
Ȇ

ҳ
ࢇ ݽ

σ

Ᏸ
Ȇ

ŏ
Ţ
ŵ ŪŰ

ůŢ ŭ ġńũŦůŨŤũ Ū ġŖ
ůŪ
ŷŦ

ųŴ
Ū ŵ
ź

DOI:10.6814/NCCU202201524

୯ҥݯࡹεᏢၗૻࣽᏢس

Department of Computer Science

National Chengchi University

ᅺγᏢՏፕЎ

Master’s Thesis

سஏфૈϐ༧ЍбߥёᅱᆅᆶҬܰڀ

Blockchain-based Confidential Payment System
with Controllable Regulation

ᄃஷٍ

Yu Chen, Liao

Ꮴ௲ǺѰྷᡕറγࡰ

Advisor: Raylin Tso, Ph.D.

ύ҇୯ 111ԃ 8Д

Aug, 2022

Ȇ

ҳ
ࢇ ݽ

σ

Ᏸ
Ȇ

ŏ
Ţ
ŵ ŪŰ

ůŢ ŭ ġńũŦůŨŤũ Ū ġŖ
ůŪ
ŷŦ

ųŴ
Ū ŵ
ź

DOI:10.6814/NCCU202201524

Ȇ

ҳ
ࢇ ݽ

σ

Ᏸ
Ȇ

ŏ
Ţ
ŵ ŪŰ

ůŢ ŭ ġńũŦůŨŤũ Ū ġŖ
ůŪ
ŷŦ

ųŴ
Ū ŵ
ź

DOI:10.6814/NCCU202201524

سஏфૈϐ༧ЍбߥёᅱᆅᆶҬܰڀ

Blockchain-based Confidential Payment System
with Controllable Regulation

ᅺγғǺᄃஷٍ StudentǺ Yu Chen, Liao

Ꮴ௲ǺѰྷᡕറγࡰ AdvisorǺ Raylin Tso, Ph.D.

୯ҥݯࡹεᏢ

ၗૻࣽᏢس

ᅺγᏢՏፕЎ

A Thesis

submitted to Department of Computer Science

National Chengchi University

in partial fulfillment of the Requirements

for the degree of

Master

in

Computer Science

ύ҇୯ 111ԃ 8Д

Aug, 2022

Ȇ

ҳ
ࢇ ݽ

σ

Ᏸ
Ȇ

ŏ
Ţ
ŵ ŪŰ

ůŢ ŭ ġńũŦůŨŤũ Ū ġŖ
ůŪ
ŷŦ

ųŴ
Ū ŵ
ź

DOI:10.6814/NCCU202201524

Ȇ

ҳ
ࢇ ݽ

σ

Ᏸ
Ȇ

ŏ
Ţ
ŵ ŪŰ

ůŢ ŭ ġńũŦůŨŤũ Ū ġŖ
ůŪ
ŷŦ

ųŴ
Ū ŵ
ź

DOI:10.6814/NCCU202201524

ठᖴ

ӧ൩᠐ࣴޑ܌زය໔Ǵ२ӃाགᖴࡰޑךᏤ௲ — Ѱྷᡕ௲ǴԴৣόӧ

ᏢೌࡰᏤךॺǴΨӧࣴ܌زය໔๏ϒךॺࡐӭځдޑᔅշǶӧፕЎԴৣ

ᕴૈࢂᗺрؒךԖࡘԵޑډБӛǴ٠Ъ๏ϒׯ๓ࡌޑǶགᖴමΥ௲Ǵӧ

meeting ਔᕴૈࢂ๏ϒךॺӭ௴วǴӧፕЎޑБय़Ψёа๏ϒךӭග

ᗺǶΨᖴᖴηྍᏢߏǴόࢂӧፕЎቪբ๏ϒࡐךεޑᔅշǴ឴࣊Ծρޑ

ਔ໔ᔅշֹךԋፕЎǴӧѳਔΨᔅךॺှ،ӭࣴୢޑزᚒǴӧғఱೕჄޑ

Бय़Ψ๏ϒךॺࡐӭԖҔࡌޑǶགᖴϘണᏢߏǴӧஏዸᏢǵኧᏢёаှ

ӧࢂᅪൽǴΨᕴޑך، meetingਔගрӭؒךԖགྷޑډБӛǶᖴᖴჴᡍ܌ޑ࠻

ԖᏢۆߏǵӕᏢǵᏢаϷշॺǴӧࣴ܌زය໔வεৎيޑᏢډΑࡐӭǴ

Ψ੮ΠΑӭඍޑזӣᏫǶགᖴவεᏢډӧޑӕืҭঅǴഉࡋךၸΑࣴز

ჴޑǶΨઔᅽӧӧВҁঅޕޑӭᔕჾډௗךǴࢤόӕ໘ޑ܌

ᡍ࠻უՔϪճǶ

ᖴᖴޑךৎΓǴ๏ϒך೭ሶӳޑᕉნǴᡣךёаЈคᜰޑݙӧࣴزǶ

ᖴᖴෞລ≁ǴᕴࢂޔഉՔǵЍךǶ

ᄃஷٍ ᙣᇞ

سεᏢၗૻࣽᏢݯࡹ

ၗૻӼӄჴᡍ࠻

111ԃ 8Д

v

Ȇ

ҳ
ࢇ ݽ

σ

Ᏸ
Ȇ

ŏ
Ţ
ŵ ŪŰ

ůŢ ŭ ġńũŦůŨŤũ Ū ġŖ
ůŪ
ŷŦ

ųŴ
Ū ŵ
ź

DOI:10.6814/NCCU202201524

Ȇ

ҳ
ࢇ ݽ

σ

Ᏸ
Ȇ

ŏ
Ţ
ŵ ŪŰ

ůŢ ŭ ġńũŦůŨŤũ Ū ġŖ
ůŪ
ŷŦ

ųŴ
Ū ŵ
ź

DOI:10.6814/NCCU202201524

ᄔा

୷ܭ༧ޑЍбسȐӵКჾȑǴҗځܭҬܰёϦ໒ᡍޑ܄ԶԖቶݱ

ԏวΓаϷҬޑǴӵҬܰدᗦޑӧ༧ޣៈ٬ҔߥΑࣁᔈҔǶԜѦǴޑ

ᛥჾϷߐៈჾӵߥدᚐǴᗦߎܰ ZerocashΨӢԜගрǶฅԶǴӧલЮ

ҺՖᅱᆅޑࡼΠǴၸޑࡋᗦߥدៈسࠅԖёૈᎁډൾཀޑᔲҔǶӢԜǴ

ӵՖӕਔঋ៝ᗦߥدៈՠΞߥԖޑࡋᅱᆅૈΚࢂঁߚதख़ाୢޑᚒǶӧԜ

ጇፕЎύǴךॺගрঁڀёᅱᆅᆶҬܰߥஏфૈϐ༧ЍбسǶࣁΑ

ٰჹ٬سᘖӕᄊуஏߐॺ٬ҔΑךЪӕਔՉёᅱᆅǴدᗦޑޣៈ٬Ҕߥ

ҔޑޣҬܰߎᚐՉуஏǶԜуஏ٬ҔᅱᆅߐޑޣᘖуஏߎᢄǴӧߥៈҬܰᗦ

ΚǶԜѦǴᙖҗӕᄊуஏૈޑᚐՉှஏߎჹҬܰޣΑᅱᆅڋӕਔΨज़ޑد

ࡕӧၸҬܰޣཥ٬Ҕ׳ΠǴޑᚐှஏߎॺૈӧόჹҬܰךǴ܄ޑ

܄ӼӄىΨૈᅈسޑගр܌ॺךǶޑҞޑدᗦޣ٬ҔߥډᎩᚐǴԶၲޑ

ǶচࠠҔаਏૈϩޑسॺΨჴբΑԜךሡǴ٠Ъޑ

ᜢᗖӷǺёᘜೢ܄Ǵ༧ǴߥஏҬܰǴߐᘖуஏ

vii

Ȇ

ҳ
ࢇ ݽ

σ

Ᏸ
Ȇ

ŏ
Ţ
ŵ ŪŰ

ůŢ ŭ ġńũŦůŨŤũ Ū ġŖ
ůŪ
ŷŦ

ųŴ
Ū ŵ
ź

DOI:10.6814/NCCU202201524

Ȇ

ҳ
ࢇ ݽ

σ

Ᏸ
Ȇ

ŏ
Ţ
ŵ ŪŰ

ůŢ ŭ ġńũŦůŨŤũ Ū ġŖ
ůŪ
ŷŦ

ųŴ
Ū ŵ
ź

DOI:10.6814/NCCU202201524

Abstract

Blockchain-based payment system (e.g., Bitcoin) is wildly adopted in many scenarios

due to the transaction details are publicly accessible. In addition, blockchain-based

anonymous payment systems (e.g., Monero and Zerocash) have been proposed to further

protect on-chain privacy, such as the balance of the sender and receiver, and the amount of

the transaction. However, without any regulation, overly privacy-preserving systems will

sometimes be abused for malicious behavior. How to strike a balance between the needs

for regulation and privacy become a important issue on such systems. In this paper, we

proposed a blockchain-based confidential payment system with controllable regulation.

To protect user’s privacy as well as perform controllable regulation, we realized the

proposed system by utilizing threshold homomorphic encryption to encrypt user’s

transaction values and balance. The encryption is done with regulators’ thresholdized

keys and thus limits regulators’ ability to decrypt a transaction. In addition, with

the homomorphic property, we can update the user’s balance without decrypting the

transaction value or the user’s balance and thus preserve on-chain privacy. The proposed

system also satisfies the security requirements and and a prototype implementation is

provided for the performance analysis.

Keywords:Accountability, Blockchain, Confidential Transaction, Threshold En-
cryption

