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A smooth particle mesh Ewald method
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Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599

Tom Darden, Hsing Lee, and Lee G. Pedersen
National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709
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The previously developed particle mesh Ewald method is reformulated in terms of efieggtine
interpolation of the structure factors. This reformulation allows a natural extension of the method to
potentials of the form IrP with p=1. Furthermore, efficient calculation of the virial tensor follows.

Use of B-splines in place of Lagrange interpolation leads to analytic gradients as well as a
significant improvement in the accuracy. We demonstrate that arbitrary accuracy can be achieved,
independent of system si2¢, at a cost that scales &slog(N). For biomolecular systems with

many thousands of atoms this method permits the use of Ewald summation at a computational cost
comparable to that of a simple truncation method of 10 A or less1985 American Institute of
Physics.

I. INTRODUCTION tions, and may be the best current choice for macromolecular
solution simulations as well. In the past, it has not been used

The accurate calculation of macromolecular structuresor large systems, due to the prohibitive cost of the usual
and dynamics remains a formidable challenge. In addition tgmplementation, which is an ord&? algorithm.(The stan-
the presently intractable problem of sufficient conforma-dard Ewald sum can, however, be implemented in okfiéf
tional sampling, the inadequacies of the empirical forcesteps.?®
fields currently in use are frequently cited as limiting factors. In a previous articlé? we proposed an orde¥ log(N)
Indeed, although molecular dynamics simulations using exalgorithm for calculating the Ewald sum in large systems.
plicit solvent molecules rarely exceed a nanosecond, theYhis algorithm, called the particle mesh Ewal®ME)
often exhibit unrealistic behavior on this time scale, such asnethod, was inspired by Hockney and Eastwotd's
large deviations from the experimental structure and degraparticle—particle particle—mesh method of splitting the total
dation of secondary structure, making the problem of effi-electrostatic energy into local interactions which are com-
cient conformational sampling seem rather pointless. Recemputed explicitly and long-range interactions which are ap-
work by us~*as well as others;*®however, has shown that proximated by a discrete convolution on an interpolating
simulations using current force fields without truncation ofgrid, using the 3D fast Fourier transfor8DFFT) to effi-
Coulombic interactions do not exhibit this unrealistic behav-ciently perform the convolution. However, rather than using
ior. Furthermore, simulations of peptidd® and their switching function approach to split the total energy,
membraneS® as well as of ions in agueous solutiéfis®  our method used the split of the total electrostatic energy into
have provided clear-cut evidence of artifactual behavior duelirect and reciprocal Ewald suntdiscussed below
to the use of cutoffs(Note however, that Steinbach and The reciprocal Ewald sum is the solution to Poisson’s
Brooks'’” have traced some of the artifactual behavior to theequation in periodic boundary conditions, with Gaussian
use of improper switching functionsThus it seems impor- charge densities as sources. York and Yardeveloped a
tant to focus on the efficient calculation of long-range inter-method to solve Poisson’s equation directly using the
actions, as well as on a more careful treatment of the ele@3DFFT. They were able to achieve very high accuracy using
trostatic boundary conditions. this approach, but it is currently more costly in CPU time.

Molecular dynamics simulations involving explicit sol- While the original particle—mesh approach of Hockney and
vent molecules have usually been performed under one dfastwood® is quite efficient, high accuracy is not easily
the following boundary conditions on the Coulombic inter- achieved. Lutyet al,?’ as well as Shimadat al.?® have
actions: implemented it for macromolecular simulations. A thorough
review of various techniques for performing Ewald sums is
given by Toukmaji and Boartf

A different approach to efficient macromolecular electro-

tems. Co . .
2) Periodic boundary conditions using Ewald summatn statics is based on the fast multipole algorithm of Greengard
(3) Periodic boundary conditions together with a reaction?d Rokhlin®® In this method, the simulation cell is divided
field 20 y 9 into a tree of progressively finer subcells. Electrostatic inter-

(4) Nonperiodic boundary conditions together with SOmeactions involving particles in the same or neighboring small-
treatment of the system-environment interf3k22 est subcell are computed exactly, while those involving sub-

cells of more distant particles are approximated by a
Objections can be raised to each of these choices. Thaultipole expansion. Several groups have implemented this
Ewald sum certainly seems appropriate for crystal simulaapproach for large systerf$31-34

(1) Periodic boundary conditions using a finite cutoff, simi-
lar to the approach of Verf¥t for Lennard-Jones sys-
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The layout of the article is as follows. In the next sectionwhere the outer sum is over the vectans-n;a;+n,a,
we give the basic expressions for energies, forces, and stress;ag, the prime indicating that terms with=j andn=0
tensor. We then recast our approximation to the reciprocahre omitted.
Ewald sum in terms of an approximation to the electrostatic = The outer infinite series in E¢2.1) is conditionally con-
structure factors. We will see that if the atomic charge distri-vergent, meaning that the result depends on the manner in
bution is approximated by a gridded charge distribution, thewvhich the numbers, n,, n; tend to infinity (if the unit cell
resulting approximate structure factors are obtained by thaere not neutral it would converge to plus or minus infijity
3DFFT applied to the grid. This idea of gridding charges hadJsing a theta transformation due to Riemann, Ewate-
been used by protein crystallographers for over twentyplaced the sum in Eg2.1) by the sum of two absolutely
years® Next we provide some introductory discussion of convergent series, a direct sum in Cartesian space, and a
interpolation with CardinaB-splines, and then apply the Eu- reciprocal sum in Fourier space. A number of alternative
ler exponential spline to arrive at smooth approximations ofderivations of the Ewald summation method exfst>:39-42
the structure factors and hence the energy, forces, and strdssth for the Coulombic potential and for potentials such as
tensors. Advantages of ol-spline interpolation-based ap- the dispersion or van der Waals, which decay faster. In Ap-
proach to the Ewald sum are: pendix A we provide a derivation following the approach of

it 41 H .
(1) The potential and forces are smooth functions of the par—Smlth’ which we extend to general potentials of the form

P p=
ticle positions at any level of accuracy. Lr?, p=1.

(2) The approximation, which depends on atomic position I.n molecular syste.n_ws, where point charges are typically
; . ) ractional charges positioned at the atomic nuclei, the Ewald
only through their fractional coordinates, extends natu- o . ; .
. sum must be modified. In most simulations the potential
rally to general unit cells.

(3) Since the lattice sums for related pair potentials, such af$unct|ons have been parametrized in such a way that the

. L : : nonbond” interactions between certain pairs within the
London dispersion interactions, involve analogous struc- . . .
ture factors in their reciprocal sums, the method easilySame ”."'O'e"“'e are o_mnted, being handled instead by other
generalizes to them. terms in the potentla!. For example, the Coulomb .and
Lennard-Jones interactions up to the second nearest neighbor
The computer implementation of the approximation,are usually omitted. The atom pairsj(), for which nonim-
which has been implemented as an option in the Sandexged nonbond interactions are not calculated, are said to be-
module of Ambeft® version 4.1 by the Kollman lab at UCSF, long to the masked pairlidtl. Since their interactions have
is then described. Fortran code for the PME subroutines ibeen included in Eqg. (2.1), we must subtract
available by e-mail request to darden@niehs.nih.gov AS(; ;. m0iq;/|r; — r;| from the energy computed using the
C-language version of this algorithm has been implementedirect and reciprocal potentials. Computationally, however, it
by the Board lab at Duk&. In the next section, we discuss is more convenient to skip masked pairs in the direct sum
the generalization of thB-spline PME approximation to lat- that are computed at the same time as the other nonbond
tice dispersion sums. In the final section, we discuss resultiaiteractions.
for timing and accuracy, energy conservation, and the effect Define the reciprocal lattice vectorms by m = m,aj
of the various methods on results of molecular dynamicst mya; + mzaj with m;, m,, m; integers not all zero, and
simulations of pure water. Some of the more technical matethe structure facto8(m) by
rial referred to in the text appears in the appendices. N
Il. COULOMBIC LATTICE SUMS S(m)_j; o expzmim-rj)
Suppose there amd point charges),,q,,...,qy at posi- N
tions rq,r,,...ry within the wunit cell U satisfying =E Qj exd 27i(mM;Syj+mySy+mMgSg;)], (2.2
qy+0p+ - +0y=0. The vectorsa,, a=1,2,3, which need =1
not be orthogonal, form the edges of the unit cell. The conyperes

: _ " > _ «j » ®=1,2,3 are the fractional coordinates of atpm
jugate reciprocal vectora;, are defined by the relatior®,  gefined above. The electrostatic energy in &4l) can then

- 8g = 6,p (the Kronecker delta for «,8=1,2,3. The point  pe \yritten asE = Ey;+E oot Ecorr, Where
charge ¢; at position r; has fractional coordinates

S.i»a=1,2,3defined bys,; = & - r;. The charges interact 17
according to Coulomb’s law with periodic boundary condi- Edir=§2
n

corrs

% q;q; erfa(Blr;—r;+n))
=

, 2.3
tions. Thus a point chargg; at positionr; interacts with hi=t Irj=ri+nl
other chargesy;, j#i at positionsr; as well as with all of 1 exp — m2m?/ B2)
their periodic images at positiong+ n;a;+n,a,+nsa; for Erec=o— ————— S(M)S(—m), (2.4
all integersn,, n,, ns. It also interacts with its own periodic 2mV 7o m
images at; + n;a; +n,a,+n3a; for all such integers , with N
N1, Nz, N3 not all zero. The electrostatic energy of the unit _ 1 qiq; erf(Blri—r)) B S 2.5
cell U can then be written o 26 HEm [ri—rjl N =T '
E(rl,...,rN)=E EDID __Qi‘?i ’ 2.1) Tile asterisk in Eq(2.3) denotes that terms_with=0 and
245 55 Iri—rj+n| i=j or (i,j)eM are omitted. In Eq(2.4 V=a,-a,Xas is
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the volume of the unit cell, and in Eq2.5), erf(x)=1 1 erf(B|ri—r;|)

