diff --git a/.travis.yml b/.travis.yml index 2e22f430..495a33f0 100644 --- a/.travis.yml +++ b/.travis.yml @@ -1,14 +1,14 @@ language: julia os: - - linux + - linux julia: - - 0.6 - - nightly + - 0.7 + - nightly matrix: allow_failures: - julia: nightly notifications: - email: false + email: false after_success: - - julia -e 'Pkg.add("Coverage"); cd(Pkg.dir("IterativeSolvers")); using Coverage; Coveralls.submit(process_folder());' - - julia -e 'Pkg.add("Documenter"); cd(Pkg.dir("IterativeSolvers")); include(joinpath("docs", "make.jl"))' \ No newline at end of file + - julia -e 'Pkg.add("Coverage"); cd(Pkg.dir("IterativeSolvers")); using Coverage; Coveralls.submit(process_folder());' + - julia -e 'Pkg.add("Documenter"); cd(Pkg.dir("IterativeSolvers")); include(joinpath("docs", "make.jl"))' diff --git a/REQUIRE b/REQUIRE index 0284cb21..8eef6009 100644 --- a/REQUIRE +++ b/REQUIRE @@ -1,3 +1,3 @@ -julia 0.6 +julia 0.7 -RecipesBase +RecipesBase 0.3.1 diff --git a/benchmark/advection_diffusion.jl b/benchmark/advection_diffusion.jl index 73c126fa..afb0fca5 100644 --- a/benchmark/advection_diffusion.jl +++ b/benchmark/advection_diffusion.jl @@ -19,7 +19,7 @@ function advection_dominated(;N = 50, β = 1000.0) Δ = laplace_matrix(Float64, N, 3) ./ -h^2 # And the dx bit. - ∂x_1d = spdiagm((fill(-β / 2h, N - 1), fill(β / 2h, N - 1)), (-1, 1)) + ∂x_1d = spdiagm(-1 => fill(-β / 2h, N - 1), 1 => fill(β / 2h, N - 1)) ∂x = kron(speye(N^2), ∂x_1d) # Final matrix and rhs. @@ -41,6 +41,6 @@ function laplace_matrix(::Type{T}, n, dims) where T end second_order_central_diff(::Type{T}, dim) where {T} = convert( - SparseMatrixCSC{T, Int}, + SparseMatrixCSC{T, Int}, SymTridiagonal(fill(2 * one(T), dim), fill(-one(T), dim - 1)) -) \ No newline at end of file +) diff --git a/benchmark/benchmark-hessenberg.jl b/benchmark/benchmark-hessenberg.jl index c30387bf..02a8e73f 100644 --- a/benchmark/benchmark-hessenberg.jl +++ b/benchmark/benchmark-hessenberg.jl @@ -16,24 +16,24 @@ function backslash_versus_givens(; n = 1_000, ms = 10 : 10 : 100) println(m) H = zeros(m + 1, m) - + # Create an orthonormal basis for the Krylov subspace V = rand(n, m + 1) V[:, 1] /= norm(V[:, 1]) - + for i = 1 : m # Expand V[:, i + 1] = A * V[:, i] - + # Orthogonalize H[1 : i, i] = view(V, :, 1 : i)' * V[:, i + 1] V[:, i + 1] -= view(V, :, 1 : i) * H[1 : i, i] - + # Re-orthogonalize update = view(V, :, 1 : i)' * V[:, i + 1] H[1 : i, i] += update V[:, i + 1] -= view(V, :, 1 : i) * update - + # Normalize H[i + 1, i] = norm(V[:, i + 1]) V[:, i + 1] /= H[i + 1, i] @@ -43,11 +43,11 @@ function backslash_versus_givens(; n = 1_000, ms = 10 : 10 : 100) rhs = [i == 1 ? 1.0 : 0.0 for i = 1 : size(H, 1)] # Run the benchmark - results["givens_qr"][m] = @benchmark A_ldiv_B!(IterativeSolvers.Hessenberg(myH), myRhs) setup = (myH = copy($H); myRhs = copy($rhs)) + results["givens_qr"][m] = @benchmark ldiv!(IterativeSolvers.Hessenberg(myH), myRhs) setup = (myH = copy($H); myRhs = copy($rhs)) results["backslash"][m] = @benchmark $H \ $rhs end return results end -end \ No newline at end of file +end diff --git a/benchmark/benchmark-linear-systems.jl b/benchmark/benchmark-linear-systems.jl index 2f5a886c..2e4d0142 100644 --- a/benchmark/benchmark-linear-systems.jl +++ b/benchmark/benchmark-linear-systems.jl @@ -1,6 +1,6 @@ module LinearSystemsBench -import Base.A_ldiv_B!, Base.\ +import Base.ldiv!, Base.\ using BenchmarkTools using IterativeSolvers @@ -12,7 +12,7 @@ struct DiagonalPreconditioner{T} diag::Vector{T} end -function A_ldiv_B!(y::AbstractVector{T}, A::DiagonalPreconditioner{T}, b::AbstractVector{T}) where T +function ldiv!(y::AbstractVector{T}, A::DiagonalPreconditioner{T}, b::AbstractVector{T}) where T for i = 1 : length(b) @inbounds y[i] = A.diag[i] \ b[i] end @@ -34,7 +34,7 @@ function cg(; n = 1_000_000, tol = 1e-6, maxiter::Int = 200) println("Symmetric positive definite matrix of size ", n) println("Eigenvalues in interval [0.01, 4.01]") println("Tolerance = ", tol, "; max #iterations = ", maxiter) - + # Dry run initial = rand(n) IterativeSolvers.cg!(copy(initial), A, b, Pl = P, maxiter = maxiter, tol = tol, log = false) diff --git a/benchmark/benchmark-svd-florida.jl b/benchmark/benchmark-svd-florida.jl index 67809926..e4518a29 100644 --- a/benchmark/benchmark-svd-florida.jl +++ b/benchmark/benchmark-svd-florida.jl @@ -78,10 +78,10 @@ function runbenchmark(filename, benchmarkfilename) #Choose the same normalized unit vector to start with q = randn(n) eltype(A) <: Complex && (q += im*randn(n)) - scale!(q, inv(norm(q))) + rmul!(q, inv(norm(q))) qm = randn(m) eltype(A) <: Complex && (q += im*randn(m)) - scale!(qm, inv(norm(qm))) + rmul!(qm, inv(norm(qm))) #Number of singular values to request nv = min(m, n, 10) diff --git a/docs/src/getting_started.md b/docs/src/getting_started.md index 03094157..ece51177 100644 --- a/docs/src/getting_started.md +++ b/docs/src/getting_started.md @@ -25,7 +25,7 @@ Rather than constructing an explicit matrix `A` of the type `Matrix` or `SparseM For matrix-free types of `A` the following interface is expected to be defined: - `A*v` computes the matrix-vector product on a `v::AbstractVector`; -- `A_mul_B!(y, A, v)` computes the matrix-vector product on a `v::AbstractVector` in-place; +- `mul!(y, A, v)` computes the matrix-vector product on a `v::AbstractVector` in-place; - `eltype(A)` returns the element type implicit in the equivalent matrix representation of `A`; - `size(A, d)` returns the nominal dimensions along the `d`th axis in the equivalent matrix representation of `A`. diff --git a/docs/src/iterators.md b/docs/src/iterators.md index ef148b0c..3925208e 100644 --- a/docs/src/iterators.md +++ b/docs/src/iterators.md @@ -43,7 +43,7 @@ end @show norm(b1 - A * x) / norm(b1) # Copy the next right-hand side into the iterable -copy!(my_iterable.b, b2) +copyto!(my_iterable.b, b2) for item in my_iterable println("Iteration for rhs 2") diff --git a/docs/src/preconditioning.md b/docs/src/preconditioning.md index 7d6d28c7..41c493fd 100644 --- a/docs/src/preconditioning.md +++ b/docs/src/preconditioning.md @@ -2,13 +2,13 @@ Many iterative solvers have the option to provide left and right preconditioners (`Pl` and `Pr` resp.) in order to speed up convergence or prevent stagnation. They transform a problem $Ax = b$ into a better conditioned system $(P_l^{-1}AP_r^{-1})y = P_l^{-1}b$, where $x = P_r^{-1}y$. -These preconditioners should support the operations +These preconditioners should support the operations -- `A_ldiv_B!(y, P, x)` computes `P \ x` in-place of `y`; -- `A_ldiv_B!(P, x)` computes `P \ x` in-place of `x`; +- `ldiv!(y, P, x)` computes `P \ x` in-place of `y`; +- `ldiv!(P, x)` computes `P \ x` in-place of `x`; - and `P \ x`. -If no preconditioners are passed to the solver, the method will default to +If no preconditioners are passed to the solver, the method will default to ```julia Pl = Pr = IterativeSolvers.Identity() @@ -18,4 +18,4 @@ Pl = Pr = IterativeSolvers.Identity() IterativeSolvers.jl itself does not provide any other preconditioners besides `Identity()`, but recommends the following external packages: - [ILU.jl](https://github.com/haampie/ILU.jl) for incomplete LU decompositions (using drop tolerance); -- [IncompleteSelectedInversion.jl](https://github.com/ettersi/IncompleteSelectedInversion.jl) for incomplete LDLt decompositions. \ No newline at end of file +- [IncompleteSelectedInversion.jl](https://github.com/ettersi/IncompleteSelectedInversion.jl) for incomplete LDLt decompositions. diff --git a/src/bicgstabl.jl b/src/bicgstabl.jl index 7f1a2302..d1e3d04e 100644 --- a/src/bicgstabl.jl +++ b/src/bicgstabl.jl @@ -1,6 +1,6 @@ export bicgstabl, bicgstabl!, bicgstabl_iterator, bicgstabl_iterator!, BiCGStabIterable - -import Base: start, next, done +using Printf +import Base: iterate mutable struct BiCGStabIterable{precT, matT, solT, vecT <: AbstractVector, smallMatT <: AbstractMatrix, realT <: Real, scalarT <: Number} A::matT @@ -36,23 +36,23 @@ function bicgstabl_iterator!(x, A, b, l::Int = 2; # Large vectors. r_shadow = rand(T, n) - rs = Matrix{T}(n, l + 1) + rs = Matrix{T}(undef, n, l + 1) us = zeros(T, n, l + 1) residual = view(rs, :, 1) - + # Compute the initial residual rs[:, 1] = b - A * x # Avoid computing A * 0. if initial_zero - copy!(residual, b) + copyto!(residual, b) else - A_mul_B!(residual, A, x) + mul!(residual, A, x) residual .= b .- residual mv_products += 1 end # Apply the left preconditioner - A_ldiv_B!(Pl, residual) + ldiv!(Pl, residual) γ = zeros(T, l) ω = σ = one(T) @@ -76,35 +76,37 @@ end @inline start(::BiCGStabIterable) = 0 @inline done(it::BiCGStabIterable, iteration::Int) = it.mv_products ≥ it.max_mv_products || converged(it) -function next(it::BiCGStabIterable, iteration::Int) +function iterate(it::BiCGStabIterable, iteration::Int=start(it)) + if done(it, iteration) return nothing end + T = eltype(it.x) L = 2 : it.l + 1 it.σ = -it.ω * it.σ - + ## BiCG part for j = 1 : it.l ρ = dot(it.r_shadow, view(it.rs, :, j)) β = ρ / it.σ - + # us[:, 1 : j] .= rs[:, 1 : j] - β * us[:, 1 : j] it.us[:, 1 : j] .= it.rs[:, 1 : j] .- β .* it.us[:, 1 : j] # us[:, j + 1] = Pl \ (A * us[:, j]) next_u = view(it.us, :, j + 1) - A_mul_B!(next_u, it.A, view(it.us, :, j)) - A_ldiv_B!(it.Pl, next_u) + mul!(next_u, it.A, view(it.us, :, j)) + ldiv!(it.Pl, next_u) it.σ = dot(it.r_shadow, next_u) α = ρ / it.σ it.rs[:, 1 : j] .-= α .* it.us[:, 2 : j + 1] - + # rs[:, j + 1] = Pl \ (A * rs[:, j]) next_r = view(it.rs, :, j + 1) - A_mul_B!(next_r, it.A , view(it.rs, :, j)) - A_ldiv_B!(it.Pl, next_r) - + mul!(next_r, it.A , view(it.rs, :, j)) + ldiv!(it.Pl, next_r) + # x = x + α * us[:, 1] it.x .+= α .* view(it.us, :, 1) end @@ -113,13 +115,13 @@ function next(it::BiCGStabIterable, iteration::Int) it.mv_products += 2 * it.l ## MR part - + # M = rs' * rs - Ac_mul_B!(it.M, it.rs, it.rs) + mul!(it.M, adjoint(it.rs), it.rs) - # γ = M[L, L] \ M[L, 1] - F = lufact!(view(it.M, L, L)) - A_ldiv_B!(it.γ, F, view(it.M, L, 1)) + # γ = M[L, L] \ M[L, 1] + F = lu!(view(it.M, L, L)) + ldiv!(it.γ, F, view(it.M, L, 1)) # This could even be BLAS 3 when combined. BLAS.gemv!('N', -one(T), view(it.us, :, L), it.γ, one(T), view(it.us, :, 1)) @@ -155,9 +157,9 @@ bicgstabl(A, b, l = 2; kwargs...) = bicgstabl!(zerox(A, b), A, b, l; initial_zer - `max_mv_products::Int = size(A, 2)`: maximum number of matrix vector products. For BiCGStab(l) this is a less dubious term than "number of iterations"; - `Pl = Identity()`: left preconditioner of the method; -- `tol::Real = sqrt(eps(real(eltype(b))))`: tolerance for stopping condition `|r_k| / |r_0| ≤ tol`. - Note that (1) the true residual norm is never computed during the iterations, - only an approximation; and (2) if a preconditioner is given, the stopping condition is based on the +- `tol::Real = sqrt(eps(real(eltype(b))))`: tolerance for stopping condition `|r_k| / |r_0| ≤ tol`. + Note that (1) the true residual norm is never computed during the iterations, + only an approximation; and (2) if a preconditioner is given, the stopping condition is based on the *preconditioned residual*. # Return values @@ -184,10 +186,10 @@ function bicgstabl!(x, A, b, l = 2; # This doesn't yet make sense: the number of iters is smaller. log && reserve!(history, :resnorm, max_mv_products) - + # Actually perform CG iterable = bicgstabl_iterator!(x, A, b, l; Pl = Pl, tol = tol, max_mv_products = max_mv_products, kwargs...) - + if log history.mvps = iterable.mv_products end @@ -200,10 +202,10 @@ function bicgstabl!(x, A, b, l = 2; end verbose && @printf("%3d\t%1.2e\n", iteration, iterable.residual) end - + verbose && println() log && setconv(history, converged(iterable)) log && shrink!(history) - + log ? (iterable.x, history) : iterable.x end diff --git a/src/cg.jl b/src/cg.jl index 26db481f..be7348c9 100644 --- a/src/cg.jl +++ b/src/cg.jl @@ -1,5 +1,5 @@ -import Base: start, next, done - +import Base: iterate +using Printf export cg, cg!, CGIterable, PCGIterable, cg_iterator!, CGStateVariables mutable struct CGIterable{matT, solT, vecT, numT <: Real} @@ -40,13 +40,15 @@ end # Ordinary CG # ############### -function next(it::CGIterable, iteration::Int) +function iterate(it::CGIterable, iteration::Int=start(it)) + if done(it, iteration) return nothing end + # u := r + βu (almost an axpy) β = it.residual^2 / it.prev_residual^2 it.u .= it.r .+ β .* it.u # c = A * u - A_mul_B!(it.c, it.A, it.u) + mul!(it.c, it.A, it.u) α = it.residual^2 / dot(it.u, it.c) # Improve solution and residual @@ -64,18 +66,23 @@ end # Preconditioned CG # ##################### -function next(it::PCGIterable, iteration::Int) - A_ldiv_B!(it.c, it.Pl, it.r) +function iterate(it::PCGIterable, iteration::Int=start(it)) + # Check for termination first + if done(it, iteration) + return nothing + end + + ldiv!(it.c, it.Pl, it.r) ρ_prev = it.ρ it.ρ = dot(it.c, it.r) - + # u := c + βu (almost an axpy) β = it.ρ / ρ_prev it.u .= it.c .+ β .* it.u # c = A * u - A_mul_B!(it.c, it.A, it.u) + mul!(it.c, it.A, it.u) α = it.ρ / dot(it.u, it.c) # Improve solution and residual @@ -109,14 +116,14 @@ end function cg_iterator!