ix

Ȇ

ҳ
ࢇ ݽ

σ

Ᏸ
Ȇ

ŏ
Ţ
ŵ ŪŰ

ůŢ ŭ ġńũŦůŨŤũ Ū ġŖ
ůŪ
ŷŦ

ųŴ
Ū ŵ
ź

DOI:10.6814/NCCU202201524

Ȇ

ҳ
ࢇ ݽ

σ

Ᏸ
Ȇ

ŏ
Ţ
ŵ ŪŰ

ůŢ ŭ ġńũŦůŨŤũ Ū ġŖ
ůŪ
ŷŦ

ųŴ
Ū ŵ
ź

DOI:10.6814/NCCU202201524

Contents

ठᖴ v

ᄔा vii

Abstract ix

Contents xi

List of Tables xiii

List of Figures xv

List of Definitions xvii

1 Intorduction 1
1.1 Contribution . 3

1.2 Related Works . 4

1.3 Organization . 5

2 Preliminaries 7
2.1 Commitment scheme . 7

2.2 Public-Key Encryption . 9

2.3 Threshold Cryptosystem without a Trusted Party 10

2.4 Additive Homomorphic Encryption 11

2.5 Digital Signature . 11

2.6 Zero-knowledge Proofs . 12

3 Confidential Blockchain Payment System with Regulation 15
3.1 System Description . 15

xi

Ȇ

ҳ
ࢇ ݽ

σ

Ᏸ
Ȇ

ŏ
Ţ
ŵ ŪŰ

ůŢ ŭ ġńũŦůŨŤũ Ū ġŖ
ůŪ
ŷŦ

ųŴ
Ū ŵ
ź

DOI:10.6814/NCCU202201524

Contents xii

3.2 System Model . 18

3.3 Security Model . 19

4 The Proposed System 23

5 Security Analysis 37

6 Performance Evaluation 39

7 Conclusion and Future Work 41

Bibliography 43

Ȇ

ҳ
ࢇ ݽ

σ

Ᏸ
Ȇ

ŏ
Ţ
ŵ ŪŰ

ůŢ ŭ ġńũŦůŨŤũ Ū ġŖ
ůŪ
ŷŦ

ųŴ
Ū ŵ
ź

DOI:10.6814/NCCU202201524

List of Tables

6.1 The computation cost of confidential transaction 39

6.2 The computation cost of decrypting threshold ElGamal 39

xiii

Ȇ

ҳ
ࢇ ݽ

σ

Ᏸ
Ȇ

ŏ
Ţ
ŵ ŪŰ

ůŢ ŭ ġńũŦůŨŤũ Ū ġŖ
ůŪ
ŷŦ

ųŴ
Ū ŵ
ź

DOI:10.6814/NCCU202201524

Ȇ

ҳ
ࢇ ݽ

σ

Ᏸ
Ȇ

ŏ
Ţ
ŵ ŪŰ

ůŢ ŭ ġńũŦůŨŤũ Ū ġŖ
ůŪ
ŷŦ

ųŴ
Ū ŵ
ź

DOI:10.6814/NCCU202201524

List of Figures

3.1 The description of the proposed systems 16

xv

Ȇ

ҳ
ࢇ ݽ

σ

Ᏸ
Ȇ

ŏ
Ţ
ŵ ŪŰ

ůŢ ŭ ġńũŦůŨŤũ Ū ġŖ
ůŪ
ŷŦ

ųŴ
Ū ŵ
ź

DOI:10.6814/NCCU202201524

Ȇ

ҳ
ࢇ ݽ

σ

Ᏸ
Ȇ

ŏ
Ţ
ŵ ŪŰ

ůŢ ŭ ġńũŦůŨŤũ Ū ġŖ
ůŪ
ŷŦ

ųŴ
Ū ŵ
ź

DOI:10.6814/NCCU202201524

List of Definitions

2.1 Correctness of Commitment scheme 7

2.2 Hiding . 7

2.3 Binding . 8

2.4 Correctness of Public-Key Encryption 9

2.5 IND-CPA . 9

2.6 Correctness of Digital Signature . 12

2.7 EUF-CMA . 12

3.1 Authenticity . 21

3.2 Confidentiality . 21

3.3 Balance . 22

3.4 ConsistentAmount . 22

xvii

Ȇ

ҳ
ࢇ ݽ

σ

Ᏸ
Ȇ

ŏ
Ţ
ŵ ŪŰ

ůŢ ŭ ġńũŦůŨŤũ Ū ġŖ
ůŪ
ŷŦ

ųŴ
Ū ŵ
ź

DOI:10.6814/NCCU202201524

Ȇ

ҳ
ࢇ ݽ

σ

Ᏸ
Ȇ

ŏ
Ţ
ŵ ŪŰ

ůŢ ŭ ġńũŦůŨŤũ Ū ġŖ
ůŪ
ŷŦ

ųŴ
Ū ŵ
ź

DOI:10.6814/NCCU202201524

1 Intorduction

Blockchain has given rise to many applications because of its immutability, verifiability,

and decentralization. Amoung all of them, Financial service like cryptocurrency is

one of the most popular utilizations on blockchain. Although cryptocurrency has many

advantages over traditional finance tools like better accessibility and instant remittance,

privacy is a concern due to the nature of blockchain. In a blockchain system, in

order to verify the correctness of a transaction, nodes need to have access to the detail

of a transaction like the address of sender, receiver and transaction amount. It may

not be suitable to reveal sensitive information to everyone in some scenarios. Most

cryptocurrencies like Bitcoin [Nak08] and Ethereum [But14] employed pseudonym

mechanisms which allow users to create and send transaction with different addresses

to offer anonymity of some degree.

However, studies have shown that using a method like transaction graph analysis

[CSL+18] and address clustering [SHL+21], attackers can de-anonymize a user to trace

his or her transactions. In some cryptocurrencies like bitcoin, users are able to create

different anonymous accounts and use them as multiple payers in one transaction.

With graph analysis, attacker can turn every account and transaction flow into a

graph and treat different payer accounts in one transaction as one entity. Following

the whole transaction graph on the blockchain, the attacker can thus de-anonymize

different anonymous accounts. With the above example, we can see that simply creating

multiple anonymous accounts is not sufficient. To further improve privacy, decentralized

anonymous payment (DAP) schemes like Monero [SAL+17] and Zerocash [BCG+14]

are proposed. By using cryptographic techniques like zero-knowledge proof and ring

signature, DAP schemes offer a strong level of privacy that hide the sender, receiver,

and amount in a transaction. Specifically, Monero uses ring signature to hide the sender

inside multiple decoy transactions and uses stealth address to hide the receiver. One can

1

Ȇ

ҳ
ࢇ ݽ

σ

Ᏸ
Ȇ

ŏ
Ţ
ŵ ŪŰ

ůŢ ŭ ġńũŦůŨŤũ Ū ġŖ
ůŪ
ŷŦ

ųŴ
Ū ŵ
ź

DOI:10.6814/NCCU202201524

1. Intorduction 2

only observed that some unknown amount of coins is moved from one of the member

inside the decoy group to a one-time stealth address without knowing which specific

address it is. Zerocash on the other hand puts users’ coins inside a "shielded pool"

and utilizes zero-knowledge proof to prove one’s right to spend certain amount of coins

inside the pool without reveal the actual value.

Although DAP schemes can largely enhance users’ privacy, they may also be abused

without any form of regulation. Since there is no authority who controls the user’s

identity, and details of every transaction in DAP schemes are hidden, it is hard to

perform any regulatory measure. Study [WOD18] has shown that cryptocurrency may

be used to conduct illegal acts such as money laundering and terrorist funding.

A simple way to tackle this problem is by introducing an additional regulator

to the DAP scheme that can decrypt and check every transaction before appending

it to the blockchain. Although this measure can eliminate the regulatory concerns

mentioned above, it also gives regulators the ability to access details of every transaction.

Furthermore, since every transaction must pass through the regulator before appending

to the blockchain, the regulator is able to secretly exclude certain transactions from the

system to gain an unfair advantage for others and thus harm the system. To eliminate the

problem of a central regulator, another way to solve the regulatory problem is by adding

zero-knowledge proofs in every transaction. The zero-knowledge proofs make sure a

transaction follows certain regulatory policies like limiting the transaction frequency or

other anti-money laundering measures. By using zero-knowledge proofs, we can achieve

regulatory requirements without introducing any central authorities like a regulator.

However, we claim that zero-knowledge proof is not sufficient for all regulatory

needs in practice. In order to utilize zero-knowledge proof, we need to provide rules

beforehand and encode them in the system. Any transaction that passes the rule check

cannot be monitored or analyzed afterward. According to the United Nations [PW11],

only as little as 0.1% to 0.3% of money laundering is detected with the current anti-

money laundering policy. Being able to analyze transactions afterward to find the

money launderer is important to tackle money laundering [MvF15], and solely relying

on certain regulatory policies is not enough.

Ȇ

ҳ
ࢇ ݽ

σ

Ᏸ
Ȇ

ŏ
Ţ
ŵ ŪŰ

ůŢ ŭ ġńũŦůŨŤũ Ū ġŖ
ůŪ
ŷŦ

ųŴ
Ū ŵ
ź

DOI:10.6814/NCCU202201524

3 1.1. Contribution

To track a transaction after it has settled, the system requires regulators to analyze

transactions. Since we don’t want the regulators to fully control the system, some

methods are required to limit the regulators’ power. The term controllable regulation

means that in order to perform regulation, the regulators must fulfill some preset

conditions. The conditions is set to control the regulators’ power and thus prevent

them from overly interfering in the system.

1.1 Contribution

In this thesis, we try to find the balance between privacy and regulation. We do not

want the regulator to simply check every transaction’s content before appending it to the

blockchain, and yet we still want the regulator to be able to perform regulatory tasks

if necessary. To achieve this goal, first, we encrypt the transaction amount and user’s

balance with the regulator’s key in order to maintain privacy. With it, we can ensure that

anyone besides the regulator will not be able to observe the transaction amount. Second,

we partition the role of a validator and a regulator. Validators only check the correctness

of a transaction and are responsible for updating the blockchain, as with nodes in

some blockchain systems. We use zero-knowledge proof to validate the correctness of a

transaction without leaking the actual transaction detail. As for updating the blockchain,

we make use of homomorphic encryption to correctly update the user’s balance without

decrypting it. By utilizing zero-knowledge proof and homomorphic encryption, we can

make sure that the validator does not have to decrypt every transaction before validating

it and updating the blockchain. Regulators on the other side are special entities that

do not participate in any transactions and are only responsible for regulatory tasks. To

prevent the regulator from decrypting any transaction at will, we set the number of

regulators and a threshold number ! at the system setup. Only if at least ! regulators

participate in the decryption process can the transaction amount be revealed. We make

use of threshold encryption to split the private key between regulators, and they must go

through a ‘voting’ process in order to decrypt a transaction. With threshold encryption,

Ȇ

ҳ
ࢇ ݽ

σ

Ᏸ
Ȇ

ŏ
Ţ
ŵ ŪŰ

ůŢ ŭ ġńũŦůŨŤũ Ū ġŖ
ůŪ
ŷŦ

ųŴ
Ū ŵ
ź

DOI:10.6814/NCCU202201524

1. Intorduction 4

we can control the power of regulators in the system. At the end of this thesis, we also

give a proof-of-concept implementation of the proposed system. Note that we only hide

the transaction amount but leave the sender and the receiver in plaintext. This is due

to the need for accountability. If we hide the transaction as well as the sender and the

receiver, the regulators will have no choice but to decrypt every transaction in order to

supervise the system. This not only leaves our threshold design in vain but also hurt the

privacy of the users.

1.2 Related Works

Two seminal confidential blockchain payment schemes are Cryptonote [Sab13] and

Zerocoin [IM13]. Cryptonote utilizes traceable ring signatures to hide the sender and

recipient of a transaction and gives rise to the Monero protocol which uses similar

techniques to hide the sender, recipient as well as the transaction amount. Zerocoin

uses zero-knowledge proof and an accumulator scheme to break the linkage between

different transactions. Ben-Sasson et al. propose Zerocash [BCG+14] based on

Zerocoin. Zerocash formulates decentralized anonymous payment (DAP) schemes and

provides strong anonymity by using zk-SNARKs [Pet19] and commitment schemes. On

Ethereum, the AZTEC protocol proposed by Zachary J. Williamson [Wil18] uses zero-

knowledge proof and commitment scheme to provide verifiable confidential transaction

that can hide the transaction amount.

To solve the regulatory issue, many studies proposed different methods to allow

regulation in DAP schemes. Garman et al. [GGM16] included users tracing and coins

tracing in Zerocash using zk-SNARKs. Lin et al. proposed a decentralized condition

anonymous payment system DCAP [LHH+20] which hides the sender and recipient of

a transaction. However, the manager in DCAP needs to obtain the real addresses of

the sender and recipient to validate each transaction and append the transaction on the

blockchain, causing the problem that the manager can reject any transactions. Cecchetti

et al. presented Solidus [CZJ+17] that uses publicly-verifiable oblivious RAM. Solidus

Ȇ

ҳ
ࢇ ݽ

σ

Ᏸ
Ȇ

ŏ
Ţ
ŵ ŪŰ

ůŢ ŭ ġńũŦůŨŤũ Ū ġŖ
ůŪ
ŷŦ

ųŴ
Ū ŵ
ź

DOI:10.6814/NCCU202201524

5 1.3. Organization

allows only the users’ banks to obtain their identity, but others can only learn the identities

of the banks. Therefore, this is suitable for the modern financial system. PGC proposed

by Chen et al. [CMT+20] uses zero-knowledge proof to ensure transactions which the

transaction amounts are hidden follow certain policies. Xue et al. [XLN+22] also

proposed a payment system that uses zero-knowledge proof to make sure compliance

with certain policies of a transaction. While using zero-knowledge proof can maintain

decentralization while providing regulatory means, it may not be sufficient for all the

regulatory needs as we described in the previous paragraph.

1.3 Organization

The thesis is organized as follows: Chapter 2 presents the cryptographic primitives that

will be used in the construction of our system as well as in the security description.

Chapter 3 first gives a high-level view of our system and then defines the system

model and security model. Chapter 4 presents an in-depth view of our proposed

system. Chapter 5 provides the security description of the system, including authenticity,

confidentiality, balance and consistent amount. Chapter 6 presents an efficiency analysis

of the proposed system with a proof-of-concept implementation. Chapter 7 concludes

our proposed system and provides directions for future work.

Ȇ

ҳ
ࢇ ݽ

σ

Ᏸ
Ȇ

ŏ
Ţ
ŵ ŪŰ

ůŢ ŭ ġńũŦůŨŤũ Ū ġŖ
ůŪ
ŷŦ

ųŴ
Ū ŵ
ź

DOI:10.6814/NCCU202201524

Ȇ

ҳ
ࢇ ݽ

σ

Ᏸ
Ȇ

ŏ
Ţ
ŵ ŪŰ

ůŢ ŭ ġńũŦůŨŤũ Ū ġŖ
ůŪ
ŷŦ

ųŴ
Ū ŵ
ź

DOI:10.6814/NCCU202201524

2 Preliminaries

2.1 Commitment scheme

Commitment scheme allows one to commit to a value in a hidden form and later reveals

the value to show that it is indeed the one committed. Informally, a commitment scheme

consists of commit phase and reveal phase. In commit phase, one chooses a value and

commit to it. In reveal phase, one reveals the committed value and other auxiliary

information for others to verify the commitment.