—erfc(x) is the error function. The second term i, is Vo a3 t E g j( T =P

usually referred to as the self enerBy,;. A further energy e b

contribution due to the unit cell dipole moment is sometimes 2p7 M2 exd —(B|ri— fj|)2])

included (see Appendix A The consequences of including |ri—rj|2

this term have recently been discussed by Roberts and X (=) (F= 1) 2.9
Schnitker**#3Since this term involves a simple ordsrcal- N '
culation and the focus in this article is the efficient calcula-  In the flexible molecule case, the trace\dil equals the
tion of the traditional Ewald sum, we do not explicitly con- negative of the electrostatic ener@y (see Smith** Note
sider it further. that other nonbond interactions such as van der Waals inter-

The Coulombic force on atorincan be obtained by dif- actions also contribute to the virial tensor. In the flexible
ferentiating the SUNE(ry,...Sn) = Egi+E ect Ecor With re-  Molecule case the virial tensor includes additional contribu-

spect tor; . We will refer to the individual terms- 9E/dr;, ~ 1ons due to the bond, angle, and dihedral in.teracthrTsa
treat rigid molecules, which do not involve intramolecular

—JEdor;, and —dE . /or; as the “direct force,” “recipro- . )
cal force,” and “correction force,” respectivelyln contrast interactions, we lety; denote the center of mass of the mol-
’ ' ecule containing atonn, and letp;=r;—rq. The vectorp;

t9 the case of rigid mollecule.s, the correction energy glVe%oes not scale with changiray althoughry; does. Then the
rise to nonzero forces in flexible molecule§Ve also must . :

. stress tensor VII is given by the above sum
develop the strgss ten§or I, in order to.perforr.n constan{/l-[dﬁ\/l-[red_vl-[Corr minus the tenSOfEiNzl(fi)a(pi)g,
pressur_e SImuI_atlons using E_vvald summat_lons. (Bireplen wheref; denotes the total nonbond force on atop{again
case of isotropic volume scaling is treated in Sriftfgllow- see Smitf* for the discussion of the isotropic case
ing the volume scaling technique of AnderdéiThis scaling
method was generalized to the fulk3 virial tensor in arbi-
trary unit cells by Parrinello and Rahnfirand extended to
the long-ranged Coulombic interactions in Nas®l Klein*’
Arecent article by Smitff treats the necessary corrections to
the virial due to the unit cell dipole contribution. We follow In order to approximate the electrostatic structure fac-
Noseand Klein with modifications due to the correction en- tors, we need to interpolate the complex exponentials appear-
ergy in Eq.(2.5). We first treat the case of flexible molecules ing in Eq. (2.2). Given positive integer&;, K,, K3 and a
(i.e., the “atomic virial”). Let a be the 3<3 matrix having pointr in the unit cell, we denote its scaled fractional coor-
the lattice vectorsa,, a=1,2,3 as columns. Note that the dinates by, u,,us, i.e.,u, = K,a} - r, for=1,2,3. Due
volume V of the unit cell is given by the determinant af to the periodic boundary conditions, we may assume that
and thata ! is the 3x3 matrix having the reciprocal lattice 0<u,<K,. Then

Ill. PIECEWISE LAGRANGIAN INTERPOLATION AND
STRUCTURE FACTORS

vectorsa), as rows. Lets,;, @=1,2,3, denote the fractional mu m.u
. L. . . . 1Y1 . 242
coordinates of atomi=1,... N. We can write the energy of exp(2mim- r):exp< 21i K ) -ex;{ 2i K )
the unit cell aE=E(s; 4, ...,S3y;a). Referring to Eq(A7) of ! 2
Nose and Klein?’ the 3x3 stress tensor Il satisfies F{Z . m3u3) 5.0
- ex i .
— 0B (5,59 :0) | 98ap = VES 111,855, for @=1,2,3, and ™K,

thus, examining the three componentdah turn, and using
the identities 9V/da,z=Vagz, and da, lda,z=a,.az, , We
have thatl =11, + 11t .o, Where

For real numbersl, let [u] denote the integer part af, that

is, the unique integer satisfyingif<u<[u] +1. Then, us-
ing linear interpolation, we can approximate the individual
exponentials on the right hand side of E§.1) by

m
1. N erfo(Blri—r;+n|) exp<27ri K—aUQ)N(l—(Ua—[Ua]))

Vlarap=3 2" 2, qiq;( PRk .

ma

2B7T71/2 exp(—(,3|ri—rj+n|)2) 'EX[<27Ti K_[ua])+(ua_[ua])
ri—r;+nl? ‘
. ma’
X(ri_rj+n)a(ri_rj+n)[3’ (26) '8XF<27T| K_a([ua]+1) . (32)

We then approximate the product in E@®.1) by the
product of the right-hand side of E¢3.2) for «=1,2,3,
1 exp( — w°m? §?) which expandd(trilinear interpolation to a sum over eight
recab 2wV o m? S(m)S(=m) terms. This can be expressed more conveniently for our cur-
oo o rent purposes. LewW,(u) denote the linear hat function
< s _21+7Tm/,3 mnom 2.7 given by W,(u)=1—|u| for —1<u<1, W,(u)=0 for |u]
ap m? a B ' >1. Then we can rewrite E43.2) as

VII
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m, ” m, “Wop(Ugi—k3z—n3Ks). (3.7
exp 2w —— u, |~ 2 W,(u,—k)-exp 27 — k. ) )
Ka ey Ka In Eq. (3.7) the inner sums are over all integerg, n,, n;.
(3.3 The approximate unit cell energy obtained using this ap-

proach with structure factors and piecewise Lagrangian in-
terpolation is equivalent to our previous resilffo show
this, we define as previously a reciprocal pair potentjgl,
whose values at integers; (I,,l3) is given by

exp( — w?m?/ B?)

Note that the sum in Eq3.3) is actually finite, sinc&V, has
bounded supporf.The support of a functiorfi(u) is the set
of u values for whichf (u) #0.]

Higher order piecewise Lagrangian interpolation of the
complex exponentials can be expressed in a similar fashion.

Consider piecewise (2th order Lagrange interpolation of ‘/frec(|1a|2-|3)zﬁ rgo m2
exp(2mimu/K) using the points (]—p+1, [u]-—
Lul+p. Let Wp(u)=0 for [u[>p; and for Jmaly muly,  mgls
—p=<u<p define it by xexp 2m et et R,
-2 (Ut i—K) =F(C)(11.l5.13), (3.9
Wop(W)= —(5-T _ _
i==pj=k(—K) whereC is the array given by
for ksu<k+1k=-p,—p+1,...p—1. (3.9 1 exp —m?m?/B?)
. . . C(mq,my,mgz)= -~ m
Note that whenp=1 this agrees withVV, defined above. m
Using this function we can write the usual piecewise for m#0,C(0,0,00=0 (3.9
Ia_lzgrange interpolation formula for the complex exponentlalWith m defined bym = mja* + mja} + mia% , wherem/

= m; for 0=m;<K/2 andm/ = m; — K; otherwise. Note
m, m, that C=F"~ 1(1//,e9 Using the approximatiorS(m)= S(m)
p(Zm r ) 2 Wop(U, k)-exr{ 217i ra k). =F(Q)(m;,m,,my) for the structure factors and the identi-
@ « ties (B3) and (B4) in Appendix B, the reciprocal sum in the

35 unit cell energy is approximated by
From standard estimates for Lagrangian interpolation, 2 9,2
the error in this approximation is bounded byE ~E reczi exp(—wzw
(2p) 1 (P 2[ m,[/(2K )] 2mV 7o m
Approximating the product in Eq3.1) by the product of < E M+ Mo Ma)E M =M —m
the right-hand sides of Eq3.5), for «=1,2,3 we have for the (Q)(My,mz, Mg)F(Q)(— My, —mz, = my)
approximate structure factor 1Kt Kar 1 Ked
~ 2 2 E 2 F- l(‘ﬂre(‘) ml my, m3)
S(m)~S(m) o mio mio
N © * * XF(Q)(myq,my,mg)- K KoKg- F~HQ)(my,my,my)
=>4 > > X Wop(Ugi—K1) 1K1 Ko1Kl
e =5 I D I )
m;,m,,m
“Wiop(Ugi —Kz) - Wop(Ugi —Kj) 2 =0 mp=0 ;=0 e
(e Q) (Mg, My, M3), (3.10
277'_ 277'_k2 which is identical to the PME expression derived
previously?*

el

Ki—1 Kp—1 Kg—1 myk, IV. CARDINAL B-SPLINE INTERPOLATION

kIEO szo 32 Q(ks ke, k3)exp{2m ( K, From the definition in Eq(3.4) it is evident that the

Lagrangian weight functiondV,,(u) are continuous and
m2k2+ m3k3) therefore give rise to approximate unit cell energies which
K, Ks are continuous as functions of particle positions. It is, how-

_ ever, also clear thaW,,(u) are only piecewise differen-
=F(Q)(my,mz,my), (3.6 tiable, so the approximate reciprocal energy cannot be differ-
WhereF(Q) is the discrete Fourier transfortsee Appendix entiated to arrive at Coulombic forces. Instead, in the
B) of the arrayQ defined by original PME method, we interpolated the forces as well. In

contrast, the Cardind-splinesM,,(u), which we now de-
scribe, lead analogously via spline interpolation of the com-

Q(ky ka kg) = ; nl%,ns qiWap(Uzi —ki—naKy) plex exponential ex2im-r) to approximate structure fac-
tors and hence approximate reciprocal enerdigs which
X Wap(Ugi—ka—Nn2K>) can be analytically differentiated to give the reciprocal forces
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and stress tensors. Later, we will show that the approxima- . 1 exp( — m?m?/ B?)
tion is also superior to that for Lagrangian interpolation of Ereczzﬂ_v “o m2 B(my,m,,mg)
the same order.

