.nyc/map/#10/40.8276/-73.9588
https://chronicdata.cdc.gov/500-Cities-Places/PLACES-Census-Tract-Data-GIS-Friendly-Format-2020-/yjkw-uj5s
https://www.census.gov/data/developers/data-sets/decennial-response-rates.html
https://data.cityofnewyork.us/Public-Safety/NYPD-Complaint-Data-Historic/qgea-i56i
https://ypdcrime.com/penallawlist.php
https://ypdcrime.com/penallawlist.php
https://data.cityofnewyork.us/City-Government/Voter-Analysis-2008-2018/psx2-aqx3
https://edg.epa.gov/metadata/catalog/search/resource/details.page?uuid=%7B251AFDD9-23A7-4068-9B27-A3048A7E6012%7D


Table 2 - Name, source and description of modeling variables

Variable Name Source Description

cdc_mental CDC Places Data Portal (2020, data from
2017-18)

Percent of adults with mental
health not good for ≥14 days in
last 30

cdc_physical CDC Places Data Portal (2020, data from
2017-18)

Percent of adults with physical
health not good for ≥14 days in
last 30

acs_income_log American Community Survey 5-Year
estimate, 2014-2018 (via Data2Go.NYC)

Natural logarithm of median
income

acs_bachelors_log American Community Survey (2014-2018) Natural logarithm of percent of
population with bachelor’s degree

cfb_votes NYC Campaign Finance Board - Voter
Analysis 2008-2018 (via NYC Open Data
Portal)

2018 voter participation score
aggregated to census tract level

census_response United States Census Bureau (2010) Self-response rates mapped to
census geographies

acs_foreign American Community Survey (2014-2018) Percent of pop foreign born

acs_child American Community Survey (2014-2018) Percent of households with
children under 18

acs_white American Community Survey (2014-2018) Percent of pop that is white

acs_uninsured American Community Survey (2014-2018) Percent of pop with no health
insurance

acs_participation American Community Survey (2014-2018) Labor force participation rate

acs_commute60 American Community Survey (2014-2018) Percent of pop with commute > 60
mins

nypd_violent NYPD Complaints 2016-2018 (via NYC
OpenData), NYS Penal Law Offenses

Avg yearly complaints of felony
violent crimes

epa_walk Environmental Protection Agency -
National Walkability Index

Walk score

pluto_vacant NYC Department of City Planning PLUTO
Tax Lot Data (2018)

Building classifications V0-6

nc_agriculture Multiple sources population-normalized community
farm and garden count

pluto_church PLUTO 2018 population-normalized PLUTO
church count



pluto_school PLUTO 2018 population-normalized PLUTO
school count

pluto_outdoor PLUTO 2018 population-normalized PLUTO
outdoor count

pluto_cultural PLUTO 2018 population-normalized PLUTO
cultural count



Figure 1 - Distribution of tract level populations and EPA walkability scores

(Lower whisker = lower quartile - 1.5 * interquartile range)

The distribution of tract populations was skewed right so we applied a cube root transform to

better approximate a normal distribution and removed tracts below the lower quartile minus the

interquartile range. This is slightly different from the more common 1.5 * IQR  outlier threshold,

but given the subjective nature of these considerations, we believe it is reasonable. We applied

the same logic for walkability but without the transformation, because the distribution is

symmetric. Outliers on the high end were not removed because they do not limit the availability

or accessibility of social infrastructure.



Table 2 - Description and Optimal Parameter Selection of Regression Models

Lasso regression is a regularized linear model that mitigates multicollinearity—common in

socioeconomic data—by shrinking variable coefficients, thus preventing overfitting. Random

Forest is a non-linear model that also performs well with high dimensionality. GWR is a

weight-based regression model that uses geospatial relationships to estimate coefficients based

on the spatial proximity of each observation, allowing for accurate assessment of geographic

datasets.

Regression Optimal Parameter Value

Lasso (L1 Regularization) Alpha = 0.00583

Random Forest Max_depth = 20,
Max_features = 0.5
N_estimators = 500

Geographic Weighted Regression Bandwidth (w/ Adaptive Bisquare Spatial
Kernel) = 215

Figure 2 - Lasso Regression Out-of Sample Error



Figure 3 - ArcGIS Global Moran’s I Report



Table 3 - Subjective Well-Being indicators from NYC Well-Being Index (p. 15)



Figure 4a - Mental health local Moran’s I plot

Conditional on education and non-commercial agriculture



Figure 4b - Mental health local Moran’s I plot

Conditional on physical health and non-commercial agriculture



Figure 4c - Mental health local Moran’s I plot

Conditional on PLUTO church classification and non-commercial agriculture



Figure 4d - Mental health local Moran’s I plot

Conditional on PLUTO public school classification and non-commercial agriculture



Figure 4e - Mental health local Moran’s I plot

Conditional on PLUTO cultural center classification and non-commercial agriculture



Figure 4f - Mental health local Moran’s I plot

Conditional on PLUTO outdoor space classification and non-commercial agriculture



Figure 5 - Feature Importance of GWR Coefficients for Social Infrastructure



Figure 6 - Spatial Distribution of GWR Coefficients for Social Infrastructure