Formally, commitment scheme consists of three algorithms ("#!$%,&'(()!,*%#+):

• "#!$%(,) → %%. On inputting of a security parameter ,, it outputs public

parameters %%. Here %% includes message space - , commitment space & and

ramdom space .. %% will be an implicit input in the following algorithms.

• &'(()! ((, /) → 0. On inputting of a message (and a random number /, the

commit algorithm outputs a commitment 0 to (.

• *%#+(0, / ,() → 1/0. On inputting of a commitment 0, a random number / and a

message (, the reveal algorithm outputs 1 if 0 = &'(()! ((, /) and 0 otherwise.

Definition 2.1 (Correctness of Commitment scheme). For all %% ← "#!$%(,), (∈ - ,

Pr[*%#+(&'(()! ((, /), / ,() = 1] = 1.

Definition 2.2 (Hiding). For a probabilistic polynomial time adversary A, a

Commitment scheme satisfies Hiding if A’s advantage over the following experiment is

negligible.

7

Ȇ

ҳ
ࢇ ݽ

σ

Ᏸ
Ȇ

ŏ
Ţ
ŵ ŪŰ

ůŢ ŭ ġńũŦůŨŤũ Ū ġŖ
ůŪ
ŷŦ

ųŴ
Ū ŵ
ź

DOI:10.6814/NCCU202201524

2. Preliminaries 8

Experiment E1)2)+3

1 : %% ← "#!$%(,)

2 : ((0,(1) ← A(%%)

3 : 4
$←− {0, 1}; / $←− .

4 : 0 ← &'(()! ((!, /)

5 : 4′ ← A(0)

6 : return 4′ = 4

We define A’s advantage over E1)2)+3 as follows,

5261)2)+3A (,) :=
!!!!Pr[E1)2)+3 = 1] − 1

2

!!!! .
Definition 2.3 (Binding). For a probabilistic polynomial time adversary A, a

Commitment scheme satisfies Binding if A’s advantage over the following experiment

is negligible.

Experiment E7)+2)+3

1 : %% ← "#!$%(,)

2 : (0,(0, /0,(1, /1) ← A(%%)

3 : return (0 ≠ (1 ∧ 0 = &'(((0, /0) = &'(((1, /1)

We define A’s advantage over E7)+2)+3 as follows,

5267)+2)+3A (,) := Pr[E7)+2)+3 = 1] .

Pedersen commitment. Below we review the Pedersen commitment scheme [Ped92]:

1. "#!$%(,) → %%. On inputting of a security parameter ,, it outputs public

parameters %%. Here %% includes a group 8 of order 9 and it’s two generators

3, ℎ. The message space - and random space . are Z9, and commitment space

& is 8.

2. &'(()! ((, /) → 0. On inputting of a message (∈ Z9 and a random number

/
$←− Z9, it outputs a commitment 0 ← 3(ℎ/ .

3. *%#+(0, / ,() → 1/0. On inputting of a commitment 0, a random number / and

a message (, it outputs 1 if 0 = 3(ℎ/ and 0 otherwise.

Ȇ

ҳ
ࢇ ݽ

σ

Ᏸ
Ȇ

ŏ
Ţ
ŵ ŪŰ

ůŢ ŭ ġńũŦůŨŤũ Ū ġŖ
ůŪ
ŷŦ

ųŴ
Ū ŵ
ź

DOI:10.6814/NCCU202201524

9 2.2. Public-Key Encryption

2.2 Public-Key Encryption

Public-Key Encryption consists of three algorithms ("#!$%,;#<8#+, =+0/<%!,>#0/<%!):

• "#!$%(,) → %%. On inputting of a security parameter ,, it outputs public

parameters %%. Here %% also consists of message space - and ciphertext space

&.

• ;#<8#+(%%) → (%? , @?). On inputting of public parameters %%, it outputs a

pair of public/private keys (%? , @?).

• =+0/<%! (%? ,() → 0(. On inputting of a public key %? , message (, the

algorithm outputs a ciphertext 0(of (under %? .

• >#0/<%! (@? , 0() → (/⊥. On inputting of a secret key @? , a ciphtertext 0(, the

algorithm outputs a plaintext message(or a special symbol⊥ denotes decryption

fail.

Definition 2.4 (Correctness of Public-Key Encryption). For all %% ← "#!$%(,),
(%? , @?) ← ;#<8#+(%%), and (∈ - ,

Pr[>#0/<%! (@? , =+0/<%! (%? ,()) = (] = 1.

Definition 2.5 (IND-CPA). For a probabilistic polynomial time adversary A, a Public-

Key Encryption scheme satisfies indistinguishability under chosen plaintext attack (IND-

CPA) if A’s advantage over the following experiment is negligible.

Experiment EAB>−&C5

1 : %% ← "#!$%(,)

2 : (%? , @?) ← ;#<8#+(%%)

3 : ((0,(1) ← A(%?)

4 : 4
$←− {0, 1}

5 : 0 ← =+0/<%! (%? ,(!)

6 : 4′ ← A(%? , 0)

7 : return 4′ = 4

Ȇ

ҳ
ࢇ ݽ

σ

Ᏸ
Ȇ

ŏ
Ţ
ŵ ŪŰ

ůŢ ŭ ġńũŦůŨŤũ Ū ġŖ
ůŪ
ŷŦ

ųŴ
Ū ŵ
ź

DOI:10.6814/NCCU202201524

2. Preliminaries 10

We define A’s advantage over EAB>−&C5 as follows,

526AB>−&C5A (,) :=
!!!!Pr[EAB>−&C5 = 1] − 1

2

!!!! .

2.3 Threshold Cryptosystem without a Trusted Party

Informally, in threshold cryptosystems [Ped91], a secret key is split among + members,

and a ciphertext can only be decrypted if more than ! members (1 ≤ ! ≤ +) cooperate.

In particular, if the process of selection and distribution of a secret key can be done

without assistance from a trusted party, then this threshold cryptosystem is further called

threshold cryptosystem without a trusted party.

Formally, a threshold cryptosystem without a trusted party consists of six algorithms

("#!$%,8#+C; ,8#+"ℎD/#2"; , =+0/<%!,>#0/<%!,&'(4)+#"ℎD/#):

• "#!$%(,) → %%. On inputting of a security parameter ,, it outputs public

parameters %%. Here, the threshold value ! is implicitly contained in %%.

• 8#+C; (%%) → %? , {%?1, %?2, · · · , %?+}. On inputting of the public parameters

%%, each member of the group generates his or her share of the public key %?)
where) ∈ {1, 2, · · · , +} and then broadcasts it to other users. After receiving all

other’s shares, each member can calculate and output the same public key %? .

• 8#+"?"ℎD/#(%%, %?), %?) → @?). On inputting of the public parameters %%, a

share of public key %?), and the public key %? , each member of the group outputs

his or her share of the secret key @?).

• =+0/<%! (%? ,() → 0. On inputting of the public key %? and the message (, it

outputs the ciphertext 0 of the message.

• >#0/<%!"ℎD/#(@?), 0) → @ℎ). On inputting of a share of the secret key @?) and

the ciphertext 0, it outputs a share of the message @ℎ) of member).

• &'(4)+#"ℎD/#(@ℎ1, @ℎ2, · · · , @ℎ E) → (/⊥. On inputting of E shares of the

message (for some E ≥ !, it outputs the message (of the ciphertext 0, otherwise

it outputs ⊥ indicating decryption fail.

Ȇ

ҳ
ࢇ ݽ

σ

Ᏸ
Ȇ

ŏ
Ţ
ŵ ŪŰ

ůŢ ŭ ġńũŦůŨŤũ Ū ġŖ
ůŪ
ŷŦ

ųŴ
Ū ŵ
ź

DOI:10.6814/NCCU202201524

11 2.4. Additive Homomorphic Encryption

2.4 Additive Homomorphic Encryption

Additive homomorphic encryption is a cryptosystem that permits the user to perform

additive computation in the form of a ciphertext. Formally, additive homomorphic

encryption consists of five algorithms ("#!$%,;#<8#+, =+0/<%!,
>#0/<%!, 522):

• "#!$%(,) → %%. On inputting of the security parameters ,, it outputs public

parameters %%.

• ;#<8#+(%%) → (%? , @?). On inputting of the public parameters %%, it outputs

a pair of public/private keys (%? , @?).

• =+0/<%! (%? ,() → 0. On inputting of a public key %? and a message (, it

outputs a ciphertext 0 of the message (.

• >#0/<%! (@? , 0) → (/⊥. On inputting of a secret key @? and a ciphertext

0, output the origin message (of ciphertext 0 or a special symbol ⊥ denotes

decryption fail.

• 522 (01, 02) → 01+2. On inputting of two ciphertext 01, 02 related to the

same public key %? , it outputs a ciphertext 01+2 such that >#0/<%! (@? , 01+2) =
>#0/<%! (@? , 01) + >#0/<%! (@? , 02).

2.5 Digital Signature

Digital signature consists of three algorithms ("#!$%,;#<8#+, ")3+,F#/) G <):

• "#!$%(,) → %%. On inputting of a security parameter ,, it outputs public

parameters %%. Here %% also includes message space - and signature space Σ.

• ;#<8#+(%%) → (%? , @?). On inputting of a security parameter ,, the key

generation algorithm returns a public/secret key pair (%? , @?).

Ȇ

ҳ
ࢇ ݽ

σ

Ᏸ
Ȇ

ŏ
Ţ
ŵ ŪŰ

ůŢ ŭ ġńũŦůŨŤũ Ū ġŖ
ůŪ
ŷŦ

ųŴ
Ū ŵ
ź

DOI:10.6814/NCCU202201524

2. Preliminaries 12

• ")3+(@? ,() → (H(). On inputting of a secret key @? and a message (, the

signing algorithm returns a digital signature H(of the message (under @? .

• F#/) G <(%? ,(,H() → 1/0. On inputting of a public key %? , a message (and a

signature H(, the verify algorithm returns 1 if H(is a valid signature of (under

@? and returns 0 otherwise.

Definition 2.6 (Correctness of Digital Signature). For all %% ← "#!$%(,), (%? , @?) ←
;#<8#+(%%), and (∈ - ,

Pr[F#/) G <(%? ,(, ")3+(@? ,()) = 1] = 1.

Definition 2.7 (EUF-CMA). For a probabilistic polynomial time adversaryA, a Digital

Signature scheme satisfies existential unforgeability under the chosen message attacks

(EUF-CMA) if A’s advantage over the following experiment is negligible.

Experiment E=IJ−&-5

1 : %% ← "#!$%(,)

2 : (%? , @?) ← ;#<8#+(%%)

3 : A queries for the signatures of Q = {(1,(2, · · · ,("}

4 : ((∗,H∗) ← A(%?)

5 : return F#/) G <(%? ,(∗,H∗) = 1 ∧ (∗ ∉ Q

We define A’s advantage over E=IJ−&-5 as follows,

526AB>−&C5A (,) := Pr[E=IJ−&-5 = 1] .

2.6 Zero-knowledge Proofs

For a language K := {L | ∃M s.t. .(L,M) = 1}, whereM is a witness of L, zero-knowledge

proofs allow a prover who possesses M to prove L ∈ K without leaking any additional

knowledge about M. In particular, a zero-knowledge proof scheme must satisfies the

following properties:

Ȇ

ҳ
ࢇ ݽ

σ

Ᏸ
Ȇ

ŏ
Ţ
ŵ ŪŰ

ůŢ ŭ ġńũŦůŨŤũ Ū ġŖ
ůŪ
ŷŦ

ųŴ
Ū ŵ
ź

DOI:10.6814/NCCU202201524

13 2.6. Zero-knowledge Proofs

1. &'(%N#!#+#@@: If a statement L ∈ K, then the prover must succeed in convincing

the verifier.

2. "'$+2+#@@: If a statement L ∉ K, then the prover must fail to convince the verifier.

