-
-
Notifications
You must be signed in to change notification settings - Fork 5.5k
/
log.jl
397 lines (348 loc) · 15.9 KB
/
log.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
# This file is a part of Julia. License is MIT: https://julialang.org/license
# Implementation of
# "Table-driven Implementation of the Logarithm Function in IEEE Floating-point Arithmetic"
# Tang, Ping-Tak Peter
# ACM Trans. Math. Softw. (1990), 16(4):378--400
# https://doi.org/10.1145/98267.98294
# Does not currently handle floating point flags (inexact, div-by-zero, etc).
import .Base.unsafe_trunc
import .Base.Math.@horner
# Float64 lookup table.
# to generate values:
# N=39 # (can be up to N=42).
# sN = 2.0^N
# isN = 1.0/sN
# s7 = 2.0^7
# is7 = 1.0/s7
# for j=0:128
# l_big = Base.log(big(1.0+j*is7))
# l_hi = isN*Float64(round(sN*l_big))
# l_lo = Float64(l_big-l_hi)
# j % 2 == 0 && print("\n ")
# print("(",l_hi,",",l_lo,"),")
# end
const t_log_Float64 = ((0.0,0.0),(0.007782140442941454,-8.865052917267247e-13),
(0.015504186536418274,-4.530198941364935e-13),(0.0231670592820592,-5.248209479295644e-13),
(0.03077165866670839,4.529814257790929e-14),(0.0383188643027097,-5.730994833076631e-13),
(0.04580953603181115,-5.16945692881222e-13),(0.053244514518155484,6.567993368985218e-13),
(0.06062462181580486,6.299848199383311e-13),(0.06795066190898069,-4.729424109166329e-13),
(0.07522342123775161,-1.6408301585598662e-13),(0.08244366921098845,8.614512936087814e-14),
(0.08961215869021544,-5.283050530808144e-13),(0.09672962645890948,-3.5836667430094137e-13),
(0.10379679368088546,7.581073923016376e-13),(0.11081436634049169,-2.0157368416016215e-13),
(0.11778303565552051,8.629474042969438e-13),(0.1247034785010328,-7.556920687451337e-14),
(0.1315763577895268,-8.075373495358435e-13),(0.13840232285838283,7.363043577087051e-13),
(0.14518200984457508,-7.718001336828099e-14),(0.15191604202664166,-7.996871607743758e-13),
(0.15860503017574956,8.890223439724663e-13),(0.16524957289584563,-5.384682618788232e-13),
(0.17185025692742784,-7.686134224018169e-13),(0.17840765747314435,-3.2605717931058157e-13),
(0.18492233849428885,-2.7685884310448306e-13),(0.1913948530000198,-3.903387893794952e-13),
(0.1978257433293038,6.160755775588723e-13),(0.20421554142922105,-5.30156516006026e-13),
(0.21056476910780475,-4.55112422774782e-13),(0.21687393830143264,-8.182853292737783e-13),
(0.22314355131493357,-7.238189921749681e-13),(0.22937410106533207,-4.86240001538379e-13),
(0.23556607131286,-9.30945949519689e-14),(0.24171993688651128,6.338907368997553e-13),
(0.24783616390413954,4.4171755371315547e-13),(0.25391520998164196,-6.785208495970588e-13),
(0.25995752443668607,2.3999540484211735e-13),(0.2659635484978935,-7.555569400283742e-13),
(0.27193371548310097,5.407904186145515e-13),(0.2778684510030871,3.692037508208009e-13),
(0.28376817313073843,-9.3834172236637e-14),(0.28963329258294834,9.43339818951269e-14),
(0.29546421289342106,4.148131870425857e-13),(0.3012613305781997,-3.7923164802093147e-14),
(0.3070250352957373,-8.25463138725004e-13),(0.31275571000333,5.668653582900739e-13),
(0.318453731119007,-4.723727821986367e-13),(0.32411946865431673,-1.0475750058776541e-13),
