diff --git a/base/linalg/uniformscaling.jl b/base/linalg/uniformscaling.jl index dfca2146330ec..5e39f5ef30305 100644 --- a/base/linalg/uniformscaling.jl +++ b/base/linalg/uniformscaling.jl @@ -371,3 +371,13 @@ UniformScaling{Float64} ``` """ chol(J::UniformScaling, args...) = ((C, info) = _chol!(J, nothing); @assertposdef C info) + + +## Matrix construction from UniformScaling +Matrix{T}(s::UniformScaling, dims::Dims{2}) where {T} = setindex!(zeros(T, dims), T(s.λ), diagind(dims...)) +Matrix{T}(s::UniformScaling, m::Integer, n::Integer) where {T} = Matrix{T}(s, Dims((m, n))) +Matrix(s::UniformScaling, m::Integer, n::Integer) = Matrix(s, Dims((m, n))) +Matrix(s::UniformScaling, dims::Dims{2}) = Matrix{eltype(s)}(s, dims) +# convenience variations that accept a single integer to specify dims +Matrix{T}(s::UniformScaling, m::Integer) where {T} = Matrix{T}(s, m, m) +Matrix(s::UniformScaling, m::Integer) = Matrix(s, m, m) diff --git a/base/sparse/sparsematrix.jl b/base/sparse/sparsematrix.jl index cc9f1edd82440..32c242a7a1984 100644 --- a/base/sparse/sparsematrix.jl +++ b/base/sparse/sparsematrix.jl @@ -1529,7 +1529,8 @@ if not specified. `sparse(α*I, m, n)` can be used to efficiently create a sparse multiple `α` of the identity matrix. """ -speye(::Type{T}, m::Integer, n::Integer) where {T} = speye_scaled(T, oneunit(T), m, n) +speye(::Type{T}, m::Integer, n::Integer) where {T} = SparseMatrixCSC{T}(UniformScaling(one(T)), Dims((m, n))) +sparse(s::UniformScaling, m::Integer, n::Integer=m) = SparseMatrixCSC(s, Dims((m, n))) function one(S::SparseMatrixCSC{T}) where T m,n = size(S) @@ -1537,21 +1538,28 @@ function one(S::SparseMatrixCSC{T}) where T speye(T, m) end -speye_scaled(diag, m::Integer, n::Integer) = speye_scaled(typeof(diag), diag, m, n) +## SparseMatrixCSC construction from UniformScaling +SparseMatrixCSC{Tv,Ti}(s::UniformScaling, m::Integer, n::Integer) where {Tv,Ti} = SparseMatrixCSC{Tv,Ti}(s, Dims((m, n))) +SparseMatrixCSC{Tv}(s::UniformScaling, m::Integer, n::Integer) where {Tv} = SparseMatrixCSC{Tv}(s, Dims((m, n))) +SparseMatrixCSC(s::UniformScaling, m::Integer, n::Integer) = SparseMatrixCSC(s, Dims((m, n))) +SparseMatrixCSC{Tv}(s::UniformScaling, dims::Dims{2}) where {Tv} = SparseMatrixCSC{Tv,Int}(s, dims) +SparseMatrixCSC(s::UniformScaling, dims::Dims{2}) = SparseMatrixCSC{eltype(s)}(s, dims) +function SparseMatrixCSC{Tv,Ti}(s::UniformScaling, dims::Dims{2}) where {Tv,Ti} + @boundscheck first(dims) < 0 && throw(ArgumentError("first dimension invalid ($(first(dims)) < 0)")) + @boundscheck last(dims) < 0 && throw(ArgumentError("second dimension invalid ($(last(dims)) < 0)")) + iszero(s.λ) && return spzeros(Tv, Ti, dims...) + m, n, k = dims..., min(dims...) + nzval = fill!(Vector{Tv}(k), Tv(s.λ)) + rowval = copy!(Vector{Ti}(k), 1:k) + colptr = copy!