-
Notifications
You must be signed in to change notification settings - Fork 3.4k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add support for init_meta_context, materialize_module (#9920)
- Loading branch information
Showing
7 changed files
with
412 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,323 @@ | ||
# Copyright The PyTorch Lightning team. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
import importlib | ||
import inspect | ||
import threading | ||
from contextlib import contextmanager | ||
from functools import partial | ||
from itertools import chain | ||
from types import ModuleType | ||
from typing import Callable, Dict, Generator, Iterator, List, Optional, Set, Type | ||
|
||
import torch | ||
from torch import nn, Tensor | ||
from torch.nn import Module | ||
from torch.nn.modules.container import ModuleDict, ModuleList, Sequential | ||
|
||
from pytorch_lightning.utilities import rank_zero_warn | ||
from pytorch_lightning.utilities.exceptions import MisconfigurationException | ||
from pytorch_lightning.utilities.imports import _TORCH_META_AVAILABLE | ||
|
||
if _TORCH_META_AVAILABLE: | ||
from torch._C import _DisableTorchDispatch # type: ignore[attr-defined] | ||
|
||
#################################################################### | ||
# BELOW: TAKEN FROM https://github.com/pytorch/pytorch/pull/66317. # | ||
# TODO: Removed once merged and released on PyTorch side # | ||
#################################################################### | ||
|
||
@contextmanager | ||
def enable_python_mode(cls) -> Iterator[None]: | ||
if not hasattr(cls, "__torch_dispatch__"): | ||
raise ValueError("The class passed to enable_python_mode " "must have a __torch_dispatch__ classmethod") | ||
if not isinstance(cls, type) or not issubclass(cls, (torch.Tensor,)): | ||
raise ValueError("The argument passed to enable_python_mode " "must be the type of a Tensor subclass") | ||
torch._C._enter_python_mode(cls) | ||
try: | ||
yield | ||
finally: | ||
torch._C._exit_python_mode() | ||
|
||
_tls = threading.local() | ||
_tls.in_call = False | ||
|
||
@contextmanager | ||
def _no_dispatch() -> Iterator[None]: | ||
"""Temporarily disables the Python dispatch mode.""" | ||
guard = _DisableTorchDispatch() # noqa F841 | ||
try: | ||
yield | ||
finally: | ||
del guard | ||
|
||
def _handle_arange(func, args, kwargs): | ||
kwargs["device"] = torch.device("cpu") | ||
return torch.empty_like(func(*args, **kwargs), device="meta") | ||
|
||
def _handle_tril(func, args, kwargs): | ||
if args and isinstance(args[0], Tensor): | ||
return torch.empty_like(args[0], device="meta") | ||
|
||
return NotImplemented | ||
|
||
class _MetaContext(Tensor): | ||
_op_handlers: Dict[Callable, Callable] = {} | ||
|
||
@classmethod | ||
def _ensure_handlers_initialized(cls) -> None: | ||
if cls._op_handlers: | ||
return | ||
|
||
cls._op_handlers.update( | ||
{ | ||
torch.ops.aten.arange: _handle_arange, | ||
torch.ops.aten.tril: _handle_tril, | ||
} | ||
) | ||
|
||
@classmethod | ||
def __torch_dispatch__(cls, func, types, args=(), kwargs=None): | ||
cls._ensure_handlers_initialized() | ||
|
||
op_handler: Optional[Callable] | ||
|
||
try: | ||
op_handler = cls._op_handlers[func] | ||
except KeyError: | ||
op_handler = None | ||
|
||
with _no_dispatch(): | ||
if op_handler: | ||
result = op_handler(func, args, kwargs) | ||
if result is not NotImplemented: | ||
return result | ||
|
||
if "device" in kwargs: | ||
kwargs["device"] = torch.device("meta") | ||
|
||
return func(*args, **kwargs) | ||
|
||
def init_meta(module_fn: Callable[..., Module], *args, **kwargs) -> Module: | ||
def create_instance(module=None) -> Module: | ||
if module: | ||
module.__init__(*args, **kwargs) | ||