(x, A, b, Pl = Identity(); tol = sqrt(eps(real(eltype(b)))), maxiter::Int = size(A, 2), - statevars::CGStateVariables = CGStateVariables{eltype(x),typeof(x)}(zeros(x), similar(x), similar(x)), + statevars::CGStateVariables = CGStateVariables{eltype(x),typeof(x)}(zero(x), similar(x), similar(x)), initially_zero::Bool = false ) u = statevars.u r = statevars.r c = statevars.c u .= zero(eltype(x)) - copy!(r, b) + copyto!(r, b) # Compute r with an MV-product or not. if initially_zero @@ -126,7 +133,7 @@ function cg_iterator!(x, A, b, Pl = Identity(); reltol = residual * tol # Save one dot product else mv_products = 1 - A_mul_B!(c, A, x) + mul!(c, A, x) r .-= c residual = norm(r) reltol = norm(b) * tol @@ -165,10 +172,10 @@ cg(A, b; kwargs...) = cg!(zerox(A, b), A, b; initially_zero = true, kwargs...) ## Keywords - `statevars::CGStateVariables`: Has 3 arrays similar to `x` to hold intermediate results; -- `initially_zero::Bool`: If `true` assumes that `iszero(x)` so that one - matrix-vector product can be saved when computing the initial +- `initially_zero::Bool`: If `true` assumes that `iszero(x)` so that one + matrix-vector product can be saved when computing the initial residual vector; -- `Pl = Identity()`: left preconditioner of the method. Should be symmetric, +- `Pl = Identity()`: left preconditioner of the method. Should be symmetric, positive-definite like `A`; - `tol::Real = sqrt(eps(real(eltype(b))))`: tolerance for stopping condition `|r_k| / |r_0| ≤ tol`; - `maxiter::Int = size(A,2)`: maximum number of iterations; @@ -195,7 +202,7 @@ function cg!(x, A, b; tol = sqrt(eps(real(eltype(b)))), maxiter::Int = size(A, 2), log::Bool = false, - statevars::CGStateVariables = CGStateVariables{eltype(x), typeof(x)}(zeros(x), similar(x), similar(x)), + statevars::CGStateVariables = CGStateVariables{eltype(x), typeof(x)}(zero(x), similar(x), similar(x)), verbose::Bool = false, Pl = Identity(), kwargs... diff --git a/src/chebyshev.jl b/src/chebyshev.jl index dcb328cc..4441ddde 100644 --- a/src/chebyshev.jl +++ b/src/chebyshev.jl @@ -1,4 +1,4 @@ -import Base: next, start, done +import Base: iterate export chebyshev, chebyshev! @@ -26,21 +26,23 @@ converged(c::ChebyshevIterable) = c.resnorm ≤ c.reltol start(::ChebyshevIterable) = 0 done(c::ChebyshevIterable, iteration::Int) = iteration ≥ c.maxiter || converged(c) -function next(cheb::ChebyshevIterable, iteration::Int) +function iterate(cheb::ChebyshevIterable, iteration::Int=start(cheb)) + if done(cheb, iteration) return nothing end + T = eltype(cheb.x) - A_ldiv_B!(cheb.c, cheb.Pl, cheb.r) + ldiv!(cheb.c, cheb.Pl, cheb.r) if iteration == 1 cheb.α = T(2) / cheb.λ_avg - copy!(cheb.u, cheb.c) + copyto!(cheb.u, cheb.c) else β = (cheb.λ_diff * cheb.α / 2) ^ 2 cheb.α = inv(cheb.λ_avg - β) cheb.u .= cheb.c .+ β .* cheb.c end - A_mul_B!(cheb.c, cheb.A, cheb.u) + mul!(cheb.c, cheb.A, cheb.u) cheb.mv_products += 1 cheb.x .+= cheb.α .* cheb.u @@ -59,8 +61,8 @@ function chebyshev_iterable!(x, A, b, λmin::Real, λmax::Real; T = eltype(x) r = similar(x) - copy!(r, b) - u = zeros(x) + copyto!(r, b) + u = zero(x) c = similar(x) # One MV product less @@ -69,7 +71,7 @@ function chebyshev_iterable!(x, A, b, λmin::Real, λmax::Real; reltol = tol * resnorm mv_products = 0 else - A_mul_B!(c, A, x) + mul!(c, A, x) r .-= c resnorm = norm(r) reltol = tol * norm(b) @@ -107,8 +109,8 @@ Solve Ax = b for symmetric, definite matrices A using Chebyshev iteration. ## Keywords -- `initially_zero::Bool = false`: if `true` assumes that `iszero(x)` so that one - matrix-vector product can be saved when computing the initial +- `initially_zero::Bool = false`: if `true` assumes that `iszero(x)` so that one + matrix-vector product can be saved when computing the initial residual vector; - `tol`: tolerance for stopping condition `|r_k| / |r_0| ≤ tol`. - `maxiter::Int = size(A, 2)`: maximum number of inner iterations of GMRES; diff --git a/src/common.jl b/src/common.jl index 39dd11d4..60ce96c2 100644 --- a/src/common.jl +++ b/src/common.jl @@ -1,4 +1,4 @@ -import Base: A_ldiv_B!, \ +import LinearAlgebra: ldiv!, \ export Identity @@ -22,5 +22,5 @@ No-op preconditioner struct Identity end \(::Identity, x) = copy(x) -A_ldiv_B!(::Identity, x) = x -A_ldiv_B!(y, ::Identity, x) = copy!(y, x) \ No newline at end of file +ldiv!(::Identity, x) = x +ldiv!(y, ::Identity, x) = copyto!(y, x) diff --git a/src/gmres.jl b/src/gmres.jl index 7a19b8fc..be0e6307 100644 --- a/src/gmres.jl +++ b/src/gmres.jl @@ -1,5 +1,5 @@ -import Base: start, next, done - +import Base: iterate +using Printf export gmres, gmres! struct ArnoldiDecomp{T, matT} @@ -52,7 +52,8 @@ start(::GMRESIterable) = 0 done(g::GMRESIterable, iteration::Int) = iteration ≥ g.maxiter || converged(g) -function next(g::GMRESIterable, iteration::Int) +function iterate(g::GMRESIterable, iteration::Int=start(g)) + if done(g, iteration) return nothing end # Arnoldi step: expand expand!(g.arnoldi, g.Pl, g.Pr, g.k, g.Ax) @@ -146,8 +147,8 @@ Solves the problem ``Ax = b`` with restarted GMRES. ## Keywords -- `initially_zero::Bool`: If `true` assumes that `iszero(x)` so that one - matrix-vector product can be saved when computing the initial +- `initially_zero::Bool`: If `true` assumes that `iszero(x)` so that one + matrix-vector product can be saved when computing the initial residual vector; - `tol`: relative tolerance; - `restart::Int = min(20, size(A, 2))`: restarts GMRES after specified number of iterations; @@ -213,18 +214,18 @@ end function init!(arnoldi::ArnoldiDecomp{T}, x, b, Pl, Ax; initially_zero::Bool = false) where {T} # Initialize the Krylov subspace with the initial residual vector # This basically does V[1] = Pl \ (b - A * x) and then normalize - + first_col = view(arnoldi.V, :, 1) - copy!(first_col, b) + copyto!(first_col, b) # Potentially save one MV product if !initially_zero - A_mul_B!(Ax, arnoldi.A, x) + mul!(Ax, arnoldi.A, x) first_col .-= Ax end - A_ldiv_B!(Pl, first_col) + ldiv!(Pl, first_col) # Normalize β = norm(first_col) @@ -243,7 +244,7 @@ function solve_least_squares!(arnoldi::ArnoldiDecomp{T}, β, k::Int) where {T} rhs[1] = β H = FastHessenberg(view(arnoldi.H, 1 : k, 1 : k - 1)) - A_ldiv_B!(H, rhs) + ldiv!(H, rhs) rhs end @@ -257,28 +258,28 @@ end function update_solution!(x, y, arnoldi::ArnoldiDecomp{T}, Pr, k::Int, Ax) where {T} # Computing x ← x + Pr \ (V * y) and use Ax as a work space - A_mul_B!(Ax, view(arnoldi.V, :, 1 : k - 1), y) - A_ldiv_B!(Pr, Ax) + mul!(Ax, view(arnoldi.V, :, 1 : k - 1), y) + ldiv!(Pr, Ax) x .+= Ax end function expand!(arnoldi::ArnoldiDecomp, Pl::Identity, Pr::Identity, k::Int, Ax) # Simply expands by A * v without allocating - A_mul_B!(view(arnoldi.V, :, k + 1), arnoldi.A, view(arnoldi.V, :, k)) + mul!(view(arnoldi.V, :, k + 1), arnoldi.A, view(arnoldi.V, :, k)) end function expand!(arnoldi::ArnoldiDecomp, Pl, Pr::Identity, k::Int, Ax) # Expands by Pl \ (A * v) without allocating nextV = view(arnoldi.V, :, k + 1) - A_mul_B!(nextV, arnoldi.A, view(arnoldi.V, :, k)) - A_ldiv_B!(Pl, nextV) + mul!(nextV, arnoldi.A, view(arnoldi.V, :, k)) + ldiv!(Pl, nextV) end function expand!(arnoldi::ArnoldiDecomp, Pl, Pr, k::Int, Ax) # Expands by Pl \ (A * (Pr \ v)). Avoids allocation by using Ax. nextV = view(arnoldi.V, :, k + 1) - A_ldiv_B!(nextV, Pr, view(arnoldi.V, :, k)) - A_mul_B!(Ax, arnoldi.A, nextV) - copy!(nextV, Ax) - A_ldiv_B!(Pl, nextV) + ldiv!(nextV, Pr, view(arnoldi.V, :, k)) + mul!(Ax, arnoldi.A, nextV) + copyto!(nextV, Ax) + ldiv!(Pl, nextV) end diff --git a/src/hessenberg.jl b/src/hessenberg.jl index f1f11dc3..d5022d53 100644 --- a/src/hessenberg.jl +++ b/src/hessenberg.jl @@ -1,5 +1,5 @@ -import Base.LinAlg: Givens, givensAlgorithm -import Base.A_ldiv_B! +import LinearAlgebra: Givens, givensAlgorithm +import LinearAlgebra.ldiv! struct FastHessenberg{T<:AbstractMatrix} H::T # H is assumed to be Hessenberg of size (m + 1) × m @@ -12,7 +12,7 @@ Solve Hy = rhs for a non-square Hessenberg matrix. Note that `H` is also modified as is it converted to an upper triangular matrix via Given's rotations """ -function A_ldiv_B!(H::FastHessenberg, rhs) +function ldiv!(H::FastHessenberg, rhs) # Implicitly computes H = QR via Given's rotations # and then computes the least-squares solution y to # |Hy - rhs| = |QRy - rhs| = |Ry - Q'rhs| @@ -22,7 +22,7 @@ function A_ldiv_B!(H::FastHessenberg, rhs) # Hessenberg -> UpperTriangular; also apply to r.h.s. @inbounds for i = 1 : width c, s, _ = givensAlgorithm(H.H[i, i], H.H[i + 1, i]) - + # Skip the first sub-diagonal since it'll be zero by design. H.H[i, i] = c * H.H[i, i] + s * H.H[i + 1, i] @@ -41,6 +41,6 @@ function A_ldiv_B!(H::FastHessenberg, rhs) # Solve the upper triangular problem. U = UpperTriangular(view(H.H, 1 : width, 1 : width)) - A_ldiv_B!(U, view(rhs, 1 : width)) + ldiv!(U, view(rhs, 1 : width)) nothing -end \ No newline at end of file +end diff --git a/src/history.jl b/src/history.jl index 758e5922..05626675 100644 --- a/src/history.jl +++ b/src/history.jl @@ -23,7 +23,7 @@ Store general and in-depth information about an iterative method. `restart::T`: restart relevant information. * `T == Int`: iterations per restart. -* `T == Void`: methods without restarts. +* `T == Nothing`: methods without restarts. `isconverged::Bool`: convergence of the method. @@ -78,7 +78,7 @@ const CompleteHistory = ConvergenceHistory{true} """ History without resets. """ -const UnrestartedHistory{T} = ConvergenceHistory{T, Void} +const UnrestartedHistory{T} = ConvergenceHistory{T, Nothing} """ History with resets. @@ -176,13 +176,13 @@ end #store nothing or store a vector respectively. _reserve!(typ::Type, ch::PartialHistory, key::Symbol, ::Int) = nothing function _reserve!(typ::Type, ch::PartialHistory, key::Symbol, ::Int, size::Int) - ch.data[key] = Vector{typ}(size) + ch.data[key] = Vector{typ}(undef, size) end function _reserve!(typ::Type, ch::CompleteHistory, key::Symbol, len::Int) - ch.data[key] = Vector{typ}(len) + ch.data[key] = Vector{typ}(undef, len) end function _reserve!(typ::Type, ch::CompleteHistory, key::Symbol, len::Int, size::Int) - ch.data[key] = Matrix{typ}(len, size) + ch.data[key] = Matrix{typ}(undef, len, size) end """ @@ -285,8 +285,8 @@ plotable(::Any) = false linecolor := sep left=1 - maxy = round(maximum(draw),2) - miny = round(minimum(draw),2) + maxy = round(maximum(draw); digits=2) + miny = round(minimum(draw); digits=2) for restart in 2:nrests(ch) @series begin left+=ch.restart @@ -313,8 +313,8 @@ end linecolor := sep left=1 - maxy = round(maximum(draw),2) - miny = round(minimum(draw),2) + maxy = round(maximum(draw); digits=2) + miny = round(minimum(draw); digits=2) for restart in 2:nrests(ch) @series begin left+=ch.restart diff --git a/src/idrs.jl b/src/idrs.jl index 21d78fc1..545668a4 100644 --- a/src/idrs.jl +++ b/src/idrs.jl @@ -1,5 +1,7 @@ export idrs, idrs! +using Random + """ idrs(A, b; s = 8) -> x, [history] @@ -56,9 +58,9 @@ end @inline function omega(t, s) angle = sqrt(2.)/2 - ns = vecnorm(s) - nt = vecnorm(t) - ts = vecdot(t,s) + ns = norm(s) + nt = norm(t) + ts = dot(t,s) rho = abs(ts/(nt*ns)) om = ts/(nt*nt) if rho < angle @@ -73,13 +75,13 @@ function idrs_method!(log::ConvergenceHistory, X, A, C::T, verbose && @printf("=== idrs ===\n%4s\t%7s\n","iter","resnorm") R = C - A*X - normR = vecnorm(R) + normR = norm(R) iter = 1 if smoothing X_s = copy(X) R_s = copy(R) - T_s = zeros(R) + T_s = zero(R) end if normR <= tol # Initial guess is a good enough solution @@ -94,14 +96,14 @@ function idrs_method!(log::ConvergenceHistory, X, A, C::T, Q = copy(Z) V = copy(Z) - M = eye(eltype(C),s,s) + M = Matrix{eltype(C)}(I,s,s) f = zeros(eltype(C),s) c = zeros(eltype(C),s) om::eltype(C) = 1 while normR > tol && iter ≤ maxiter for i in 1:s, - f[i] = vecdot(P[i], R) + f[i] = dot(P[i], R) end for k in 1:s nextiter!(log,mvps=1) @@ -121,12 +123,12 @@ function idrs_method!(log::ConvergenceHistory, X, A, C::T, V .= R .- V U[k] .= Q .+ om .* V - A_mul_B!(G[k], A, U[k]) + mul!(G[k], A, U[k]) # Bi-orthogonalise the new basis vectors for i in 1:k-1 - alpha = vecdot(P[i],G[k])/M[i,i] + alpha = dot(P[i],G[k])/M[i,i] G[k] .-= alpha .* G[i] U[k] .-= alpha .* U[i] end @@ -134,7 +136,7 @@ function idrs_method!(log::ConvergenceHistory, X, A, C::T, # New column of M = P'*G (first k-1 entries are zero) for i in k:s - M[i,k] = vecdot(P[i],G[k]) + M[i,k] = dot(P[i],G[k]) end # Make r orthogonal to q_i, i = 1..k @@ -143,16 +145,16 @@ function idrs_method!(log::ConvergenceHistory, X, A, C::T, R .-= beta .* G[k] X .+= beta .* U[k] - normR = vecnorm(R) + normR = norm(R) if smoothing T_s .= R_s .- R - gamma = vecdot(R_s, T_s)/vecdot(T_s, T_s) + gamma = dot(R_s, T_s)/dot(T_s, T_s) R_s .-= gamma .* T_s X_s .-= gamma .* (X_s .- X) - normR = vecnorm(R_s) + normR = norm(R_s) end push!(log, :resnorm, normR) verbose && @printf("%3d\t%1.2e\n",iter,normR) @@ -169,29 +171,29 @@ function idrs_method!(log::ConvergenceHistory, X, A, C::T, # Now we have sufficient vectors in G_j to compute residual in G_j+1 # Note: r is already perpendicular to P so v = r - copy!(V, R) - A_mul_B!(Q, A, V) + copyto!(V, R) + mul!(Q, A, V) om = omega(Q, R) R .-= om .* Q X .+= om .* V - normR = vecnorm(R) + normR = norm(R) if smoothing T_s .= R_s .- R - gamma = vecdot(R_s, T_s)/vecdot(T_s, T_s) + gamma = dot(R_s, T_s)/dot(T_s, T_s) R_s .-= gamma .* T_s X_s .-= gamma .* (X_s .- X) - normR = vecnorm(R_s) + normR = norm(R_s) end iter += 1 nextiter!(log, mvps=1) push!(log, :resnorm, normR) end if smoothing - copy!