* [[https://github.com/fchollet/keras][Keras]] example codes ** Dependencies I recommend using anaconda3 - python libraries - Keras - tensorflow or theano - pydot_ng - matplotllib - daft (only ~tutorial~ ) - gensim (only save and load word embeddings) - software - graphviz ** Contents *** Keras 1 - Image - ~CNN_MNIST~ - ~variational auto encoder for CIFAR10~ - ~Gumbel-softmax with variational auto encoder for MNIST~ - ~residual CIFAR10~ - Text - ~encoder-decoder~ - ~Skip-Gram~ : not hieraltical softmax and negative sampling - Tutorial - ~keras_tutorial~ : for Machine Learning seminar at Tsukuba (note: 7MB notebook and ja only) *** Keras 2 - ~autoencoder~ - ~MLP_MNIST~ - ~CNN_CIFAR10~ - ~CBoW~ : Normal softmax - ~RNN_binary_classification~ - ~NNLM~ - ~SCRNLM~ : Structurally Constrained Recurrent Nets Language Model - ~fastText~ : Bi-gram features and softmax - ~Skip-Gram&NG~ : Skip-gram with negative sampling - ~prodLDA~ : Product of experts model's LDA based on VAE - ~sklearn_MLP_MNIST~: Sklearn API example for parameter search on MNIST classification