return module | ||
return module_fn(*args, **kwargs) | ||
|
||
if _tls.in_call: | ||
module = create_instance() | ||
else: | ||
_tls.in_call = True | ||
try: | ||
with enable_python_mode(_MetaContext): | ||
module = create_instance() | ||
finally: | ||
_tls.in_call = False | ||
|
||
module.materialize = partial(create_instance, module=module) # type: ignore[assignment] | ||
|
||
return module | ||
|
||
def is_meta_init() -> bool: | ||
"""Indicates whether the module is being instantiated by ``init_meta()``.""" | ||
return _tls.in_call | ||
|
||
#################################################################### | ||
# ABOVE: TAKEN FROM https://github.com/pytorch/pytorch/pull/66317. # | ||
# TODO: Removed once merged and released on PyTorch side # | ||
#################################################################### | ||
|
||
else: | ||
|
||
def init_meta(*_, **__): | ||
if not _TORCH_META_AVAILABLE: | ||
return MisconfigurationException("`init_meta` is supported from PyTorch 1.10.0") | ||
|
||
|
||
# https://stackoverflow.com/a/63851681/9201239 | ||
def get_all_subclasses(cls: Type[nn.Module]) -> Set[nn.Module]: | ||
subclass_list = [] | ||
|
||
def recurse(cl): | ||
for subclass in cl.__subclasses__(): | ||
subclass_list.append(subclass) | ||
recurse(subclass) | ||
|
||
recurse(cls) | ||
|
||
return set(subclass_list) | ||
|
||
|
||
def recursively_setattr(root_module: nn.Module, prefix: str, materialized_module: nn.Module) -> None: | ||
*path, name = prefix.split(".") | ||
for p in path: | ||
root_module = getattr(root_module, p) | ||
|
||
try: | ||
index = int(name) | ||
root_module[index] = materialized_module | ||
except ValueError: | ||
setattr(root_module, name, materialized_module) | ||
|
||
|
||
def materialize_module(root_module: nn.Module) -> nn.Module: | ||
"""This utility performs an in-place operation by materialize a module and its children.""" | ||
if not _TORCH_META_AVAILABLE: | ||
return root_module | ||
|
||
materialize_fn = getattr(root_module, "materialize", None) | ||
if materialize_fn and not isinstance(root_module, (Sequential, ModuleList, ModuleDict)): | ||
return materialize_fn() | ||
|
||
for name, child in root_module.named_children(): | ||
materialize_fn = getattr(child, "materialize", None) | ||
if not materialize_fn or isinstance(child, (Sequential, ModuleList, ModuleDict)): | ||
materialize_module(child) | ||
else: | ||
setattr(child, name, materialize_fn()) | ||
return root_module | ||
|
||
|
||
# cache subclasses to optimize the search when resetting the meta device later on. | ||
__STORAGE_META__ = {} | ||
|
||
__CREATED_MODULES__ = set() | ||
|
||
|
||
def _unset_meta_device(from_created: bool = False) -> None: | ||
"""Replace all meta module by their original version.""" | ||
if not _TORCH_META_AVAILABLE: | ||
raise MisconfigurationException("`init_meta` is supported from PyTorch 1.10.0") | ||
|
||
if from_created: | ||
values = [__STORAGE_META__[key] for key in __CREATED_MODULES__] | ||
else: | ||
values = __STORAGE_META__.values() | ||
|
||
for mods, subclass, _ in values: | ||
for mod in mods: | ||
setattr(mod, subclass.__name__, subclass) | ||
|
||
|
||
def _set_meta_device_populated(from_created: bool = False) -> None: | ||
"""Replace all meta module by their original version.""" | ||
if not _TORCH_META_AVAILABLE: | ||
raise MisconfigurationException("`init_meta` is supported from PyTorch 1.10.0") | ||
|
||
if from_created: | ||
values = [__STORAGE_META__[key] for key in __CREATED_MODULES__] | ||
else: | ||
values = __STORAGE_META__.values() | ||
|
||
for mods, subclass, meta_class in values: | ||
for mod in mods: | ||
setattr(mod, subclass.__name__, meta_class) | ||
|
||
|
||
def _set_meta_device() -> None: | ||