(X, X_s) + copyto!(X, X_s) end verbose && @printf("\n") setconv(log, 0<=normR residualTolerance iterator.currentBlockSize[] = sum(iterator.activeMask) - return + return end function update_active!(mask, bs::Int, blockPairs...) @@ -562,7 +565,7 @@ function precond_constr!(block, temp_block, bs, precond!, constr!) precond!(view(block, :, 1:bs)) # Constrain the active residual vectors to be B-orthogonal to Y constr!(view(block, :, 1:bs), view(temp_block, :, 1:bs)) - return + return end function block_grams_1x1!(iterator) # Finds gram matrix X'AX @@ -574,7 +577,7 @@ function block_grams_2x2!(iterator, bs) #XAX!(iterator.gramABlock, iterator.XBlocks) XAR!(iterator.gramABlock, iterator.XBlocks, iterator.activeRBlocks, bs) RAR!(iterator.gramABlock, iterator.activeRBlocks, bs) - XBR!(iterator.gramBBlock, iterator.XBlocks, iterator.activeRBlocks, bs) + XBR!(iterator.gramBBlock, iterator.XBlocks, iterator.activeRBlocks, bs) iterator.gramABlock(iterator.gramA, view(iterator.ritz_values, 1:sizeX), sizeX, bs, 0) iterator.gramBBlock(iterator.gramB, sizeX, bs, 0, true) @@ -592,7 +595,7 @@ function block_grams_3x3!(iterator, bs) # Find X'BR, X'BP and P'BR XBR!(iterator.gramBBlock, iterator.XBlocks, iterator.activeRBlocks, bs) XBP!(iterator.gramBBlock, iterator.XBlocks, iterator.activePBlocks, bs) - RBP!(iterator.gramBBlock, iterator.activeRBlocks, iterator.activePBlocks, bs) + RBP!(iterator.gramBBlock, iterator.activeRBlocks, iterator.activePBlocks, bs) # Update the gram matrix [X R P]' A [X R P] iterator.gramABlock(iterator.gramA, view(iterator.ritz_values, 1:sizeX), sizeX, bs, bs) # Update the gram matrix [X R P]' B [X R P] @@ -607,17 +610,17 @@ function sub_problem!(iterator, sizeX, bs1, bs2) gramAview = view(iterator.gramABlock.XAX, 1:subdim, 1:subdim) # Source of type instability realdiag!(gramAview) - eigf = eigfact!(Hermitian(gramAview)) + eigf = eigen!(Hermitian(gramAview)) else gramAview = view(iterator.gramA, 1:subdim, 1:subdim) gramBview = view(iterator.gramB, 1:subdim, 1:subdim) # Source of type instability realdiag!(gramAview) realdiag!(gramBview) - eigf = eigfact!(Hermitian(gramAview), Hermitian(gramBview)) + eigf = eigen!(Hermitian(gramAview), Hermitian(gramBview)) end # Selects extremal eigenvalues and corresponding vectors - selectperm!(view(iterator.λperm, 1:subdim), eigf.values, 1:subdim, rev=iterator.largest) + partialsortperm!(view(iterator.λperm, 1:subdim), eigf.values, 1:subdim; rev=iterator.largest) @inbounds iterator.ritz_values[1:sizeX] .= view(eigf.values, view(iterator.λperm, 1:sizeX)) @inbounds iterator.V[1:subdim, 1:sizeX] .= view(eigf.vectors, :, view(iterator.λperm, 1:sizeX)) return @@ -637,17 +640,17 @@ function update_X_P!(iterator::LOBPCGIterator{Generalized}, bs1, bs2) where Gene pb_blockview = view(iterator.activePBlocks.B_block, :, 1:bs2) end if bs1 > 0 - A_mul_B!(iterator.PBlocks.block, r_blockview, r_eigview) - A_mul_B!(iterator.PBlocks.A_block, ra_blockview, r_eigview) + mul!(iterator.PBlocks.block, r_blockview, r_eigview) + mul!(iterator.PBlocks.A_block, ra_blockview, r_eigview) if Generalized - A_mul_B!(iterator.PBlocks.B_block, rb_blockview, r_eigview) + mul!(iterator.PBlocks.B_block, rb_blockview, r_eigview) end end if bs2 > 0 - A_mul_B!(iterator.tempXBlocks.block, p_blockview, p_eigview) - A_mul_B!(iterator.tempXBlocks.A_block, pa_blockview, p_eigview) + mul!(iterator.tempXBlocks.block, p_blockview, p_eigview) + mul!(iterator.tempXBlocks.A_block, pa_blockview, p_eigview) if Generalized - A_mul_B!(iterator.tempXBlocks.B_block, pb_blockview, p_eigview) + mul!(iterator.tempXBlocks.B_block, pb_blockview, p_eigview) end @inbounds iterator.PBlocks.block .= iterator.PBlocks.block .+ iterator.tempXBlocks.block @inbounds iterator.PBlocks.A_block .= iterator.PBlocks.A_block .+ iterator.tempXBlocks.A_block @@ -657,14 +660,14 @@ function update_X_P!(iterator::LOBPCGIterator{Generalized}, bs1, bs2) where Gene end block = iterator.XBlocks.block tempblock = iterator.tempXBlocks.block - A_mul_B!(tempblock, block, x_eigview) + mul!(tempblock, block, x_eigview) block = iterator.XBlocks.A_block tempblock = iterator.tempXBlocks.A_block - A_mul_B!(tempblock, block, x_eigview) + mul!(tempblock, block, x_eigview) if Generalized block = iterator.XBlocks.B_block tempblock = iterator.tempXBlocks.B_block - A_mul_B!(tempblock, block, x_eigview) + mul!(tempblock, block, x_eigview) end @inbounds begin if bs1 > 0 @@ -715,8 +718,8 @@ function (iterator::LOBPCGIterator{Generalized})(residualTolerance, log) where { # Update active blocks bs = iterator.currentBlockSize[] # Update active R and P blocks - update_active!(iterator.activeMask, bs, - (iterator.activeRBlocks.block, iterator.RBlocks.block), + update_active!(iterator.activeMask, bs, + (iterator.activeRBlocks.block, iterator.RBlocks.block), (iterator.activePBlocks.block, iterator.PBlocks.block), (iterator.activePBlocks.A_block, iterator.PBlocks.A_block), (iterator.activePBlocks.B_block, iterator.PBlocks.B_block)) @@ -743,12 +746,28 @@ function (iterator::LOBPCGIterator{Generalized})(residualTolerance, log) where { end end +function default_tolerance(::Type{T}, tol=nothing) where T + if T <: Complex + if tol isa Nothing + return eps(real(T))^(real(T)(3)/10) + else + real(tol) + end + else + if tol isa Nothing + return eps(T)^(T(3)/10) + else + return real(tol) + end + end +end + """ The Locally Optimal Block Preconditioned Conjugate Gradient Method (LOBPCG) Finds the `nev` extremal eigenvalues and their corresponding eigenvectors satisfying `AX = λBX`. -`A` and `B` may be generic types but `Base.A_mul_B!(C, AorB, X)` must be defined for vectors and strided matrices `X` and `C`. `size(A, i::Int)` and `eltype(A)` must also be defined for `A`. +`A` and `B` may be generic types but `Base.mul!(C, AorB, X)` must be defined for vectors and strided matrices `X` and `C`. `size(A, i::Int)` and `eltype(A)` must also be defined for `A`. lobpcg(A, [B,] largest, nev; kwargs...) -> results @@ -761,13 +780,13 @@ Finds the `nev` extremal eigenvalues and their corresponding eigenvectors satisf ## Keywords -- `log::Bool`: default is `false`; if `true`, `results.trace` will store iterations +- `log::Bool`: default is `false`; if `true`, `results.trace` will store iterations states; if `false` only `results.trace` will be empty; -- `P`: preconditioner of residual vectors, must overload `A_ldiv_B!`; +- `P`: preconditioner of residual vectors, must overload `ldiv!`; - `C`: constraint to deflate the residual and solution vectors orthogonal - to a subspace; must overload `A_mul_B!`; + to a subspace; must overload `mul!`; - `maxiter`: maximum number of iterations; default is 200; @@ -798,13 +817,13 @@ end - `not_zeros`: default is `false`. If `true`, `X0` will be assumed to not have any all-zeros column. -- `log::Bool`: default is `false`; if `true`, `results.trace` will store iterations +- `log::Bool`: default is `false`; if `true`, `results.trace` will store iterations states; if `false` only `results.trace` will be empty; -- `P`: preconditioner of residual vectors, must overload `A_ldiv_B!`; +- `P`: preconditioner of residual vectors, must overload `ldiv!`; - `C`: constraint to deflate the residual and solution vectors orthogonal - to a subspace; must overload `A_mul_B!`; + to a subspace; must overload `mul!`; - `maxiter`: maximum number of iterations; default is 200; @@ -818,7 +837,7 @@ function lobpcg(A, largest::Bool, X0; kwargs...) lobpcg(A, nothing, largest, X0; kwargs...) end function lobpcg(A, B, largest, X0; - not_zeros=false, log=false, P=nothing, + not_zeros=false, log=false, P=nothing, C=nothing, tol=nothing, maxiter=200) X = copy(X0) T = eltype(X) @@ -827,13 +846,13 @@ function lobpcg(A, B, largest, X0; sizeX > n && throw("X column dimension exceeds the row dimension") iterator = LOBPCGIterator(A, B, largest, X, P, C) - + return lobpcg!(iterator, log=log, tol=tol, maxiter=maxiter, not_zeros=not_zeros) end """ lobpcg!(iterator::LOBPCGIterator; kwargs...) -> results - + # Arguments - `iterator::LOBPCGIterator`: a struct having all the variables required @@ -843,7 +862,7 @@ end - `not_zeros`: default is `false`. If `true`, the initial Ritz vectors will be assumed to not have any all-zeros column. -- `log::Bool`: default is `false`; if `true`, `results.trace` will store iterations +- `log::Bool`: default is `false`; if `true`, `results.trace` will store iterations states; if `false` only `results.trace` will be empty; - `maxiter`: maximum number of iterations; default is 200; @@ -869,9 +888,9 @@ function lobpcg!(iterator::LOBPCGIterator; log=false, tol=nothing, maxiter=200, end n = size(X, 1) sizeX = size(X, 2) - residualTolerance = (tol isa Void) ? (eps(real(T)))^(real(T)(4)/10) : real(tol) + residualTolerance = default_tolerance(T, tol) iterator.iteration[] = 1 - while iterator.iteration[] <= maxiter + while iterator.iteration[] <= maxiter state = iterator(residualTolerance, log) if log push!(iterator.trace, state) @@ -900,13 +919,13 @@ lobpcg(A, [B,] largest, X0, nev; kwargs...) -> results ## Keywords -- `log::Bool`: default is `false`; if `true`, `results.trace` will store iterations +- `log::Bool`: default is `false`; if `true`, `results.trace` will store iterations states; if `false` only `results.trace` will be empty; -- `P`: preconditioner of residual vectors, must overload `A_ldiv_B!`; +- `P`: preconditioner of residual vectors, must overload `ldiv!`; - `C`: constraint to deflate the residual and solution vectors orthogonal - to a subspace; must overload `A_mul_B!`; + to a subspace; must overload `mul!`; - `maxiter`: maximum number of iterations; default is 200; @@ -920,7 +939,7 @@ function lobpcg(A, largest::Bool, X0, nev::Int; kwargs...) lobpcg(A, nothing, largest, X0, nev; kwargs...) end function lobpcg(A, B, largest::Bool, X0, nev::Int; - not_zeros=false, log=false, P=nothing, + not_zeros=false, log=false, P=nothing, C=nothing, tol=nothing, maxiter=200) T = eltype(X0) n = size(X0, 1) diff --git a/src/lsmr.jl b/src/lsmr.jl index ab84d1d0..a0acf405 100644 --- a/src/lsmr.jl +++ b/src/lsmr.jl @@ -1,6 +1,6 @@ export lsmr, lsmr! -using Base.LinAlg +using LinearAlgebra """ lsmr(A, b; kwrags...) -> x, [history] @@ -15,9 +15,9 @@ lsmr(A, b; kwargs...) = lsmr!(zerox(A, b), A, b; kwargs...) Minimizes ``\\|Ax - b\\|^2 + \\|λx\\|^2`` in the Euclidean norm. If multiple solutions exists the minimum norm solution is returned. -The method is based on the Golub-Kahan bidiagonalization process. It is -algebraically equivalent to applying MINRES to the normal equations -``(A^*A + λ^2I)x = A^*b``, but has better numerical properties, +The method is based on the Golub-Kahan bidiagonalization process. It is +algebraically equivalent to applying MINRES to the normal equations +``(A^*A + λ^2I)x = A^*b``, but has better numerical properties, especially if ``A`` is ill-conditioned. # Arguments @@ -74,7 +74,7 @@ function lsmr!(x, A, b; T = Adivtype(A, b) m, n = size(A, 1), size(A, 2) btmp = similar(b, T) - copy!(btmp, b) + copyto!(btmp, b) v, h, hbar = similar(x, T), similar(x, T), similar(x, T) lsmr_method!(history, x, A, btmp, v, h, hbar; maxiter=maxiter, kwargs...) log && shrink!(history) @@ -107,10 +107,14 @@ function lsmr_method!(log::ConvergenceHistory, x, A, b, v, h, hbar; normArs = Tr[] conlim > 0 ? ctol = convert(Tr, inv(conlim)) : ctol = zero(Tr) # form the first vectors u and v (satisfy β*u = b, α*v = A'u) - u = A_mul_B!(-1, A, x, 1, b) + tmp_u = similar(b) + tmp_v = similar(v) + mul!(tmp_u, A, x) + b .-= tmp_u + u = b β = norm(u) u .*= inv(β) - Ac_mul_B!(1, A, u, 0, v) + mul!(v, adjoint(A), u) α = norm(v) v .*= inv(α) @@ -126,7 +130,7 @@ function lsmr_method!(log::ConvergenceHistory, x, A, b, v, h, hbar; cbar = one(Tr) sbar = zero(Tr) - copy!(h, v) + copyto!(h, v) fill!(hbar, zero(Tr)) # Initialize variables for estimation of ||r||. @@ -158,12 +162,14 @@ function lsmr_method!(log::ConvergenceHistory, x, A, b, v, h, hbar; while iter < maxiter nextiter!(log,mvps=1) iter += 1 - A_mul_B!(1, A, v, -α, u) + mul!(tmp_u, A, v) + u .= tmp_u .+ u .* -α β = norm(u) if β > 0 log.mtvps+=1 u .*= inv(β) - Ac_mul_B!(1, A, u, -β, v) + mul!(tmp_v, adjoint(A), u) + v .= tmp_v .+ v .* -β α = norm(v) v .*= inv(α) end @@ -278,11 +284,3 @@ function lsmr_method!(log::ConvergenceHistory, x, A, b, v, h, hbar; setconv(log, istop ∉ (3, 6, 7)) x end - -for (name, symbol) in ((:Ac_mul_B!, 'T'), (:A_mul_B!, 'N')) - @eval begin - function Base.$name(α::Number, A::StridedVecOrMat, x::AbstractVector, β::Number, y::AbstractVector) - BLAS.gemm!($symbol, 'N', convert(eltype(y), α), A, x, convert(eltype(y), β), y) - end - end -end diff --git a/src/lsqr.jl b/src/lsqr.jl index e2af672f..e4291473 100644 --- a/src/lsqr.jl +++ b/src/lsqr.jl @@ -14,8 +14,8 @@ Minimizes ``\\|Ax - b\\|^2 + \\|damp*x\\|^2`` in the Euclidean norm. If multiple exists returns the minimal norm solution. The method is based on the Golub-Kahan bidiagonalization process. -It is algebraically equivalent to applying CG to the normal equations -``(A^*A + λ^2I)x = A^*b`` but has better numerical properties, +It is algebraically equivalent to applying CG to the normal equations +``(A^*A + λ^2I)x = A^*b`` but has better numerical properties, especially if A is ill-conditioned. # Arguments @@ -126,7 +126,7 @@ function lsqr_method!