(0.32975328637257917,-1.1118671389559323e-13),(0.33535554192167183,-5.339989292003297e-13),
(0.3409265869704541,1.3912841212197566e-13),(0.3464667673470103,-8.017372713972018e-13),
(0.35197642315688427,2.9391859187648e-13),(0.3574558889213222,4.815896111723205e-13),
(0.3629054936900502,-6.817539406325327e-13),(0.36832556115950865,-8.009990055432491e-13),
(0.3737164097929053,6.787566823158706e-13),(0.37907835293481185,1.5761203773969435e-13),
(0.3844116989112081,-8.760375990774874e-13),(0.38971675114044046,-4.152515806343612e-13),
(0.3949938082405424,3.2655698896907146e-13),(0.40024316412745975,-4.4704265010452445e-13),
(0.4054651081078191,3.452764795203977e-13),(0.4106599249844294,8.390050778518307e-13),
(0.4158278951435932,1.1776978751369214e-13),(0.4209692946442374,-1.0774341461609579e-13),
(0.42608439531068143,2.186334329321591e-13),(0.43117346481813,2.413263949133313e-13),
(0.4362367667745275,3.90574622098307e-13),(0.44127456080423144,6.437879097373207e-13),
(0.44628710262804816,3.713514191959202e-13),(0.45127464413963025,-1.7166921336082432e-13),
(0.4562374334818742,-2.8658285157914353e-13),(0.4611757151214988,6.713692791384601e-13),
(0.46608972992544295,-8.437281040871276e-13),(0.4709797152190731,-2.821014384618127e-13),
(0.4758459048698569,1.0701931762114255e-13),(0.4806885293455707,1.8119346366441111e-13),
(0.4855078157816024,9.840465278232627e-14),(0.49030398804461583,5.780031989454028e-13),
(0.49507726679803454,-1.8302857356041668e-13),(0.4998278695566114,-1.620740015674495e-13),
(0.5045560107519123,4.83033149495532e-13),(0.5092619017905236,-7.156055317238212e-13),
(0.5139457511013461,8.882123951857185e-13),(0.5186077642083546,-3.0900580513238243e-13),
(0.5232481437651586,-6.10765519728515e-13),(0.5278670896204858,3.565996966334783e-13),
(0.532464798869114,3.5782396591276384e-13),(0.5370414658973459,-4.622608700154458e-13),
(0.5415972824321216,6.227976291722515e-13),(0.5461324375974073,7.283894727206574e-13),
(0.5506471179523942,2.680964661521167e-13),(0.5551415075406112,-1.0960825046059278e-13),
(0.5596157879353996,2.3119493838005378e-14),(0.5640701382853877,-5.846905800529924e-13),
(0.5685047353526897,-2.1037482511444942e-14),(0.5729197535620187,-2.332318294558741e-13),
(0.5773153650352469,-4.2333694288141915e-13),(0.5816917396350618,-4.3933937969737843e-13),
(0.5860490450031648,4.1341647073835564e-13),(0.590387446602108,6.841763641591467e-14),
(0.5947071077462169,4.758553400443064e-13),(0.5990081896452466,8.367967867475769e-13),
(0.6032908514389419,-8.576373464665864e-13),(0.6075552502243227,2.1913281229340092e-13),
(0.6118015411066153,-6.224284253643115e-13),(0.6160298772156239,-1.098359432543843e-13),
(0.6202404097512044,6.531043137763365e-13),(0.6244332880123693,-4.758019902171077e-13),
(0.6286086594227527,-3.785425126545704e-13),(0.6327666695706284,4.0939233218678666e-13),
(0.636907462236195,8.742438391485829e-13),(0.6410311794206791,2.521818845684288e-13),
(0.6451379613736208,-3.6081313604225574e-14),(0.649227946625615,-5.05185559242809e-13),
(0.6533012720119586,7.869940332335532e-13),(0.6573580727090302,-6.702087696194906e-13),
