
1

An Open Source Software
Suite for Air and Ocean

Vehicles

NTNU 2014-11-17

Ricardo Martins <rasm@lsts.pt>
Paulo Dias <pdias@lsts.pt>

Underwater Systems and Technology Laboratory (LSTS)

2

Tutorial Overview
● Background

● GLUED

– Minimal GNU/Linux distribution

● IMC

– Inter-Module Communication API

● DUNE

– On-board Software

● Neptus

– Command and Control Unit

3

Background

4

What is It ?
● Complete software solution for autonomous vehicles

● Operating system (Linux distribution)

● API for interaction between software modules

● On-board software for sensor interaction, Control, Guidance,

Navigation

● GUI Command & Control Unit

● Mission Review and Analysis (Log Analysis)

5

Brief Timeline
● 1997 – LSTS was created

● 1997 – First AUV was purchased (WHOI REMUS AUV)

● 2004 – Neptus was created

● 2005 – First ROV built from scratch

● 2006 – DUNE and IMC were created

● 2006 – First AUV built from scratch (LAUV)

● 2007 – Projects and MoU with the PO Ministry of Defence

● ...

● 2014 – 7 operational LAUVs, 1 ROV, 1 ASV, 20 UAVs, 10 LAUVs sold,

toolchain used by external entities (NTNU, HTWG, EvoLogics

GmbH, ...)

6

Systems

7

Why start from scratch ?

● The REMUS on-board software was starting to show its age (based on

QNX4 and Pre ISO C++ 98)

● The code-base was developed and maintained poorly

● Freely available software had a few shortcomings:

– Highly experimental

– Cumbersome or impossible to use in embedded systems

– Command & Control software was primitive

– We disagreed with the architecture/design choices

8

To avoid things like this:

// Created by John Doe (1996)

// Updated by John Smith (1999)

// Updated by Tommy Toe (2001)

// Vandalized by Joe Bloggs (2005)

From common/abstraction/shared/whoi_mboard.h

(Fictitious names)

Further motivation

9

Toolchain Overview

10

GLUED
GNU/Linux Uniform Environment Distribution

https://github.com/LSTS/glued

11

Overview

● Minimal GNU/Linux distribution focused on embedded systems

● Small footprint

– around 10 MiB

● Fast boot time

– 2 to 5 seconds depending on target machine and peripherals

● Target machine binaries are cross compiled (i.e., built for a platform

other than the one on which the compiler is running)

● Creates a reproducible root filesystem for a given target

● Supports several x86, ARM, and MIPS targets

12

Motivation
● Time to build large software projects in embedded systems is almost

unbearable

– several hours vs a few minutes in modern PCs

● Embedded systems usually require bootloader and kernel

customization

● The longer the system takes to boot the longer it is uncontrollable

● Upgrading the operating system should be an unattended process

with a predictable outcome

● The root filesystem and target binaries should be easily replicated

and traceable

13

Supported Hardware

● ARM

– BeagleBone White & Black (TI AM3359 @ 1 GHz)

– ISEE IGEPv2 (TI DM3730 @ 1 GHz)

● x86

– IEI PM-LX 800 (AMD Geode LX @ 500 MHz)

– IEI PM-LX2 800 (AMD Geode LX @ 500 MHz)

– Kontron pITX (Intel Atom Z510 @ 1.6 GHz)

● MIPS

– Ubiquiti RouterStation (Atheros AR7161 MIPS 24K @ 680 MHz)

14

IMC: Inter-Module
Communication

API

15

Overview

● Message Oriented Protocol

● One XML document defines all messages

● Generators for documentation, C++ and Java code

● Serialization/deserialization to/from:

– JSON

– XML

– Binary

● Serialized messages are used for logging and communication

● Binary serialization format can be translated to human-readable

format (LLF)

16

Interaction Layers

● Plan control

● Vehicle control

● Maneuvering

● Guidance

● Navigation

● Sensing

● Actuation

● Networking

● Storage

17

Addressing

● Addresses are partitioned in classes (AUV, UAV, ROV, CCU, etc)