(log::ConvergenceHistory, x, A, b; if beta > 0 log.mtvps=1 u .*= inv(beta) - Ac_mul_B!(v,A,u) + mul!(v, adjoint(A), u) alpha = norm(v) end if alpha > 0 @@ -156,8 +156,8 @@ function lsqr_method!(log::ConvergenceHistory, x, A, b; # alpha*v = A'*u - beta*v. # Note that the following three lines are a band aid for a GEMM: X: C := αAB + βC. - # This is already supported in A_mul_B! for sparse and distributed matrices, but not yet dense - A_mul_B!(tmpm, A, v) + # This is already supported in mul! for sparse and distributed matrices, but not yet dense + mul!(tmpm, A, v) u .= -alpha .* u .+ tmpm beta = norm(u) if beta > 0 @@ -165,8 +165,8 @@ function lsqr_method!(log::ConvergenceHistory, x, A, b; u .*= inv(beta) Anorm = sqrt(abs2(Anorm) + abs2(alpha) + abs2(beta) + dampsq) # Note that the following three lines are a band aid for a GEMM: X: C := αA'B + βC. - # This is already supported in Ac_mul_B! for sparse and distributed matrices, but not yet dense - Ac_mul_B!(tmpn, A, u) + # This is already supported in mul! for sparse and distributed matrices, but not yet dense + mul!(tmpn, adjoint(A), u) v .= -beta .* v .+ tmpn alpha = norm(v) if alpha > 0 diff --git a/src/minres.jl b/src/minres.jl index 8a72a65a..4e959333 100644 --- a/src/minres.jl +++ b/src/minres.jl @@ -1,7 +1,7 @@ export minres_iterable, minres, minres! - -import Base.LinAlg: BLAS.axpy!, givensAlgorithm -import Base: start, next, done +using Printf +import LinearAlgebra: BLAS.axpy!, givensAlgorithm +import Base: iterate mutable struct MINRESIterable{matT, solT, vecT <: DenseVector, smallVecT <: DenseVector, rotT <: Number, realT <: Real} A::matT @@ -36,10 +36,10 @@ mutable struct MINRESIterable{matT, solT, vecT <: DenseVector, smallVecT <: Dens resnorm::realT end -function minres_iterable!(x, A, b; - initially_zero::Bool = false, - skew_hermitian::Bool = false, - tol = sqrt(eps(real(eltype(b)))), +function minres_iterable!(x, A, b; + initially_zero::Bool = false, + skew_hermitian::Bool = false, + tol = sqrt(eps(real(eltype(b)))), maxiter = size(A, 2) ) T = eltype(x) @@ -47,7 +47,7 @@ function minres_iterable!(x, A, b; v_prev = similar(x) v_curr = similar(x) - copy!(v_curr, b) + copyto!(v_curr, b) v_next = similar(x) w_prev = similar(x) w_curr = similar(x) @@ -58,7 +58,7 @@ function minres_iterable!(x, A, b; # For nonzero x's, we must do an MV for the initial residual vec if !initially_zero # Use v_next to store Ax; v_next will soon be overwritten. - A_mul_B!(v_next, A, x) + mul!(v_next, A, x) axpy!(-one(T), v_next, v_curr) mv_products = 1 end @@ -66,13 +66,13 @@ function minres_iterable!(x, A, b; resnorm = norm(v_curr) reltol = resnorm * tol - # Last active column of the Hessenberg matrix + # Last active column of the Hessenberg matrix # and last two entries of the right-hand side H = zeros(HessenbergT, 4) rhs = [resnorm; zero(HessenbergT)] # Normalize the first Krylov basis vector - scale!(v_curr, inv(resnorm)) + rmul!(v_curr, inv(resnorm)) # Givens rotations c_prev, s_prev = one(T), zero(T) @@ -94,12 +94,14 @@ start(::MINRESIterable) = 1 done(m::MINRESIterable, iteration::Int) = iteration > m.maxiter || converged(m) -function next(m::MINRESIterable, iteration::Int) +function iterate(m::MINRESIterable, iteration::Int=start(m)) + if done(m, iteration) return nothing end + # v_next = A * v_curr - H[2] * v_prev - A_mul_B!(m.v_next, m.A, m.v_curr) + mul!(m.v_next, m.A, m.v_curr) iteration > 1 && axpy!(-m.H[2], m.v_prev, m.v_next) - + # Orthogonalize w.r.t. v_curr proj = dot(m.v_curr, m.v_next) m.H[3] = m.skew_hermitian ? proj : real(proj) @@ -107,7 +109,7 @@ function next(m::MINRESIterable, iteration::Int) # Normalize m.H[4] = norm(m.v_next) - scale!(m.v_next, inv(m.H[4])) + rmul!(m.v_next, inv(m.H[4])) # Rotation on H[1] and H[2]. Note that H[1] = 0 initially if iteration > 2 @@ -130,10 +132,10 @@ function next(m::MINRESIterable, iteration::Int) m.rhs[1] = c * m.rhs[1] # Update W = V * inv(R). Two axpy's can maybe be one MV. - copy!(m.w_next, m.v_curr) + copyto!(m.w_next, m.v_curr) iteration > 1 && axpy!(-m.H[2], m.w_curr, m.w_next) iteration > 2 && axpy!(-m.H[1], m.w_prev, m.w_next) - scale!(m.w_next, inv(m.H[3])) + rmul!(m.w_next, inv(m.H[3])) # Update solution x axpy!(m.rhs[1], m.w_next, m.x) @@ -166,8 +168,8 @@ Solve Ax = b for (skew-)Hermitian matrices A using MINRES. ## Keywords -- `initially_zero::Bool = false`: if `true` assumes that `iszero(x)` so that one - matrix-vector product can be saved when computing the initial +- `initially_zero::Bool = false`: if `true` assumes that `iszero(x)` so that one + matrix-vector product can be saved when computing the initial residual vector; - `skew_hermitian::Bool = false`: if `true` assumes that `A` is skew-symmetric or skew-Hermitian; - `tol`: tolerance for stopping condition `|r_k| / |r_0| ≤ tol`. Note that the residual is computed only approximately; @@ -188,7 +190,7 @@ Solve Ax = b for (skew-)Hermitian matrices A using MINRES. - `x`: approximate solution; - `history`: convergence history. """ -function minres!(x, A, b; +function minres!(x, A, b; skew_hermitian::Bool = false, verbose::Bool = false, log::Bool = false, @@ -199,14 +201,14 @@ function minres!(x, A, b; history = ConvergenceHistory(partial = !log) history[:tol] = tol log && reserve!(history, :resnorm, maxiter) - - iterable = minres_iterable!(x, A, b; - skew_hermitian = skew_hermitian, - tol = tol, + + iterable = minres_iterable!(x, A, b; + skew_hermitian = skew_hermitian, + tol = tol, maxiter = maxiter, initially_zero = initially_zero ) - + if log history.mvps = iterable.mv_products end @@ -218,11 +220,11 @@ function minres!(x, A, b; end verbose && @printf("%3d\t%1.2e\n", iteration, resnorm) end - + verbose && println() log && setconv(history, converged(iterable)) log && shrink!(history) - + log ? (iterable.x, history) : iterable.x end diff --git a/src/orthogonalize.jl b/src/orthogonalize.jl index 73e9bb6e..4cfa76fe 100644 --- a/src/orthogonalize.jl +++ b/src/orthogonalize.jl @@ -11,7 +11,7 @@ struct ModifiedGramSchmidt <: OrthogonalizationMethod end function orthogonalize_and_normalize!(V::StridedMatrix{T}, w::StridedVector{T}, h::StridedVector{T}, ::Type{DGKS}) where {T} # Orthogonalize using BLAS-2 ops - Ac_mul_B!(h, V, w) + mul!(h, adjoint(V), w) BLAS.gemv!('N', -one(T), V, h, one(T), w) nrm = norm(w) @@ -23,7 +23,7 @@ function orthogonalize_and_normalize!(V::StridedMatrix{T}, w::StridedVector{T}, # Repeat as long as the DGKS condition is satisfied # Typically this condition is true only once. while nrm < η * projection_size - correction = Ac_mul_B(V, w) + correction = adjoint(V)*w projection_size = norm(correction) # w = w - V * correction BLAS.gemv!('N', -one(T), V, correction, one(T), w) @@ -39,7 +39,7 @@ end function orthogonalize_and_normalize!(V::StridedMatrix{T}, w::StridedVector{T}, h::StridedVector{T}, ::Type{ClassicalGramSchmidt}) where {T} # Orthogonalize using BLAS-2 ops - Ac_mul_B!(h, V, w) + mul!(h, adjoint(V), w) BLAS.gemv!('N', -one(T), V, h, one(T), w) nrm = norm(w) @@ -75,4 +75,4 @@ function orthogonalize_and_normalize!(V::StridedMatrix{T}, w::StridedVector{T}, w .*= inv(nrm) nrm -end \ No newline at end of file +end diff --git a/src/simple.jl b/src/simple.jl index 0de668ce..22b67168 100644 --- a/src/simple.jl +++ b/src/simple.jl @@ -1,4 +1,4 @@ -import Base: start, next, done +import Base: iterate #Simple methods export powm, powm!, invpowm, invpowm! @@ -25,23 +25,24 @@ end @inline done(p::PowerMethodIterable, iteration::Int) = iteration > p.maxiter || converged(p) -function next(p::PowerMethodIterable, iteration::Int) +function iterate(p::PowerMethodIterable, iteration::Int=start(p)) + if done(p, iteration) return nothing end - A_mul_B!(p.Ax, p.A, p.x) + mul!(p.Ax, p.A, p.x) # Rayleigh quotient θ = x'Ax p.θ = dot(p.x, p.Ax) # (Previous) residual vector r = Ax - λx - copy!(p.r, p.Ax) + copyto!(p.r, p.Ax) BLAS.axpy!(-p.θ, p.x, p.r) # Normed residual p.residual = norm(p.r) # Normalize the next approximation - copy!(p.x, p.Ax) - scale!(p.x, one(eltype(p.x)) / norm(p.x)) + copyto!(p.x, p.Ax) + rmul!(p.x, one(eltype(p.x)) / norm(p.x)) p.residual, iteration + 1 end @@ -57,12 +58,12 @@ end """ powm(B; kwargs...) -> λ, x, [history] -See [`powm!`](@ref). Calls `powm!(B, x0; kwargs...)` with +See [`powm!`](@ref). Calls `powm!(B, x0; kwargs...)` with `x0` initialized as a random, complex unit vector. """ function powm(B; kwargs...) x0 = rand(Complex{real(eltype(B))}, size(B, 1)) - scale!(x0, one(eltype(B)) / norm(x0)) + rmul!(x0, one(eltype(B)) / norm(x0)) powm!(B, x0; kwargs...) end @@ -82,10 +83,10 @@ By default finds the approximate eigenpair `(λ, x)` of `B` where `|λ|` is larg - `verbose::Bool`: print convergence information during the iterations. !!! note "Shift-and-invert" - When applying shift-and-invert to ``Ax = λx`` with `invert = true` and `shift = ...`, note - that the role of `B * b` becomes computing `inv(A - shift I) * b`. So rather than - passing the linear map ``A`` itself, pass a linear map `B` that has the action of - shift-and-invert. The eigenvalue is transformed back to an eigenvalue of the actual + When applying shift-and-invert to ``Ax = λx`` with `invert = true` and `shift = ...`, note + that the role of `B * b` becomes computing `inv(A - shift I) * b`. So rather than + passing the linear map ``A`` itself, pass a linear map `B` that has the action of + shift-and-invert. The eigenvalue is transformed back to an eigenvalue of the actual matrix ``A``. # Return values @@ -109,9 +110,9 @@ By default finds the approximate eigenpair `(λ, x)` of `B` where `|λ|` is larg ```julia using LinearMaps σ = 1.0 + 1.3im -A = rand(Complex128, 50, 50) -F = lufact(A - σ * I) -Fmap = LinearMap{Complex128}((y, x) -> A_ldiv_B!(y, F, x), 50, ismutating = true) +A = rand(ComplexF64, 50, 50) +F = lu(A - σ * I) +Fmap = LinearMap{ComplexF64}((y, x) -> ldiv!(y, F, x), 50, ismutating = true) λ, x = powm(Fmap, inverse = true, shift = σ, tol = 1e-4, maxiter = 200) ``` """ @@ -161,15 +162,15 @@ The method calls `powm!(B, x0; inverse = true, shift = σ)` with ```julia using LinearMaps σ = 1.0 + 1.3im -A = rand(Complex128, 50, 50) -F = lufact(A - σ * I) -Fmap = LinearMap{Complex128}((y, x) -> A_ldiv_B!(y, F, x), 50, ismutating = true) +A = rand(ComplexF64, 50, 50) +F = lu(A - σ * I) +Fmap = LinearMap{ComplexF64}((y, x) -> ldiv!(y, F, x), 50, ismutating = true) λ, x = invpowm(Fmap, shift = σ, tol = 1e-4, maxiter = 200) ``` """ function invpowm(B; kwargs...) x0 = rand(Complex{real(eltype(B))}, size(B, 1)) - scale!(x0, one(eltype(B)) / norm(x0)) + rmul!(x0, one(eltype(B)) / norm(x0)) invpowm!(B, x0; kwargs...) end diff --git a/src/stationary.jl b/src/stationary.jl index ced0a6ba..1f054ebb 100644 --- a/src/stationary.jl +++ b/src/stationary.jl @@ -1,7 +1,7 @@ export jacobi, jacobi!, gauss_seidel, gauss_seidel!, sor, sor!, ssor, ssor! -import Base.LinAlg.SingularException -import Base: start, next, done, getindex +import LinearAlgebra.SingularException +import Base: getindex, iterate function check_diag(A::AbstractMatrix) for i = 1 : size(A, 1) @@ -25,7 +25,7 @@ Performs exactly `maxiter` Jacobi iterations. Allocates a single temporary vector and traverses `A` columnwise. -Throws `Base.LinAlg.SingularException` when the diagonal has a zero. This check +Throws `LinearAlgebra.SingularException` when the diagonal has a zero. This check is performed once beforehand. """ function jacobi!(x, A::AbstractMatrix, b; maxiter::Int=10) @@ -45,11 +45,13 @@ end start(::DenseJacobiIterable) = 1 done(it::DenseJacobiIterable, iteration::Int) = iteration > it.maxiter -function next(j::DenseJacobiIterable, iteration::Int) +function iterate(j::DenseJacobiIterable, iteration::Int=start(j)) + if done(j, iteration) return nothing end + n = size(j.A, 1) - copy!(j.next, j.b) - + copyto!(j.next, j.b) + # Computes next = b - (A - D)x for col = 1 : n @simd for row = 1 : col - 1 @@ -83,7 +85,7 @@ Performs exactly `maxiter` Gauss-Seidel iterations. Works fully in-place and traverses `A` columnwise. -Throws `Base.LinAlg.SingularException` when the diagonal has a zero. This check +Throws `LinearAlgebra.SingularException` when the diagonal has a zero. This check is performed once beforehand. """ function gauss_seidel!(x, A::AbstractMatrix, b; maxiter::Int=10) @@ -103,9 +105,11 @@ end start(::DenseGaussSeidelIterable) = 1 done(it::DenseGaussSeidelIterable, iteration::Int) = iteration > it.maxiter -function next(s::DenseGaussSeidelIterable, iteration::Int) +function iterate(s::DenseGaussSeidelIterable, iteration::Int=start(s)) + if done(s, iteration) return nothing end + n = size(s.A, 1) - + for col = 1 : n @simd for row = 1 : col - 1 @inbounds s.x[row] -= s.A[row, col] * s.x[col] @@ -139,7 +143,7 @@ Performs exactly `maxiter` SOR iterations with relaxation parameter `ω`. Allocates a single temporary vector and traverses `A` columnwise. -Throws `Base.LinAlg.SingularException` when the diagonal has a zero. This check +Throws `LinearAlgebra.SingularException` when the diagonal has a zero. This check is performed once beforehand. """ function sor!(x, A::AbstractMatrix, b, ω::Real; maxiter::Int=10) @@ -160,7 +164,9 @@ end start(::DenseSORIterable) = 1 done(it::DenseSORIterable, iteration::Int) = iteration > it.maxiter -function next(s::DenseSORIterable, iteration::Int) +function iterate(s::DenseSORIterable, iteration::Int=start(s)) + if done(s, iteration) return nothing end + n = size(s.A, 1) for col = 1 : n @@ -192,12 +198,12 @@ ssor(A::AbstractMatrix, b, ω::Real; kwargs...) = """ ssor!