For any real numbeu, let M,(u) denote the linear hat -F(Q)(my,my,mzg)F(Q)(—my,—m,,—mj)
function given by M,(u)=1—|u—1| for Osu<2 and Kyi—1 Kp-1 Ka-1
M,(u)=0 for u<0 or u>2. Forn greater than 2, define :} E Z Q(m, . m,.my)
M, (u) by the recursion 21720 my=0 mg=0 e

u n—u .
Mn(U)= — Mn—l(u)+ — Mn_l(u—l). (41) (0reC*Q)(m1|m2am3)a (47)
n—1 n—1
. . . where

One of the many convenient properties of CardBadplines
is that they can be easily differentiated analytically. Ror2 B(my,m,,mg)=|by(my)|2- |bo(m,)|?- [bs(ms)|2, (4.8

d

g Ma(W=Mp_3(U)=Mp_4(u=1). (4.2 and the pair potentiab is given by 6,..=F(B-C). Note

thatQ is nown—2 times continuously differentiable in the
From Eq.(4.1) one can see tha¥l,(u) has finite support, particle positions. To obtain the reciprocal atomic force we
being zero outside the intervakQu<n. From Eq.(4.2) it is differentiate the second expression in E4.7) with respect
clear thatM(u) is n—2 times continuously differentiable. to r;. Noting thaté,.. does not depend on particle positions,
Note thatM,(u) is a simple translate o¥W,(u) defined we get fora=1,2,3
above. More details about CardinBlsplines are given in
Appendix C. OE e
Interpolation using splines is generally more complex
than Lagrangian interpolation, since the interpolation coeffi-
cients are obtained from the solution of a system of linear (0recx Q) (Mg, My, mg). 4.9
equations, which might not be full rank. Fortunately, inter-
polation of complex exponentials admits a particularly el-Finally, the approximate reciprocal stress tenHqy is ob-
egant and simple solution, called the Euler exponentiatained by substituting the approximate structure factors from
spline. In Appendix C we show that whenis even we can Eq. (4.5 into Eq.(2.7).
write In our implementation of this algorithm for approximat-
o iNg Eec, IEeddr i, and Il at each step of a molecular
exp(27ri M Ui) ~D;(m;) 2 M (u;—K) dypgmics simulatiorj, we first' fill the arrdy, using the co-
Ki k=—o efficients M,(u,;—j) for i=1,...N, k=1,2,3 and
m j=0,...,n computed from the current scaled fractional coor-
-ex;{ 2 — k), (4.3  dinates of the particles. Nex is transformed in place using
Ki the inverse 3DFFT. Using the transform@darray as well as
whereb;(m,) is given by B, approximate expressions fé. andIl,. are computed
] using Eqs(4.7) and(2.7). At the same time the transformed
bi(m;) =exp(2i(n—1)m;/K;) Q array is overwritten by the product of itself with the arrays
n—2 —-1 C andB defined in Eqs(3.9) and (4.8). This new array is
> M (k+1)exp2mimk/K;) (4.4)  then transformed in place by the forward 3DFFT to arrive at
= the convolution f,xQ. Finally, this is multiplied by the

The error in this approximation is bounded from above byduantitiessQ/ar; fori=1,...N ande=1,2,3, and summed
(2|m]|/K;)" (see Ref. 50 which is superior to the error to give the apprOX|_rr?at|or(4.9) to the reciprocal forces
bound for Lagrange interpolatiofabove. Whenn is odd ~ Ered oi - The quantitiesQ/ar,; are computed on the fly as
and 2m;| =K; this interpolation result fails but, since it oc- the sum is accumulated, using Eg-2) to get analytic de-
curs in the tail of the reciprocal sum, we can b@in) arbi- ~ fvatives of the coefficientd!,(uy;—J).

trarily to zero in this case. Proceeding as above, we can then 1he previous PME algorithFﬁ obeyed Newton's 2nd
approximate the structure factor by Law to machine precision, since the reciprocal sum forces

- were interpolated symmetrically, while not conserving en-
S(m)=by(my)by(my)bs(mz)F(Q)(my,m;,m3), (4.5  ergy, since the energies and forces were approximated sepa-
rately. In contrast, the current algorithm conserves energy,
but not momentum. For example, the sum of the electrostatic

Ki—1 Kp—1 Kg—1

= > X dQIar 4i(My,my,ms)

lai  m{=0 my=0 mg=0

X

where the array is given by

N forces on the atoms is not zero, but rather is a random quan-
Q(klrkZakS):Z 2 qiMy(ugi—ki—ngKy) tity of the order of the rms error in the force. This leads to a
I=1 nq,ny,n3 . . . .
kind of slow Brownian motion of the center of mass. This
XM p(Ugi—ky—n5K5) artifact can be avoided by removing the average net force
from each atom at each step of the simulation, which does
Mp(Ugi—kg—N3Ks). (4.6 P

not affect the accuracy or the rms energy fluctuations. This
The approximate reciprocal energy is now given by was done for all the tests run below. It remains to be seen if
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strict conservation of momentum or of energy is more im- 6 61
portant. To date we have not devised an algorithm that )\ij=Js—i\/s—j(r0i+r0j)6=2 AT Mile—k,j
achieves both. SURSCR '(5 4

where,; = \eir§;. Using this expansion, the reciprocal
dispersion energy can be written as the sum of seven terms,
each of which resembles E¢b.2), and to which the above

In this section, we briefly describe how ti@spline ~PME methodology can be applied.
PME approach derived above for Coulombic lattice sums  Note that it is not possible to apply this dispersion ap-
extends to dispersion interactions. For now, we assume ge@roximation to the Amber3a force field, due to the complex
metric mean combining rules, and then show how to modifyway that 6—12 vs 10—12 interactions are implemented. How-
the approach for Lorentz—Bertholot combining rules. Thus€Ver, it has been implemented into the new Amber force
as above, giveN particles at positions, r,,...r within the  field, which has no explicit 10-12 interactions.
unit cell U, assume for each particiethere is a positive
constant\; so that the dispersion energy for a pair of par-Vl. RESULTS: ACCURACY AND EFFICIENCY OF THE

ticlesi,j is —\\;/[ri—r|% Then we can write the dispersion PME ALGORITHM

V. DISPERSION LATTICE SUMS

energy ofU as The total energyE is invariant to the constar®, which
1 e controls the relative rate of convergence of the direct and
Eg(ry,...IN)= _EZ’ EI ; m (5.1)  reciprocal sumsEgy; andE . in Egs.(2.3) and(2.4), respec-
i

tively (the computation ok, is of orderN and so is not
where the outer sum is over the vectors discussed furtherIncreasings cause<€ , to converge more

n=n,a;+n,a,+nzaz, the prime indicating that terms with ragldly, ?Jt th% eé(pense (c;f slower c?f).nver:ge;ceEl(@c. In_ .
i=j andn=0 are omitted. Unlike the Coulombic lattice sum ©Fder to bound the error due to cutoft in the direct sum, it is

in Eq. (2.1), the outer sum in Eq5.1) converges absolutely. necessary that erig)/r be Ie_ss_than a small toleraneg,

In Appendix A(see also Refs. 40, 23, and)4@e show that forr greate_r than the c_utoff. Similarly, _to l_)ound the error due
it can be re-written as a sum of direct, reciprocal, and selfo cutoff Izn the 2re0|procal sum, it is necessary that
energies, analogous to the Ewald sum for Coulombic interfa)(p,(_ﬂz|m| 169/Iml* be IESS tha'l a small toIer.anepeC for
actions. (The correction energy for molecular systems isremprocal vectorsn = m;ay + m,a; + Msa; outside the cut-
handled analogously to that for Coulombic systeniere

we focus on the reciprocal dispersion energy, which can be Consider a series (_)f cubic boxes W'_th Increasing box
lengthL. Traditionally 8 is chosen so that in the direct sum

written Egi all the interactions beyond the nonmasked minimum im-
w32 age pairs can be neglected. From the condition that @kfit(
E6,rec= — 3V Em: S(m)S(—m) 2) be constantg must vary inversely with the box length.
Since the length of the reciprocal basis vectyslso varies
-[(B312— Bm*m?)exp — m?m?/ B?) inversely with box length, the number of reciprocal vectors
+ o' 2m3erfo( mmi B) ], 52 M satisfying the condition exp-7?|m|%/8%)/|m[>< e is in-

dependent of system size and the reciprocal Ewyis well-
wherem=|m|, and the structure factors are now given by approximated by the sum over several hundred reciprocal
vectorsm, independently of the system size, leading to an
order N algorithm for the reciprocal sum. However, the di-
rect sum is an orde¥? computation, which is prohibitive for
macromolecular systems.
N ] Conversely, choosing a fixel independent of the box
= 121 Nj exg 2 (mySyj+mySp;+MsSgy)]. (5.3 jength should allow a fixed size cutofe.g., 9 A in the
direct sumEy; , thereby reducing its computation to ordér
From here the development is very similar to that for theOn the other hand, the requirement on the reciprocal space
Coulombic reciprocal sum, with the arr&y replaced by an tolerance now forces the number of reciprocal vectors and
analogous array\, which is determined from the dispersion thus structure factors to grow ds’. The straightforward
coefficients ; using the sam&-spline coefficient expansion implementation of Eq(2.4) then leads to an ordé¥? calcu-
as in Eq.(4.6). The exponential weighting terms from Eq. lation of the reciprocal sum. In the PME method, however,
(4.7) are replaced by the more complex weighting termsthe structure factors are interpolated on a grid, thus reducing
from Eq. (5.2). Formulas for the stress tensor are adaptedhe calculation to ordeN log(N) using the 3DFFT.