● Each system has a unique address (i.e., unique number)

● Subsystems/submodules of a system are called entities

● Each entity has a unique local number used to further qualify a

message (e.g., disambiguate messages of the same type but

different sources, temperature from a CTD vs CPU temperature)

18

Anatomy of a message

● Synchronization Number

– Marks the beginning of a message

– Identifies protocol version

– Allows for endianess detection

● Message Identification Number

– Uniquely identifies a message type

● Message size

● Timestamp

19

Anatomy of a message

● Source Address

● Source Entity

● Destination Address

● Destination Entity

● Message Specific Fields

● CRC16

20

Example

21

DUNE: Uniform Navigational
Environment

22

Overview

● Designed for embedded systems

● Written in C++

● Used in AUVs, UAVs, ROVs, ASVs, data-loggers and

communication gateways

● Related logical operations are isolated from each other in

tasks, usually running in a separate thread of execution

● Communication between tasks and communication with

external software is performed exclusively by using the set

of messages described in the IMC API

23

Overview

● Communication

– TCP, UDP, Acoustic modem, Iridium, GSM

● Logging

● Interaction with sensors, actuators, and power devices

● Controllers for attitude, speed, manual operation, etc

● Guidance algorithms

● Maneuvers (way-point following, area coverage, follow

reference, loiter, station keeping, etc)

24

Supported Platforms

● Architectures

– x86, ARM, PowerPC, SPARC, MIPS, AVR32

● Operating Systems

– Linux v2.6+/Android, QNX v6.x, Oracle Solaris, Mac OS

X, eCos, RTEMS, OpenBSD, FreeBSD, NetBSD, Microsoft

Windows

● Hardware Interfaces

– Serial Port, I2C, I/O port, CAN

25

Required Software
● Mandatory

– Git

– CMake

– C/C++ Compiler

– Python Interpreter

● Optional

– Eclipse

– Microsoft Visual Studio

26

Required Software

● Ubuntu/Debian
– sudo apt-get install cmake git g++ make python

● Microsoft Windows

– http://www.cmake.org/download/

– http://git-scm.com/downloads/

– http://sf.net/projects/mingw/files/Installer/mingw-get-inst/

– http://www.microsoft.com/express

● Apple Mac OS X

– http://www.cmake.org/download/

– https://developer.apple.com/xcode/

27

Example System

28

Resources
● Source Code

– https://github.com/LSTS/dune

● Documentation

– http://lsts.pt/docs

– https://github.com/LSTS/dune/wiki

● Mailing List

– https://groups.google.com/forum/#!forum/lsts-toolchain

– lsts-toolchain@googlegroups.com

● Nightly Builds

– http://www.lsts.pt/cdash/index.php?project=DUNE

29

Nightly Builds

30

Source Code Organization

● cmake

– CMake related files

● vendor

– 3rd party libraries

● firmware

– Microcontroller firmware

● www

– HTTP server files

31

Source Code Organization

● programs

– Standalone programs, utilities and scripts

● src/Main

– Daemon/launcher main functions (executable entry point)

● src/DUNE

– Core library

● src/Actuators

– Device driver tasks for actuator or actuator-like devices

32

Source Code Organization

● src/Maneuver

– Maneuvering related tasks. Waypoint following and more complex

compound maneuvers

● src/Monitors

– Safety monitors (CPU, Clock, Fuel, Operational Limits, etc)

● src/Navigation

– Position estimators, dead reckoning, etc

● src/Plan

– Plan execution and storage

33

Source Code Organization

● src/Power

– Device driver tasks for power supplies and related devices

● src/Sensors

– Device driver tasks for sensors (IMUs, Sonars, GPS, ADCs)

● src/Simulators

– Simulation engines and simulation based tasks

● src/Supervisors

– Tasks responsible for supervising global states

● src/Transports

– Communication and logging tasks (UDP, TCP, HTTP, GSM, etc)

