diff --git a/test/test_model_class.py b/test/test_model_class.py index 8fe63611..1a4c8a98 100644 --- a/test/test_model_class.py +++ b/test/test_model_class.py @@ -42,6 +42,11 @@ def mock_x(): @pytest.fixture(scope='module') def mock_data(mock_x): + data = bigauss(mock_x,mean1=3,mean2=4,std1=0.5,std2=0.2,amp1=0.5,amp2=0.6) + return data + +@pytest.fixture(scope='module') +def mock_data_noise(mock_x): data = bigauss(mock_x,mean1=3,mean2=4,std1=0.5,std2=0.2,amp1=0.5,amp2=0.6) data += whitegaussnoise(mock_x,0.01,seed=1) return data @@ -552,14 +557,14 @@ def test_fit_evaluate_model(mock_data,mock_x,model_type): # ================================================================ @pytest.mark.parametrize('method', ['bootstrap','moment']) @pytest.mark.parametrize('model_type', model_types) -def test_fit_modelUncert(mock_data,mock_x,model_type,method): +def test_fit_modelUncert(mock_data_noise,mock_x,model_type,method): "Check that the uncertainty of fit results can be calculated and is the uncertainty of the model is non zero for all but nonparametric models" model = _generate_model(model_type, fixed_axis=False) if method=='bootstrap': - results = fit(model,mock_data,mock_x, bootstrap=3) + results = fit(model,mock_data_noise,mock_x, bootstrap=3) else: - results = fit(model,mock_data,mock_x) + results = fit(model,mock_data_noise,mock_x) assert hasattr(results,'modelUncert') ci_lower = results.modelUncert.ci(95)[:,0]