N
S(m)=_2l \j exp(2mim-r))
=

from those in Karasawa and Godd4fdand atomic forces The original PME method, which relied on Lagrangian
are obtained from the derivative®g\/r ,;, which are com- interpolation, was quite efficient in attaining low-to-
puted analytically, as areQ/dr moderate accuracies. However, it proved difficult to achieve

When Lorentz—Bertholot combining rules hold, we canhigh accuracies without resorting to excessively high grid
follow a suggestion of Perramt al,?® and consider the ex- densities. High order Lagrangian interpolation is known to
pansion be numerically unstable. In contrag;splines are well be-
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TABLE I. Comparison of the relative error in the reciprocal potential energy and reciprocal rms force error of
the PME method using Lagrangian interpolationBsspline interpolation. The relative error in the reciprocal
potential energy is defined alf ecip, fui— Erecip,pme! [Esotat fuils With [Erogarul =|Edirect fui Erecip.full- The recipro-

cal s force error is defined  as ((S(Frecipuni—Frecippyie) I N F )2 with

F total,futli = F directfulliT Frecip,funi- The subscript “recip” denotes terms in reciprocal space, subscript “direct”
terms in direct space, and subscript “full” terms either in direct or reciprocal space calculated until their
individual contributions are less than the machine precision.

Grid Interp. Lagrange PME B-spline PME Lagrange PME B-spline PME
size order rel. err. energy rel. err. energy rel. err. force rel. err. force
40 4 2.3x107* 4.3x 10°° 2.0x10°° 4.3x 1074
40 6 7.4¢107° 3.8x 107 4.0x1074 2.2x 1078
40 8 2.%10°° 5.5 1077 1.1x10°* 2.0x 1078
40 10 1.3x10°° 1.2x 1077 4.1x10°° 2.9x 1077
54 4 7.8<10°° 1.0x 107 5.0x1074 9.5x 107
54 6 1.4x10°° 3.6x 1077 5.8x10°° 2.2x 1078
54 8 3.5¢10°° 2.1x 1078 1.0x10°° 9.0x 1078
54 10 1.0<10°® 1.7x 107° 2.5x10°8 5.5x 107°
80 4 1.9<10°° 2.1x 107 1.2x10°* 2.3x 1078
80 6 1.6x10°° 2.6x 1078 6.3x10°8 2.1x 1077
80 8 2.1x1077 5.2x107%0 5.3x1077 3.1x 107°
80 10 4.%10°8 1.4x10° 1 6.6x10°8 6.7x10 1

haved numerically. In addition, as noted above, the errop.26, 0.35, and 0.42 &, respectively. The same value gf
bounds in approximating trigonometric functions are bettewas then used when considering low, medium, or high accu-
for the Euler spline than for polynomial interpolation. To testracy reciprocal sums, either conventional Ewald or PME
if the new method is more accurate in practice, we comparetased.

the reciprocal sum relative errors in energy as well as forces To choose the reciprocal space cutoff for the conven-
due to the current versus the former PME method. A 40 Ational Ewald sum, we calculated the rms error in the recip-
box of 2038 TIP3P waters was prepared and equilibratedocal force for the 40 A box and adjusted the cutoff until the
The value of the Ewald coefficien® was set to approxi- error was slightly smaller than the corresponding error in the
mately 0.35 A, corresponding to “medium” accuracy in direct sum. The resulting cutoffs were approximately 0.41,
the direct space forcesms force error of 410 %, see be- 0.59, and 0.72 A? for the low, medium, and high accuracy
low). The accuracy in the reciprocal sum as a function ofcases, respectively. These cutoff values were then applied to
grid size and interpolation order for the two methods is disthe remaining systems. For tBespline PME, we used cubic
played in Table I. The new method is substantially moreB-splines for the low accuracy case, 5th degBesplines for
accurate. Other values gfresulted in comparable improve- the medium accuracy test, and 7th degBesplines for the
ments (results not shown For comparison, the traditional high-accuracy case. We then adjusted the grid size so that the
Ewald sum, using the parameters recommended in Allen andns error in the PME reciprocal force for the 40 A box was
Tildesley'* (minimum image cutoff3=5/L, 100—200 recip- slightly less than the corresponding error in the conventional
rocal vectory, leads to rms force errors of abouk®0 . reciprocal sum with the above cutoffs. The resulting grid
Note that even fol A grids the PME method yields compa- densities were 2 A20x20x20 grid), 1 A and2 A for the
rable or more accurate Ewald sums than the traditionalow, medium, and high accuracy cases, respectively. These

method. same interpolation orders and grid densities were applied to
In order to prove that the PME algorithm is of order the remaining systems.
N log(N) in practice we need to show that, given a fixgd The rms relative force errors for these systems are plot-

which should allow a fixed cutoff in the direct sum, we canted in Fig. 1. Note that at all levels of accuracy the errors are
choose a grid density and an interpolation order which resulalmost constanfi.e., they do not increase as a function of
in system size independent bounds on the errors in the recigystem sizg In particular, we see that the reciprocal sum
rocal sum, i.e., there are no hidden size dependencies in tlierces can be approximated to within a given level of accu-
required grid densities and/or interpolation orders. A series ofacy, independent of system size, by choosing appropriate
TIP3P water boxes, from 20 to 80 A in size, was preparedialues of the interpolation order and grid density.

and equilibrated. We calculated rms force err@sfined in Next, we investigated the variation in the PME force
the caption to Fig. lusing a direct sum wit a 9 Acutoff  errors along a molecular dynamics trajectory. The system,
and either theB-spline PME reciprocal sum approximation, consisting of 2038 TIP3P water molecules in a 40 A box,
or for comparison the conventional reciprocal sum with awas propagated for 100 steps of microcanonical ensemble
finite cutoff in |[m|. The value of the Ewald coefficieggtwas  molecular dynamics, with a 1fs time step, using the above
set to give low, medium, or high accuracy in the direct sumprescriptions for PME approximation at low, medium, and
using the criterion that erfgr)/r <eg,, for r>9 A, where  high accuracy. At each step the “exact” Ewald sum energy,
g Was set to 10% 1076 and 108 for low, medium, and forces, and electrostatic virial were computed and compared
high accuracy. The resulting values @fvere approximately with the PME approximations to the same quantities. We
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FIG. 1. rms force errors as a function of system size. The three groups of PR
curves correspond to three different choicesBods described in the text. 20 P j
The direct rms force error is defined as the error due to the truncation e
of the interactions in direct spacel =N (F grect cutofti Fdirectut) )/ e ]
3N =2 1/2 H — imi
221 Ffotatuni)” 5 With Froga funi = Fdirect funi T Frecipfui- Similarly, the rms 0 L&t , , ,
forcﬁl error due to a cutoff |r21 tthcor;ventloD?I reciprocal sum is d_eflned as: 0 10000 20000 30000 40000 50000
([=7Z1(F recip,cutoft,— Frecip.fund V== 1F fotafun) < The subscripts “direct”, Number of atoms

“recip”, and “full” are explained in Table 1. The subscript “cutoff” refers

to terms in direct space ugra 9 Acutoff or terms in reciprocal space using |G, 2. Comparison of the CPU-times needed for the conventional vs PME

a cutoff. Finally, the error due to the PME approximation of the reciprocal cajculation of the reciprocal surfe) CPU-time for the conventional calcu-

sum is([=% 1(Frecip,pme ™ Frecip,full,i)z]/E?:N 1F a2 lation of the reciprocal sum as a function of system size at the three levels of
accuracies described in the te¢t) CPU-time required for the same level of
accuracies in the PME approach. For comparison the CPU-time for the