34

Source Code Organization

● src/UserInterfaces

– Tasks that control LEDs, LCDs, buttons and instrument panels

● src/Vision

– Video acquisition and processing

● etc

– Configuration files

35

Bootstrapping

● mkdir $HOME/tutorial && cd $HOME/tutorial

● git clone https://github.com/LSTS/dune.git dune

● mkdir build && cd build

● cmake ../dune

● make

● ./dune -c lauv-seacon-1 -p Simulation

36

Web Interface
● http://127.0.0.1:8080

37

Anatomy of a Task

● Runs concurrently with other tasks

● Communicates with other tasks using IMC messages

● Does one job (and does it right)

● Can be event-driven or periodic

38

Basic Functions

● Task(const std::string& name, Tasks::Context& ctx)

– Task constructor

– Never fails, doesn't throw exceptions

– Declares configuration parameters

– Allocates resources that do not depend on configuration

parameters

● void onUpdateParameters(void)

– Called when configuration parameters change

● void onEntityReservation(void)

– Called when the task can reserve entities

39

Basic Functions
● void onEntityResolution(void)

– Called when the task can resolve entities

● void onResourceAcquisition(void)

– Called when the task can acquire resources (open serial ports,

sockets, etc)

● void onResourceInitialization(void)

– Called when the task can initialize previously acquired resources

● void onResourceRelease(void)

– Releases all acquired resources

● void onMain(void) / void task(void)

– Main task loop

40

Example Task: Producer

● http://goo.gl/FUezwX

● Task produces random temperature values and dispatches them

to the message bus

● Scaffold created using the command:

– python ../dune/programs/scripts/dune-create-task.py ../dune

'Ricardo Martins' 'Workshop/Producer'

– make rebuild_cache

● Source code resides in src/Workshop/Producer

● Task entry point is src/Workshop/Producer/Task.cpp

● Build: make

41

Example Task: Producer

42

Example Task: Producer

43

Example Task: Producer

44

Example Task: Producer

45

Example Task: Producer

46

Example Task: Producer

47

Example Task: Consumer

● http://goo.gl/1n2Cpk

● Task consumes temperature messages and prints them to the

output (console)

● Scaffold created using the command:

– python ../dune/programs/scripts/dune-create-task.py ../dune

'Ricardo Martins' 'Workshop/Consumer'

– make rebuild_cache

● Source code resides in src/Workshop/Consumer

● Task entry point is src/Workshop/Consumer/Task.cpp

● Build: make

48

Example Task: Consumer

49

Example Task: Consumer

50

Example Task: Consumer

51

Configuration File

● http://goo.gl/n4nli4

● Configuration file etc/development/workshop.ini:

52

Runtime Output
Command: ./dune -c development/workshop

[2014/11/16 19:51:26] - MSG [Daemon] >> system name: 'unknown' (65535)

[2014/11/16 19:51:26] - MSG [Daemon] >> registered tasks: 160

[2014/11/16 19:51:26] - MSG [Daemon] >> base folder: '/home/rasm/tutorial/build'

[2014/11/16 19:51:26] - MSG [Daemon] >> configuration folder: '/home/rasm/tutorial/dune/etc'

[2014/11/16 19:51:26] - MSG [Daemon] >> web server folder: '/home/rasm/tutorial/dune/www'

[2014/11/16 19:51:26] - MSG [Daemon] >> log folder: '/home/rasm/tutorial/build/log/unknown'

[2014/11/16 19:51:26] - MSG [Daemon] >> library folder: '/home/rasm/tutorial/build'

[2014/11/16 19:51:26] - MSG [Daemon] >> firmware folder: '/home/rasm/tutorial/dune/firmware'