(x, A::AbstractMatrix, b, ω::Real; maxiter=10) -> x -Performs exactly `maxiter` SSOR iterations with relaxation parameter `ω`. Each iteration +Performs exactly `maxiter` SSOR iterations with relaxation parameter `ω`. Each iteration is basically a forward *and* backward sweep of SOR. Allocates a single temporary vector and traverses `A` columnwise. -Throws `Base.LinAlg.SingularException` when the diagonal has a zero. This check +Throws `LinearAlgebra.SingularException` when the diagonal has a zero. This check is performed once beforehand. """ function ssor!(x, A::AbstractMatrix, b, ω::Real; maxiter::Int=10) @@ -218,7 +224,9 @@ end start(::DenseSSORIterable) = 1 done(it::DenseSSORIterable, iteration::Int) = iteration > it.maxiter -function next(s::DenseSSORIterable, iteration::Int) +function iterate(s::DenseSSORIterable, iteration::Int=start(s)) + if done(s, iteration) return nothing end + n = size(s.A, 1) for col = 1 : n diff --git a/src/stationary_sparse.jl b/src/stationary_sparse.jl index ca7e2cef..21afecf7 100644 --- a/src/stationary_sparse.jl +++ b/src/stationary_sparse.jl @@ -1,5 +1,7 @@ -import Base.LinAlg: A_mul_B!, A_ldiv_B! -import Base: start, next, done, getindex +import LinearAlgebra: mul!, ldiv! +import Base: getindex, iterate + +using SparseArrays struct DiagonalIndices{Tv, Ti <: Integer} matrix::SparseMatrixCSC{Tv,Ti} @@ -7,14 +9,14 @@ struct DiagonalIndices{Tv, Ti <: Integer} function DiagonalIndices{Tv,Ti}(A::SparseMatrixCSC{Tv,Ti}) where {Tv,Ti} # Check square? - diag = Vector{Ti}(A.n) + diag = Vector{Ti}(undef, A.n) for col = 1 : A.n r1 = A.colptr[col] r2 = A.colptr[col + 1] - 1 r1 = searchsortedfirst(A.rowval, col, r1, r2, Base.Order.Forward) if r1 > r2 || A.rowval[r1] != col || iszero(A.nzval[r1]) - throw(Base.LinAlg.SingularException(col)) + throw(LinearAlgebra.SingularException(col)) end diag[col] = r1 end @@ -25,7 +27,7 @@ end DiagonalIndices(A::SparseMatrixCSC{Tv,Ti}) where {Tv,Ti} = DiagonalIndices{Tv,Ti}(A) -function A_ldiv_B!(y::AbstractVector{Tv}, D::DiagonalIndices{Tv,Ti}, x::AbstractVector{Tv}) where {Tv,Ti} +function ldiv!(y::AbstractVector{Tv}, D::DiagonalIndices{Tv,Ti}, x::AbstractVector{Tv}) where {Tv,Ti} @inbounds for row = 1 : D.matrix.n y[row] = x[row] / D.matrix.nzval[D.diag[row]] end @@ -141,9 +143,9 @@ function backward_sub!(α, F::FastUpperTriangular, x::AbstractVector, β, y::Abs end """ -Do A_mul_B! with the off-diagonal elements of a matrix. +Do mul! with the off-diagonal elements of a matrix. """ -function A_mul_B!(α::T, O::OffDiagonal, x::AbstractVector, β::T, y::AbstractVector) where {T} +function mul!(α::T, O::OffDiagonal, x::AbstractVector, β::T, y::AbstractVector) where {T} # Specialize for β = 0 and β = 1 A = O.matrix @@ -151,7 +153,7 @@ function A_mul_B!(α::T, O::OffDiagonal, x::AbstractVector, β::T, y::AbstractVe if iszero(β) fill!(y, zero(T)) else - scale!(β, y) + lmul!(β, y) end end @@ -220,16 +222,17 @@ end start(::JacobiIterable) = 1 done(j::JacobiIterable, iteration::Int) = iteration > j.maxiter -function next(j::JacobiIterable{T}, iteration::Int) where {T} +function iterate(j::JacobiIterable{T}, iteration::Int=start(j)) where {T} + if done(j, iteration) return nothing end # tmp = D \ (b - (A - D) * x) - copy!(j.next, j.b) - A_mul_B!(-one(T), j.O, j.x, one(T), j.next) - A_ldiv_B!(j.x, j.O.diag, j.next) + copyto!(j.next, j.b) + mul!(-one(T), j.O, j.x, one(T), j.next) + ldiv!(j.x, j.O.diag, j.next) nothing, iteration + 1 end -jacobi_iterable(x::AbstractVector, A::SparseMatrixCSC, b::AbstractVector; maxiter::Int = 10) = +jacobi_iterable(x::AbstractVector, A::SparseMatrixCSC, b::AbstractVector; maxiter::Int = 10) = JacobiIterable{eltype(x), typeof(x), typeof(x), typeof(b)}( OffDiagonal(A, DiagonalIndices(A)), x, similar(x), b, maxiter) @@ -241,7 +244,7 @@ Performs exactly `maxiter` Jacobi iterations. Allocates a temporary vector and precomputes the diagonal indices. -Throws `Base.LinAlg.SingularException` when the diagonal has a zero. This check +Throws `LinearAlgebra.SingularException` when the diagonal has a zero. This check is performed once beforehand. """ function jacobi!(x::AbstractVector, A::SparseMatrixCSC, b::AbstractVector; maxiter::Int=10) @@ -271,7 +274,8 @@ end start(::GaussSeidelIterable) = 1 done(g::GaussSeidelIterable, iteration::Int) = iteration > g.maxiter -function next(g::GaussSeidelIterable, iteration::Int) +function iterate(g::GaussSeidelIterable, iteration::Int=start(g)) + if done(g, iteration) return nothing end # x ← L \ (-U * x + b) T = eltype(g.x) gauss_seidel_multiply!(-one(T), g.U, g.x, one(T), g.b, g.x) @@ -287,7 +291,7 @@ Performs exactly `maxiter` Gauss-Seidel iterations. Works fully in-place, but precomputes the diagonal indices. -Throws `Base.LinAlg.SingularException` when the diagonal has a zero. This check +Throws `LinearAlgebra.SingularException` when the diagonal has a zero. This check is performed once beforehand. """ function gauss_seidel!(x::AbstractVector, A::SparseMatrixCSC, b::AbstractVector; maxiter::Int = 10) @@ -314,7 +318,9 @@ end start(::SORIterable) = 1 done(s::SORIterable, iteration::Int) = iteration > s.maxiter -function next(s::SORIterable{T}, iteration::Int) where {T} +function iterate(s::SORIterable{T}, iteration::Int=start(s)) where {T} + if done(s, iteration) return nothing end + # next = b - U * x gauss_seidel_multiply!(-one(T), s.U, s.x, one(T), s.b, s.next) @@ -331,7 +337,7 @@ function sor_iterable(x::AbstractVector, A::SparseMatrixCSC, b::AbstractVector, D = DiagonalIndices(A) T = eltype(x) SORIterable{T,typeof(x),typeof(x),typeof(b),eltype(ω)}( - StrictlyUpperTriangular(A, D), FastLowerTriangular(A, D), ω, + StrictlyUpperTriangular(A, D), FastLowerTriangular(A, D), ω, x, similar(x), b, maxiter ) end @@ -343,7 +349,7 @@ Performs exactly `maxiter` SOR iterations with relaxation parameter `ω`. Allocates a temporary vector and precomputes the diagonal indices. -Throws `Base.LinAlg.SingularException` when the diagonal has a zero. This check +Throws `LinearAlgebra.SingularException` when the diagonal has a zero. This check is performed once beforehand. """ function sor!(x::AbstractVector, A::SparseMatrixCSC, b::AbstractVector, ω::Real; maxiter::Int = 10) @@ -382,7 +388,9 @@ end start(s::SSORIterable) = 1 done(s::SSORIterable, iteration::Int) = iteration > s.maxiter -function next(s::SSORIterable{T}, iteration::Int) where {T} +function iterate(s::SSORIterable{T}, iteration::Int=start(s)) where {T} + if done(s, iteration) return nothing end + # tmp = b - U * x gauss_seidel_multiply!(-one(T), s.sU, s.x, one(T), s.b, s.tmp) @@ -401,12 +409,12 @@ end """ ssor!(x, A::SparseMatrixCSC, b, ω::Real; maxiter=10) -Performs exactly `maxiter` SSOR iterations with relaxation parameter `ω`. Each iteration +Performs exactly `maxiter` SSOR iterations with relaxation parameter `ω`. Each iteration is basically a forward *and* backward sweep of SOR. Allocates a temporary vector and precomputes the diagonal indices. -Throws `Base.LinAlg.SingularException` when the diagonal has a zero. This check +Throws `LinearAlgebra.SingularException` when the diagonal has a zero. This check is performed once beforehand. """ function ssor!(x::AbstractVector, A::SparseMatrixCSC, b::AbstractVector, ω::Real; maxiter::Int = 10) diff --git a/src/svdl.jl b/src/svdl.jl index 1d948f8c..0773584a 100644 --- a/src/svdl.jl +++ b/src/svdl.jl @@ -1,6 +1,8 @@ export svdl -import Base: size, getindex, full, svdfact +import Base: size, getindex, Matrix +import LinearAlgebra.svd +using LinearAlgebra """ Matrix of the form @@ -48,7 +50,7 @@ function getindex(B::BrokenArrowBidiagonal{T}, i::Int, j::Int) where {T} end end -function full(B::BrokenArrowBidiagonal{T}) where {T} +function Matrix(B::BrokenArrowBidiagonal{T}) where {T} n = size(B, 1) k = length(B.av) M = zeros(T, n, n) @@ -64,7 +66,7 @@ function full(B::BrokenArrowBidiagonal{T}) where {T} M end -svdfact(B::BrokenArrowBidiagonal) = svdfact(full(B)) #XXX This can be much faster +svd(B::BrokenArrowBidiagonal) = svd(Matrix(B)) #XXX This can be much faster """ Partial factorization object which is an approximation of a matrix @@ -101,12 +103,12 @@ If `log` is set to `true` is given, method will output a tuple `X, L, ch`. Where - `v0 = random unit vector`: starting guess vector in the domain of `A`. The length of `q` should be the number of columns in `A`; - `k::Int = 2nsv`: maximum number of Lanczos vectors to compute before restarting; -- `j::Int = nsv`: number of vectors to keep at the end of the restart. +- `j::Int = nsv`: number of vectors to keep at the end of the restart. We don't recommend j < nsv; - `maxiter::Int = minimum(size(A))`: maximum number of iterations to run; - `verbose::Bool = false`: print information at each iteration; - `tol::Real = √eps()`: maximum absolute error in each desired singular value; -- `reltol::Real=√eps()`: maximum error in each desired singular value relative to the +- `reltol::Real=√eps()`: maximum error in each desired singular value relative to the estimated norm of the input matrix; - `method::Symbol=:ritz`: restarting algorithm to use. Valid choices are: 1. `:ritz`: Thick restart with Ritz values [Wu2000]. @@ -125,7 +127,7 @@ If `log` is set to `true` is given, method will output a tuple `X, L, ch`. Where **if `log` is `false`** -- `Σ`: list of the desired singular values if `vecs == :none` (the default), otherwise +- `Σ`: list of the desired singular values if `vecs == :none` (the default), otherwise returns an `SVD` object with the desired singular vectors filled in; - `L`: computed partial factorizations of A. @@ -144,12 +146,12 @@ otherwise returns an `SVD` object with the desired singular vectors filled in; - `:conv` => `convhist`: Convergence data. [^Golub1965]: - Golub, Gene, and William Kahan. "Calculating the singular values and pseudo-inverse - of a matrix." Journal of the Society for Industrial and Applied Mathematics, + Golub, Gene, and William Kahan. "Calculating the singular values and pseudo-inverse + of a matrix." Journal of the Society for Industrial and Applied Mathematics, Series B: Numerical Analysis 2.2 (1965): 205-224. [^Wu2000]: - Wu, Kesheng, and Horst Simon. "Thick-restart Lanczos method for large symmetric - eigenvalue problems." SIAM Journal on Matrix Analysis and Applications 22.2 + Wu, Kesheng, and Horst Simon. "Thick-restart Lanczos method for large symmetric + eigenvalue problems." SIAM Journal on Matrix Analysis and Applications 22.2 (2000): 602-616. """ function svdl(A; @@ -173,7 +175,7 @@ end ######################### function svdl_method!(log::ConvergenceHistory, A, l::Int=min(6, size(A,1)); k::Int=2l, - j::Int=l, v0::AbstractVector = Vector{eltype(A)}(randn(size(A, 2))) |> x->scale!(x, inv(norm(x))), + j::Int=l, v0::AbstractVector = Vector{eltype(A)}(randn(size(A, 2))) |> x->rmul!(x, inv(norm(x))), maxiter::Int=minimum(size(A)), tol::Real=√eps(), reltol::Real=√eps(), verbose::Bool=false, method::Symbol=:ritz, vecs=:none, dolock::Bool=false) @@ -187,7 +189,7 @@ function svdl_method!(log::ConvergenceHistory, A, l::Int=min(6, size(A,1)); k::I nextiter!(log) #@assert size(L.B) == (k, k) - F = svdfact(L.B)::LinAlg.SVD{eltype(v0), typeof(real(one(eltype(v0)))), Matrix{eltype(v0)}} + F = svd(L.B)::LinearAlgebra.SVD{eltype(v0), typeof(real(one(eltype(v0)))), Matrix{eltype(v0)}} iter==1 && @assert eltype(F)==eltype(v0) if method == :ritz thickrestart!(A, L, F, j) @@ -205,7 +207,7 @@ function svdl_method!(log::ConvergenceHistory, A, l::Int=min(6, size(A,1)); k::I conv = isconverged(L, F, l, tol, reltol, log, verbose) push!(log, :conv, conv) - push!(log, :ritz, F[:S][1:k]) + push!(log, :ritz, F.S[1:k]) push!(log, :Bs, deepcopy(L.B)) push!(log, :betas, L.β) @@ -222,17 +224,17 @@ function svdl_method!(log::ConvergenceHistory, A, l::Int=min(6, size(A,1)); k::I shrink!(log) #Compute singular vectors as necessary and return them in the output - values = F[:S][1:l] + values = F.S[1:l] m, n = size(A) leftvecs = if vecs == :left || vecs == :both - L.P*view(F[:U], :, 1:l) + L.P*view(F.U, :, 1:l) else zeros(eltype(v0), m, 0) end rightvecs = if vecs == :right || vecs == :both - (view(L.Q, :, 1:size(L.Q,2)-1)*view(F[:V], :, 1:l))' + (view(L.Q, :, 1:size(L.Q,2)-1)*view(F.V, :, 1:l))' else zeros(eltype(v0), 0, n) end @@ -240,7 +242,7 @@ function svdl_method!