HypergeometricFunctions._₁F₁
— FunctionCompute Kummer's confluent hypergeometric function ₁F₁(a, b, z)
.
diff --git a/dev/index.html b/dev/index.html index f6fdbc3..4c95c3e 100644 --- a/dev/index.html +++ b/dev/index.html @@ -36,7 +36,7 @@ 0.5963473623231942 julia> pFq((1, 1), (), -big(1)) -0.5963473623231940743410784993692793760741778601525487815734849104823272191142015source
Broadly speaking, there are three classes of generalized hypergeometric functions: when $p\le q$ they are entire functions of the complex variable $z$; when $p = q+1$, they are analytic functions in the cut plane $\mathbb{C}\setminus[1,\infty)$; and, when $p > q+1$, they are analytic functions in the cut plane $\mathbb{C}\setminus[0,\infty)$.
Examples of each of these classes are illustrated over $\left\{z\in\mathbb{C} : -10<\Re z<10, -10<\Im z<10\right\}$ with complex phase portraits, a beautiful tool in computational complex analysis.
using ComplexPhasePortrait, HypergeometricFunctions, Images
+0.5963473623231940743410784993692793760741778601525487815734849104823272191142015
sourceBroadly speaking, there are three classes of generalized hypergeometric functions: when $p\le q$ they are entire functions of the complex variable $z$; when $p = q+1$, they are analytic functions in the cut plane $\mathbb{C}\setminus[1,\infty)$; and, when $p > q+1$, they are analytic functions in the cut plane $\mathbb{C}\setminus[0,\infty)$.
Examples of each of these classes are illustrated over $\left\{z\in\mathbb{C} : -10<\Re z<10, -10<\Im z<10\right\}$ with complex phase portraits, a beautiful tool in computational complex analysis.
using ComplexPhasePortrait, HypergeometricFunctions, Images
x = range(-10, stop=10, length=300)
y = range(-10, stop=10, length=300)
z = x' .+ im*y
@@ -55,8 +55,8 @@
save("2F1.png", img)
img = portrait(map(z->pFq((1.0, 1.5+7.5im), (), z), z), ctype = "nist")
save("2F0.png", img)
-end
p\q | 0 | 1 |
---|---|---|
0 | ||
1 | ||
2 |
HypergeometricFunctions._₁F₁
— FunctionCompute Kummer's confluent hypergeometric function ₁F₁(a, b, z)
.
HypergeometricFunctions._₂F₁
— FunctionCompute the Gauss hypergeometric function ₂F₁(a, b, c, z)
.
HypergeometricFunctions._₃F₂
— FunctionCompute the generalized hypergeometric function ₃F₂(a₁, 1, 1, b₁, 2, z)
.
Compute the generalized hypergeometric function ₃F₂(a₁, a₂, a₃, b₁, b₂; z)
.
HypergeometricFunctions.M
— FunctionCompute Kummer's confluent hypergeometric function M(a, b, z) = ₁F₁(a, b, z)
.
HypergeometricFunctions.U
— FunctionCompute Tricomi's confluent hypergeometric function U(a, b, z) ∼ z⁻ᵃ ₂F₀((a, a-b+1), (), -z⁻¹)
.
HypergeometricFunctions._₂F₁positive
— FunctionCompute the Gauss hypergeometric function ₂F₁(a, b, c, z)
with positive parameters a, b, and c and argument 0 ≤ z ≤ 1. Useful for statisticians.
HypergeometricFunctions._₂F₁general
— FunctionCompute the Gauss hypergeometric function ₂F₁(a, b, c, z)
with general parameters a, b, and c. This polyalgorithm is designed based on the paper
N. Michel and M. V. Stoitsov, Fast computation of the Gauss hypergeometric function with all its parameters complex with application to the Pöschl–Teller–Ginocchio potential wave functions, Comp. Phys. Commun., 178:535–551, 2008.
HypergeometricFunctions._₂F₁general2
— FunctionCompute the Gauss hypergeometric function ₂F₁(a, b, c, z)
with general parameters a, b, and c. This polyalgorithm is designed based on the review
J. W. Pearson, S. Olver and M. A. Porter, Numerical methods for the computation of the confluent and Gauss hypergeometric functions, Numer. Algor., 74:821–866, 2017.
HypergeometricFunctions.pFqdrummond
— FunctionpFqdrummond(α, β, z; kmax)
Compute the generalized hypergeometric function pFq
by rational approximations of type (k, k) generated by Drummond's sequence transformation described in
R. M. Slevinsky, Fast and stable rational approximation of generalized hypergeometric functions, arXiv:2307.06221, 2023.
HypergeometricFunctions.pFqweniger
— FunctionpFqweniger(α, β, z; kmax, γ = 2)
Compute the generalized hypergeometric function pFq
by rational approximations of type (k, k) generated by a factorial Levin-type sequence transformation described in
R. M. Slevinsky, Fast and stable rational approximation of generalized hypergeometric functions, arXiv:2307.06221, 2023.
HypergeometricFunctions.pFqcontinuedfraction
— FunctionCompute the generalized hypergeometric function pFq(α, β, z)
by continued fraction.
HypergeometricFunctions.pochhammer
— FunctionPochhammer symbol $(x)_n = \frac{\Gamma(x+n)}{\Gamma(x)}$ for the rising factorial.
HypergeometricFunctions.@clenshaw
— Macro@clenshaw(x, c...)
Evaluate the Chebyshev polynomial series $\displaystyle \sum_{k=1}^N c[k] T_{k-1}(x)$ by the Clenshaw algorithm.