[2014/11/16 19:51:26] - MSG [Transports.Cache] >> starting

[2014/11/16 19:51:26] - MSG [Transports.FTP] >> starting

[2014/11/16 19:51:26] - MSG [Transports.Fragments] >> starting

[2014/11/16 19:51:26] - MSG [Transports.HTTP] >> starting

[2014/11/16 19:51:26] - MSG [Transports.LogBook] >> starting

[2014/11/16 19:51:26] - MSG [Transports.Logging] >> starting

[2014/11/16 19:51:26] - MSG [Workshop.Consumer] >> starting

[2014/11/16 19:51:26] - MSG [Workshop.Producer] >> starting

53

Runtime Output

[2014/11/16 19:51:26] - MSG [Transports.HTTP] >> listening on 0.0.0.0:8080

[2014/11/16 19:51:26] - MSG [Transports.Logging] >> log started '20141116/195126'

[2014/11/16 19:51:26] - MSG [Transports.FTP] >> listening on 127.0.0.1:30021

[2014/11/16 19:51:26] - MSG [Transports.FTP] >> listening on 192.168.1.178:30021

[2014/11/16 19:51:26] - MSG [Transports.FTP] >> listening on 10.0.254.1:30021

[2014/11/16 19:51:27] - MSG [Workshop.Consumer] >> temperature is 25.068323

[2014/11/16 19:51:28] - MSG [Workshop.Consumer] >> temperature is 24.957678

[2014/11/16 19:51:29] - MSG [Workshop.Consumer] >> temperature is 25.030371

[2014/11/16 19:51:30] - MSG [Workshop.Consumer] >> temperature is 24.979784

[2014/11/16 19:51:31] - MSG [Workshop.Consumer] >> temperature is 25.037634

[2014/11/16 19:51:32] - MSG [Workshop.Consumer] >> temperature is 24.971085

[2014/11/16 19:51:33] - MSG [Workshop.Consumer] >> temperature is 24.974072

[2014/11/16 19:51:34] - MSG [Workshop.Consumer] >> temperature is 24.877298

54

Log Files
● DUNE stores log files in the IMC serialization format:

– Binary format

– 1 file for all messages and message types (Data.lsf)

– Messages are stored roughly in the same order as they were

created

– Supports Gzip and Bzip2 compression (Data.lsf.gz, Data.lsf.bz2)

55

Log File (Neptus MRA)

56

Neptus
Command & Control Unit

3

What’s Neptus?

 Neptus allows planning, control and revision of missions

performed by unmanned vehicles

 Neptus supports multiple heterogeneous vehicles

• AUVs, UAVs, ROVs, ASVs, ...

• Controlled individually or as a team

 Neptus supports multiple operators

• Operators join in and access / control the network of vehicles

 Neptus can be extended through plug-ins

• Map layers, Data visualizations, Console widgets, Maneuvers,

Communication protocols, ...

4

Neptus mission concept

 In Neptus, a mission is specified as

• A set of map features

• A set of programmed plans

• A set of vehicle configurations

 The mission is usually...

• Created prior to execution (planning)

• Changed during execution (monitoring / revision / re-planning)

5

LSTS Toolchain For Autonomous Systems

6

Part 1: Using Neptus

7

Neptus Requirements

 Neptus requires prior installation of Oracle’s Java Runtime

Environment version 7 or newer

 For 3D widgets an OpenGL-compatible graphics adapter is

recommended

 At least 1 GB of RAM (4 GB recommended)

 Compatible with Windows and Linux (known to work under

OSX but rarely tested)

8

Installing and Running Neptus

 To install Neptus, just download the latest version to a

directory of choice

• Logs will be put under this directory so make sure you leave extra

room for them

 Downloading Neptus

• Use your favorite Git client to clone Neptus from

https://github.com/LSTS/neptus

 Running Neptus

• In Windows: run neptus.exe

• In Linux: execute ./neptus.sh

9

Interfaces Adjusted/Adjustable to
Several Needs

10

The Neptus Workspace

11

The Neptus Workspace

Post-mission analysis

Console editing

Run /edit checklists

IMC Comms Monitor

12

The Neptus Workspace

IMC Comms Monitor

13

Neptus Consoles

 Neptus allow end-users to create Operational Consoles

• Based on existing widgets

• Adapted to specific missions/vehicles

 Mission console definitions are stored as XML

• .ncon file extension

• A sort of consoles are already bundled

14

Neptus Consoles

15

Neptus Consoles

Selected vehicle
(controlled)

