diff --git a/test/runtests.jl b/test/runtests.jl index f374d5bc..e8758a70 100644 --- a/test/runtests.jl +++ b/test/runtests.jl @@ -170,7 +170,7 @@ anorexia = CSV.read(joinpath(glm_datadir, "anorexia.csv")) @test isapprox(coef(gm6), [45.674043486911685, -0.5655388496390964, 4.097065528072901, 8.660128180991693]) @test isapprox(GLM.dispersion(gm6.model, true), 48.6950385282296) - @test isapprox(stderr(gm6), + @test isapprox(StatsBase.stderr(gm6), [13.21670540145523, 0.16118236185182783, 1.893492606966926, 2.1931494116430517]) end @@ -183,7 +183,7 @@ end @test isapprox(coef(gm7), [3.9416285291318798, -0.9944526931311773, 0.050698258703983666, 0.1021922886616272]) @test isapprox(GLM.dispersion(gm7.model, true), 48.017753573192266) - @test isapprox(stderr(gm7), + @test isapprox(StatsBase.stderr(gm7), [0.1554026019351794, 0.0018862835443589627, 0.022584040191142126, 0.025187228659634627], atol=1e-6) end @@ -205,7 +205,7 @@ clotting = DataFrame(u = log.([5,10,15,20,30,40,60,80,100]), @test isapprox(bic(gm8), 38.58159768156315) @test isapprox(coef(gm8), [-0.01655438172784895,0.01534311491072141]) @test isapprox(GLM.dispersion(gm8.model, true), 0.002446059333495581, atol=1e-6) - @test isapprox(stderr(gm8), [0.00092754223, 0.000414957683], atol=1e-6) + @test isapprox(StatsBase.stderr(gm8), [0.00092754223, 0.000414957683], atol=1e-6) end @testset "InverseGaussian" begin @@ -221,7 +221,7 @@ end @test isapprox(bic(gm8a), 62.16652574970839) @test isapprox(coef(gm8a), [-0.0011079770504295668,0.0007219138982289362]) @test isapprox(GLM.dispersion(gm8a.model, true), 0.0011008719709455776, atol=1e-6) - @test isapprox(stderr(gm8a), [0.0001675339726910311,9.468485015919463e-5], atol=1e-6) + @test isapprox(StatsBase.stderr(gm8a), [0.0001675339726910311,9.468485015919463e-5], atol=1e-6) end @testset "Gamma LogLink" begin @@ -237,7 +237,7 @@ end @test isapprox(bic(gm9), 59.07332993970688) @test isapprox(coef(gm9), [5.50322528458221, -0.60191617825971]) @test isapprox(GLM.dispersion(gm9.model, true), 0.02435442293561081) - @test isapprox(stderr(gm9), [0.19030107482720, 0.05530784660144]) + @test isapprox(StatsBase.stderr(gm9), [0.19030107482720, 0.05530784660144]) end @testset "Gamma IdentityLink" begin @@ -253,7 +253,7 @@ end @test isapprox(bic(gm10), 71.02381860657701) @test isapprox(coef(gm10), [99.250446880986, -18.374324929002]) @test isapprox(GLM.dispersion(gm10.model, true), 0.10417373, atol=1e-6) - @test isapprox(stderr(gm10), [17.864084, 4.297895], atol=1e-4) + @test isapprox(StatsBase.stderr(gm10), [17.864084, 4.297895], atol=1e-4) end # Logistic regression using aggregated data and weights