3. O#/'-?+'MN#23#: Besides the correctness of a statement, the process must not

reveal any additional information.

Σ-protocols [CG15; Kra03] can be regarded as interactive zero-knowledge proofs

with three phases: &'(()!(#+!, &ℎDNN#+3#, and .#@%'+@#, interacting between a

prover C and a verifier F .

Let 8 be a multiplicative cyclic group with generator 3, the following we introduce

a flow of a Σ-protocol that proves the possession of L ∈ Z9 such that < = 3L:

1. &'(()!(#+!: C randomly chooses / ∈ Z9 and calculate P = 3/ . Afterward, C

sends P to F .

2. &ℎDNN#+3#: F chooses a random 0 ∈ Z9 and send 0 to C as a challenge.

3. .#@%'+@#: C calculates a response @ = / − 0L mod % and sends the response to

F .

4. F verifies the response by validating whether <03@ is equal to P , if so, outputs 1.

Otherwise, F outputs 0.

Here we note that by using the Fiat-Shamir transform [FS86] (i.e., using the hash of

commitment produced by C as a challenge, without the interaction with F), the above

protocol can become a non-interactive protocol.

Ȇ

ҳ
ࢇ ݽ

σ

Ᏸ
Ȇ

ŏ
Ţ
ŵ ŪŰ

ůŢ ŭ ġńũŦůŨŤũ Ū ġŖ
ůŪ
ŷŦ

ųŴ
Ū ŵ
ź

DOI:10.6814/NCCU202201524

Ȇ

ҳ
ࢇ ݽ

σ

Ᏸ
Ȇ

ŏ
Ţ
ŵ ŪŰ

ůŢ ŭ ġńũŦůŨŤũ Ū ġŖ
ůŪ
ŷŦ

ųŴ
Ū ŵ
ź

DOI:10.6814/NCCU202201524

3
Confidential Blockchain

Payment System with
Regulation

3.1 System Description

To reach our goal of protecting user privacy while being regulated, we introduce a novel

confidential blockchain payment system with regulation. As shown in Fig. 3.1, we

focus on distributing the power of regulators and separating the role of regulators and

validators. The description of each entity is as follows:

• Users: Users have their own ledger public keys and secret keys. They can send

and receive transactions via their keys. The balance of each user is encrypted by

the regulators’ public key as well as their own public keys.

• Validators: Validators are entities for validating each transaction, but they only

validate the correctness of a transaction instead of its legitimacy. Validators may

also initiate a transaction. In this system, we intentionally separate the role of

regulators from validators so that even without regulators, the system can still

function like a normal blockchain payment system. Actually, validators can be

regarded as miners of blockchains like Bitcoin and Ethereum.

• Regulators: Regulators are special nodes on the system who are capable of

checking the legitimacy of certain transactions. They cannot be the sender or

receiver of a transaction. The regulators share one common public key, and the

corresponding secret key is thresholdized and split between each regulator.

• Identity Authority: Identity authority is in charge of linking a user’s public key to

15

Ȇ

ҳ
ࢇ ݽ

σ

Ᏸ
Ȇ

ŏ
Ţ
ŵ ŪŰ

ůŢ ŭ ġńũŦůŨŤũ Ū ġŖ
ůŪ
ŷŦ

ųŴ
Ū ŵ
ź

DOI:10.6814/NCCU202201524

3. Confidential Blockchain Payment System with Regulation 16

his real identity. It can also send a transaction to adjust user’s balance if a user

deposits assets onto the blockchain. The identity authority essentially works as

a bridge between any data on-chain and off-chain. It can be a commercial bank

that holds a user’s identity and assets in real life. Note that the identity authority

can only know the amount of a transaction initiated or received by it, that is, for a

deposit or withdrawal and can not see any other transaction’s amount on chain.

Note that in the concrete construction of the system, the public key is required to be

additive homomorphic in order to correctly update the balance of both parties of a

transaction.

Figure 3.1: The description of the proposed systems

The workflow of our system can be simplified as follows: Depending on the security

parameter, the size of the regulators + is defined. The system also define a threshold

number ! where ! ≤ +. The threshold ! decides the minimum number of regulators that

need to cooperate together in order to decrypt one transaction. The higher the number

Ȇ

ҳ
ࢇ ݽ

σ

Ᏸ
Ȇ

ŏ
Ţ
ŵ ŪŰ

ůŢ ŭ ġńũŦůŨŤũ Ū ġŖ
ůŪ
ŷŦ

ųŴ
Ū ŵ
ź

DOI:10.6814/NCCU202201524

17 3.1. System Description

is, the more difficult it is for the regulators to decrypt a transaction. Thus preventing

the regulators from arbitrarily decrypting any transactions. Our system uses ElGamal

encryption with threshold private keys [DF89] as it is easy to construct an additive

homomorphic ElGamal encryption for our needs. As a special entity on the blockchain,

the regulators first generate the shared regulator public key, then they calculate each

one’s own private key based on ! and the public key. Part of the transaction and user’s

balance will be encrypted by the regulators’ key for regulatory purpose.

To link an account to its real identity, the system sets up a public key pair for the

identity authority. Each user needs to register with the identity authority using their

personal information to acquire their public key and certificate on the blockchain system.

The certificate will be included in every transaction and checked by the validator using

the public key of identity authority. The identity authority can also send a special

transaction to the blockchain to adjust a user’s balance if the user deposit assets into

the blockchain. If a user want to withdraw assets out of the blockchain, he can send a

transaction to the identity authority with the amount he wants to withdraw.

Each user’s balance is stored as two copies on the blockchain, one encrypted by the

regulators’ public key and another encrypted by his own public key. We do so in order to

preserve privacy and allow regulation. To initialte a transaction, the user first encrypts

the transaction amount by the regulators’ public key. In order for the recipient to see the

amount, user also needs to encrypts the transaction amount with recipient’s public key.

In addition, the user needs to encrypt the amount with his own public key so that his

balance can be correctly updated.

Since there are several ciphertexts inside a transaction, the transaction also needs

to include zero-knowledge proofs for the validators to check the correctness of those

ciphertexts. After generating the transaction, the user then signs the transaction with his

private key and broadcasts it on the network. On receiving a transaction, the validators

validate the transaction by checking its zero-knowledge proofs, signature, and certificate

before appending it to the blockchain. Since we encrypt both the transaction amount and

the balance, we rely on the additive homomorphic property of our encryption scheme

to correctly update the balance.

Ȇ

ҳ
ࢇ ݽ

σ

Ᏸ
Ȇ

ŏ
Ţ
ŵ ŪŰ

ůŢ ŭ ġńũŦůŨŤũ Ū ġŖ
ůŪ
ŷŦ

ųŴ
Ū ŵ
ź

DOI:10.6814/NCCU202201524

3. Confidential Blockchain Payment System with Regulation 18

When a regulator wants to decrypt a transaction, he sends the transaction to other

regulators with the reasons it needs to be decrypted. If a regulator agrees, he then

generates a decryption share of the transaction using his own secret key and sends the

decryption share to other regulators. After gathering more than ! decryption shares of

the transaction, the regulators can then decrypt the transaction. The process of collecting

decryption shares can be analogous to a voting process between the regulators. With

the voting process, we can prevent the regulators from arbitrarily decrypting every

transaction.

3.2 System Model

The proposed system consists of seven algorithms ("#!$%, A2"#!$%, .#3"#!$%,

I@/.#3)@!#/ , "#+2,FDN)2D!#, .#6#DN,>#%'@)!,Q)!ℎ2/DM), which are described as

follows.

• "#!$%(,) → %%. On inputting a security parameter ,, "#!$% algorithm outputs

public parameters %%.

• A2"#!$%(%%) → (%?)2 , @?)2). On inputting the public parameters %%, A2"#!$%

returns a key pair %?)2 , @?)2 of the identity authority.

• .#3"#!$%(%%, +, !) → (%?/#3, {@?/#31 , @?/#32 , · · · , @?/#3"}). On inputting the

public parameters %%, the group size of regulators +, and the intended threshold

number of the system !, .#3"#!$% returns the public key of regulators %?/#3 and

the thresholdized private keys {@?/#31 , @?/#32 , · · · , @?/#3"}.

• I@/.#3)@!#/ (%%, %?)2 , @?)2 , $@/ A>)) → (%?$@/# , @?$@/# , 0#/!$@/#). On inputting

the public parameters %%, the key pair of the identity authority (%?)2 , @?)2), and the

user identity $@/ A> required by the system,I@/.#3)@!#/ returns a public/private

key pair of the user, (%?$@/# , @?$@/#) and the corresponding certificate 0#/!$@/#
generated by the identity authority. Note that this is an interactive algorithm

between user and identity authority, and the identity authority only sees the

certificate of a user but not the key pair.

Ȇ

ҳ
ࢇ ݽ

σ

Ᏸ
Ȇ

ŏ
Ţ
ŵ ŪŰ

ůŢ ŭ ġńũŦůŨŤũ Ū ġŖ
ůŪ
ŷŦ

ųŴ
Ū ŵ
ź

DOI:10.6814/NCCU202201524

19 3.3. Security Model

• "#+2 (%%, %?$@/# , @?$@/# , %?$@/ $, 6DN, 0#/!$@/#) → (!L,H!L). On inputting the

public parameters %%, the public/private key pair (%?$@/# , @?$@/#) of the sender, the

receiver’s public key %?$@/ $, a transaction amount 6DN, and the certificate 0#/!$@/#
of the sender, "#+2 outputs a transaction !L and a corresponding signature H!L
generated by the sender.

• FDN)2D!#(!L) → 1/0. On inputting a transaction,FDN)2D!# output 1 if !L is valid;

otherwise, it outputs 0.

• .#6#DN (%%, !L, {@?/#3# , @?/#3 $, · · · , @?/#3% }) → 6DN/⊥. On inputting the public

parameters %%, a transaction !L, and a set of regulators’ keys, .#6#DN returns the

original amount 6DN of the transaction or ⊥ indicates failure.

• >#%'@)! (%%, %?)2 , @?)2 , %?$@/# , 6DN) → (!L2#%,H!L&'(). On inputting the public

parameters %%, the public key and secret key of identity authority, %?)2 , @?)2 , a

user’s public key %?$@/# and a transaction amount 6DN, >#%'@)! returns a special

deposit transaction !L2#% and a corresponding signature H!L&'(generated by the

identity authority.

• Q)!ℎ2/DM(%%, %?$@/# , @?$@/# , %?)2 , 6DN, 0#/!$@/#) → (!LM)! ,H!L)#*). Q)!ℎ2/DM

algorithm is the same as "#+2 algorithm except the receiver is set to the identity

authority.

3.3 Security Model

For our regulated confidential payment system, it should provide 5$!ℎ#+!)0)!<,

&'+ G)2#+!)DN)!<, and 7DND+0# as other payment systems. 5$!ℎ#+!)0)!< requires

that the sender of a transaction must own the account (knows the private key of the

sender’s account), nobody else is capable of making a transaction from this account.

&'+ G)2#+!)DN)!< requires that besides the sender, receiver, and regulators, no one can

obtain any information about the hidden amount of a confidential transaction. 7DND+0#

requires that the balance of sender and receiver should be correctly updated with the

Ȇ

ҳ
ࢇ ݽ

σ

Ᏸ
Ȇ

ŏ
Ţ
ŵ ŪŰ

ůŢ ŭ ġńũŦůŨŤũ Ū ġŖ
ůŪ
ŷŦ

ųŴ
Ū ŵ
ź

DOI:10.6814/NCCU202201524

3. Confidential Blockchain Payment System with Regulation 20

transaction amount. In addition, we further consider the &'+@)@!#+!5('$+! property

in the proposed system. More concretely, since the transaction amount will be encrypted

by regulators’ public key, sender’s public key and receiver’s public key, we need this

property to ensure the transaction amount should be consistent when viewed by a sender,

receiver, or regulators.

We formally define the properties by the following games interacted between a

challenger C, an adversary A. The adversary A can send C with following queries

include I@/.#3)@!#/ , "#+2, and .#6#DN. After getting the queries, C checks the

formality and forwards the queries to an oracle O&7C of the payment system. Here,

O&7C is initialized by C, and O&7C maintains a ledger followed by the system and

updates it correspondingly with the queries from A. Note that A cannot acquire the

private inputs of a transaction. A can only query .#6#DN to reveal the amount of a

transaction sent by or sent to a user created by A with I@/.#3)@!#/ and reveal the

balance of a user created by A. The .#6#DN query reveals the amount or balance

encrypted with the regulators’ key, which is stored on the ledger.