"""Replace all torch.nn.Module by their meta replacement.""" | ||
|
||
if not _TORCH_META_AVAILABLE: | ||
raise MisconfigurationException("`init_meta` is supported from PyTorch 1.10.0") | ||
|
||
# Author note: This can be optimized further by searching all subclasses at once. | ||
# Its time complexity is O(n*m) where n is the number of all subclasses if there's no multiple inheritance | ||
# and m the number of all subclasses belonging to its subclass module. | ||
|
||
for subclass in get_all_subclasses(torch.nn.modules.module.Module): | ||
|
||
if isinstance(subclass, (Sequential, ModuleList, ModuleDict)): | ||
continue | ||
|
||
# if a subclass has already been stored, we should use the cache | ||
if str(subclass) in __STORAGE_META__: | ||
# reset the class import package to its rightfull state. | ||
mods, subclass, meta_class = __STORAGE_META__[subclass] | ||
for mod in mods: | ||
setattr(mod, subclass.__name__, meta_class) | ||
continue | ||
|
||
# Create a class subclassing current `subclass` overriding its new method. | ||
# this will enable use to use `torch.distributed.nn.utils.init_meta` to create a `meta` | ||
# version of the current subclass module | ||
class _MetaClass(subclass): | ||
@classmethod | ||
@contextmanager | ||
def instantiation_context(cls, materialize: bool): | ||
_unset_meta_device(from_created=True) | ||
yield | ||
_set_meta_device_populated(from_created=True) | ||
|
||
@classmethod | ||
def materialize(cls, materialize_fn: Callable): | ||
with cls.instantiation_context(materialize=True): | ||
obj = materialize_fn() | ||
return obj | ||
|
||
@staticmethod | ||
def add_subclasses(subclass): | ||
"""This is used to unrol the instantion tree while creating the modules.""" | ||
__CREATED_MODULES__.add(subclass) | ||
if subclass.__bases__[0] != torch.nn.modules.module.Module: | ||
_MetaClass.add_subclasses(subclass.__bases__[0]) | ||
|
||
def __new__(cls, *args, **kwargs): | ||
subclass = cls.__bases__[0] | ||
cls.add_subclasses(subclass) | ||
with cls.instantiation_context(materialize=False): | ||
obj = init_meta(subclass, *args, **kwargs) | ||
|
||
obj.materialize = partial(cls.materialize, materialize_fn=obj.materialize) | ||
return obj | ||
|
||
def search(mod: ModuleType) -> List[ModuleType]: | ||
out = [] | ||
for _, obj in inspect.getmembers(mod): | ||
if obj == subclass: | ||
out.append(mod) | ||
return out | ||
|
||
submodules = subclass.__module__.split(".") | ||
mod = importlib.import_module(submodules[0]) | ||
|
||
# nn.Module class can be imported at different level and they all need to be mocked. | ||
# Example: torch.nn.Linear is actually torch.nn.modules.linear.Linear | ||
# Therefore, torch.nn.Linear, torch.nn.modules.Linear, torch.nn.modules.linear.Linear | ||
# needs to be replaced by the torch.nn.linear.modules.Linear _MetaClass | ||
out = [] | ||
out.append(search(mod)) | ||
for name in submodules[1:]: | ||
mod = getattr(mod, name) | ||
out.append(search(mod)) | ||
|
||
# drop empty module | ||
mods = [mod for mod in chain(*out) if mod] | ||
|
||
# store the modules search so it doesn't have to be performed again for this class | ||
__STORAGE_META__[subclass] = (mods, subclass, _MetaClass) | ||
|
||
# replace all subclass by its meta form | ||
for mod in mods: | ||
setattr(mod, subclass.__name__, _MetaClass) | ||
|
||
|
||
@contextmanager | ||
def init_meta_context() -> Generator: | ||
rank_zero_warn( | ||
"Be aware this feature is highly experimental and there are a number of weird edge cases " | ||
"where it can internal assert and/or crash. A more stable version is to be expected from PyTorch 1.11." | ||
) | ||
_set_meta_device() | ||
yield | ||
_unset_meta_device() |
Oops, something went wrong.