(log::ConvergenceHistory, A, l::Int=min(6, size(A,1)); k::I if vecs == :none values, L else - LinAlg.SVD(leftvecs, values, rightvecs), L + LinearAlgebra.SVD(leftvecs, values, rightvecs), L end end @@ -253,7 +255,7 @@ Determine if any singular values in a partial factorization have converged. - `L::PartialFactorization`: a `PartialFactorization` computed by an iterative method such as `svdl`; -- `F::Base.LinAlg.SVD`: a `SVD` factorization computed for `L.B`; +- `F::LinearAlgebra.SVD`: a `SVD` factorization computed for `L.B`; - `k::Int` : number of singular values to check; - `tol::Real`: absolute tolerance for a Ritz value to be considered converged; - `reltol::Real`: relative tolerance for a Ritz value to be considered converged; @@ -270,29 +272,29 @@ described in [^Wilkinson1965] Ch.3 §54-55 p.173, [^Yamamoto1980], [^Ortega1990] [^Geurts1982] and [^Deif1989]. [^Wilkinson1965]: - Wilkinson, James Hardy. The algebraic eigenvalue problem. + Wilkinson, James Hardy. The algebraic eigenvalue problem. Vol. 87. Oxford: Clarendon Press, 1965. -[^Yamamoto1980]: - Yamamoto, Tetsuro. "Error bounds for computed eigenvalues +[^Yamamoto1980]: + Yamamoto, Tetsuro. "Error bounds for computed eigenvalues and eigenvectors." Numerische Mathematik 34.2 (1980): 189-199. [^Ortega1990]: - Ortega, James M. Numerical analysis: a second course. + Ortega, James M. Numerical analysis: a second course. Society for Industrial and Applied Mathematics, 1990. [^Geurts1982]: - Geurts, A. J. "A contribution to the theory of condition." + Geurts, A. J. "A contribution to the theory of condition." Numerische Mathematik 39.1 (1982): 85-96. [^Deif1989]: - Deif, A. "A relative backward perturbation theorem for the eigenvalue + Deif, A. "A relative backward perturbation theorem for the eigenvalue problem." Numerische Mathematik 56.6 (1989): 625-626. """ -function isconverged(L::PartialFactorization, F::Base.LinAlg.SVD, k::Int, tol::Real, +function isconverged(L::PartialFactorization, F::LinearAlgebra.SVD, k::Int, tol::Real, reltol::Real, log::ConvergenceHistory, verbose::Bool=false ) @assert tol ≥ 0 - σ = F[:S][1:k] - Δσ= L.β * abs.(F[:U][end, 1 : k]) + σ = F.S[1:k] + Δσ= L.β * abs.(F.U[end, 1 : k]) #Best available eigenvalue bounds δσ = copy(Δσ) @@ -339,7 +341,7 @@ function isconverged(L::PartialFactorization, F::Base.LinAlg.SVD, k::Int, tol::R end #Estimate condition number and see if two-sided reorthog is needed - if verbose && (F[:S][1]/F[:S][end]) > 1/√eps() + if verbose && (F.S[1]/F.S[end]) > 1/√eps() warn("Two-sided reorthogonalization should be used but is not implemented") end @@ -371,24 +373,23 @@ Thick restart (with ordinary Ritz values) [^Hernandez2008] """ -#Hernandez2008 function thickrestart!(A, L::PartialFactorization{T,Tr}, - F::Base.LinAlg.SVD{Tr,Tr}, l::Int) where {T,Tr} + F::LinearAlgebra.SVD{Tr,Tr}, l::Int) where {T,Tr} - k = size(F[:V], 1) + k = size(F.V, 1) m, n = size(A) #@assert size(L.P) == (m, k) #@assert size(L.Q) == (n, k+1) - Q = view(L.Q, :,1:k)*view(F[:V], :,1:l) + Q = view(L.Q, :,1:k)*view(F.V, :,1:l) L.Q = [Q view(L.Q, :, k+1)] #Be pedantic about ensuring normalization #L.Q = qr(L.Q)[1] #@assert all([norm(L.Q[:,i]) ≈ 1 for i=1:size(L.Q,2)]) f = A*view(L.Q, :, l+1) - ρ = L.β * reshape(F[:U][end, 1:l], l) - L.P = view(L.P, :, 1:k)*view(F[:U], :, 1:l) + ρ = L.β * reshape(F.U[end, 1:l], l) + L.P = view(L.P, :, 1:k)*view(F.U, :, 1:l) #@assert ρ[i] ≈ f⋅L.P[:, i] f -= L.P*ρ @@ -398,7 +399,7 @@ function thickrestart!(A, L::PartialFactorization{T,Tr}, g = A'f - α*L.Q[:, end] L.β = β = norm(g) - L.B = BrokenArrowBidiagonal([F[:S][1:l]; α], ρ, typeof(β)[]) + L.B = BrokenArrowBidiagonal([F.S[1:l]; α], ρ, typeof(β)[]) #@assert size(L.P, 2) == size(L.Q, 2) == size(L.B, 2) L end @@ -406,40 +407,40 @@ end """ harmonicrestart!(A, L, F, k) -> L -Thick restart with harmonic Ritz values. See [^Baglama2005] but note that -they have P and Q swapped relative to our notation, which follows that +Thick restart with harmonic Ritz values. See [^Baglama2005] but note that +they have P and Q swapped relative to our notation, which follows that of [^Hernandez2008] -[^Baglama2005]: - Baglama, James, and Lothar Reichel. "Augmented implicitly restarted - Lanczos bidiagonalization methods." SIAM Journal on Scientific +[^Baglama2005]: + Baglama, James, and Lothar Reichel. "Augmented implicitly restarted + Lanczos bidiagonalization methods." SIAM Journal on Scientific Computing 27.1 (2005): 19-42. -[^Hernandez2008]: - Vicente Hernández, José E. Román, and Andrés Tomás. "A robust and - efficient parallel SVD solver based on restarted Lanczos bidiagonalization." +[^Hernandez2008]: + Vicente Hernández, José E. Román, and Andrés Tomás. "A robust and + efficient parallel SVD solver based on restarted Lanczos bidiagonalization." Electronic Transactions on Numerical Analysis 31 (2008): 68-85. """ function harmonicrestart!(A, L::PartialFactorization{T,Tr}, - F::Base.LinAlg.SVD{Tr,Tr}, k::Int) where {T,Tr} + F::LinearAlgebra.SVD{Tr,Tr}, k::Int) where {T,Tr} m = size(L.B, 1)::Int #@assert size(L.P,2)==m==size(L.Q,2)-1 - F0 = F# svdfact(L.B) - ρ = L.β*F0[:U][end,:] #Residuals of singular values + F0 = F# svd(L.B) + ρ = L.β*F0.U[end,:] #Residuals of singular values #Construct broken arrow matrix - BA = [diagm(F0[:S]) ρ] - F2 = svdfact!(BA, thin=false) + BA = [Matrix(Diagonal(F0.S)) ρ] + F2 = svd!(BA; full=true) #Take k largest triplets - Σ = (F2[:S]::Vector{Tr})[1:k] - U = F0[:U]*view(F2[:U],:,1:k) - M = eye(T, m+1) - M[1:m, 1:m] = F0[:V]::Matrix{T} - M = M * F2[:V] + Σ = (F2.S::Vector{Tr})[1:k] + U = F0.U*view(F2.U,:,1:k) + M = Matrix{T}(I, m+1, m+1) + M[1:m, 1:m] = F0.V::Union{Matrix{T}, Adjoint{T,Matrix{T}}} + M = M * F2.V Mend = M[end, 1:k] #Compute scaled residual from the harmonic Ritz problem r0 = zeros(Tr, m) @@ -449,12 +450,11 @@ function harmonicrestart!(A, L::PartialFactorization{T,Tr}, end r = try #(L.B\r0) - A_ldiv_B!(L.B, r0) + ldiv!(L.B, r0) catch exc - if isa(exc, LinAlg.LAPACKException) || - isa(exc, LinAlg.SingularException) #B\r is singular - - pinv(full(L.B))*r0 + if isa(exc, LinearAlgebra.LAPACKException) || + isa(exc, LinearAlgebra.SingularException) #B\r is singular + pinv(Matrix(L.B))*r0 else rethrow(exc) end end::Vector{Tr} r .*= L.β @@ -464,9 +464,10 @@ function harmonicrestart!(A, L::PartialFactorization{T,Tr}, M2[1:m, 1:k] = M[:,1:k] M2[1:m, k+1] = -r M2[m+1, k+1] = 1 - Q, R = qr(M2) + QRF = qr(M2) + Q, R = QRF.Q, QRF.R - Q = L.Q*Q + Q = L.Q*view(Q,:,1:k+1) P = L.P*view(U,:,1:k) R = view(R,1:k+1,1:k) + view(R,:,k+1)*Mend' @@ -524,17 +525,17 @@ right vectors, except when the matrix norm exceeds `1/√eps(eltype(A))`, in which case it will be necessary to orthogonalize both sets of vectors. See [^Simon2000]. -[^Bjorck2015]: - Björck, Åke. Numerical methods in matrix computations. +[^Bjorck2015]: + Björck, Åke. Numerical methods in matrix computations. New York: Springer, 2015. -[^Simon2000]: - Simon, Horst D., and Hongyuan Zha. "Low-rank matrix approximation - using the Lanczos bidiagonalization process with applications." - SIAM Journal on Scientific Computing 21.6 (2000): 2257-2274. +[^Simon2000]: + Simon, Horst D., and Hongyuan Zha. "Low-rank matrix approximation + using the Lanczos bidiagonalization process with applications." + SIAM Journal on Scientific Computing 21.6 (2000): 2257-2274. [^Daniel1976]: - Daniel, James W., et al. "Reorthogonalization and stable algorithms - for updating the Gram-Schmidt QR factorization." Mathematics of + Daniel, James W., et al. "Reorthogonalization and stable algorithms + for updating the Gram-Schmidt QR factorization." Mathematics of Computation 30.136 (1976): 772-795. ``` """ @@ -560,7 +561,7 @@ function extend!( β = L.β for j=l+1:k log.mtvps+=1 - Ac_mul_B!(q, A, p) #q = A'p + mul!(q, adjoint(A), p) #q = A'p if orthright #Orthogonalize right Lanczos vector #Do double classical Gram-Schmidt reorthogonalization @@ -579,7 +580,7 @@ function extend!( log.mvps+=1 #p = A*q - β*p - A_mul_B!(p, A, q) + mul!(p, A, q) p .-= β*view(L.P, :, j) if orthleft #Orthogonalize left Lanczos vector @@ -608,5 +609,5 @@ end let B = BrokenArrowBidiagonal([1, 2, 3], [1, 2], Int[]) - @assert full(B) == [1 0 1; 0 2 2; 0 0 3] + @assert Matrix(B) == [1 0 1; 0 2 2; 0 0 3] end diff --git a/test/REQUIRE b/test/REQUIRE index af7958bf..cd722af9 100644 --- a/test/REQUIRE +++ b/test/REQUIRE @@ -1 +1 @@ -LinearMaps +LinearMaps 2.0.0 diff --git a/test/bicgstabl.jl b/test/bicgstabl.jl index 9621a05c..beaa43a0 100644 --- a/test/bicgstabl.jl +++ b/test/bicgstabl.jl @@ -1,12 +1,14 @@ using IterativeSolvers -using Base.Test +using Test +using Random +using LinearAlgebra @testset ("BiCGStab(l)") begin srand(1234321) n = 20 -@testset "Matrix{$T}" for T in (Float32, Float64, Complex64, Complex128) +@testset "Matrix{$T}" for T in (Float32, Float64, ComplexF32, ComplexF64) A = rand(T, n, n) + 15I x = ones(T, n) b = A * x @@ -18,7 +20,7 @@ n = 20 x1, his1 = bicgstabl(A, b, l, max_mv_products = 100, log = true, tol = tol) @test isa(his1, ConvergenceHistory) @test norm(A * x1 - b) / norm(b) ≤ tol - + # With an initial guess x_guess = rand(T, n) x2, his2 = bicgstabl!(x_guess, A, b, l, max_mv_products = 100, log = true, tol = tol) @@ -27,7 +29,7 @@ n = 20 @test norm(A * x2 - b) / norm(b) ≤ tol # Do an exact LU decomp of a nearby matrix - F = lufact(A + rand(T, n, n)) + F = lu(A + rand(T, n, n)) x3, his3 = bicgstabl(A, b, Pl = F, l, max_mv_products = 100, log = true, tol = tol) @test norm(A * x3 - b) / norm(b) ≤ tol end diff --git a/test/cg.jl b/test/cg.jl index 190f7d64..d2b0987f 100644 --- a/test/cg.jl +++ b/test/cg.jl @@ -1,8 +1,11 @@ using IterativeSolvers using LinearMaps -using Base.Test +using Test +using LinearAlgebra +using SparseArrays +using Random -import Base.A_ldiv_B! +import LinearAlgebra.ldiv! include("laplace_matrix.jl") @@ -10,8 +13,7 @@ struct JacobiPrec diagonal end - -A_ldiv_B!(y, P::JacobiPrec, x) = y .= x ./ P.diagonal +ldiv!(y, P::JacobiPrec, x) = y .= x ./ P.diagonal @testset "Conjugate Gradients" begin @@ -20,7 +22,7 @@ srand(1234321) @testset "Small full system" begin n = 10 - @testset "Matrix{$T}" for T in (Float32, Float64, Complex64, Complex128) + @testset "Matrix{$T}" for T in (Float32, Float64, ComplexF32, ComplexF64) A = rand(T, n, n) A = A' * A + I b = rand(T, n) @@ -37,7 +39,7 @@ srand(1234321) @test nprods(ch) ≤ 2 # Test with cholfact should converge immediately - F = cholfact(A) + F = cholesky(A, Val(false)) x,ch = cg(A, b; Pl=F, log=true) @test niters(ch) ≤ 2 @test nprods(ch) ≤ 2 @@ -53,7 +55,7 @@ end P = JacobiPrec(diag(A)) rhs = randn(size(A, 2)) - scale!(rhs, inv(norm(rhs))) + rmul!(rhs, inv(norm(rhs))) tol = 1e-5 @testset "Matrix" begin diff --git a/test/chebyshev.jl b/test/chebyshev.jl index 4168fade..8acc6a3e 100644 --- a/test/chebyshev.jl +++ b/test/chebyshev.jl @@ -1,5 +1,7 @@ using IterativeSolvers -using Base.Test +using Test +using Random +using LinearAlgebra function randSPD(T, n) A = rand(T, n, n) + n * I @@ -19,11 +21,11 @@ end n = 10 srand(1234321) -@testset "Matrix{$T}" for T in (Float32, Float64, Complex64, Complex128) +@testset "Matrix{$T}" for T in (Float32, Float64, ComplexF32, ComplexF64) A = randSPD(T, n) b = rand(T, n) tol = √(eps(real(T))) - + # Without a preconditioner begin λ_min, λ_max = approx_eigenvalue_bounds(A) @@ -48,7 +50,7 @@ srand(1234321) # With a preconditioner begin B = randSPD(T, n) - B_fact = cholfact!(B) + B_fact = cholesky!(B, Val(false)) λ_min, λ_max = approx_eigenvalue_bounds(B_fact \ A) x, history = chebyshev(A, b, λ_min, λ_max, Pl = B_fact, tol=tol, maxiter=10n, log=true) @test history.isconverged diff --git a/test/common.jl b/test/common.jl index 40a934d1..b64a34ce 100644 --- a/test/common.jl +++ b/test/common.jl @@ -1,5 +1,7 @@ +using LinearAlgebra using IterativeSolvers -using Base.Test +using Test +using Random srand(1234321) @@ -14,12 +16,12 @@ end @testset "Identity preconditioner" begin P = Identity() x = rand(10) - y = zeros(x) + y = zero(x) # Should be a no-op @test P \ x == x - @test A_ldiv_B!(P, copy(x)) == x - @test A_ldiv_B!(y, P, copy(x)) == x + @test ldiv!(P, copy(x)) == x + @test ldiv!(y, P, copy(x)) == x end end diff --git a/test/gmres.jl b/test/gmres.jl index 1d365c56..9c6d0559 100644 --- a/test/gmres.jl +++ b/test/gmres.jl @@ -1,7 +1,9 @@ using IterativeSolvers -using Base.Test +using Test using LinearMaps - +using LinearAlgebra +using Random +using SparseArrays #GMRES @testset "GMRES" begin @@ -9,10 +11,10 @@ using LinearMaps srand(1234321) n = 10 -@testset "Matrix{$T}" for T in (Float32, Float64, Complex64, Complex128) +@testset "Matrix{$T}" for T in (Float32, Float64, ComplexF32, ComplexF64) A = rand(T, n, n) b = rand(T, n) - F = lufact(A) + F = lu(A) tol = √eps(real(T)) # Test optimality condition: residual should be non-increasing @@ -31,10 +33,10 @@ n = 10 @test norm(A * x - b) / norm(b) ≤ tol end -@testset "SparseMatrixCSC{$T}" for T in (Float64, Complex128) +@testset "SparseMatrixCSC{$T}" for T in (Float64, ComplexF64) A = sprand(T, n, n, 0.5) + I b = rand(T, n) - F = lufact(A) + F = lu(A) tol = √eps(real(T)) # Test optimality condition: residual should be non-increasing diff --git a/test/hessenberg.jl b/test/hessenberg.jl index 7a163db8..f02841b6 100644 --- a/test/hessenberg.jl +++ b/test/hessenberg.jl @@ -1,5 +1,5 @@ using IterativeSolvers -using Base.Test +using Test @testset "Hessenberg" begin @@ -7,9 +7,9 @@ using Base.Test H1 = [ 1.19789 1.42354 -0.0371401 0.0118481 -0.0362113 0.00269463; 1.46142 4.01953 0.890729 -0.0157701 -0.0300656 -0.0191307; - 0.0 1.08456 3.35179 0.941966 0.0439339 -0.072888; - 0.0 0.0 1.29071 3.1746 0.853378 0.0202058; - 0.0 0.0 0.0 1.32227 3.06086 1.18129; + 0.0 1.08456 3.35179 0.941966 0.0439339 -0.072888; + 0.0 0.0 1.29071 3.1746 0.853378 0.0202058; + 0.0 0.0 0.0 1.32227 3.06086 1.18129; 0.0 0.0 0.0 0.0 1.58682 2.99037; 0.0 0.0 0.0 0.0 0.0 1.45345 ] @@ -30,7 +30,7 @@ using Base.Test # Compare \ against the optimized version. solution_with_residual = copy(rhs) - A_ldiv_B!(IterativeSolvers.FastHessenberg(copy(H)), solution_with_residual) + ldiv!