Game - Authenticity:

• Initialization: C initializes an oracle O&7C which maintains a ledger K and follows

the system with different queries. O&7C provides A with the view of K and also

maintains a user listI that is created by A withI@/.#3)@!#/ queries.

• Queries: A adaptively sends queries to C who then forwards the queries to O&7C

if they pass the formality test. O&7C then updates the ledger corresponding to

different queries and returns the result to C. Finally, C forwards the result to the

A.

• Output: A outputs a transaction !L′ where the sender of !L′ is denoted by "′. We

say A wins the game if FDN)2D!#(!L′) = 1 and "′ ∉ I.

The advantage of A in winning the above game is defined as

5265$!&7C",A(,) := Pr[FDN)2D!#(!L′) = 1 ∧ "′ ∉ I] .

Ȇ

ҳ
ࢇ ݽ

σ

Ᏸ
Ȇ

ŏ
Ţ
ŵ ŪŰ

ůŢ ŭ ġńũŦůŨŤũ Ū ġŖ
ůŪ
ŷŦ

ųŴ
Ū ŵ
ź

DOI:10.6814/NCCU202201524

21 3.3. Security Model

Definition 3.1 (Authenticity). A confidential blockchain payment system satisfies

authenticity if, for any PPT A, 5265$!&7C",A(,) is negligible.

Game - Confidentiality:

• Initialization: C randomly selects 4 ∈ {0, 1}. Then, he/she also initializes an

oracle O&7C as the previous game.

• Queries: A can submit queries to C freely, but each time A submit "#+2 query

to C, A also provides the value 6 inside the transaction to C. Upon receiving a

"#+2 query from A, C creates a transaction !L′ where the sender and receiver are

not in I. The value in !L′ is set to 6 if 4 = 0 or a random number / if 4 = 1.

Afterward, C returns !L′ to A.

• Output: A outputs a bit 4′ ∈ {0, 1}. We say A wins the game if 4′ = 4.

The advantage of A in winning the above game is defined as

526&'+&7C",A(,) := Pr[4′ = 4] − 1
2 .

Definition 3.2 (Confidentiality). A confidential blockchain payment system satisfies

confidentiality if, for any PPT A, 526&'+&7C",A(,) is negligible.

Game - Balance:

• Initialization, Queries: These two phases are the same as phases in the

Authenticity game.

• Output: A outputs a transaction !L′. Let 6DN be the transaction amount in !L′, "

be the sender, and . be the receiver. In addition, let "’s and .’s balance difference

before and after the transaction be "2) G and .2) G , respectively. We say A wins the

game if FDN)2D!#(!L′) = 1 and the equation −"2) G = .2) G = 6DN does not hold.

The advantage of A in winning the above game is defined as

5267DN&7C",A(,) := Pr[FDN)2D!#(!L′) = 1 ∧ −"2) G = .2) G = 6DN does not hold] .

Ȇ

ҳ
ࢇ ݽ

σ

Ᏸ
Ȇ

ŏ
Ţ
ŵ ŪŰ

ůŢ ŭ ġńũŦůŨŤũ Ū ġŖ
ůŪ
ŷŦ

ųŴ
Ū ŵ
ź

DOI:10.6814/NCCU202201524

3. Confidential Blockchain Payment System with Regulation 22

Definition 3.3 (Balance). A confidential blockchain payment system satisfies balance if,

for any PPT A, 5267DN&7C",A(,) is negligible.

Game - ConsistentAmount:

• Initialization, Queries: These two phases are the same as phases in the

Authenticity game.

• Output: A outputs a transaction !L′. Let 6D(,", 6D(',., and 6D(',/#3 be the view

of amount for sender, receiver, and regulators. We say A wins the game if

FDN)2D!#(!L′) = 1 and 6D(," = 6D(',. = 6D(',/#3 does not hold.

The advantage of A in winning the above game is defined as

526&'+5('&7C",A(,) := Pr[FDN)2D!#(!L′) = 1 ∧ 6D(," = 6D(',. = 6D(',/#3 does not hold] .

Definition 3.4 (ConsistentAmount). A confidential blockchain payment system satisfies

consistentAmount if, for any PPT A, 526&'+5('&7C",A(,) is negligible.

Ȇ

ҳ
ࢇ ݽ

σ

Ᏸ
Ȇ

ŏ
Ţ
ŵ ŪŰ

ůŢ ŭ ġńũŦůŨŤũ Ū ġŖ
ůŪ
ŷŦ

ųŴ
Ū ŵ
ź

DOI:10.6814/NCCU202201524

4 The Proposed System

In this chapter, we describe the details of the proposed system.

Setup. With the input of a security parameter ,, this algorithm chooses a generator 3 of

a group 8 with prime order 9. Then, it sets the public parameter as %% = (9, 3,8).

IdSetup. The identity authority randomly chooses private key @?)2
$←− Z9 and sets public

key as %?)2 = 3@?#& .

RegSetup. The regulators invoke this algorithm to get their shared public key and their

own thresholdized private keys. Let + be the number of regulators, and ! ≤ + be the

threshold size. The regulators are described as . = {.1, .2, · · · , .+}. Let & ((, /)
denote a commitment on (∈ {0, 1}∗ with a random / . The regulators generate a shared

public key %?/#3 as follows:

1. For each .) ∈ ., .) randomly chooses L)
$←− Z9 and computes ℎ) = 3L# . Afterward,

.) chooses another random /) ∈ Z9 and generates a commitment &) = & (ℎ), /)).
Finally .) broadcasts (&), /), ℎ)) to all members belong to ..

2. After all members in . have broadcast their commitments, each .) opens all

commitments {&1,&2, · · · ,&+}.

3. The shared public key %?/#3 is set as %?/#3 =
∏+
)=1 ℎ) = 3

∑"
#=1 L# .

Although all regulators have obtained the public key %?/#3, they cannot compute

the corresponding private key @?/#3 =
∑+
)=1 L) unless they collude with each other.

Therefore, each .) in . has to run the following procedure to obtain his/her thresholdized

private key:

23

Ȇ

ҳ
ࢇ ݽ

σ

Ᏸ
Ȇ

ŏ
Ţ
ŵ ŪŰ

ůŢ ŭ ġńũŦůŨŤũ Ū ġŖ
ůŪ
ŷŦ

ųŴ
Ū ŵ
ź

DOI:10.6814/NCCU202201524

4. The Proposed System 24

1. .) randomly generates a !−1 degree polynomial G) (R) = G),0+ G),1R+· · ·+ G),!−1R!−1

with G),0 = L) (i.e., G) (0) = L)).

2. .) calculates J), E = 3 G#, $ for E = 0, · · · , ! − 1 and broadcast (J),1, · · · , J),!−1) to

other regulators. Here we note that J),0 = 3 G#,0 = 3L# = ℎ) is already known by

other members.

3. .) sends @), E = G) (E) to .E for E = 1, · · · , + via a secure channel.

4. .) verifies @ E ,) sent from .E by checking 3@ $,# ?=
∏!−1
ℓ=0 J

)ℓ

E ,ℓ. If failed, .) publish

@ E ,) and terminates.

5. Finally, .) computes his or her thresholdized private key @?/#3# =
∑+
E=1 @ E ,). Then,

if more than ! members cooperate, they can decrypt a ciphertext encrypted with

%?/#3.

UsrRegister. In this system, each user has to register to the identity authority before the

transaction for accountability purposes. Note that the identity requirement of a user can

be different depending on the system implementation.

The initial balance of every user is set to zero and encrypted by the regulators’

public key and the user’s own public key. We use additive homomorphic ElGamal as

the encryption scheme, so the balance can be correctly updated while encrypted. We

use the certified key generation protocol [AFM+14] in our system; that is, each user’s

public key has to be certified by the identity authority. The protocol runs between user

$@/ and the identity authority)2 as follows:

1. $@/ randomly chooses ? in [0, 9 − 1], computes R = 3? and sends to)2. $@/ also

sends his or her identity information required by the system to)2.

2. After receiving the identity information and R from $@/ .)2 first verifies the

identity information. If failed, abort the protocol, else)2 picks random ?′ in

[0, 9 − 1] and computes 0#/!$@/ = R · 3?
′, L̄ = ?′ + 0#/!$@/ · @?)2 . Afterward,)2

sends (0#/!$@/ , L̄) to $@/. Note that when using in elliptic curve setting, we need

an additional function to map 0#/! from a point on elliptic curve to its underlying

Ȇ

ҳ
ࢇ ݽ

σ

Ᏸ
Ȇ

ŏ
Ţ
ŵ ŪŰ

ůŢ ŭ ġńũŦůŨŤũ Ū ġŖ
ůŪ
ŷŦ

ųŴ
Ū ŵ
ź

DOI:10.6814/NCCU202201524

25 4. The Proposed System

finite field when calculating L̄. It can be simply implemented as an encoding

function that map an element of 8 to a positive number.

3. After receiving (0#/!$@/ , L̄) from)2, $@/ sets his or her private key as @?$@/ = L̄+ ?
and public key as %?$@/ = 3@?,-. . Here, anyone can easily verify the correctness

of the public key by using 0#/!$@/ as follows:

%?$@/ = 3@?,-. = 3?+?
′+0#/!,-. ·@?#&

= 3?+?
′ · 30#/!,-. ·@?#&

= 0#/!$@/ · %?)20#/!,-. .

We also note that $@/’s public key %?$@/ and certificate 0#/!$@/ should be included

in every transaction such that anyone can verify them.

4. The balance of $@/ is set to zero and encrypted with the regulators’ public key

%?/#3 and $@/’s own public key %?$@/ with random numbers /)+)!. and /)+)!, . The

random number used here will be updated when the user receives or sends a new

transaction. Finally, the initial balances after encryption are as follows:

/#+0-4DN$@/ = (3/#"#*. , 30 · %?/#3/#"#*.).

$#+0-4DN$@/ = (3/#"#*, , 30 · %?$@//#"#*,).

Send. This algorithm enables a user to send a transaction without revealing the amount.

The sender and receiver are still visible for the purpose of regulation. To achieve this

requirement, we use ElGamal encryption to encrypt the transaction amount and the

balance of every user. Since ElGamal encryption is additive homomorphic, we are able

to correctly maintain the balance of each account even if the transaction is hidden. In

addition, to ensure a sender follows the protocol during generating a transaction, the

sender must generate zero-knowledge proofs to prove the correctness of a transaction.

Let sender $@/)’s encrypted balances be /#+0-4DN$@/# = (3/#. , 34DN,-.# · %?/#3/#.)
and $#+0-4DN$@/# = (3/#, , 34DN,-.# · %?$@/# /#,). Let receiver $@/ E ’s encrypted balances be

Ȇ

ҳ
ࢇ ݽ

σ

Ᏸ
Ȇ

ŏ
Ţ
ŵ ŪŰ

ůŢ ŭ ġńũŦůŨŤũ Ū ġŖ
ůŪ
ŷŦ

ųŴ
Ū ŵ
ź

DOI:10.6814/NCCU202201524

4. The Proposed System 26

/#+0-4DN$@/ $ = (3/ $. , 34DN,-. $ · %?/#3/ $.) and $#+0-4DN$@/ $ = (3/ $, , 34DN,-. $ · %?$@/ $ / $,).
Here, 4DN$@/# and 4DN$@/ $ are the balances of $@/) and $@/ E respectively. The process of

sending a transaction is as follows:

1. The sender $@/) first encrypts the amount 6DN with the regulator’s public key

%?/#3, $@/)’s own public key %?$@/# and $@/ E ’s public key %?$@/ $. $@/) randomly

chooses /1, /2, /3
$←− [0, 9 − 1] and calculates

#/#3 = (3/1 , 36DN ·%?/#3/1); #$@/# = (3/2 , 36DN ·%?$@/# /2); #$@/ $ = (3/3 , 36DN ·%?$@/ $ /3).

Here we include #/#3 to a transaction so that the regulator can retrieve the

transaction amount and the balance of a user if necessary. We also include

#$@/# and #$@/ $ in a transaction so both $@/) and $@/ E and view the transaction

amount and their latest balance on chain and generate the correct zero-knowledge

proofs based on it.