found that the rms force error is remarkably constant alongalculation of the direct sum ugima 9 A cutoff is also shown.
the trajectory(results not shown For all three accuracy lev-
els, the maximum relative atomic force error was approxi-
mately one order of magnitude greater than the rms forcéo the fact that the charge grid-interpolation routines, which
error, whereas the relative error in the electrostatic energgcale linearly, are more expensive than the fast Fourier trans-
was considerably smaller than the rms force error. form (FFT) routines, which scale abl log(N), over this
Although we have not found any usefal priori esti- range of system sizes. For comparison, we have also plotted
mates of the accuracy in the PME approximation, an inexthe CPU time needed for the direct sumiwé 9 A cutoff,
pensive estimator can be arrived at as follows. The exadnhcluding the van der Waals interactions. The erfc function
electrostatic energy and virial trace sum to zZ&ti.the elec-  was tabled using a cubic spline. The PME method was faster
trostatic energy is better estimated than the virial,than the conventional Ewald sum for all systems and accu-
|tr (Virial appro0 + Eapproi/|[Eapprod Provides an estimate of racies tested here. For sufficiently small systems, the conven-
the relative error in the virial trace. In turn, one may hope totional Ewald sum is more efficient. On the SGI R4400, the
use this as a rough estimator of the rms force error, since thereak-even point was around 600 atoms. On the Cray YMP,
virial calculation involves the forces. Calculating these quanfor comparison, the break-even point is close to 900 atoms.
tities for the above-mentioned trajectories showed that th&or a 20,000 atom system on the SGI R4400, the PME
estimated virial error usually stayed within an order of mag-method took approximately 3, 10, and 28 s for low, medium,
nitude of the rms force error. Occasionally, however, the erand high accuracy, whereas the corresponding times for con-
ror in the virial trace dropped well below the rms force error,ventional Ewald reciprocal sums were approximately 180,
suggesting that the time average-estimated error is more reft760, and 5300 s, respectively.
resentative. Next we tried, for a fixed accuracy, to find the optimum
In Fig. 2 we have plotted the CPU tim@n an SGI combination of direct-sum cutoff, interpolation order, and
R4400 required to perform the conventional and PME re-grid size in the PME method. The above 40 A water box was
ciprocal sums used in Fig. 1 as a function of system size. Thased and the rms relative error in the total fo(daect plus
conventional reciprocal sum was computed using the algoPME reciprocal was fixed to 510 * comparable to the
rithm of Smith and Fincham in the program MDMPOL from error in the traditional Ewald sum approach. The value of
CCP5. Note that the CPU time needed for this grows as they,, used to determing, was set to 10°. The direct sum
square of the system size, as predicted. Moreover, the cost sitoff was varied between 6 and 10 A, and the interpolation
prohibitive for large systems, even for the low-accuracy caserder between 4 and 6. For each cutoff and interpolation
(e.g., over 1100 s per time step for 50,000 atpn@n the  order, the minimum grid size, which was a multiple of pow-
other hand, the time needed for the PME method grows liners of 2, 3 and 5, and for which the rms force error fell below
early with system size over this range of systems. This is du6x10 *, was determinedthe FFT requires the former con-
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TABLE II. Timing results for the 18.77 A water box for different choices of grid density and interpolation order
compared with timing results for standard Amber3a with the same cutoff. The numbers for the PME calcula-
tions give the total CPU-time for the direct space calculati@msluding the truncated dispersion interactipns

plus the reciprocal space calculations. The total rms force error for the PME calculations was fixetDat.5

The numbers in parenthesis indicate the number of grid points in each of the three dimensions.

Cutoff Amber3a Direct sum 4th-order 5th-order 6th-order
A) time time total time total time total time
6.0 1.38 1.66 5.7%60) 4.75(49) 4.81(40)
6.5 1.78 211 5.4254) 4.95 (45) 5.0036)
7.0 2.28 2.64 5.0948) 5.06 (40) 5.4232)
7.5 2.91 3.27 5.4945) 5.37(36) 5.9530)
8.0 3.59 4.06 5.8440) 5.94(32) 6.61(27)
8.5 4.31 4.82 6.7240) 6.67(30) 7.4725)
9.0 5.14 5.84 7.3636) 7.61(27) 8.2024)
9.5 6.10 6.96 8.2932) 8.62(25) 9.1220)

10.0 7.24 8.16 9.3227) 9.68(24) 10.4220)

dition for speegl Timing results for direct sum as well as for determined. Note that the time for the direct sum has in-
direct plus reciprocal sums are compared in Table Il withcreased compared to that in Table I, since the expression for
timings for Amber3a residue-based cutoff calculations. Thehe dispersion direct sum is more complex than a simpfe
optimal PME CPU time is achieved at the smallest cutoff anddependency. The minimum time is now achievedhweit7 A
5th order interpolation. Thus, it would seem that very shortcutoff in the direct sum, 5th order interpolation with a 40
cutoffs are recommended. This result brings to mind the is>x40x40 grid for Coulombic interactions, and 4th order in-
sue of neglect of long-range dispersion interactions. terpolation with a 3&30x30 grid for the dispersion inter-
Truncating the van der Waals interaction®9a leads to  actions. Note that the total time is less than that for the
an rms force error of only 810 ° in this system, which is Amber3a residue-based cutoff calculation using a 10 A cut-
less than the above rms force error in the Coulombic interoff.
actions. However, the computéidotropig system pressure Finally, we checked the generality of these accuracy re-
as well as the potential energy are much more sensitive to thgults by examining the rms force error due to similar levels
cutoff in the van der Waals interactions, since the individualof PME approximation to electrostatics in three other sys-
termsf;; -rj; in the trace of the virial, which are due to dis- tems; equilibrated structures from crystal simulations of
persion forces are always negative, as are the neglected eBPTI? with 5304 atoms, ang21 H-ras(unpublished resuljs
ergy terms. For example, we find that including the full lat- with 24,801 atoms, and from a solution simulation of a DNA
tice sum for dispersion interactions drops the pressure bgodecaméf with 9956 atoms, kindly provided by Tom
almost 300 atm compared to truncation at 9 A. This resulCheatham. For example, in Table Il we seet th® A cutoff
seems to be fairly independent of the system. The discrepn the direct sum with a toleranag;, of 10™° together with
ancy increases to nearly 600 atm whe 7 A cutoff on the  cubic interpolation on a 3636x36 grid gives an rms force
dispersion interactions is useih this case the rms force error of less than 10 “in the 40 A water box system. The
error due to truncation of the dispersions is aboutl® %). p21 system is of particular interest since it has a nonor-
For comparison, the error in the pressure due to truncation ahogonal unit cell, with parametera=b=40.3 A,
the r "2 repulsion terms is between 1 and 3 atm for thisc=162.2 A, a=8=90°, andy=120°. Use 6a 9 A cutoff, a
range of cutoff values. tolerance of 10°, cubic interpolation, and a grid of 3636
In applying the PME method for dispersions to TIP3P X144 (the nearest combinations of powers of 2, 3, and 5 to
waters we can use Ed5.3 to approximate the structure the same grid density as abgvead to an rms force error of
factors, which assumes geometric mean combination rule€,99x10 . Proceeding similarly with the remaining table
since only the oxygens participate in van der Waals interacentries and the other two test systems leads to similar results.
tions. In Table 11l we give the total CPU time for the PME
approximation applied to both dispersion and Coulombic in-
teraCt!onS' At .eaCh Vall‘.'e of the cutoff, we usgd. the OpF'ma‘ll'ABLE IIl. Timing results for the same system under the same conditions
grid size and interpolation order for Coulombic interactions;s in Table Il except that the dispersion interactions were calculated using
from Table Il, and investigated the effect of these two param+he PME approximation.
eters on the PME approximation to dispersion interactions-
The criterion we used for accuracy in the dispersion interac-

Cutoff Direct sum 4th-order 5th-order 6th-order

tions was that the error in the computed isotropic pressure @ fime fotal ime _ total time _ total time
should be less than 10 atm, which was approximately the 6.0 1.94 8.3949) 7.82(40) 8.12(36)
error due to the Coulombic PME method with the rms force ?-g g-‘l‘g Z-gég ;-i; 83 2-8? g%
error ;e_t to 5<1Q ._For ee_lch cut_off and _mterpolatlon (_)rd(_ar 75 282 7.0124) 7.37(20 8.17 (20
the minimum grid size which satisfies this accuracy criterion g 4.75 7.4918) 7.89(16) 8.82(15)

(and which was a multiple of powers of 2, 3, anyl Bas
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TABLE IV. Energy fluctuations for a 40 A water box as a function of time step, neighbor list update, grid
density, and different treatments of long-range dispersion interactions. The qyar&fy*/?/( AKE?)/2 refers

to the fluctuations of the total energy divided by the fluctuations of the kinetic energy. The quantity
(AE?Y?(E) refers to the fluctuations of the total energy divided by the total energy.

Time List Dispersion (AERYY (AERYY
step(fs) update(fs) Egir Nfft interactions NftD  (AKE2)/2 (E)
2 2 5x1077 24 PME 16 1.6¢1072 6.6x107°
1 1 51077 24 PME 16 2.410°° 1.6x107°
0.5 0.5 5¢10°7 24 PME 16 6.51074 4.3x10°
2 2 5x10°° 24 PME 16 1.¢1072 6.6x107°
1 1 5x10°6 24 PME 16 4.x10°° 2.9x107°
0.5 0.5 5¢10°° 24 PME 16 3.x10°° 2.0x10°°
2 2 5x1077 24 truncate 1.0x1072 6.6x10°°
1 1 5x10°7 24 truncate 4.7x10°° 3.1x10°°
0.5 0.5 5<1077 24 truncate 3.9x107% 2.6x107°
0.5 0.5 5¢10°7 16 PME 16 8.x107* 5.3x10°°
1 5 5107 24 PME 16 2.5%10°° 1.7x107°°
0.5 25 5¢10°7 24 PME 16 6.5107* 4.3x10°°
1 1 5x10°° 16 truncate 4.2x10°° 2.8x10°°
1 5 5x1076 16 truncate 7.9x10°3 5.2x10°°
0.5 0.5 5<10°8 24 PME 16 6.x10°* 4.0x10°°

The worst case was an rms force error of 0 “ it oc-  energy fluctuations do appear to decrease quadratically with
curred in thep21 system wit a 6 A cutoff, cubic interpola-  the time step. In contrast, use of larger valuesegf and
tion, and a grid of 6&60X240. Most cases lead to rms force truncation of the dispersion interactions both lead to larger

errors below %107 rms energy fluctuations that improve only slightly as the time
step decreases. Decreasing the grid density fromZ2k 24
VIl. ENERGY CONSERVATION to 16X16X16 increases the rms relative force error from

3x107* to 2x10 3. However, it has only a weak effect on
energy fluctuationsiCompare line ten of Table IV with line
n[hree) Next, when long-range dispersion interactions are in-
cluded andey,=5x10"7, updating the Verlet list every five
steps has a minimal effect on rms energy fluctuati@asn-
are lines 11 and 12 of Table IV with lines two and three

The rms fluctuation in total system energy in microca-
nonical ensemble simulations using the Verlet integratio
scheme should be proportional 82, where 6t is the el-
ementary time step- Truncation of electrostatic interactions
is known to lead to instabilities in the total system energy.