(0.6613984822452039,1.6108575753932459e-13),(0.6654226325445052,5.852718843625151e-13),
(0.6694306539429817,-3.5246757297904794e-13),(0.6734226752123504,-1.8372084495629058e-13),
(0.6773988235909201,8.860668981349492e-13),(0.6813592248072382,6.64862680714687e-13),
(0.6853040030982811,6.383161517064652e-13),(0.6892332812385575,2.5144230728376075e-13),
(0.6931471805601177,-1.7239444525614835e-13))
# Float32 lookup table
# to generate values:
# N=16
# sN = 2f0^N
# isN = 1f0/sN
# s7 = 2.0^7
# is7 = 1.0/s7
# for j=0:128
# j % 4 == 0 && print("\n ")
# print(float64(Base.log(big(1.0+j*is7))),",")
# end
const t_log_Float32 = (0.0,0.007782140442054949,0.015504186535965254,0.02316705928153438,
0.030771658666753687,0.0383188643021366,0.0458095360312942,0.053244514518812285,
0.06062462181643484,0.06795066190850775,0.07522342123758753,0.08244366921107459,
0.08961215868968714,0.09672962645855111,0.10379679368164356,0.11081436634029011,
0.11778303565638346,0.12470347850095724,0.13157635778871926,0.13840232285911913,
0.1451820098444979,0.15191604202584197,0.15860503017663857,0.16524957289530717,
0.17185025692665923,0.1784076574728183,0.184922338494012,0.19139485299962947,
0.19782574332991987,0.2042155414286909,0.21056476910734964,0.21687393830061436,
0.22314355131420976,0.22937410106484582,0.2355660713127669,0.24171993688714516,
0.24783616390458127,0.25391520998096345,0.25995752443692605,0.26596354849713794,
0.27193371548364176,0.2778684510034563,0.2837681731306446,0.28963329258304266,
0.2954642128938359,0.3012613305781618,0.3070250352949119,0.3127557100038969,
0.3184537311185346,0.324119468654212,0.329753286372468,0.3353555419211378,
0.3409265869705932,0.34646676734620857,0.3519764231571782,0.3574558889218038,
0.3629054936893685,0.3683255611587076,0.37371640979358406,0.37907835293496944,
0.38441169891033206,0.3897167511400252,0.394993808240869,0.4002431641270127,
0.4054651081081644,0.4106599249852684,0.415827895143711,0.42096929464412963,
0.4260843953109001,0.4311734648183713,0.43623676677491807,0.4412745608048752,
0.44628710262841953,0.45127464413945856,0.4562374334815876,0.46117571512217015,
0.46608972992459924,0.470979715218791,0.4758459048699639,0.4806885293457519,
0.4855078157817008,0.4903039880451938,0.4950772667978515,0.4998278695564493,
0.5045560107523953,0.5092619017898079,0.5139457511022343,0.5186077642080457,
0.5232481437645479,0.5278670896208424,0.5324647988694718,0.5370414658968836,
0.5415972824327444,0.5461324375981357,0.5506471179526623,0.5551415075405016,
0.5596157879354227,0.564070138284803,0.5685047353526688,0.5729197535617855,
0.5773153650348236,0.5816917396346225,0.5860490450035782,0.5903874466021763,
0.5947071077466928,0.5990081896460834,0.6032908514380843,0.6075552502245418,
0.6118015411059929,0.616029877215514,0.6202404097518576,0.6244332880118935,
0.6286086594223741,0.6327666695710378,0.6369074622370692,0.6410311794209312,
0.6451379613735847,0.6492279466251099,0.6533012720127457,0.65735807270836,
0.661398482245365,0.6654226325450905,0.6694306539426292,0.6734226752121667,
0.6773988235918061,0.6813592248079031,0.6853040030989194,0.689233281238809,
0.6931471805599453)
