diff --git a/src/datatype.c b/src/datatype.c index 57f2111127bfa..3f511ae8d9723 100644 --- a/src/datatype.c +++ b/src/datatype.c @@ -191,18 +191,6 @@ unsigned jl_special_vector_alignment(size_t nfields, jl_value_t *t) { if (!jl_is_vecelement_type(t)) return 0; - // LLVM 3.7 and 3.8 either crash or generate wrong code for many - // SIMD vector sizes N. It seems the rule is that N can have at - // most 2 non-zero bits. (This is true at least for N<=100.) See - // also . - size_t mask = nfields; - // See e.g. - // for an - // explanation of this bit-counting algorithm. - mask &= mask-1; // clear least-significant 1 if present - mask &= mask-1; // clear another 1 - if (mask) - return 0; // nfields has more than two 1s assert(jl_datatype_nfields(t)==1); jl_value_t *ty = jl_field_type((jl_datatype_t*)t, 0); if (!jl_is_primitivetype(ty)) diff --git a/test/vecelement.jl b/test/vecelement.jl index 077f608d59e03..e6caa10cd814d 100644 --- a/test/vecelement.jl +++ b/test/vecelement.jl @@ -105,12 +105,6 @@ end # Test various SIMD Vectors with known good sizes for T in (Float64, Float32, Int64, Int32) for N in 1:36 - # For some vectortypes Julia emits llvm arrays instead of vectors - if N % 7 == 0 || N % 11 == 0 || N % 13 == 0 || N % 15 == 0 || - N % 19 == 0 || N % 23 == 0 || N % 25 == 0 || N % 27 == 0 || - N % 29 == 0 || N % 31 == 0 - continue - end a = ntuple(i->VecElement(T(i)), N) result = ntuple(i-> VecElement(T(i+i)), N) b = vecadd(a, a)