Map interaction modes

Systems listing and
selection

Mission elements

Plan control

Notifications

Send abort request
(wi-fi / acoustic)

16

Neptus Consoles
Systems listing and

selection

Vehicle subsystems state

Vehicles Configurations

Vehicle Log Book

17

Neptus Consoles

Plan edition controls

Planning
map interaction mode

Edited plan statistics

Edited plan (yellow)

Active plan (gray)

Selected maneuver

Parameters of
selected maneuver

18

Neptus Consoles

Plan Color indicates
synchronization state

NOTE: The edited plan can differ
from the plan that the vehicle is
currently executing

White= local

Green = Sync.

Red = Not Sync.

Viotet= Remote

Send Plans to Vehicles

19

Neptus Consoles – Log Download Dialog

20

Neptus Consoles – Log Download Dialog

Remote log folder

Log files being
downloaded

are shown here

Log files contained in the
seleted log folder

Log folder already
downloaded

Synchronize log listing with
the remote vehicle

21

Neptus Mission Review and Analysis

 Can be acessed

• Directly by right-clicking a downloaded log

• From the Neptus workspace

 Compatible with LSF log folders

• Data.lsf (binary concatenation of IMC data)

• IMC.xml (definition of the protocol used in the LSF)

• config.ini (used vehicle configuration)

22

Neptus Mission Review and Analysis

SideSacn Sonar Images

List of available
visualizations

23

Neptus Mission Review and Analysis

Several plots available or
to be created

List of available data

24

Neptus Mission Review and Analysis

Photos taken
vizualization

25

Neptus Mission Review and Analysis

3D Multibeam display

26

Neptus Mission Review and Analysis

Plan review

27

Neptus Mission Review and Analysis

Several exporters
available

Plan statistics

28

Neptus KML Export

Several exporters
available

Plan statistics

29

Part 2: Extending Neptus

30

Requirements for Extending Neptus

 Installation of Oracle’s Java JDK version 7 or newer

 Git (Source Control Management)

 Ant (Build System)

 Eclipse Luna for Java Developers

31

Setup Your Development Tool

 Clone Neptus

• Use your favorite Git client to clone Neptus from

https://github.com/LSTS/neptus

 Configure Eclipse

32

Creating a plug-in

Create source
folder under
plugins-dev

folder

33

Plug-in properties

Every plugin
elemento must
be listed in the

root file
plugins.lst one

per line

34

Plug-in example – Console Widget

package org.acme.myplugin;
import pt.lsts.neptus.console.ConsoleLayout;
…
/**
* @author You
*
*/
@PluginDescription(name = "My Console Viz")
@Popup(pos = POSITION.RIGHT, width = 200, height = 200, accelerator = ‘Y')
@SuppressWarnings("serial")
public class MyConsoleViz extends ConsolePanel {

/**
* @param console
*/
public MyConsoleViz(ConsoleLayout console) {

super(console);
}

@Override
public void initSubPanel() {
}

@Override
public void cleanSubPanel() {
}

}

Base console
widget extends
ConsolePanel

Optionally the
panel may be a
popup dialog

instead of living
in the main

window

Every plugin is
anotated with

PluginDescription

35

Plug-in example – Console Widget

@Override

public void initSubPanel() {

removeAll();

Action sendAbortAction = new AbstractAction(I18n.text("Send Abort")) {

@Override

public void actionPerformed(ActionEvent e) {

Abort abortMsg = new Abort();

send(abortMsg);

}

};

sendAbort = new JButton(sendAbortAction);

add(sendAbort);

}

Lets make a
panel to send

na abort
command

36

Plug-in example – Console Widget

The result

37

Plugin example – Map Layer

package org.acme.myplugin;
import pt.lsts.neptus.console.ConsoleLayer;
…
/**
* @author You
*
*/

@PluginDescription(name = "My Console Layer")