# determine if hardware FMA is available
# should probably check with LLVM, see #9855.
const FMA_NATIVE = muladd(nextfloat(1.0),nextfloat(1.0),-nextfloat(1.0,2)) != 0
# truncate lower order bits (up to 26)
# ideally, this should be able to use ANDPD instructions, see #9868.
@inline function truncbits(x::Float64)
reinterpret(Float64, reinterpret(UInt64,x) & 0xffff_ffff_f800_0000)
end
# Procedure 1
@inline function log_proc1(y::Float64,mf::Float64,F::Float64,f::Float64,jp::Int)
## Steps 1 and 2
@inbounds hi,lo = t_log_Float64[jp]
l_hi = mf* 0.6931471805601177 + hi
l_lo = mf*-1.7239444525614835e-13 + lo
## Step 3
# @inbounds u = f*c_invF[jp]
# u = f/F
# q = u*u*@horner(u,
# -0x1.0_0000_0000_0001p-1,
# +0x1.5_5555_5550_9ba5p-2,
# -0x1.f_ffff_ffeb_6526p-3,
# +0x1.9_99b4_dfed_6fe4p-3,
# -0x1.5_5576_6647_2e04p-3)
## Step 3' (alternative)
u = (2.0f)/(y+F)
v = u*u
q = u*v*@horner(v,
0.08333333333303913,
0.012500053168098584)
## Step 4
l_hi + (u + (q + l_lo))
end
# Procedure 2
@inline function log_proc2(f::Float64)
## Step 1
g = 1.0/(2.0+f)
u = 2.0*f*g
v = u*u
## Step 2
q = u*v*@horner(v,
0.08333333333333179,
0.012500000003771751,
0.0022321399879194482,
0.0004348877777076146)
## Step 3
# based on:
# 2(f-u) = 2(f(2+f)-2f)/(2+f) = 2f^2/(2+f) = fu
# 2(f-u1-u2) - f*(u1+u2) = 0
# 2(f-u1) - f*u1 = (2+f)u2
# u2 = (2(f-u1) - f*u1)/(2+f)
if FMA_NATIVE
return u + fma(fma(-u,f,2(f-u)), g, q)
else
u1 = truncbits(u) # round to 24 bits
f1 = truncbits(f)
f2 = f-f1
u2 = ((2.0*(f-u1)-u1*f1)-u1*f2)*g
## Step 4
return u1 + (u2 + q)
end
end
@inline function log_proc1(y::Float32,mf::Float32,F::Float32,f::Float32,jp::Int)
## Steps 1 and 2
@inbounds hi = t_log_Float32[jp]
l = mf*0.6931471805599453 + hi
## Step 3
# @inbounds u = f*c_invF[jp]
# q = u*u*@horner(u,
# Float32(-0x1.00006p-1),
# Float32(0x1.55546cp-2))
## Step 3' (alternative)
u = (2f0f)/(y+F)
v = u*u
q = u*v*0.08333351f0
## Step 4
Float32(l + (u + q))
end
@inline function log_proc2(f::Float32)
## Step 1
# compute in higher precision
u64 = Float64(2f0*f)/(2.0+f)
u = Float32(u64)
v = u*u
## Step 2
q = u*v*@horner(v,
0.08333332f0,
0.012512346f0)
## Step 3: not required
## Step 4
Float32(u64 + q)
end
function log(x::Float64)
if x > 0.0
x == Inf && return x
# Step 2
if 0.9394130628134757 < x < 1.0644944589178595
f = x-1.0
return log_proc2(f)
end
# Step 3
xu = reinterpret(UInt64,x)
m = Int(xu >> 52) & 0x07ff
if m == 0 # x is subnormal
x *= 1.8014398509481984e16 # 0x1p54, normalise significand
xu = reinterpret(UInt64,x)
m = Int(xu >> 52) & 0x07ff - 54
end
m -= 1023