2. $@/) needs to prove that 6DNs encrypted in #/#3, #$@/# and #$@/ $ are the same and

are using the correct public keys. Formally, $@/) generate a proof T#9 for the

statement (#/#3, #$@/# , #$@/ $, 3, %?/#3, %?$@/# , %?$@/ $) ∈ K#9, where the language

K#9 is defined as:

K#9 := {(#/#3, #$@/# , #$@/ $, 3, %?/#3, %?$@/# , %?$@/ $) |

∃(/1, /2, /3, 6DN) s.t #/#3 = (3/1 , 36DN · %?/#3/1)∧

#$@/# = (3/2 , 36DN · %?$@/# /2) ∧ #$@/ $ = (3/3 , 36DN · %?$@/ $ /3)}.

Sigma protocol for K#9.We can utilize sigma protocol to generate such proof:

(a) Generate random ?1, ?2, ?3, ?4
$←− [0, 9 − 1] and calculate

#1 = 3?1 , #2 = 3?4 · %??1
/#3,

#3 = 3?2 , #4 = 3?4 · %??2
$@/# ,

#5 = 3?3 , #6 = 3?4 · %??3
$@/ $.

Ȇ

ҳ
ࢇ ݽ

σ

Ᏸ
Ȇ

ŏ
Ţ
ŵ ŪŰ

ůŢ ŭ ġńũŦůŨŤũ Ū ġŖ
ůŪ
ŷŦ

ųŴ
Ū ŵ
ź

DOI:10.6814/NCCU202201524

27 4. The Proposed System

(b) Calculate challenge 0 using hash function ℎ as

0 = ℎ(3, %?/#3, %?$@/# , %?$@/ $, #1, #2, #3, #4, #5, #6).

(c) Generate response as

!1 = ?1 + 0/1, !2 = ?2 + 0/2, !3 = ?3 + 0/3, !4 = ?4 + 0 · 6DN .

(d) Set T#9 = (#1, #2, #3, #4, #5, #6, !1, !2, !3, !4).

Note that when encrypting using different public keys, it is safe to reuse the

random number in Elgamal encryption [BBS02]. That is, we can compress #/#3,

#$@/# , #$@/ $ as (3/1 , 36DN · %?/#3/1 , 36DN · %?$@/# /1 , 36DN · %?$@/ $ /1). T#9 generated with

sigma protocol can also be compressed as (#1, #2, #4, #6, !1, !4) where #1 = 3?1 ,

#2 = 3?4 ·%??1
/#3, #4 = 3?4 ·%??1

$@/# , #2 = 3?4 ·%??1
$@/ $ and !1 = ?1+0/1, !4 = ?1+0 ·6DN

3. $@/) needs to prove that the amount encrypted in #/#3, #$@/# , #$@/ $ are within the

range [0,(] where (is much smaller than the group size used in the modular

arithmetic. Since we have proved 6DNs across the three ciphertexts are the same,

it is sufficient to proof 6DN inside #/#3 is within the range. $@/) generate a proof

T/D+3# for the statement (3, %?/#3,(, #/#3) ∈ K/D+3# which is defined as follows:

K/D+3# = {(3, %?/#3,(, #/#3) |

∃/1, 6DN s.t. #/#3 = (3/1 , 36DN · %?/#3/1) ∧ 0 ≤ 6DN ≤ (}.

Range proof for K/D+3#. Here we utilized Bulletproof [BBB+18] range proof

protocol to generate a proof T/D+3# for K/D+3#. Bulletproof protocol can generate a

zero-knowledge range proof for a committed value using Pedersen commitment.

Since the second part of an Elgamal encryption ciphertext is in the same form of

a Pedersen commitment, that is, 36DN · %?/#3/1 in #/#3, we can generate a range

proof of 6DN with it. Note that in Bulletproof, we require the discrete logarithm

relation between 3, %?/#3 to be unknown to the prover for the soundness of the

proof to hold. Since the secret key of the regulator, @?/#3 where 3@?.'/ = %?/#3,

is thresholdized, only if all the regulators collude can they retrieve @?/#3. Hence

Ȇ

ҳ
ࢇ ݽ

σ

Ᏸ
Ȇ

ŏ
Ţ
ŵ ŪŰ

ůŢ ŭ ġńũŦůŨŤũ Ū ġŖ
ůŪ
ŷŦ

ųŴ
Ū ŵ
ź

DOI:10.6814/NCCU202201524

4. The Proposed System 28

it is safe to generate a range proof using #/#3. We refer the details of the proving

procedure to Section 4.2 of [BBB+18].

4. $@/) needs to generate a zero-knowledge proof T4DN to prove his encrypted balances

after the transaction is greater than or equal to 0. The encrypted balances can be

calculated by the validators on the blockchain using additive Homomorphism of

our Elgamal encryption scheme, where

/#+0-4DN′$@/# = 522 (/#+0-4DN$@/# , (#/#3)
−1)

= (3/#. , 34DN,-.# · %?/#3/#.) × (3−/1 , 3−6DN · %?/#3−/1)

= (3/#.−/1 , 34DN,-.#−6DN · %?/#3/#.−/1).

$#+0-4DN′$@/# = 522 ($#+0-4DN$@/# , (#$@/#)
−1)

= (3/#, , 34DN,-.# · %?$@/# /#,) × (3−/2 , 3−6DN · %?$@/#−/2)

= (3/#,−/2 , 34DN,-.#−6DN · %?$@/# /#,−/2).

Since we have proved that 6DNs in #/#3 and #$@/# are the same, and all of the

previous transactions also hold the same 6DNs when encrypting with different

public keys. It is sufficient to proof one of /#+0-4DN′$@/# and $#+0-4DN′$@/# is within

the range.

Intuitively, we can use the second part of /#+0-4DN′$@/# to generate a range proof

using Bulletproof like in T/D+3#. However, we don’t actually know the value of

random number /). in /#+0-4DN$@/# since it is derived from previous transactions,

and we need /). − /1 as a witness of the commitment when using Bulletproof.

To solve the problem, we first refresh the random number /), − /2 in

$#+0-4DN′$@/# to a newly selected /′
$←− [0, 9 − 1] and calculate $#+0-4DN′′$@/#

as (3/ ′, 34DN,-.#−6DN · %?$@/# /
′). Here we need to prove that 4DN$@/# remains

the same when refreshing the random number. We can achieve this with

the knowledge of @?$@/# . Formally, we generate a proof T4DN. for the

Ȇ

ҳ
ࢇ ݽ

σ

Ᏸ
Ȇ

ŏ
Ţ
ŵ ŪŰ

ůŢ ŭ ġńũŦůŨŤũ Ū ġŖ
ůŪ
ŷŦ

ųŴ
Ū ŵ
ź

DOI:10.6814/NCCU202201524

29 4. The Proposed System

statement ($#+0-4DN′$@/# , $#+0-4DN′′$@/# , 3, %?$@/#) ∈ K4DN. , where the language

K4DN. describes that the two ciphertexts $#+0-4DN′$@/# , $#+0-4DN
′′
$@/# can be

decrypted to the same value with the knowledge of @?$@/# .

Sigma protocol for K4DN. . Let U ,V denote 3/#,−/2 and 34DN,-.#−6DN · %?$@/# /#,−/2 in

$#+0-4DN′$@/# . U
′,V ′ denote 3/ ′ and 34DN,-.#−6DN · %?$@/# /

′ in $#+0-4DN′′$@/# . U/U′ =
3/#,−/2−/

′, V/V ′ = %?$@/#
/#,−/2−/ ′. We can then use the knowledge of @?$@/# to

proof that (U/U′)@?,-.# = V/V ′. Since that only if the values encrypted inside

$#+0-4DN′$@/# and $#+0-4DN$@/# are the same will the equation holds, the proof is

sufficient for K4DN. . The procedure of the proof are as follows:

(a) Generate random ?5
$←− [0, 9 − 1] and calculate #7 = (U/U′)?5 .

(b) Calculate challenge 0 using hash function ℎ as

0 = ℎ(U/U′,V/V ′, #7).

(c) Generate response as

!5 = ?5 + 0 · @?$@/# .

(d) Set T4DN. = (#7, !5).

5. Although now we have $#+0-4DN′′$@/# which the random number in it is known,

we still cannot directly generate a range proof with it since we know the discrete

logarithm relation between 3 and %?$@/# . To solve the problem, we can generate

a new Pedersen commitment with the same value and random number as in

$#+0-4DN′′$@/# using 3 and %?/#3. We set %04DN = 34DN,-.#−6DN · %?/#3/
′. Since

we do not know the logarithm relation between 3 and %?/#3, we are able to

generate a range proof from it. We again use sigma protocol to prove that the

value we commit and the random number we use are the same as $#+0-4DN′′$@/# .

Let $#+0-4DN′′$@/#2 denote the second part of $#+0-4DN′′$@/# . Formally, we generate

a proof T4DN% for the statement ($#+0-4DN′′$@/#2, %04DN , 3, %?$@/# , %?/#3) ∈ K4DN% ,
where the language K4DN% is defined as:

Ȇ

ҳ
ࢇ ݽ

σ

Ᏸ
Ȇ

ŏ
Ţ
ŵ ŪŰ

ůŢ ŭ ġńũŦůŨŤũ Ū ġŖ
ůŪ
ŷŦ

ųŴ
Ū ŵ
ź

DOI:10.6814/NCCU202201524

4. The Proposed System 30

K4DN% := {($#+0-4DN′′$@/#2, %04DN , 3, %?$@/# , %?/#3) |

∃(4DN$@/# − 6DN, /′) s.t.

$#+0-4DN′′$@/#2 = (34DN,-.#−6DN · %?$@/# /
′) ∧ %04DN = 34DN,-.#−6DN · %?/#3/

′}.

Sigma protocol for K4DN% . The processes for sigma protocol are as follows:

(a) Generate random ?6, ?7
$←− [0, 9 − 1] and calculate

#8 = 3?6 · %?$@/# ?7 , #9 = 3?6 · %?/#3?7 .

(b) Calculate challenge 0 using hash function ℎ as

0 = ℎ(#8, #9, 3, %?$@/# , %?/#3).

(c) Generate response as

!6 = ?6 + (4DN$@/# − 6DN) · 0, !7 = ?7 + /′ · 0.

(d) Set T4DN% = (#8, #9, !6, !7).

6. Finally, with proofs T4DN. and T4DN% , we can generate a range proof T4DN of 4DN$@/#−
6DN with commitment %04DN = 34DN,-.#−6DN · %?/#3/

′ using Bulletproof protocol.

7. $@/) generates a signature H for the transaction !L where

!L =(%?$@/# , %?$@/ $, #/#3, #$@/# , #$@/ $,

T#9, T/D+3#, $#+0-4DN′′$@/# , %04DN , T4DN. , T4DN% , T4DN , 0#/!$@/#).

and broadcast the signature H and !L to the blockchain.

Validate. After the validators receive a transaction, they use the algorithm to validate

the transaction. Although the transaction amount is encrypted, we can ensure the

correctness of the transaction by verifying the zero-knowledge proofs. We can also

update the balances of both sender and receiver by using the additive homomorphic

ElGamal encryption. The processes for a validator F to validate a transaction !L are as

follows:

Ȇ

ҳ
ࢇ ݽ

σ

Ᏸ
Ȇ

ŏ
Ţ
ŵ ŪŰ

ůŢ ŭ ġńũŦůŨŤũ Ū ġŖ
ůŪ
ŷŦ

ųŴ
Ū ŵ
ź

DOI:10.6814/NCCU202201524

31 4. The Proposed System

1. F first validates the signature H of the transaction with sender’s public key %?$@/# .

If failed, abort the algorithm.

2. F validates the certificate of the sender using the identity authority’s public key.

If failed, abort the algorithm.

3. F calculates the balance of sender and receiver, /#+0-4DN′$@/# , $#+0-4DN
′
$@/# and

/#+0-4DN′$@/ $, $#+0-4DN
′
$@/ $ as follows.

/#+0-4DN′$@/# = 522 (/#+0-4DN$@/# , (#/#3)
−1)

= (3/#. , 34DN,-.# · %?/#3/#.) × (3−/1 , 3−6DN · %?/#3−/1)

= (3/#.−/1 , 34DN,-.#−6DN · %?/#3/#.−/1).

$#+0-4DN′$@/# = 522 ($#+0-4DN$@/# , (#$@/#)
−1)

= (3/#, , 34DN,-.# · %?$@/# /#,) × (3−/2 , 3−6DN · %?$@/#−/2)

= (3/#,−/2 , 34DN,-.#−6DN · %?$@/# /#,−/2).