External links: DLMF, Wikipedia.
Examples
julia> HypergeometricFunctions.@clenshaw(1, 1, 2, 3)
+end
p\q | 0 | 1 |
---|---|---|
0 | ||
1 | ||
2 |
HypergeometricFunctions._₁F₁
— FunctionCompute Kummer's confluent hypergeometric function ₁F₁(a, b, z)
.
HypergeometricFunctions._₂F₁
— FunctionCompute the Gauss hypergeometric function ₂F₁(a, b, c, z)
.
HypergeometricFunctions._₃F₂
— FunctionCompute the generalized hypergeometric function ₃F₂(a₁, 1, 1, b₁, 2, z)
.
Compute the generalized hypergeometric function ₃F₂(a₁, a₂, a₃, b₁, b₂; z)
.
HypergeometricFunctions.M
— FunctionCompute Kummer's confluent hypergeometric function M(a, b, z) = ₁F₁(a, b, z)
.
HypergeometricFunctions.U
— FunctionCompute Tricomi's confluent hypergeometric function U(a, b, z) ∼ z⁻ᵃ ₂F₀((a, a-b+1), (), -z⁻¹)
.
HypergeometricFunctions._₂F₁positive
— FunctionCompute the Gauss hypergeometric function ₂F₁(a, b, c, z)
with positive parameters a, b, and c and argument 0 ≤ z ≤ 1. Useful for statisticians.
HypergeometricFunctions._₂F₁general
— FunctionCompute the Gauss hypergeometric function ₂F₁(a, b, c, z)
with general parameters a, b, and c. This polyalgorithm is designed based on the paper
N. Michel and M. V. Stoitsov, Fast computation of the Gauss hypergeometric function with all its parameters complex with application to the Pöschl–Teller–Ginocchio potential wave functions, Comp. Phys. Commun., 178:535–551, 2008.
HypergeometricFunctions._₂F₁general2
— FunctionCompute the Gauss hypergeometric function ₂F₁(a, b, c, z)
with general parameters a, b, and c. This polyalgorithm is designed based on the review
J. W. Pearson, S. Olver and M. A. Porter, Numerical methods for the computation of the confluent and Gauss hypergeometric functions, Numer. Algor., 74:821–866, 2017.
HypergeometricFunctions.pFqdrummond
— FunctionpFqdrummond(α, β, z; kmax)
Compute the generalized hypergeometric function pFq
by rational approximations of type (k, k) generated by Drummond's sequence transformation described in
R. M. Slevinsky, Fast and stable rational approximation of generalized hypergeometric functions, arXiv:2307.06221, 2023.
HypergeometricFunctions.pFqweniger
— FunctionpFqweniger(α, β, z; kmax, γ = 2)
Compute the generalized hypergeometric function pFq
by rational approximations of type (k, k) generated by a factorial Levin-type sequence transformation described in
R. M. Slevinsky, Fast and stable rational approximation of generalized hypergeometric functions, arXiv:2307.06221, 2023.
HypergeometricFunctions.pFqcontinuedfraction
— FunctionCompute the generalized hypergeometric function pFq(α, β, z)
by continued fraction.
HypergeometricFunctions.pochhammer
— FunctionPochhammer symbol $(x)_n = \frac{\Gamma(x+n)}{\Gamma(x)}$ for the rising factorial.
HypergeometricFunctions.@clenshaw
— Macro@clenshaw(x, c...)
Evaluate the Chebyshev polynomial series $\displaystyle \sum_{k=1}^N c[k] T_{k-1}(x)$ by the Clenshaw algorithm.
External links: DLMF, Wikipedia.
Examples
julia> HypergeometricFunctions.@clenshaw(1, 1, 2, 3)
6
julia> HypergeometricFunctions.@clenshaw(0.5, 1, 2, 3)
-0.5
HypergeometricFunctions.@lanczosratio
— Macro@lanczosratio(z, ϵ, c₀, c...)
Evaluate $\dfrac{\displaystyle \sum_{k=0}^{N-1} \frac{c[k+1]}{(z+k)(z+k+\epsilon)}}{\displaystyle c_0 + \sum_{k=0}^{N-1} \frac{c[k+1]}{z+k}}$.
This ratio is used in the Lanczos approximation of $\log\frac{\Gamma(z+\epsilon)}{\Gamma(z)}$ in
N. Michel and M. V. Stoitsov, Fast computation of the Gauss hypergeometric function with all its parameters complex with application to the Pöschl–Teller–Ginocchio potential wave functions, Comp. Phys. Commun., 178:535–551, 2008.
HypergeometricFunctions.G
— FunctionCompute the function $\dfrac{\frac{1}{\Gamma(z)}-\frac{1}{\Gamma(z+\epsilon)}}{\epsilon}$ by the method dscribed in
N. Michel and M. V. Stoitsov, Fast computation of the Gauss hypergeometric function with all its parameters complex with application to the Pöschl–Teller–Ginocchio potential wave functions, Comp. Phys. Commun., 178:535–551, 2008.
HypergeometricFunctions.P
— FunctionCompute the function $\dfrac{(z+\epsilon)_m-(z)_m}{\epsilon}$ by the method dscribed in
N. Michel and M. V. Stoitsov, Fast computation of the Gauss hypergeometric function with all its parameters complex with application to the Pöschl–Teller–Ginocchio potential wave functions, Comp. Phys. Commun., 178:535–551, 2008.
Settings
This document was generated with Documenter.jl on Thursday 9 May 2024. Using Julia version 1.10.3.