(IterativeSolvers.FastHessenberg(copy(H)), solution_with_residual) solution = H \ rhs # First part is the solution @@ -39,4 +39,4 @@ using Base.Test # Last element is the residual @test abs(last(solution_with_residual)) ≈ norm(H * solution - rhs) end -end \ No newline at end of file +end diff --git a/test/history.jl b/test/history.jl index 86232133..d9ce321a 100644 --- a/test/history.jl +++ b/test/history.jl @@ -1,10 +1,10 @@ using IterativeSolvers using RecipesBase -using Base.Test +using Test @testset "ConvergenceHistory" begin - const KW = Dict{Symbol, Any} + KW = Dict{Symbol, Any} RecipesBase.is_key_supported(k::Symbol) = k == :sep ? false : true @@ -28,7 +28,7 @@ using Base.Test history = ConvergenceHistory(partial = false) history.iters = 3 history.data[:resnorm] = [10.0, 3.0, 0.1] - + plots = ( RecipesBase.apply_recipe(KW(), history), RecipesBase.apply_recipe(KW(), history, :resnorm) @@ -54,7 +54,7 @@ using Base.Test for data in plots @test length(data) == 2 - @test data[2].d[:linecolor] == :white + @test data[2].d[:linecolor] == :white end end diff --git a/test/idrs.jl b/test/idrs.jl index 451d65b2..b3925fc0 100644 --- a/test/idrs.jl +++ b/test/idrs.jl @@ -1,5 +1,7 @@ using IterativeSolvers -using Base.Test +using Test +using Random +using LinearAlgebra @testset "IDR(s)" begin @@ -7,7 +9,7 @@ n = 10 m = 6 srand(1234567) -@testset "Matrix{$T}" for T in (Float32, Float64, Complex64, Complex128) +@testset "Matrix{$T}" for T in (Float32, Float64, ComplexF32, ComplexF64) A = rand(T, n, n) + n * I b = rand(T, n) tol = √eps(real(T)) @@ -27,7 +29,7 @@ srand(1234567) end end -@testset "SparseMatrixCSC{$T}" for T in (Float64, Complex128) +@testset "SparseMatrixCSC{$T}" for T in (Float64, ComplexF64) A = sprand(T, n, n, 0.5) + n * I b = rand(T, n) tol = √eps(real(T)) diff --git a/test/laplace_matrix.jl b/test/laplace_matrix.jl index fb44eb21..3ad1b89d 100644 --- a/test/laplace_matrix.jl +++ b/test/laplace_matrix.jl @@ -3,7 +3,7 @@ function laplace_matrix(::Type{T}, n, dims) where T A = copy(D); for idx = 2 : dims - A = kron(A, speye(n)) + kron(speye(size(A, 1)), D); + A = kron(A, sparse(I, n, n)) + kron(sparse(I, size(A, 1), size(A, 1)), D); end A diff --git a/test/lobpcg.jl b/test/lobpcg.jl index fab7cfc0..9641fd77 100644 --- a/test/lobpcg.jl +++ b/test/lobpcg.jl @@ -1,6 +1,8 @@ using IterativeSolvers using LinearMaps -using Base.Test +using LinearAlgebra +using Test +using Random # Already defined in another file #= @@ -10,14 +12,14 @@ struct JacobiPrec{TD} diagonal::TD end -Base.A_ldiv_B!(y, P::JacobiPrec, x) = y .= x ./ P.diagonal +Base.ldiv!(y, P::JacobiPrec, x) = y .= x ./ P.diagonal =# function max_err(R) r = zeros(real(eltype(R)), size(R, 2)) for j in 1:length(r) for i in 1:size(R, 1) - r[j] += conj(R[i,j])*R[i,j] + r[j] += conj(R[i,j])*R[i,j] end r[j] = sqrt(r[j]) end @@ -30,17 +32,16 @@ end n = 10 @testset "Small full system" begin @testset "Simple eigenvalue problem" begin - @testset "Matrix{$T}" for T in (Float32, Float64, Complex64, Complex128) + @testset "Matrix{$T}" for T in (Float32, Float64, ComplexF32, ComplexF64) @testset "largest = $largest" for largest in (true, false) A = rand(T, n, n) A = A' * A + I b = rand(T, n, 1) - tol = √eps(real(T)) - + tol = IterativeSolvers.default_tolerance(T) r = lobpcg(A, largest, b; tol=tol, maxiter=Inf, log=false) λ, X = r.λ, r.X @test norm(A*X - X*λ) ≤ tol - + # If you start from the exact solution, you should converge immediately r = lobpcg(A, largest, X; tol=10tol, log=true) @test length(r.trace) == 1 @@ -48,15 +49,14 @@ end end end @testset "Generalized eigenvalue problem" begin - @testset "Matrix{$T}" for T in (Float32, Float64, Complex64, Complex128) + @testset "Matrix{$T}" for T in (Float32, Float64, ComplexF32, ComplexF64) @testset "largest = $largest" for largest in (true, false) A = rand(T, n, n) A = A' * A + I B = rand(T, n, n) B = B' * B + I b = rand(T, n, 1) - tol = √eps(real(T)) - + tol = IterativeSolvers.default_tolerance(T) r = lobpcg(A, B, largest, b; tol=tol, maxiter=Inf, log=true) λ, X = r.λ, r.X @test max_err(A*X - B*X*λ) ≤ tol @@ -71,9 +71,8 @@ end @testset "Sparse Laplacian" begin A = laplace_matrix(Float64, 20, 2) rhs = randn(size(A, 2), 1) - scale!(rhs, inv(norm(rhs))) - tol = 1e-5 - + rmul!(rhs, inv(norm(rhs))) + tol = IterativeSolvers.default_tolerance(Float64) @testset "Matrix" begin @testset "largest = $largest" for largest in (true, false) r = lobpcg(A, largest, rhs; tol=tol, maxiter=Inf) @@ -84,13 +83,12 @@ end end @testset "Zero initial solution" begin @testset "Simple eigenvalue problem" begin - @testset "Matrix{$T}" for T in (Float32, Float64, Complex64, Complex128) + @testset "Matrix{$T}" for T in (Float32, Float64, ComplexF32, ComplexF64) @testset "largest = $largest" for largest in (true, false) A = rand(T, n, n) A = A' * A + I b = zeros(T, n, 1) - tol = √eps(real(T)) - + tol = IterativeSolvers.default_tolerance(T) r = lobpcg(A, largest, b; tol=tol, maxiter=Inf, log=false) λ, X = r.λ, r.X @test norm(A*X - X*λ) ≤ tol @@ -98,14 +96,14 @@ end end end @testset "Generalized eigenvalue problem" begin - @testset "Matrix{$T}" for T in (Float32, Float64, Complex64, Complex128) + @testset "Matrix{$T}" for T in (Float32, Float64, ComplexF32, ComplexF64) @testset "largest = $largest" for largest in (true, false) A = rand(T, n, n) A = A' * A + I B = rand(T, n, n) B = B' * B + I b = zeros(T, n, 1) - tol = √eps(real(T)) + tol = IterativeSolvers.default_tolerance(T) r = lobpcg(A, B, largest, b; tol=tol, maxiter=Inf, log=true) λ, X = r.λ, r.X @@ -116,11 +114,11 @@ end end @testset "No initial solution" begin @testset "Simple eigenvalue problem" begin - @testset "Matrix{$T}" for T in (Float32, Float64, Complex64, Complex128) + @testset "Matrix{$T}" for T in (Float32, Float64, ComplexF32, ComplexF64) @testset "largest = $largest" for largest in (true, false) A = rand(T, n, n) A = A' * A + I - tol = √eps(real(T)) + tol = IterativeSolvers.default_tolerance(T) r = lobpcg(A, largest, 1; tol=tol, maxiter=Inf, log=false) λ, X = r.λ, r.X @@ -129,13 +127,13 @@ end end end @testset "Generalized eigenvalue problem" begin - @testset "Matrix{$T}" for T in (Float32, Float64, Complex64, Complex128) + @testset "Matrix{$T}" for T in (Float32, Float64, ComplexF32, ComplexF64) @testset "largest = $largest" for largest in (true, false) A = rand(T, n, n) A = A' * A + I B = rand(T, n, n) B = B' * B + I - tol = √eps(real(T)) + tol = IterativeSolvers.default_tolerance(T) r = lobpcg(A, B, largest, 1; tol=tol, maxiter=Inf, log=true) λ, X = r.λ, r.X @@ -146,11 +144,11 @@ end end @testset "Inplace" begin @testset "Simple eigenvalue problem" begin - @testset "Matrix{$T}" for T in (Float32, Float64, Complex64, Complex128) + @testset "Matrix{$T}" for T in (Float32, Float64, ComplexF32, ComplexF64) @testset "largest = $largest" for largest in (true, false) A = rand(T, n, n) A = A' * A + I - tol = √eps(real(T)) + tol = IterativeSolvers.default_tolerance(T) b = rand(T, n, 1) itr = LOBPCGIterator(A, largest, b) @@ -161,14 +159,14 @@ end end end @testset "Generalized eigenvalue problem" begin - @testset "Matrix{$T}" for T in (Float32, Float64, Complex64, Complex128) + @testset "Matrix{$T}" for T in (Float32, Float64, ComplexF32, ComplexF64) @testset "largest = $largest" for largest in (true, false) A = rand(T, n, n) A = A' * A + I B = rand(T, n, n) B = B' * B + I b = rand(T, n, 1) - tol = √eps(real(T)) + tol = IterativeSolvers.default_tolerance(T) itr = LOBPCGIterator(A, B, largest, b) r = lobpcg!(itr; tol=tol, maxiter=Inf, log=true) @@ -180,11 +178,11 @@ end end @testset "Jacobi preconditioner" begin @testset "Simple eigenvalue problem" begin - @testset "Matrix{$T}" for T in (Float32, Float64, Complex64, Complex128) + @testset "Matrix{$T}" for T in (Float32, Float64, ComplexF32, ComplexF64) @testset "largest = $largest" for largest in (true, false) A = rand(T, n, n) A = A' * A + I - tol = √eps(real(T)) + tol = IterativeSolvers.default_tolerance(T) P = JacobiPrec(diag(A)) r = lobpcg(A, largest, 1; P=P, tol=tol, maxiter=Inf, log=false) λ, X = r.λ, r.X @@ -193,14 +191,14 @@ end end end @testset "Generalized eigenvalue problem" begin - @testset "Matrix{$T}" for T in (Float32, Float64, Complex64, Complex128) + @testset "Matrix{$T}" for T in (Float32, Float64, ComplexF32, ComplexF64) @testset "largest = $largest" for largest in (true, false) A = rand(T, n, n) A = A' * A + I P = JacobiPrec(diag(A)) B = rand(T, n, n) B = B' * B + I - tol = √eps(real(T)) + tol = IterativeSolvers.default_tolerance(T) r = lobpcg(A, B, largest, 1; P=P, tol=tol, maxiter=Inf, log=true) λ, X = r.λ, r.X @@ -211,34 +209,34 @@ end end @testset "Constraint" begin @testset "Simple eigenvalue problem" begin - @testset "Matrix{$T}" for T in (Float32, Float64, Complex64, Complex128) + @testset "Matrix{$T}" for T in (Float32, Float64, ComplexF32, ComplexF64) @testset "largest = $largest" for largest in (true, false) A = rand(T, n, n) A = A' * A + I - tol = √eps(real(T)) + tol = IterativeSolvers.default_tolerance(T) r = lobpcg(A, largest, 1; tol=tol, maxiter=Inf, log=false) λ1, X1 = r.λ, r.X r = lobpcg(A, largest, 1; C=copy(r.X), tol=tol, maxiter=Inf, log=false) λ2, X2 = r.λ, r.X @test norm(A*X2 - X2*λ2) ≤ tol - @test isapprox(real(Ac_mul_B(X1, X2)[1,1]), 0, atol=2*n*tol) + @test isapprox(real((adjoint(X1)*X2)[1,1]), 0, atol=2*n*tol) end end end @testset "Generalized eigenvalue problem" begin - @testset "Matrix{$T}" for T in (Float32, Float64, Complex64, Complex128) + @testset "Matrix{$T}" for T in (Float32, Float64, ComplexF32, ComplexF64) @testset "largest = $largest" for largest in (true, false) A = rand(T, n, n) A = A' * A + I B = rand(T, n, n) B = B' * B + I - tol = eps(real(T))^0.4 + tol = IterativeSolvers.default_tolerance(T) r = lobpcg(A, B, largest, 1; tol=tol, maxiter=Inf, log=false) λ1, X1 = r.λ, r.X r = lobpcg(A, B, largest, 1; C=copy(r.X), tol=tol, maxiter=Inf, log=false) λ2, X2 = r.λ, r.X @test norm(A*X2 - B*X2*λ2) ≤ tol - @test isapprox(real(Ac_mul_B(X1, B*X2)[1,1]), 0, atol=2*n*tol) + @test isapprox(real((adjoint(X1)*(B*X2))[1,1]), 0, atol=2*n*tol) end end end @@ -248,17 +246,17 @@ end @testset "Small full system" begin n = 10 @testset "Simple eigenvalue problem" begin - @testset "Matrix{$T}" for T in (Float32, Float64, Complex64, Complex128) + @testset "Matrix{$T}" for T in (Float32, Float64, ComplexF32, ComplexF64) @testset "largest = $largest" for largest in (true, false) A = rand(T, n, n) A = A' * A + I b = rand(T, n, 2) - tol = √eps(real(T)) + tol = IterativeSolvers.default_tolerance(T) r = lobpcg(A, largest, b; tol=tol, maxiter=Inf, log=false) λ, X = r.λ, r.X - @test max_err(A*X - X*diagm(λ)) ≤ tol - + @test max_err(A*X - X*Matrix(Diagonal(λ))) ≤ tol + # If you start from the exact solution, you should converge immediately r = lobpcg(A, largest, X; tol=10tol, log=true) @test length(r.trace) == 1 @@ -266,17 +264,17 @@ end end end @testset "Generalized eigenvalue problem" begin - @testset "Matrix{$T}" for T in (Float32, Float64, Complex64, Complex128) + @testset "Matrix{$T}" for T in (Float32, Float64, ComplexF32, ComplexF64) @testset "largest = $largest" for largest in (true, false) A = rand(T, n, n) A = A' * A + I B = rand(T, n, n) B = B' * B + I b = rand(T, n, 2) - tol = eps(real(T))^(real(T)(4/10)) + tol = IterativeSolvers.default_tolerance(T) r = lobpcg(A, B, largest, b; tol=tol, maxiter=Inf, log=true) λ, X = r.λ, r.X - @test max_err(A*X - B*X*diagm(λ)) ≤ tol + @test max_err(A*X - B*X*Matrix(Diagonal(λ))) ≤ tol # If you start from the exact solution, you should converge immediately r = lobpcg(A, B, largest, X; tol=10tol, log=true) @@ -289,75 +287,74 @@ end @testset "nev = 3, block size = $block_size" for block_size in (1, 2) n = 10 @testset "Simple eigenvalue problem" begin - @testset "Matrix{$T}" for T in (Float32, Float64, Complex64, Complex128) + @testset "Matrix{$T}" for T in (Float32, Float64, ComplexF32, ComplexF64) @testset "largest = $largest" for largest in (true, false) A = rand(T, n, n) A = A' * A + I - tol = eps(real(T))^0.4 + tol = IterativeSolvers.default_tolerance(T) X0 = rand(T, n, block_size) r = lobpcg(A, largest, X0, 3, tol=tol, maxiter=Inf, log=true) λ, X = r.λ, r.X - @test max_err(A*X - X*diagm(λ)) ≤ tol - @test all(isapprox.(Ac_mul_B(X, X), eye(3), atol=2*n*tol)) + @test max_err(A*X - X*Matrix(Diagonal(λ))) ≤ tol + @test all(isapprox.(adjoint(X)*X, Matrix{T}(I, 3, 3), atol=2*n*tol)) end end end @testset "Generalized eigenvalue problem" begin - @testset "Matrix{$T}" for T in (Float32, Float64, Complex64, Complex128) + @testset "Matrix{$T}" for T in (Float32, Float64, ComplexF32, ComplexF64) @testset "largest = $largest" for largest in (true, false) A = rand(T, n, n) A = A' * A + I B = rand(T, n, n) B = B' * B + I - tol = eps(real(T))^0.4 - + tol = IterativeSolvers.default_tolerance(T) X0 = rand(T, n, block_size) r = lobpcg(A, B, largest, X0, 3, tol=tol, maxiter=Inf, log=true) λ, X = r.λ, r.X - @test max_err(A*X - B*X*diagm(λ)) ≤ tol - @test all(isapprox.(Ac_mul_B(X, B*X), eye(3), atol=2*n*tol)) + @test max_err(A*X - B*X*Matrix(Diagonal(λ))) ≤ tol + @test all(isapprox.(adjoint(X)*(B*X), Matrix{T}(I, 3, 3), atol=2*n*tol)) end end end @testset "Constraint" begin @testset "Simple eigenvalue problem" begin - @testset "Matrix{$T}" for T in (Float32, Float64, Complex64, Complex128) + @testset "Matrix{$T}" for T in (Float32, Float64, ComplexF32, ComplexF64) @testset "largest = $largest" for largest in (true, false) A = rand(T, n, n) A = A' * A + I - tol = √eps(real(T)) + tol = IterativeSolvers.default_tolerance(T) r = lobpcg(A, largest, 1; tol=tol, maxiter=Inf, log=false) λ1, X1 = r.