/#+0-4DN′$@/ $ = 522 (/#+0-4DN$@/ $, #/#3)

= (3/ $. , 34DN,-. $ · %?/#3/ $.) × (3/1 , 36DN · %?/#3/1)

= (3/ $. +/1 , 34DN,-. $+6DN · %?/#3/ $. +/1).

$#+0-4DN′$@/ $ = 522 ($#+0-4DN$@/ $, #$@/ $)

= (3/ $, , 34DN,-. $ · %?$@/ $ / $,) × (3/1 , 36DN · %?/#3/1)

= (3/ $,+/1 , 34DN,-. $+6DN · %?$@/ $ / $,+/1).

4. F validates the zero-knowledge proofs in the transaction. This process ensures

the correctness of the transaction. If failed, abort the algorithm.

Validate T#9. The processes of the validation for T#9 = (#1, #2, #3, #4, #5, #6, !1, !2, !3, !4)
are as follows.

Ȇ

ҳ
ࢇ ݽ

σ

Ᏸ
Ȇ

ŏ
Ţ
ŵ ŪŰ

ůŢ ŭ ġńũŦůŨŤũ Ū ġŖ
ůŪ
ŷŦ

ųŴ
Ū ŵ
ź

DOI:10.6814/NCCU202201524

4. The Proposed System 32

(a) Calculate challenge 0 using hash function ℎ as

0 = ℎ(3, %?/#3, %?$@/# , %?$@/ $, #1, #2, #3, #4, #5, #6).

(b) Check if

3!1
?= #1 · (3/1)0,

3!2
?= #3 · (3/2)0,

3!3
?= #5 · (3/3)0,

3!4 · (%?$@/#)!1
?= #2 · (36DN · (%?$@/#)/1)

0
,

3!4 · (%?$@/ $)!2
?= #4 · (36DN · (%?$@/ $)/2)

0
,

3!4 · (%?/#3)!3 ?= #6 · (36DN · (%?/#3)/3)
0
.

Note that validators can get (3/1),(3/2),(3/3),(36DN · (%?$@/#)/1),(36DN ·
%?$@/ $)/2),(36DN · (%?/#3)/3) in #/#3,#$@/# and #$@/ $.

Validate T/D+3#. Validators check the range proof following the Bulletproof

protocol. We again refer the details to Section 4.2 of [BBB+18].

Validate T4DN. . The processes of the validation for T4DN. = (#7, !5) are as follows.

(a) Use $#+0-4DN′$@/# = (3/#,−/2 , 34DN,-.#−6DN · %?$@/# /#,−/2) and $#+0-4DN′′$@/# =

(3/ ′, 34DN,-.#−6DN · %?$@/# /
′) to calculate U = 3/#,−/2/3/ ′ = 3/#,−/2−/

′ and

V = (34DN,-.#−6DN · %?$@/# /#,−/2)/(34DN,-.#−6DN · %?$@/# /
′) = %?$@/# /#,−/2−/

′
.

(b) Calculate challenge 0 using hash function ℎ as 0 = ℎ(U ,V , #7).

(c) Check if U!5 ?= #7 · V0.

Validate T4DN% . The processes of the validation for T4DN% = (#8, #9, !6, !7) using

$#+0-4DN′′$@/# = (3/ ′, 34DN,-.#−6DN · %?$@/# /
′) and %04DN = 34DN,-.#−6DN · %?/#3/

′ are as

follows:

(a) Calculate challenge 0 using hash function ℎ as 0 = ℎ(#8, #9, 3, %?$@/# , %?/#3).

Ȇ

ҳ
ࢇ ݽ

σ

Ᏸ
Ȇ

ŏ
Ţ
ŵ ŪŰ

ůŢ ŭ ġńũŦůŨŤũ Ū ġŖ
ůŪ
ŷŦ

ųŴ
Ū ŵ
ź

DOI:10.6814/NCCU202201524

33 4. The Proposed System

(b) Check if

3!6 · (%?$@/#)!7
?= #8 · (34DN,-.#−6DN · %?$@/# /

′)0,

3!6 · (%?/#3)!7 ?= #9 · (%04DN)0 .

Validate T4DN . Validators check the range proof T4DN following the Bulletproof

protocol.

The process of updating the blockchain is based on the underlying blockchain and can

be changed depending on different setups. Note that the validators do not have the power

to decrypt the transaction amount and the balances of the user. Thus they only check

the correctness of a transaction but not the legitimacy.

Reveal. The regulators use this algorithm to decrypt the amount of a transaction or the

balance of a certain user. Any of the regulators can initiate the process of decrypting a

transaction. The regulator who initiates it acts as the master of the process and sends a

decrypting request to other regulators. Once other regulators receive the request, they

may decide whether to decrypt the transaction/balance or not. For a regulator /#3(D@
who initiates the algorithm, the process is as follows:

1. /#3(D@ sends a request /#9$#@!2#0 for decryption and a transaction id !L)2 to all

regulators.

2. For a regulator /#3) who received the request, he or she retrieves the encrypted

amount of the transaction #/#3* 0 = (3/* 0 , 36DN* 0 · %?/#3/* 0) from the blockchain with

!L)2 .

3. If /#3) decides to participate in decrypting the transaction, he or she calculates

a share of the transaction !L"ℎD/#) = 3/* 0 ·@?.'/# , where @?/#3# is the private key

share of /#3). Then, he or she broadcasts (!L"ℎD/#),)) to other regulators via a

secure channel. Otherwise, /#3) broadcasts ⊥ via a secure channel.

4. After a regulator receives more than ! shares from other regulators, he or she

randomly selects ! shares from these shares to form a group ". Without loss

Ȇ

ҳ
ࢇ ݽ

σ

Ᏸ
Ȇ

ŏ
Ţ
ŵ ŪŰ

ůŢ ŭ ġńũŦůŨŤũ Ū ġŖ
ůŪ
ŷŦ

ųŴ
Ū ŵ
ź

DOI:10.6814/NCCU202201524

4. The Proposed System 34

of generality, let ? be one of the share indexes randomly chosen from ". The

regulator calculates

D+ = !L"ℎD/#

∏
E≠?
E∈"

$
$−%

? = 3
/* 0 ·@?.'/% ·

∏
E≠?
E∈"

$
$−%

.

5. The regulator calculates
∏!
+=1 D+ = 3

%?.'/
.* 0 and can thus retrieve 36DN* 0 by using

the second part of #/#3* 0 . That is, 36DN* 0 = (36DN* 0 · %?/#3/* 0) · (3%?.'/
.* 0)−1. Finally

the regulator calculates the discrete logarithm of 36DN* 0 to get the amount 6DN!L .

The regulators can decrypt the balance of a user by a similar process. Instead of a

transaction id, /#3(D@ sends the public key of a user to other regulators.

Deposit. The deposit algorithm are called by the identity authority after a user make a

deposit to it. After a user deposit some assets, the identity authority generate a special

transaction to adjust the user’s balance. The process of deposit are as follows:

1. The identity authority encrypts the amount 6DN corresponding to the user’s deposit

with the regulator’s public key %?/#3, and the user’s public key %?$@/# . Identity

authority randomly chooses /1, /2
$←− [0, 9 − 1] and calculates

#/#3 = (3/1 , 36DN · %?/#3/1); #$@/# = (3/2 , 36DN · %?$@/# /2).

2. As in "#+2 algorithm, the identity authority generate T#9 to prove that the values

encrypted in #/#3 and #$@/# are the same and are using the correct public keys.

3. Finally, the identity authority generate a special transaction !L2#% and signed the

transaction with it’s secret key where

!L2#% = (%?)2 , %?$@/# , #/#3, #$@/# , T#9).

and broadcast the signature H and !L2#% to the blockchain.

Ȇ

ҳ
ࢇ ݽ

σ

Ᏸ
Ȇ

ŏ
Ţ
ŵ ŪŰ

ůŢ ŭ ġńũŦůŨŤũ Ū ġŖ
ůŪ
ŷŦ

ųŴ
Ū ŵ
ź

DOI:10.6814/NCCU202201524

35 4. The Proposed System

Note that since the identity authority can create coins on chain based on a user’s deposit,

we don’t need to check the balance of the identity authority.

Withdraw. A user calls the withdraw algorithm if he wants to make a withdrawal from

the system. The withdraw transaction are the same as a normal transaction except the

receiver are set to the identity authority. After the withdrawal transaction are validated

and appended to the blockchain, a user can withdraw his assets from the identity

authority.

Ȇ

ҳ
ࢇ ݽ

σ

Ᏸ
Ȇ

ŏ
Ţ
ŵ ŪŰ

ůŢ ŭ ġńũŦůŨŤũ Ū ġŖ
ůŪ
ŷŦ

ųŴ
Ū ŵ
ź

DOI:10.6814/NCCU202201524

Ȇ

ҳ
ࢇ ݽ

σ

Ᏸ
Ȇ

ŏ
Ţ
ŵ ŪŰ

ůŢ ŭ ġńũŦůŨŤũ Ū ġŖ
ůŪ
ŷŦ

ųŴ
Ū ŵ
ź

DOI:10.6814/NCCU202201524

5 Security Analysis

In this chapter, we provide four security theorems to show that the proposed system

satisfies 5$!ℎ#+!)0)!<, &'+ G)2#+!)DN)!<, 7DND+0#, and &'+@)@!#+!5('$+!.

Theorem 5.1. The proposed system satisfies 5$!ℎ#+!)0)!< if the underlying signature

scheme is existentially unforgeable under the chosen message attacks.

Since we include a signature in every transaction, A breaks the unforgeability of

the underlying signature scheme if A successfully forge a signature that can pass the

validation.

Theorem 5.2. The proposed system satisfies &'+ G)2#+!)DN)!< if the underlying

threshold cryptosystem and the public-key encryption scheme are indistinguishable

under the chosen plaintext.

Let 9 be the total number of queries A sends to C, and A’s advantage in IND-CPA

experiments of the underlying public-key encryption scheme is W . The advantage of A
in Confidentiality game is at most 4 · 9 · W .

Theorem 5.3. The proposed system satisfies 7DND+0# if the underlying encryption

scheme is additive-homomorphic and the zero-knowledge proof scheme is sound.

Our scheme relies on homomorphic encryption to correctly update the balance.

Providing that the zero-knowledge proof scheme is sound, we can be sure if T/D+3#
is valid, the transaction amount is within the range that will not break the modular

arithmetic used in homomorphic encryption.

Theorem 5.4. The proposed system satisfies&'+@)@!#+!5('$+! if the underlying zero-

knowledge proof scheme is sound.

If the zero-knowledge proof scheme is sound, once we verify T#9, we can confirm

that the amount viewed by sender, receiver and, verifiers are uniform, thus achieving

&'+@)@!#+!5('$+!.

37

Ȇ

ҳ
ࢇ ݽ

σ

Ᏸ
Ȇ

ŏ
Ţ
ŵ ŪŰ

ůŢ ŭ ġńũŦůŨŤũ Ū ġŖ
ůŪ
ŷŦ

ųŴ
Ū ŵ
ź

DOI:10.6814/NCCU202201524

Ȇ

ҳ
ࢇ ݽ

σ

Ᏸ
Ȇ

ŏ
Ţ
ŵ ŪŰ

ůŢ ŭ ġńũŦůŨŤũ Ū ġŖ
ůŪ
ŷŦ

ųŴ
Ū ŵ
ź

DOI:10.6814/NCCU202201524

6 Performance Evaluation

For the efficiency analysis, we implement a proof-of-concept system by using Rust

language. The experiment was conducted on a MacBook Pro 2017 laptop (macOS

Monterey version 12.3) with Intel(R) i5-7360U CPU clocked at 2.5GHz and 8GB of

system memory.

In our implementation, we leverage BulletProof [BBB+18] as the zero-knowledge

range proof protocol and sigma protocol with Fiat-Shamir [CG15; Kra03] transform as

the zero-knowledge proof protocol. In addition, the elliptic curve we adopt is secp256k1

which has 256-bit security and is broadly used in cryptocurrencies like Bitcoin and

Ethereum. Each point on the curve can be stored as 88 bytes, and the scalar of the finite

field can be stored as 56 bytes.