@LayerPriority(priority = 66)

public class MyConsoleLayer extends ConsoleLayer {

public MyConsoleLayer() {

}

@Override

public void initLayer() {

}

@Override

public void cleanLayer() {

}

@Override

public boolean userControlsOpacity() {

return false;

}

}

Console layer
widget extends
ConsoleLayer

38

Plug-in example – Map Layer
…
public class MyConsoleLayer extends ConsoleLayer {

@NeptusProperty(name = "Show Time", userLevel = LEVEL.REGULAR,
category="Visibility", editable = true)

public boolean showTime = true;

public MyConsoleLayer() {
}

…

Adding
properties for

the operator to
change

Adding
properties for

the operator to
change

39

Plug-in example – Map Layer
…
public class MyConsoleLayer extends ConsoleLayer implements MainVehicleChangeListener {

@NeptusProperty(name = "Show Time", userLevel = LEVEL.REGULAR,
category="Visibility", editable = true)

public boolean showTime = true;

private LocationType location = null;
private String positionStr = null;
private String dateTimeStr = null;

public MyConsoleLayer() {
}

…
@Override
public void mainVehicleChange(String id) {

ImcSystem sys = ImcSystemsHolder.getSystemWithName(getConsole().getMainSystem());
if (sys != null && sys.getLocation() != null) {

LocationType loc = new LocationType(sys.getLocation());
loc.convertToAbsoluteLatLonDepth();
positionStr = I18n.text("Position:") + " " + loc.getLatitudeAsPrettyString() +

" " + loc.getLongitudeAsPrettyString();
dateTimeStr = I18n.text("Age:") + " " +

DateTimeUtil.dateFormaterXMLNoMillisUTC.format(new Date(sys.getLocationTimeMillis()));

location = loc;
}
else {

positionStr = I18n.text("Position:") + " ?";
dateTimeStr = I18n.text("Age:") + " ?";
location = null;

}
}

Adding main
vehicle change

listener

Adding main
vehicle change

listener

40

Plug-in example – Map Layer

…

@Subscribe
public void on(EstimatedState msg) {

if (!msg.getSourceName().equals(getConsole().getMainSystem()))
return;

LocationType loc = new LocationType();
loc.setLatitudeRads(msg.getLat());
loc.setLongitudeRads(msg.getLon());
loc.setOffsetNorth(msg.getX());
loc.setOffsetEast(msg.getY());
loc.convertToAbsoluteLatLonDepth();
positionStr = I18n.text("Position:") + " " + loc.getLatitudeAsPrettyString() +

" " + loc.getLongitudeAsPrettyString();
dateTimeStr = I18n.text("Age:") + " " +

DateTimeUtil.dateFormaterXMLNoMillisUTC.format(new Date(msg.getTimestampMillis()));

location = loc;
}

…

Subscribing to
messages

41

Plug-in example – Map Layer

…

@Override
public void paint(Graphics2D g, StateRenderer2D renderer) {

super.paint(g, renderer);

if (location == null)
return;

Graphics2D g2 = (Graphics2D) g.create();

Point2D pt = renderer.getScreenPosition(location);
g2.translate(pt.getX(), pt.getY());
g2.translate(20, 20);
g2.setColor(Color.BLACK);
g2.drawString(positionStr, 1, 1);
g2.setColor(Color.WHITE);
g2.drawString(positionStr, 0, 0);

if (showTime) {
g2.setColor(Color.BLACK);
g2.drawString(dateTimeStr, 1, 16);
g2.setColor(Color.WHITE);
g2.drawString(dateTimeStr, 0, 15);

}
g2.dispose();

}
…

Finaly painting
the data

42

Plugin example – Map Layer

The resultThe result

43

Packaging the plug-in

 By using Ant you can compile all

• ant

 It will create a jar in plugins folder name my-plugin.jar

 To add to console to test

• Run pt.lsts.neptus.loader.NeptusMain

• Open lauv.ncon console

• Click menu View>Plugin Manager add your plugins elements and

save console

44

Become a commiter

Try it out