This problem can be alleviated through the use of switchin hereas the effect is greater when these interactions are trun-

(B2 ; ; 15,17
func'uons,. .Wh'Ch’ however,' introduce artifacts, or cated(compare line 14 with line )3 Finally, tightening the
more realistically, by accounting smoothly for the long-range,

interactions’? In this section, we investigate the energy Con_toleranceedir from 5x10°° FO 5x10° ha§ a pronounced
servation of the PME algorithm. All simulations were run effect. on energy conservie\;lon for small time steps, but de-
using a version of Amber3a, modified to perform the PMECT€@SING it further to 510~ has only a weak effedom-
algorithm on electrostatics and dispersion interactions. ~ Pare lines three, six and fifteen

The first system we tested was a box of 216 TIP3P wa- 10 @ssess the generality of these results, we next per-
ters. After equilibrating the system to 300 K and 1 Haox f_ormec_i S|m|Ia_r S|mulat|on_s on the_ DNA dodecamer in solu-
size 18.77 A, we ran a series of 5 ps microcanonical en-t0n with sodium counterion¥ _Thls system was prepared
semble simulations. In all cases the direct sum was cutoff &¢Sing the new Amber force field, without explicit 10-12
8 A and cubic interpolation was used on the reciprocal sun{erms, which allowed us to test the effect of including the
for Coulombic and(where applicable dispersion interac- long-range dispersion interactions. The unit cell was or-
tions. Bond lengths were constrained using the matrihogonal, with dimensions 57:2.3x41.6 A, and con-
method® using a tolerance of 18°% We varied the time tained 9956 atoms. The grid for the Coulombic PME was
step, the list update, the tolerance on the direct space cutoff4<X40x40, while that for the dispersion PME was 384
and the grid density for the Coulombic PME method. Finally, X24. Bonds involving hydrogen were constrained in length
we investigated the effect of the truncation of dispersion in-using the matrix method as above, while those involving
teractions. The fluctuations in total energy relative to theonly heavy atoms were allowed to vibrate. The rest of the
fluctuations in the kinetic energy and to the average totaprotocol was identical to the water simulations above. The
energy are shown in Table IV. Note that the average totafluctuations in total energy relative to the fluctuations in the
energy dropped from about1660 kcals without long-range kinetic energy and to the average total energy are shown in
dispersion interactions to aboutl680 kcals with the inter- Table V. As in the water simulations, the average total en-
actions. ergy dropped by about 1% when the long-range dispersion

Note that when a tolerance;, of 5xX10 / is used and interactions are included. The results are very similar to
long-range dispersion interactions are not truncated, the rnthose of the water box simulations.
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TABLE V. Energy fluctuations for the DNA system as a function of time step, neighbor list update, and
different treatments of long-range dispersion interactions.

Time List Dispersion (AER? (AERHYY
step(fs) update(fs) Egir interactions (AKE?)Y? (E)
2 2 5x10°7 PME 1.7x1072 2.4x10°°
1 1 5x1077 PME 4.4x10°° 6.6x10°°
0.5 0.5 5<10°7 PME 1.1x10°3 1.6x10°°
1 1 5x1077 truncate 8.&10°° 1.3x107°
0.5 0.5 5<10°7 truncate 8.&%10°° 1.3x107°
0.5 2.5 5¢1077 PME 1.2x10°3 1.8x10°®
1 5 5x1077 truncate 1.%107? 2.9x107°
VIII. RESULTS OF WATER MD SIMULATIONS cutoff. We obtained 0.99 g/ctrand —9.7 kcal/mol using a

Although the results above demonstrate that the I:,Ml.:residue-based cutoff of 8.5 A. Theglsdid not report a diffusion
method provides a reliably accurate approximation to theCOﬂSt"’mt for TIP3P. Berendsen al.™ report for the SPC/E

Ewald sum and leads to excellent energy conservation, it {g1°d€! & density of 0.993 g/cinan average potential energy
possible that long simulations using this method could lea®’ ~11.14 keal/molwithout the pczlsarlzatlon correctigrand

to artifactual behavior. To test for this we next performed a sglf-dlﬁusmn constant of 2>5,1O cn?ls. US.'nQ an 85A
series of molecular dynami®ID) simulations of pure water reS|due_—based cutoff, we obtain the same diffusion cgnstant,
using the new method, recording the average internal energy density of 1 glcrhand an energy of-11.3 kcal/mol, i.e.,
and density as well as the self diffusion coefficient. The@" error of about 0.15 kcal/mol. Note that use of Ewald sums
simulations were performed with a version of the Amber3afor Coulombic terms with cutoff of dispersions results in
code modified to carry out the conventional Ewald sum usingPout 0.2 kcal/mol higher potential energy and a lowering of
the algorithm of Smith and Fincham as mentioned above, ad'€ density of about 2% for both models. Including the long-
well as theB-spline PME algorithm for Coulombic and/or fange dispersions brought both measures closer to the
dispersion interactions. Two water models were used[esidue-based cutoff values. Given that we estimate the er-
TIP3P® and SPC/E® The simulations were run at 300 K rors in the calculated diffusion constants to be about 5%—
and 1 bar using the Berendsen coupling technijugonds ~ 10%, the different methods give consistent results for the two
were constrained as above. A 1 fs time step was used and tfeodels. Comparing the results for conventional Ewald sum-
simulations were all run for at least 100 ps after equilibra-mation to those using the PME algorithm, we find a close
tion. The diffusion coefficient was obtained as follows. Foragreement between these two methods.

each molecule let d;(t) denote the distance traveled by its The calculation of the dielectric constant has proven to
center of mass from the beginning of the simulation to timebe sensitive to the treatment of long-range forées.There-

t. Let D(t)==N_,d?(t)/(6Nt). ThenD(t) should approach fore, as an additional test of the validity of the PME ap-
the diffusion constant astends to infinity. We took the av- proach, we calculated the dielectric constant with the PME
erage ofD(t) over the last 10 ps of the simulation. Results method as well as the conventional Ewald summation. A
are shown in Table VI. For the TIP3P model Jorgensersystem of 216 SPC/E water molecules was simulated in an
et al%® reported a density of 0.982 g/énand an average NVE ensemble with a time step of 1 fs at a density of 0.977
potential energy of—9.86 kcal/mol from a Monte Carlo g/cn? and a temperature of 296 K. The length of the run was
study of 125 water molecules using a 7.5 A residue-based ns in the case of the simulation with the PME method and

TABLE VI. Physical characteristics of different water simulations.

Water Num Cutoff Coulomb Dispersion Epot Density Diff. const.
model waters A interactions  interactions  (kcal/mol) (g/cnt) (10 5cmr?ls)
TIP3P 216 8.5 truncate truncate —-9.7 0.99 5.3
TIP3P 216 8.0 Ewald truncate -9.5 0.97 5.1
TIP3P 216 9.0 PME truncate -9.5 0.97 5.1
TIP3P 216 8.0 PME truncate -9.5 0.97 5.1
TIP3P 2038 8.0 PME PME —-9.6 0.98 5.8
SPC/E 216 8.5 truncate truncate -11.3 1.00 2.5
SPC/E 216 8.0 Ewald truncate -11.1 0.98 2.4
SPC/E 216 8.0 PME truncate —-11.1 0.98 2.3
SPC/E 216 9.0 PME truncate -11.1 0.99 2.7
SPC/E 216 8.0 PME PME —-11.2 1.00 2.3
SPC/E 216 9.0 PME PME —-11.2 1.00 2.5
SPC/E 2038 9.0 PME truncate -11.1 0.99 2.6
SPC/E 2038 8.0 PME PME -11.2 1.00 2.6
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1 ns in the case of the conventional Ewald summation. dinates. The formulation in terms of structure factors pro-
In tinfoil boundary conditions, the dielectric constant vides for straightforward generalization to other pair poten-
can be calculated from the fluctuations of the total dipoletials depending on inverse powers |of, such as dispersion
momentM according to Ref. 60 interactions. Furthermore, this formulation leads to approxi-
mations of the reciprocal virial tensor that involve negligible

2
e=1+3y <l\'IV| 2> (8.1 overhead. Finally, the use d&-splines allows us to obtain
s forces by analytic differentiation of the energies, and these
with forces are in turn smoothly varying with respect to particle
5 position. As far as we are aware, this algorithm is the only
_Ampnu 8.2 fastalgorithm for long-range forces that has this smoothness
kT property. Moreover, since the forces are not interpolated as in

wherepy, denotes the number densify,the dipole moment the previous method, we substantially reduce the memory
of an individual molecule, andl the number of molecules. Féquirements. Finally, we demonstrated that the method
From the 2 ns simulation using the PME approach wescales adl log(N) with respect to system size, which makes
obtained a value 0E=64.1. To estimate the standard error it feasible to treat biomolecular systems of 20 000 or more
we broke the run into four pieces and calculated the dielectoms via Ewald summation. In Fig. 2 we show that for low
tric constant for each of the pieces. The results were 56.%" medium accuracy, the CPU cost for the reciprocal sum is
63.4, 73.8, and 63.0, yielding a standard error-&.6. This less than that of the direct sumrfa 9 A cutoff. In Table IlI
error estimate should be treated with caution, since it as® Show that, at least for water boxes, the PME method

sumes the four values are independent, which may not paakes it possible to compute the Ewald sum for dispersion
true® as well as Coulombic interactions at a level of accuracy com-