(Vector{Ti}(n + 1), 1:(k + 1)) + for i in (k + 2):(n + 1) colptr[i] = (k + 1) end + SparseMatrixCSC{Tv,Ti}(dims..., colptr, rowval, nzval) +end +# convenience variations that accept a single integer to specify dims +SparseMatrixCSC{Tv,Ti}(s::UniformScaling, m::Integer) where {Tv,Ti} = SparseMatrixCSC{Tv,Ti}(s, m, m) +SparseMatrixCSC{Tv}(s::UniformScaling, m::Integer) where {Tv} = SparseMatrixCSC{Tv}(s, m, m) +SparseMatrixCSC(s::UniformScaling, m::Integer) = SparseMatrixCSC(s, m, m) -function speye_scaled(::Type{T}, diag, m::Integer, n::Integer) where T - ((m < 0) || (n < 0)) && throw(ArgumentError("invalid array dimensions")) - if iszero(diag) - return SparseMatrixCSC(m, n, ones(Int, n+1), Vector{Int}(0), Vector{T}(0)) - end - nnz = min(m,n) - colptr = Vector{Int}(1+n) - colptr[1:nnz+1] = 1:nnz+1 - colptr[nnz+2:end] = nnz+1 - SparseMatrixCSC(Int(m), Int(n), colptr, Vector{Int}(1:nnz), fill!(Vector{T}(nnz), diag)) -end - -sparse(S::UniformScaling, m::Integer, n::Integer=m) = speye_scaled(S.λ, m, n) Base.iszero(A::SparseMatrixCSC) = iszero(view(A.nzval, 1:(A.colptr[size(A, 2) + 1] - 1))) diff --git a/test/linalg/uniformscaling.jl b/test/linalg/uniformscaling.jl index faebd6a282912..01a5579e68c75 100644 --- a/test/linalg/uniformscaling.jl +++ b/test/linalg/uniformscaling.jl @@ -190,6 +190,17 @@ end end end +@testset "Matrix construction from UniformScaling" begin + @test Matrix(2I, 3)::Matrix{Int} == 2*eye(3) + @test Matrix(2I, 3, 3)::Matrix{Int} == 2*eye(3) + @test Matrix(2I, 3, 4)::Matrix{Int} == 2*eye(3, 4) + @test Matrix(2I, 4, 3)::Matrix{Int} == 2*eye(4, 3) + @test Matrix(2.0I, 3, 3)::Matrix{Float64} == 2*eye(3) + @test Matrix{Real}(2I, 3)::Matrix{Real} == 2*eye(3) + @test Matrix{Real}(2I, 3, 3)::Matrix{Real} == 2*eye(3) + @test Matrix{Float64}(2I, 3, 3)::Matrix{Float64} == 2*eye(3) +end + @testset "equality comparison of matrices with UniformScaling" begin # AbstractMatrix methods diagI = Diagonal(fill(1, 3)) diff --git a/test/sparse/sparse.jl b/test/sparse/sparse.jl index da76943515c8c..29a611454affa 100644 --- a/test/sparse/sparse.jl +++ b/test/sparse/sparse.jl @@ -36,6 +36,22 @@ end @test sparse(Any[1,2,3], Any[1,2,3], Any[1,1,1], 5, 4) == sparse([1,2,3], [1,2,3], [1,1,1], 5, 4) end +@testset "SparseMatrixCSC construction from UniformScaling" begin + @test_throws ArgumentError SparseMatrixCSC(I, -1) + @test_throws ArgumentError SparseMatrixCSC(I, -1, 3) + @test_throws ArgumentError SparseMatrixCSC(I, 3, -1) + @test SparseMatrixCSC(2I, 3)::SparseMatrixCSC{Int,Int} == 2*eye(3) + @test SparseMatrixCSC(2I, 3, 3)::SparseMatrixCSC{Int,Int} == 2*eye(3) + @test SparseMatrixCSC(2I, 3, 4)::SparseMatrixCSC{Int,Int} == 2*eye(3, 4) + @test SparseMatrixCSC(2I, 4, 3)::SparseMatrixCSC{Int,Int} == 2*eye(4, 3) + @test SparseMatrixCSC(2.0I, 3, 3)::SparseMatrixCSC{Float64,Int} == 2*eye(3) + @test SparseMatrixCSC{Real}(2I, 3)::SparseMatrixCSC{Real,Int} == 2*eye(3) + @test SparseMatrixCSC{Real}(2I, 3, 3)::SparseMatrixCSC{Real,Int} == 2*eye(3) + @test SparseMatrixCSC{Float64}(2I, 3, 3)::SparseMatrixCSC{Float64,Int} == 2*eye(3) + @test SparseMatrixCSC{Float64,Int32}(2I, 3, 3)::SparseMatrixCSC{Float64,Int32} == 2*eye(3) + @test SparseMatrixCSC{Float64,Int32}(0I, 3, 3)::SparseMatrixCSC{Float64,Int32} == spzeros(Float64, Int32, 3, 3) +end + se33 = speye(3) do33 = ones(3)