Table 6.1: The computation cost of confidential transaction

Size (bytes) Generation time (ms) Verify time (ms)

Confidential !L 2288 94 64

Here we set the max value of the transaction as 2ℓ−1 where ℓ = 64. The computation

cost of generating and verifying a transaction, as shown in Table 6.1, is efficient to

compute. The transaction size is also feasible for the use of blockchain.

Table 6.2: The computation cost of decrypting threshold ElGamal

Calculate share time (ms) Combine share time (s)

Threshold ElGamal 0.2 224.8

Here we use threshold ElGamal encryption with 5 members and the threshold is

set to 3. We encrypt a value of 10, 000, 000 and use a simple brute force method in

39

Ȇ

ҳ
ࢇ ݽ

σ

Ᏸ
Ȇ

ŏ
Ţ
ŵ ŪŰ

ůŢ ŭ ġńũŦůŨŤũ Ū ġŖ
ůŪ
ŷŦ

ųŴ
Ū ŵ
ź

DOI:10.6814/NCCU202201524

6. Performance Evaluation 40

decryption. As shown in Table 6.2, the regulators can easily decrypt the transaction

even if they need to compute the discrete logarithm problem when combining decryption

shares. The decryption time is feasible for our use case since the regulators do not have

to run the decryption algorithm with every transaction. In addition, the decryption time

can be further reduced if run in parallel.

Ȇ

ҳ
ࢇ ݽ

σ

Ᏸ
Ȇ

ŏ
Ţ
ŵ ŪŰ

ůŢ ŭ ġńũŦůŨŤũ Ū ġŖ
ůŪ
ŷŦ

ųŴ
Ū ŵ
ź

DOI:10.6814/NCCU202201524

7 Conclusion and Future Work

In this thesis, we propose a confidential payment system with controllable regulation

based on blockchain. The regulation procedure includes a voting process in order to

limit the power of the regulator. We hope the proposed system can strike a balance

between privacy and regulation.

Below we describe possible improvements for future work. In modern financial

systems, a transaction is often required to pass certain anti-money laundering checks

before it can be carried out. Such feature can be done by adding other zero-knowledge

proofs to check against the rules in a transaction. How to do so in our system without

increase too many overheads is an open problem.

Another aspect that needs to consider is how to improve efficiency. Since the

proposed system requires users to verify zero-knowledge proofs over the blockchain, it

may cause additional computational costs. A possible solution is to adopt a curve that

is more suitable for this usage, and how to find this curve is also an interesting problem.

41

Ȇ

ҳ
ࢇ ݽ

σ

Ᏸ
Ȇ

ŏ
Ţ
ŵ ŪŰ

ůŢ ŭ ġńũŦůŨŤũ Ū ġŖ
ůŪ
ŷŦ

ųŴ
Ū ŵ
ź

DOI:10.6814/NCCU202201524

Ȇ

ҳ
ࢇ ݽ

σ

Ᏸ
Ȇ

ŏ
Ţ
ŵ ŪŰ

ůŢ ŭ ġńũŦůŨŤũ Ū ġŖ
ůŪ
ŷŦ

ųŴ
Ū ŵ
ź

DOI:10.6814/NCCU202201524

Bibliography

[AFM+14] Giuseppe Ateniese, Antonio Faonio, Bernardo Magri, and Breno de Medeiros. “Certified

Bitcoins.” In: ACNS 2014. Vol. 8479. LNCS. Springer. 2014, pp. 80–96 (cit. p. 24).

[BBB+18] Benedikt Bünz, Jonathan Bootle, Dan Boneh, et al. “Bulletproofs: Short Proofs for

Confidential Transactions and More.” In: IEEE S&P 2018. IEEE. 2018, pp. 315–334 (cit.

pp. 27, 28, 32, 39).

[BBS02] Mihir Bellare, Alexandra Boldyreva, and Jessica Staddon. “Randomness Re-use in Multi-

recipient Encryption Schemeas.” In: Public Key Cryptography — PKC 2003. Springer.

2002, pp. 85–99 (cit. p. 27).

[BCG+14] Eli Ben Sasson, Alessandro Chiesa, Christina Garman, et al. “Zerocash: Decentralized

anonymous payments from Bitcoin.” In: IEEE S&P 2014. IEEE. 2014, pp. 459–474 (cit.

pp. 1, 4).

[But14] Vitalik Buterin. Ethereum: A Next-Generation Smart Contract and Decentralized

Application Platform. https : / / nft2x . com / wp - content / uploads / 2021 / 03 /

EthereumWP.pdf. 2014 (cit. p. 1).

[CG15] Pyrros Chaidos and Jens Groth. “Making Sigma-protocols non-interactive without random

oracles.” In: PKC 2015. Vol. 9020. LNCS. Springer. 2015, pp. 650–670 (cit. pp. 13, 39).

[CMT+20] Yu Chen, Xuecheng Ma, Cong Tang, and Man Ho Au. “PGC: Decentralized confidential

payment system with auditability.” In: ESORICS 2020. Vol. 12308. LNCS. Springer, 2020,

pp. 591–610 (cit. p. 5).

[CSL+18] Mauro Conti, E. Sandeep Kumar, Chhagan Lal, and Sushmita Ruj. “A survey on security

and privacy issues of Bitcoin.” In: IEEE Commun. Surv. Tutorials. Vol. 20. IEEE. 2018,

pp. 3416–3452 (cit. p. 1).

[CZJ+17] Ethan Cecchetti, Fan Zhang, Yan Ji, et al. “Solidus: Confidential distributed ledger

transactions via PVORM.” In: CCS 2017. ACM. 2017, pp. 701–717 (cit. p. 4).

[DF89] Yvo Desmedt and Yair Frankel. “Threshold cryptosystems.” In: CRYPTO 1989. Vol. 435.

LNCS. Springer. 1989, pp. 307–315 (cit. p. 17).

43

https://nft2x.com/wp-content/uploads/2021/03/EthereumWP.pdf
https://nft2x.com/wp-content/uploads/2021/03/EthereumWP.pdf

Ȇ

ҳ
ࢇ ݽ

σ

Ᏸ
Ȇ

ŏ
Ţ
ŵ ŪŰ

ůŢ ŭ ġńũŦůŨŤũ Ū ġŖ
ůŪ
ŷŦ

ųŴ
Ū ŵ
ź

DOI:10.6814/NCCU202201524

Bibliography 44

[FS86] Amos Fiat and Adi Shamir. “How to prove yourself: Practical solutions to identification

and signature problems.” In: Conference on the theory and application of cryptographic

techniques. Springer. 1986, pp. 186–194 (cit. p. 13).

[GGM16] Christina Garman, Matthew Green, and Ian Miers. “Accountable privacy for decentralized

anonymous payments.” In: FC 2016. Vol. 9603. LNCS. Springer. 2016, pp. 81–98 (cit. p. 4).

[IM13] C. Garman I. Miers and A. D. Rubin M. Green. “Zerocoin: Anonymous distributed E-cash

from Bitcoin.” In: IEEE S&P 2013. IEEE. 2013, pp. 397–411 (cit. p. 4).

[Kra03] Hugo Krawczyk. “SIGMA: The ‘SIGn-and-MAc’ approach to authenticated Diffie-Hellman

and its use in the IKE protocols.” In: CRYPTO 2003. Vol. 2729. LNCS. Springer. 2003,

pp. 400–425 (cit. pp. 13, 39).

[LHH+20] Chao Lin, Debiao He, Xinyi Huang, Muhammad Khurram Khan, and Kim-Kwang Raymond

Choo. “DCAP: A secure and efficient decentralized conditional anonymous payment system

based on blockchain.” In: IEEE Trans. Inf. Forensics Secur. Vol. 15. 2020, pp. 2440–2452

(cit. p. 4).

[MvF15] Killian J. McCarthy, Peter van Santen, and Ingo Fiedler. “Modeling the money launderer:

Microtheoretical arguments on anti-money laundering policy.” In: International Review of

Law and Economics. Vol. 43. Elsevier. 2015, pp. 148–155 (cit. p. 2).

[Nak08] Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System. https://bitcoin.

org/bitcoin.pdf. 2008 (cit. p. 1).

[Ped91] Torben Pryds Pedersen. “A threshold cryptosystem without a trusted party.” In:

EUROCRYPT . Vol. 547. LNCS. Springer. 1991, pp. 522–526 (cit. p. 10).

[Ped92] Torben Pryds Pedersen. “Non-Interactive and Information-Theoretic Secure Verifiable

Secret Sharing.” In: Advances in Cryptology — CRYPTO ’91. Springer. 1992, pp. 129–140

(cit. p. 8).

[Pet19] Maksym Petkus. Why and how zk-SNARK works. http://arxiv.org/abs/1906.07221.

2019 (cit. p. 4).

[PW11] Thomas Pietschmann and John Walker. Estimating Illicit Financial Flows Resulting From

Drug Trafficking and other Transnational Organized Crimes. https://www.unodc.org/

documents/data- and- analysis/Studies/Illicit_financial_flows_2011_

web.pdf. United Nations Office on Drugs and Crime, 2011 (cit. p. 2).

[Sab13] N. Van Saberhagen. Cryptonote v 2.0. https://bytecoin.org/old/whitepaper.pdf.

2013 (cit. p. 4).

https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
http://arxiv.org/abs/1906.07221
https://www.unodc.org/documents/data-and-analysis/Studies/Illicit_financial_flows_2011_web.pdf
https://www.unodc.org/documents/data-and-analysis/Studies/Illicit_financial_flows_2011_web.pdf
https://www.unodc.org/documents/data-and-analysis/Studies/Illicit_financial_flows_2011_web.pdf
https://bytecoin.org/old/whitepaper.pdf

Ȇ

ҳ
ࢇ ݽ

σ

Ᏸ
Ȇ

ŏ
Ţ
ŵ ŪŰ

ůŢ ŭ ġńũŦůŨŤũ Ū ġŖ
ůŪ
ŷŦ

ųŴ
Ū ŵ
ź

DOI:10.6814/NCCU202201524

45 Bibliography

[SAL+17] Shi-Feng Sun, Man Ho Au, Joseph K. Liu, and Tsz Hon Yuen. “RingCT 2.0: A compact

accumulator-based (linkable ring signature) protocol for blockchain cryptocurrency

Monero.” In: ESORICS 2017. Vol. 10493. LNCS. Springer. 2017, pp. 456–474 (cit. p. 1).

[SHL+21] Xuemin Sherman Shen, Cheng Huang, Dongxiao Liu, et al. “Data management for future

wireless networks: Architecture, privacy preservation, and regulation.” In: IEEE Netw.

Vol. 35. IEEE. 2021, pp. 8–15 (cit. p. 1).

[Wil18] Zachary J. Williamson. The AZTEC protocol. https://raw.githubusercontent.com/

AztecProtocol/AZTEC/master/AZTEC.pdf. 2018 (cit. p. 4).

[WOD18] Rolf van Wegberg, Jan-Jaap Oerlemans, and Oskar van Deventer. “Bitcoin money

laundering: Mixed results? An explorative study on money laundering of cybercrime

proceeds using Bitcoin.” In: J. Financial Crime. Emerald Publishing Limited. 2018,

pp. 419–435 (cit. p. 2).

[XLN+22] Liang Xue, Dongxiao Liu, Jianbing Ni, Xiaodong Lin, and Xuemin Sherman Shen.

“Enabling regulatory compliance and enforcement in decentralized anonymous payment.”

In: IEEE Trans. Dependable Secur. Comput. IEEE. 2022 (cit. p. 5).

https://raw.githubusercontent.com/AztecProtocol/AZTEC/master/AZTEC.pdf
https://raw.githubusercontent.com/AztecProtocol/AZTEC/master/AZTEC.pdf

	致謝
	摘要
	Abstract
	Contents
	List of Tables
	List of Figures
	List of Definitions
	1 Intorduction
	1.1 Contribution
	1.2 Related Works
	1.3 Organization

	2 Preliminaries
	2.1 Commitment scheme
	2.2 Public-Key Encryption
	2.3 Threshold Cryptosystem without a Trusted Party
	2.4 Additive Homomorphic Encryption
	2.5 Digital Signature
	2.6 Zero-knowledge Proofs

	3 Confidential Blockchain Payment System with Regulation
	3.1 System Description
	3.2 System Model
	3.3 Security Model

	4 The Proposed System
	5 Security Analysis
	6 Performance Evaluation
	7 Conclusion and Future Work
	Bibliography