Using the traditional Ewald summation approach, webarable to traditional Ewald summation in less time than
found after simulating the system for 1 ns a dielectric con-Standard truncation methods with a 10 A cutoff. The method
stant ofe=68.3. Due to the shorter length of this simulation, Vectorizes efficiently, achieving 146 megaflops on a Cray

we could not estimate a standard error. Note, however, thaf- MP. Parallelization is natural on shared memory mqltipro—
the calculated value is within the range of the four valuesc€SSors such as the SGI Challenge systems. An efficient par-
obtained by the PME method. allel version has been developed for the Cray T3D using a

i 2
In the long-time limit the average dipole moment of the distributed 3DFFT; . _ _
simulation cell should be zero. To assess the quality of a Note added in proofAfter this manuscript was submit-
simulation de Leeuvet al. proposed the quantigM)(m?).  ted, H. G. Petersén published a detailed comparison of the
In our simulations we found values for this ration of 0.013,PME method with the optimized conventional Ewald
using PME, and 0.005, using conventional Ewald summatiofnethod. He derives accurate expressions for the RMS force

(the latter value was anomalously small at the end of thé&'rors. Based on these expressions he compares the two
simulation and typically closer to that for the PME methods at the same level of accuracy. He concludes that the

In two previous simulations, the dielectric constants ofPME method is more efficient for system sizes exceeding
SPC/E water has been determined using the reaction fieff0 000 atoms. This estimate is substantially more conserva-
method to treat long-range forcE®! Reddy and tiVe than ours. The discrepancy is probably due mostly to the
BerkowitZ* found for p=1 glcm? andT=298 K a value of fact that we use an ordéy? algorithm for the Ewald sum
=70.7, while Smith and van Gunstef&ffound atp=0.976  While the optimized Ewald method scales lik€". Sec-
g/cn® andT=300 K a value of 64.0. Comparing these data®ndly, our FFT implementation, based on the 1D FFT of
with the one obtained with the PME approach or conven-Swarztrauber(available from netliy is substantially more
tional Ewald method, we conclude that, even though theré&fficient than the FFT used in Petersen’s work. Furthermore,

are differences in the calculated dielectric constants, thes@Ul implementation has the advantage that the grid dimen-
differences are within the range of the estimated errors. ~ SIOns can be a product of powers of 2, 3, and 5 which allows
more flexibility in the grid density. Finally, the approxima-

tion by B-splines described above allows a coarser grid to be
IX. SUMMARY AND CONCLUSIONS used at the same level of accuracy than the Lagrangian in-

In this article, we have introduced a modification of the trPolation.

previously developed PME method. The new method uses a
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APPENDIX A: LATTICE SUMS FOR INVERSE 1

(Br)
POWERS OF DISTANCE gp /3

5=m2pP3 fp(a-r|u|/,8)exp( 2miu-r)d3u+

=

In this appendix we derive the lattice summation formu-
las given in the text for the case of dispersion interactions as = 73/28P~3, f fo(m|v+ml|/B)
well as for Coulombic interactions, following the approach m Ju*
in Smith*! These lattice sums do not in general converge g (,3 )
absolutely, so we need to specify the asymptotic order of  Xexd —2wi(v+m)-r]d3v+ —— e
summation, corresponding to the asymptotic shape of the
finite crystal made up of the union of lattice translations ofwhere for positive numbers, f (x) andg,(x) are defined
the unit cellU. Let A denote the set of all lattice vectors by

(A5)

n=n,;a;+n,a,+nszaz. In order to describe the order of sum- oxP-3 [
mation inR®, we introduce a closed, bounded reg®ncen- fo(X)= =57 s27P exp( —s?)ds (AB)
tered on the origirie.g., the unit ball or the unit culeand I'(p/2) Jx
for positive integerK let Px(A) denote the set of lattice 5.4
vectorsn such thatn/K e P. GivenN pointsrq,...r in the
unit cell U, and real constant§(i,j), 1<i, j<N, we con- 2 ? -1 2
sider sums of the form 9p(X)= T(pr2) Jy ® exp —s)ds. (A7)
1 cii,j) In particular, for the casesp=1 or 6, we have
Epry,mo=lim 5 > > 2 o f0)=exp( - X)(Vmx®) and gi(x)=erfe(x),
Koo € nePr(A) T 1T fs(x)= 1/3[(1 — 2x%)exp( — X + 2= erfc()] and

(A1) go(x)=exp(=x2) (1+x2+x/2). Note thatf ,(x) andg,(x)
are smooth positive functions ot for x>0, gy(x) is
bounded ax—0 for p=1, while f (x) is bounded ag—0
for p>3, but f (x)—» asx—0 for 1<sp=<3. The above
mtegral representation does, however, converge absolutely
or p=1.
ForveU* we writev = w,aj + w,a; + wsaj where
w,=v-g,, k=1,2,3. ForreU and any lattice vector

where, as in Eq(2.1), the prime on the outer sum denotes
that terms withi=j andn=0 are omitted.

We begin by deriving some identities for the inverse
powers 1P, p>0, wherer is any nonzero vector >,
The derivation depends on the following well-known results

I‘(Z): fth*l exq_t)dt:)\ZJ’th*l EX[X—)\t)dt, n:n1a1+n2a2+n3a3, SUCh that +n7&0, we apply Eq(AS),
0 0 changing variables in the integrals ougf, to write
(AZ) 1 773/2Bp*3
= exp(—2mim-r
whereI'(z) is the Euler gamma function, and |r+n[P \Y% —2mim-r)
12 (1/2 (12
mo Wy, Wy, W
eXF(_aZWZ)=gJ’ exp( — w2u?/a?) f 1/2f 1/2J' 1/2 Mp.m.r (W1, Wz, W3)
0
-exd —2mi(win{+w,n,+ws3n
X exp(— 2miuw)du, (A3) HL = 2mi(Winy + Waha+Wshs) |
gp(Blr+n|)

X dw; dw,dwg + , (A8)

which is the Fourier integral expansion of the Gaussian. In
Eqg. (A2), given a three dimensional vector we substitute i
A=|rP=r?, wherer =|r| andz=p/2. For arbitrary positive WN€reNp.m (W1, Wz,Ws) = fp(mlv+ m|/B)exp(— 2miv- ).

numberB we then have For eachm, the above integral ovew,, w,, w; can be
identified as then;, n,, ns-th coefficient in the three-
dimensional Fourier series expansiorhgfy, . Note that for

Ir+n|P

I'(p/2 2 % . )
(pp ) = J"B tp/2-1 exq—rzt)dt—i-f 2'['3/2*1 m#0 andp=1, h, ,, is a smooth, bounded function over
r 0 B Wy, Wy, W3 in the unit cube. The same is truerif=0 and
><exp(—r2t)dt:|p+ll o (A4) p>3. Form=0 and 1l=p=<3, there is an integrable singu-

larity at the origin.
Forp=1 andr #0, we consider the limit ak — o of the

To evaluatell ,, we substitutet by s, with r’t=s?. To _
sum S ,(r) given by

evaluatel ,, we writer>=x?+y?+2* and apply Eq(A3) in
all three dimensions, substituting with x,y,z, respectively, 1
anda? with t. At this point, we need to consider the recip- Sk, p(r) = 2 W .
rocal unit cellU* made up of the points in R® such that nePrlh)
—1/2<a,-u<1/2. Note thatR® can be decomposed as the Applying Eq. (A8), exchanging the order of summation be-
union of the point set&)* +m, over all reciprocal vectorsi.  tweenm andn, and using the fact that the sum of the Fourier
Changing the order of integration to integrate owvérst, and  coefficients of the smooth, bounded functibp, ,, m#0
substitutingt with s, where?u?/t=s?, we arrive at converges th, ,, (0,0,0)= f,(7|m|/B), we can write

(A9)

Downloaded-20-Feb-2003-to~152.2.22 32518 RMYSuiYAL AT NatoL 5. NeUemRST 1885 ight, ~see-http://ojps.aip.org/icpolicper.jsp



8590 Essmann et al.: A smooth particle mesh Ewald method

lim S p(r)=——7F— lim sum in Eq.(A1) to arrive at

w32pP—3 J’1/2 J’l/2 fl/Z verges absolutely. These results can be applied directly to the
Koo Vi ks nePK(A

1/2 1/2 1/2

Xhp 0, (Wg,Wp,W3)-exp(—2i (Wyny

C(i,j ri—ri+n
Ep(Taee) = 2 22 (i,])gp(Blri—rj+n[)

[ri—r;+n|P
+Wyn,+Wsng))dw, dw,dwy

7T3/Zﬂp 3 + 773/2,3P : 2 fo(mm[/B)
2, fe(miml/p)
Coxt - 2mimn 4 S gp|(;8—!_rr:|Lpn|) in 2 C(i,j)-exd —2@im-(r;—r)]
(A10) r( T3 2 C(i,i). (A11)
From Eq.(A4) we see that p P
(1 gu(Br) 28° If the coefficientsC(i,j) are “factorizable,” i.e., C(i,j)
Im:)(ﬁ— P ): ol (p/2) = JC(i,i)VC(j,j) (possibly with a minus sign then the

reciprocal sum in the above equation can be written in terms
(the “self-energy” term), which can be used to modify Eq. of “structure factors” similar to those discussed in the text,
(A10) whenr=0. and the PME methodology can be applied.