λ, r.X X0 = rand(T, n, block_size) r = lobpcg(A, largest, X0, 3, C=copy(r.X), tol=tol, maxiter=Inf, log=true) λ2, X2 = r.λ, r.X - @test max_err(A*X2 - X2*diagm(λ2)) ≤ tol - @test all(isapprox.(Ac_mul_B(X2, X2), eye(3), atol=2*n*tol)) - @test all(isapprox.(real(Ac_mul_B(X1, X2)), 0, atol=2*n*tol)) + @test max_err(A*X2 - X2*Matrix(Diagonal(λ2))) ≤ tol + @test all(isapprox.(adjoint(X2)*X2, Matrix{T}(I, 3, 3), atol=2*n*tol)) + @test all(isapprox.(real(adjoint(X1)*X2), 0, atol=2*n*tol)) end end end @testset "Generalized eigenvalue problem" begin - @testset "Matrix{$T}" for T in (Float32, Float64, Complex64, Complex128) + @testset "Matrix{$T}" for T in (Float32, Float64, ComplexF32, ComplexF64) @testset "largest = $largest" for largest in (true, false) A = rand(T, n, n) A = A' * A + 2I B = rand(T, n, n) B = B' * B + 2I - tol = eps(real(T))^0.4 + tol = IterativeSolvers.default_tolerance(T) r = lobpcg(A, B, largest, 1; tol=tol, maxiter=Inf, log=false) λ1, X1 = r.λ, r.X X0 = rand(T, n, block_size) r = lobpcg(A, B, largest, X0, 2, C=copy(r.X), tol=tol, maxiter=Inf, log=true) λ2, X2 = r.λ, r.X - @test max_err(A*X2 - B*X2*diagm(λ2)) ≤ tol - @test all(isapprox.(Ac_mul_B(X2, B*X2), eye(2), atol=2*n*tol)) - @test all(isapprox.(real(Ac_mul_B(X1, B*X2)), 0, atol=2*n*tol)) + @test max_err(A*X2 - B*X2*Matrix(Diagonal(λ2))) ≤ tol + @test all(isapprox.(adjoint(X2)*(B*X2), Matrix{T}(I, 2, 2), atol=2*n*tol)) + @test all(isapprox.(real(adjoint(X1)*(B*X2)), 0, atol=2*n*tol)) end end end - end + end end end diff --git a/test/lsmr.jl b/test/lsmr.jl index 21b30a3e..dad6b37f 100644 --- a/test/lsmr.jl +++ b/test/lsmr.jl @@ -1,56 +1,20 @@ using IterativeSolvers -using Base.Test +using Test +using LinearAlgebra +using Random +using SparseArrays -import Base: size, A_mul_B!, Ac_mul_B!, eltype, similar, scale!, copy!, fill!, length, broadcast! -import Base.LinAlg: norm +import Base: size, eltype, similar, copyto!, fill!, length, axes, getindex, setindex! +import LinearAlgebra: norm, mul!, rmul!, lmul! # Type used in Dampenedtest -# solve (A'A + diag(v).^2 ) x = b -# using LSMR in the augmented space A' = [A ; diag(v)] b' = [b; zeros(size(A, 2)] -mutable struct DampenedVector{Ty, Tx} - y::Ty - x::Tx -end - -eltype(a::DampenedVector) = promote_type(eltype(a.y), eltype(a.x)) -norm(a::DampenedVector) = sqrt(norm(a.y)^2 + norm(a.x)^2) - -function Base.Broadcast.broadcast!(f::Tf, to::DampenedVector, from::DampenedVector, args...) where {Tf} - to.x .= f.(from.x, args...) - to.y .= f.(from.y, args...) - to -end - -function copy!(a::DampenedVector{Ty, Tx}, b::DampenedVector{Ty, Tx}) where {Ty, Tx} - copy!(a.y, b.y) - copy!(a.x, b.x) - a -end - -function fill!(a::DampenedVector, α::Number) - fill!(a.y, α) - fill!(a.x, α) - a -end - -scale!(α::Number, a::DampenedVector) = scale!(a, α) - -function scale!(a::DampenedVector, α::Number) - scale!(a.y, α) - scale!(a.x, α) - a -end - -similar(a::DampenedVector, T) = DampenedVector(similar(a.y, T), similar(a.x, T)) -length(a::DampenedVector) = length(a.y) + length(a.x) - -mutable struct DampenedMatrix{TA, Tx} +# solve (A'A + diag(v).^2 ) x = A'b +# using LSMR in the augmented space à = [A ; diag(v)] b̃ = [b; zeros(size(A, 2)] +struct DampenedMatrix{Tv,TA<:AbstractMatrix{Tv},TD<:AbstractVector{Tv}} <: AbstractMatrix{Tv} A::TA - diagonal::Tx + diagonal::TD end -eltype(A::DampenedMatrix) = promote_type(eltype(A.A), eltype(A.diagonal)) - function size(A::DampenedMatrix) m, n = size(A.A) l = length(A.diagonal) @@ -60,36 +24,23 @@ end function size(A::DampenedMatrix, dim::Integer) m, n = size(A.A) l = length(A.diagonal) - dim == 1 ? (m + l) : - dim == 2 ? n : 1 + dim == 1 ? (m + l) : (dim == 2 ? n : 1) end -function A_mul_B!(α::Number, mw::DampenedMatrix{TA, Tx}, a::Tx, - β::Number, b::DampenedVector{Ty, Tx}) where {TA, Tx, Ty} - if β != 1. - if β == 0. - fill!(b, 0.) - else - scale!(b, β) - end - end - A_mul_B!(α, mw.A, a, 1.0, b.y) - map!((z, x, y)-> z + α * x * y, b.x, b.x, a, mw.diagonal) - return b +function mul!(y::AbstractVector{Tv}, mw::DampenedMatrix, x::AbstractVector{Tv}) where {Tv} + m₁ = size(mw.A, 1) + m₂ = size(mw, 1) + mul!(view(y, 1:m₁), mw.A, x) + y[m₁+1:m₂] .= mw.diagonal .* x + return y end -function Ac_mul_B!(α::Number, mw::DampenedMatrix{TA, Tx}, a::DampenedVector{Ty, Tx}, - β::Number, b::Tx) where {TA, Tx, Ty} - if β != 1. - if β == 0. - fill!(b, 0.) - else - scale!(b, β) - end - end - Ac_mul_B!(α, mw.A, a.y, 1.0, b) - map!((z, x, y)-> z + α * x * y, b, b, a.x, mw.diagonal) - return b +function mul!(y::AbstractVector, mw::Adjoint{Tv,<:DampenedMatrix}, x::AbstractVector) where {Tv} + m₁ = size(mw.parent.A, 1) + m₂ = size(mw.parent, 1) + mul!(y, adjoint(mw.parent.A), view(x, 1:m₁)) + y .+= mw.parent.diagonal .* view(x, m₁+1:m₂) + return y end """ @@ -104,7 +55,8 @@ suitably padded by zeros. """ function sol_matrix(m, n) mn = min(m, n) - spdiagm((1.0 : mn - 1, 1.0 : mn), (-1, 0), m, n) + I, J, V = SparseArrays.spdiagm_internal(-1 => 1.0 : mn - 1, 0 => 1.0 : mn) + sparse(I, J, V, m, n) end @testset "LSMR" begin @@ -139,9 +91,9 @@ end b = rand(m) A = rand(m, n) v = rand(n) - Adampened = DampenedMatrix(A, v) - bdampened = DampenedVector(b, zeros(n)) - x, ch = lsmr(Adampened, bdampened, log=true) - @test norm((A'A + diagm(v) .^ 2)x - A'b) ≤ 1e-3 + A′ = DampenedMatrix(A, v) + b′ = [b; zeros(n)] + x, ch = lsmr(A′, b′, log=true) + @test norm((A'A + Matrix(Diagonal(v)) .^ 2)x - A'b) ≤ 1e-3 end end diff --git a/test/lsqr.jl b/test/lsqr.jl index bd33a405..8c08060c 100644 --- a/test/lsqr.jl +++ b/test/lsqr.jl @@ -1,6 +1,9 @@ using IterativeSolvers -using Base.Test +using Test using LinearMaps +using LinearAlgebra +using Random +using SparseArrays srand(1234321) @@ -18,7 +21,8 @@ end function sol_matrix(m, n) mn = min(m, n) - spdiagm((1.0 : mn - 1, 1.0 : mn), (-1, 0), m, n) + I, J, V = SparseArrays.spdiagm_internal(-1 => 1.0 : mn - 1, 0 => 1.0 : mn) + sparse(I, J, V, m, n) end @testset "SOL test" for (m, n) = ((10, 10), (20, 10), (20, 10)) diff --git a/test/minres.jl b/test/minres.jl index d81ee2a9..762b45d3 100644 --- a/test/minres.jl +++ b/test/minres.jl @@ -1,5 +1,8 @@ using IterativeSolvers -using Base.Test +using Test +using Random +using SparseArrays +using LinearAlgebra using LinearMaps @testset "MINRES" begin @@ -24,7 +27,7 @@ srand(123) n = 15 -@testset "Hermitian Matrix{$T}" for T in (Float32, Float64, Complex64, Complex128) +@testset "Hermitian Matrix{$T}" for T in (Float32, Float64, ComplexF32, ComplexF64) A, x, b = hermitian_problem(T, n) tol = sqrt(eps(real(T))) x0 = rand(T, n) @@ -39,7 +42,7 @@ n = 15 @test x2 == x0 end -@testset "Skew-Hermitian Matrix{$T}" for T in (Float32, Float64, Complex64, Complex128) +@testset "Skew-Hermitian Matrix{$T}" for T in (Float32, Float64, ComplexF32, ComplexF64) A, x, b = skew_hermitian_problem(T, n) tol = sqrt(eps(real(T))) x_approx, hist = minres(A, b, skew_hermitian = true, maxiter = 10n, tol = tol, log = true) @@ -48,7 +51,7 @@ end @test hist.isconverged end -@testset "SparseMatrixCSC{$T}" for T in (Float32, Float64, Complex64, Complex128) +@testset "SparseMatrixCSC{$T}" for T in (Float32, Float64, ComplexF32, ComplexF64) A = let B = sprand(n, n, 2 / n) B + B' + I @@ -64,4 +67,4 @@ end @test hist.isconverged end -end \ No newline at end of file +end diff --git a/test/orthogonalize.jl b/test/orthogonalize.jl index 8a47ab1a..6045313c 100644 --- a/test/orthogonalize.jl +++ b/test/orthogonalize.jl @@ -1,5 +1,6 @@ using IterativeSolvers -using Base.Test +using Test +using Random @testset "Orthogonalization" begin @@ -7,10 +8,11 @@ srand(1234321) n = 10 m = 3 -@testset "Eltype $T" for T = (Complex64, Float64) +@testset "Eltype $T" for T = (ComplexF32, Float64) # Create an orthonormal matrix V - V, = qr(rand(T, n, m)) + F = qr(rand(T, n, m)) + V = Matrix(F.Q) # And a random vector to be orth. to V. w_original = rand(T, n) diff --git a/test/runtests.jl b/test/runtests.jl index a9cca39d..8681148d 100644 --- a/test/runtests.jl +++ b/test/runtests.jl @@ -44,4 +44,3 @@ include("history.jl") #Expensive tests - don't run by default #include("matrixmarket.jl") #include("matrixcollection.jl") - diff --git a/test/simple_eigensolvers.jl b/test/simple_eigensolvers.jl index c17acf20..5a3bb5f3 100644 --- a/test/simple_eigensolvers.jl +++ b/test/simple_eigensolvers.jl @@ -1,13 +1,15 @@ using IterativeSolvers -using Base.Test +using Test using LinearMaps +using LinearAlgebra +using Random @testset "Simple Eigensolvers" begin srand(1234321) n = 10 -@testset "Matrix{$T}" for T in (Float32, Float64, Complex64, Complex128) +@testset "Matrix{$T}" for T in (Float32, Float64, ComplexF32, ComplexF64) A = rand(T, n, n) A = A' * A @@ -32,8 +34,8 @@ n = 10 # Construct F = inv(A - σI) "matrix free" # Make sure we use complex arithmetic everywhere, # because of the follow bug in base: https://github.com/JuliaLang/julia/issues/22683 - F = lufact(complex(A) - UniformScaling(σ)) - Fmap = LinearMap{complex(T)}((y, x) -> A_ldiv_B!(y, F, x), size(A, 1), ismutating = true) + F = lu(complex(A) - UniformScaling(σ)) + Fmap = LinearMap{complex(T)}((y, x) -> ldiv!(y, F, x), size(A, 1), ismutating = true) λ, x, history = invpowm(Fmap; shift=σ, tol=tol, maxiter=10n, log=true) diff --git a/test/stationary.jl b/test/stationary.jl index 142b5e11..f6221115 100644 --- a/test/stationary.jl +++ b/test/stationary.jl @@ -1,19 +1,22 @@ -import Base.LinAlg.SingularException -import IterativeSolvers: DiagonalIndices, FastLowerTriangular, +import LinearAlgebra.SingularException +import IterativeSolvers: DiagonalIndices, FastLowerTriangular, FastUpperTriangular, forward_sub!, backward_sub!, OffDiagonal, gauss_seidel_multiply!, StrictlyUpperTriangular, StrictlyLowerTriangular using IterativeSolvers -using Base.Test +using Test +using Random +using LinearAlgebra +using SparseArrays @testset "Stationary solvers" begin n = 10 m = 6 ω = 1.2 -srand(1234321) +srand(1234322) -@testset "SparseMatrix{$T}" for T in (Float32, Float64, Complex64, Complex128) +@testset "SparseMatrix{$T}" for T in (Float32, Float64, ComplexF32, ComplexF64) @testset "Sparse? $sparse" for sparse = (true, false) # Diagonally dominant if sparse @@ -69,11 +72,11 @@ end for matrix in (A, B) for solver in (jacobi, gauss_seidel) - @test_throws Base.LinAlg.SingularException solver(matrix, b) + @test_throws LinearAlgebra.SingularException solver(matrix, b) end for solver in (sor, ssor) - @test_throws Base.LinAlg.SingularException solver(A, b, 0.5) + @test_throws LinearAlgebra.SingularException solver(A, b, 0.5) end end end @@ -84,10 +87,10 @@ end D = DiagonalIndices(A) @test A.nzval[D.diag] == Diagonal(A).diag @test_throws SingularException DiagonalIndices(B) - + x = ones(10) y = zeros(10) - A_ldiv_B!(y, D, x) + ldiv!(y, D, x) @test y ≈ Diagonal(A) \ ones(10) end @@ -98,7 +101,7 @@ end x = rand(10) y = copy(x) - + forward_sub!(L, x) @test x ≈ LowerTriangular(A) \ y @@ -131,7 +134,7 @@ end x = rand(10) y = copy(x) - + backward_sub!(L, x) @test x ≈ UpperTriangular(A) \ y @@ -157,24 +160,24 @@ end @test x ≈ z end -@testset "A_mul_B! with OffDiagonal type" begin +@testset "mul! with OffDiagonal type" begin A = sprand(10, 10, .3) + 2I D = DiagonalIndices(A) O = OffDiagonal(A, D) x = rand(10) y = ones(10) - A_mul_B!(1.0, O, x, 0.0, y) + mul!(1.0, O, x, 0.0, y) @test y ≈ A * x - Diagonal(A) * x x = rand(10) y = ones(10) - A_mul_B!(1.0, O, x, 1.0, y) + mul!(1.0, O, x, 1.0, y) @test y ≈ A * x - Diagonal(A) * x + ones(10) x = rand(10) y = ones(10) - A_mul_B!(2.0, O, x, 3.0, y) + mul!(2.0, O, x, 3.0, y) @test y ≈ 2 * (A * x - Diagonal(A) * x) + 3 * ones(10) end diff --git a/test/svdl.jl b/test/svdl.jl index 6e7a8e64..37e1b637 100644 --- a/test/svdl.jl +++ b/test/svdl.jl @@ -1,5 +1,7 @@ using IterativeSolvers -using Base.Test +using Test +using Random +using LinearAlgebra @testset "SVD Lanczos" begin @@ -13,7 +15,7 @@ srand(1234567) ns = 5 tol = 1e-5 - A = full(Diagonal(T[1.0 : n;])) + A = Matrix(Diagonal(T[1.0 : n;])) q = ones(T, n) / √n σ, L, history = svdl(A, nsv=ns, v0=q, tol=tol, reltol=tol, maxiter=n, method=method, vecs=:none, log=true) @test isa(history, ConvergenceHistory) @@ -30,16 +32,16 @@ srand(1234567) # [ 0 ... ] # [ 0 ±1 ... 0 ] # [±1 0 ... 0 ] - # and furthermore the signs should be aligned across Σ[:U] and Σ[:V] + # and furthermore the signs should be aligned across Σ.U and Σ.V for i = 1 : 5 - Σ[:U][end + 1 - i, i] -= sign(Σ[:U][end + 1 - i, i]) + Σ.U[end + 1 - i, i] -= sign(Σ.U[end + 1 - i, i]) end - @test vecnorm(Σ[:U]) < σ[1] * √tol + @test norm(Σ.U) < σ[1] * √tol for i = 1 : 5 - Σ[:Vt][i, end + 1 - i] -= sign(Σ[:Vt][i, end + 1 - i]) + Σ.Vt[i, end + 1 - i] -= sign(Σ.Vt[i, end + 1 - i]) end - @test vecnorm(Σ[:U]) < σ[1] * √tol - @test norm(σ - Σ[:S]) < 2max(tol * ns * σ[1], tol) + @test norm(Σ.U) < σ[1] * √tol + @test norm(σ - Σ.S) < 2max(tol * ns * σ[1], tol) #Issue #55 let @@ -66,7 +68,7 @@ end #svdl @testset "BrokenArrowBidiagonal" begin B = IterativeSolvers.BrokenArrowBidiagonal([1, 2, 3], [1, 2], Int[]) - @test full(B) == [1 0 1; 0 2 2; 0 0 3] + @test Matrix(B) == [1 0 1; 0 2 2; 0 0 3] @test B[3,3] == 3 @test B[2,3] == 2 @test B[3,2] == 0