y = reinterpret(Float64,(xu & 0x000f_ffff_ffff_ffff) | 0x3ff0_0000_0000_0000)
mf = Float64(m)
F = (y + 3.5184372088832e13) - 3.5184372088832e13 # 0x1p-7*round(0x1p7*y)
f = y-F
jp = unsafe_trunc(Int,128.0*F)-127
return log_proc1(y,mf,F,f,jp)
elseif x == 0.0
-Inf
elseif isnan(x)
NaN
else
throw_complex_domainerror(:log, x)
end
end
function log(x::Float32)
if x > 0f0
x == Inf32 && return x
# Step 2
if 0.939413f0 < x < 1.0644945f0
f = x-1f0
return log_proc2(f)
end
# Step 3
xu = reinterpret(UInt32,x)
m = Int(xu >> 23) & 0x00ff
if m == 0 # x is subnormal
x *= 3.3554432f7 # 0x1p25, normalise significand
xu = reinterpret(UInt32,x)
m = Int(xu >> 23) & 0x00ff - 25
end
m -= 127
y = reinterpret(Float32,(xu & 0x007f_ffff) | 0x3f80_0000)
mf = Float32(m)
F = (y + 65536.0f0) - 65536.0f0 # 0x1p-7*round(0x1p7*y)
f = y-F
jp = unsafe_trunc(Int,128.0f0*F)-127
log_proc1(y,mf,F,f,jp)
elseif x == 0f0
-Inf32
elseif isnan(x)
NaN32
else
throw_complex_domainerror(:log, x)
end
end
function log1p(x::Float64)
if x > -1.0
x == Inf && return x
if -1.1102230246251565e-16 < x < 1.1102230246251565e-16
return x # Inexact
# Step 2
elseif -0.06058693718652422 < x < 0.06449445891785943
return log_proc2(x)
end
# Step 3
z = 1.0 + x
zu = reinterpret(UInt64,z)
s = reinterpret(Float64,0x7fe0_0000_0000_0000 - (zu & 0xfff0_0000_0000_0000)) # 2^-m
m = Int(zu >> 52) & 0x07ff - 1023 # z cannot be subnormal
c = m > 0 ? 1.0-(z-x) : x-(z-1.0) # 1+x = z+c exactly
y = reinterpret(Float64,(zu & 0x000f_ffff_ffff_ffff) | 0x3ff0_0000_0000_0000)
mf = Float64(m)
F = (y + 3.5184372088832e13) - 3.5184372088832e13 # 0x1p-7*round(0x1p7*y)
f = (y - F) + c*s #2^m(F+f) = 1+x = z+c
jp = unsafe_trunc(Int,128.0*F)-127
log_proc1(y,mf,F,f,jp)
elseif x == -1.0
-Inf
elseif isnan(x)
NaN
else
throw_complex_domainerror(:log1p, x)
end
end
function log1p(x::Float32)
if x > -1f0
x == Inf32 && return x
if -5.9604645f-8 < x < 5.9604645f-8
return x # Inexact
# Step 2
elseif -0.06058694f0 < x < 0.06449446f0
return log_proc2(x)
end
# Step 3
z = 1f0 + x
zu = reinterpret(UInt32,z)
s = reinterpret(Float32,0x7f000000 - (zu & 0xff80_0000)) # 2^-m
m = Int(zu >> 23) & 0x00ff - 127 # z cannot be subnormal
c = m > 0 ? 1f0-(z-x) : x-(z-1f0) # 1+x = z+c
y = reinterpret(Float32,(zu & 0x007f_ffff) | 0x3f80_0000)
mf = Float32(m)
F = (y + 65536.0f0) - 65536.0f0 # 0x1p-7*round(0x1p7*y)
f = (y - F) + s*c #2^m(F+f) = 1+x = z+c
jp = unsafe_trunc(Int,128.0*F)-127
log_proc1(y,mf,F,f,jp)
elseif x == -1f0
-Inf32
elseif isnan(x)
NaN32
else
throw_complex_domainerror(:log1p, x)
end
end
for f in (:log,:log1p)
@eval begin
($f)(x::Real) = ($f)(float(x))
end
end