For p>3 the first term on the right-hand side of Eq. For p<3 the left-hand side of EqLA10) diverges, as
(A10) converges to £¥28°~%/V)f(0) by the above Fou- does lim_f,(x). We examine the case=1, with
rier expansion argument. Note that this limit is independenC(i,j) =q;q; , where the charges sum to zergneutral unit
of the order of summation specified B i.e., the sum con- cell U). We then can write

1a, iq; erfo Blri—r;+ 1 — m?m?/ g?
Eunlry =y § 3 MBI L s ORI simys-m)- 23 o

i [ri—r;+n| 27V #Zo m Jr 4
1 ex w22l
+— Iim f > ai; exp - £ cexf —2miv- (r;—rj)]exp( — 2miv-n)d3v . (A12)
2w K—ow NePg(A) JU* i v?
|
Examining the last term in EQq(A12), we apply a The “surface term”J(D) vanishes ifD is zero. SmitA

second-order Taylor series expansion to the functiorshows how charge rearrangement at the surface of a macro-
exp(— m2v? B exp[— 2miv-(r; —r;)], expanding about scopic crystal should also cancel its effétinfoil boundary

v=0. The zeroth and first-order terms, which account for theconditions”). Traditionally it has been neglected or set to
singularity in the integral, are cancelled by the double sumzero in simulations involving Ewald sums, but recently Rob-
mation overi andj (neutral unit cell. The remainder term, erts and Schnitké?*® have conducted simulations to exam-
which is of order three, can be handled by the above Fourieine the consequences of including it, demonstrating its rela-
series argument, and converges to zer as~. After some tion to the usual reaction field correction to cutoff energies
rearrangement, the second-order terms reduce tand forces.

47*(v-D)%v?, whereD=3,q;r; is the unit cell dipole mo-

ment, plus terms that are cancelled by the unit cell neutrality.

The last term in Eq(A12) can thus be written as APPENDIX B: DISCRETE FOURIER TRANSFORMS
D)2 Let K;, K,, K3 be positive integers. Given a complex-
| (v-D) o 1 2, Ka : .
J(D)=27 lim EA f —7— exp(—2miv-n)d’v. valued arrayA(k;,K,.ks), 0<k <K, the discrete Fourier
K—ow nePg(A) JU*

transform is given by
Ki—1 Ky—1 Kg—1

Note that the above Fourier series argument cannot be af(A)(My,mMy,mg)= 2 kE 2 A(ky,kz.K3)

plied to the right-hand side of E¢A13), since the function K170 1270 ks=0

f(v)=(v-D)%v? does not have a limit ag tends to zero. (mky  myk,  mgkg
Note, however, thal(D)=0 if D=0, and in this case the sum [{Zm( K, K, Ks ”
in Eqg. (A12) converges absolutely. Smftrand Deenet al®®

derive more tractable expressions 3dD). In particular, ifP (B1)

is the unit ball,J(D)=(27/3V)D?. while the inverse discrete Fourier transform is given by

(A13)
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F™HA)(my,my,my)

Ky—1 Ky—1 Kg—1

1
= A(ly,15,1
K1K2K3 |1§=:o |2§=:o |3§=:o (I112.15)
(Mgl maly  mglg
-ex;{—Zm( K, K, Ky | (B2)

Note thatF "[F(A)]=FF 1(A)=A. Next, given com-
plex valued array# andB, the following two identities can
be derived by straightforward algebra:

Ki—1 Ky—1 Kg—1

> > EO F(A)(I1,12,13)-B(l1,15,13)

13=0 15=0 I3=
Ki—1 Kp—1 Kg—1

=> > Eo A(ly,15,13)-F(B)(I1,15,13)

17=0 15=0 I3=
AxB=F[F }(AxB)]=K;K,K3-F[F "} A)-F~B)],
(B4)
whereAxB denotes the convolution & andB, given by
Ki—1 Ky—1 Kg—1

A*B(j1,iz,ia)= 2 2 2 A(j1—ki,ji2—kz,jz—ks)
k1=0 ky=0 k3=0

(B3)

-B(kq,kz,K3). (B5)

Note that the convolution, as expressed in EBf), is an
order K? computation, wheréd =K,K,K5, whereas using
Eqg. (B4) and the 3DFFT, it is reduced to ordkrlog(K).

APPENDIX C: MORE ABOUT B-SPLINES AND EULER
SPLINES

In this Appendix we give background material on Cardi-
nal splines, and then derive E@.3) in the text. Polynomial
splines are smooth functions that are piecewise polynomial
The support of a polynomial spline is divided into sub-

int Is by the knots of th line. Withi h of th . " )
ntervars by e Knois of the spiine. VIlthin each o eseémlty. Propertieg4) and(5) are given as Eq44.1) and(4.2)

sub-intervals the spline agrees with a polynomial, and th

spline is continuously differentiable several times at the
knots. Cardinal splines are polynomial splines having simple,

equally spaced knots, and Cardimabkplines provide a basis

for the vector space of Cardinal splines of a given order. Ou

discussion follows that in Schoenbetgs well as Chap. 4 of
Chui® For positive integers, let 7, denote the space of
polynomials of degree at mokt Next, letS,, n=2, denote
the space ofth order polynomial splines with simple knots
at the integers, that is, those real functidnshich aren—2

times continuously differentiable and such that for all inte-

gersj, the restriction off to the half open intervaj<u
<j+1isin,_4. Thus, for example, the cubic splines with
knots at the integers are denot8g. The n-1st derivative
(11 of a functionf e S, will be a step function with jumps
at the integers.

The collectionS, is a vector space. A basis for that space

is provided by the CardindB-splines, which are generated
by integer translations of a functiod ,(u) which we now
describe. For any functioh defined on the reals, define the
backwards difference by f(u)=f(u)—f(u—1), and for
n=2 let A"f(u)=A(A" 1)f(u). Note that A"f(u)

8591

=0 for femw,. By induction, we see thatA"f(u)
=EE:O(—l)kn!/(k!(n—k)!)f(u—k). For any real number
u, define u, and then M, (u) by u,=max(u,0),
ul =(u,)""%, and

Mn(u):(n——l)!Anuj—_l
1 : n! .
“nnr & D o T €D

The following result is proven in Schoenb&tgs well
as Chu®*

Theorem 1 The integer translates of the nth-order
B-spline M,(u) form a linear basis for the polynomial splines
of order n having knots at the integers. That is,(We S,
and for any other function £S,, we can write
f(u):Zji,wchn(u —j), where the coefficients are uniquely
determined.

The functionsM,(u) have a number of other useful
propertie$* some of which we summarize as

Theorem 2. The nth-order B-spline )u) satisfies the
following properties:

1. M (u)>0 for O<u<n; M,(u)=0 for u<0 and
u=n.

M,(u)=M_,(n—u).
2” L Mpu—j)=1.

2.
3.

4.

n—1 Mn—l(u_l)-

M ()= My 5(0)+

d
guMn(W=Mp_1(U)=Mp_y(u—1).
Chui shows thaiM ,(u) is the probability density of the
sum ofn independent random variables, each distributed uni-
ormly on the unit interval. Propertig4) and(2) of theorem
are simple consequences of this result. Prop&jyof
theorem 2 says that th&-splines form a smooth partition of

5.

in the text.
Consider the complex-valued functiog(u;z)=2z",
whereu is a real number, and is complex. For example,
Phoosingz=exp(27rim/K) gives the complex exponentials
appearing in the structure factors in Eg.2). Note thatg
satisfies the functional equatigiu+ 1;z)=z-g(u;z). Euler
posed the problem of interpolatirg at integer values ofi
by smooth, piecewise polynomialsow called splines that
satisfy the same functional equation. The solutions to this
problem are known as Euler exponential splines. They are
discussed in Schoenbetgwho also provides some of the
history.

In our notation we want to interpolatgby annth order
spline g, e S,,, which satisfieg,(u+1;z)=z-g,(u;z), for
all u. Using the basis property from theorem 1, we write

[’

gn(u+1;2)= >

_eM[u=(j~1)]

©

= 3 cpaMyu=i=z 3 oMy(u-)
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and thus, by the uniqueness of the coefficients we have thats. weerasinghe, P. E. Smith, V. Mohan, Y.-K. Cheng, and B. M. Pettitt, J.

cj+1=2-¢; for all j. By repeated application of this equation
we can then write, for some complex constant

[

Gn(Uiz)=c 2 ZMp(u=j)=c-Dy(u:2). (c2)

Supposed ,(0;z) is not zero. Letc=1/d,(0;z). Then
dn. given by Eq.(C2), satisfiesg,(0;z)=1, and using the
above functional equatiory,(j;z)=2'=g(j;2); that is, g,
interpolates g at the integers. On the other hand, if
®,(0;2=0, theng,(j;z) must be zero for all, and the
interpolation problem has no solution 8. Thus, it is im-
portant to determine the values ofor which & ,(0;2)=0.
We can rewrited,(0;2) as

Dy(0;2)= 2 Mp(—)-2
J=—®

= > My(n+j)-2
j=—»

n—2
———1 >, My(k+1)-2¢
z k=0

“h=Di 1t H,-1(2),
where we have used propertigs and(2) of theorem 2. The
third expression in Eq(C3) is used in Eq(4.4) of the text.
The functionll,_,(z) defined in Eq.(C3) is known as the
Euler—Frobenius polynomial of degree-2. If z=1, then
by property(3) in Theorem 2 aboved ,(0;z)=1. Schoen-
berg treats the case#1 and, following Frobenius, shows
that the roots of the polynomidl,,_,(z) are real, negative,
and occur in reciprocal pairs, that is, if,_;(z)=0 then
I1,_4(1/2)=0 also.

For our purposes, we are interested
z=exp(2mim/K), for arbitrary integersn andK. Since the
roots are real and negative, the only possible root ig at
=-—1, that is, fom=K/2. If the interpolation orden is odd,
then applying property2) of theorem 2 toM,(u) in Eq.
(C3), we see that-1 is indeed a root, i.e$,(0;—1)=0
and interpolation fails. If is even(e.g., cubic interpolation
then so isn—2, and then—2 roots ofI1,,_;(z) occur in
reciprocal pairs, so that1 cannot be a root. Thus i is

(C3
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