diff --git a/pytorch_lightning/trainer/training_loop.py b/pytorch_lightning/trainer/training_loop.py index 6dc73b55ef53b..32b175fbaae97 100644 --- a/pytorch_lightning/trainer/training_loop.py +++ b/pytorch_lightning/trainer/training_loop.py @@ -26,7 +26,7 @@ from pytorch_lightning.trainer.states import RunningStage, TrainerState from pytorch_lightning.trainer.supporters import Accumulator, TensorRunningAccum from pytorch_lightning.utilities import _TPU_AVAILABLE, AMPType, DeviceType, parsing -from pytorch_lightning.utilities.distributed import rank_zero_info, rank_zero_warn +from pytorch_lightning.utilities.distributed import rank_zero_info from pytorch_lightning.utilities.exceptions import MisconfigurationException from pytorch_lightning.utilities.memory import recursive_detach from pytorch_lightning.utilities.model_helpers import is_overridden @@ -341,13 +341,6 @@ def _process_training_step_output(self, training_step_output, split_batch): if training_step_output_for_epoch_end is None: return None, None - # ----------------------------------------- - # process result return (DEPRECATE in 1.0) - # ----------------------------------------- - if isinstance(training_step_output, Result): - training_step_output_for_epoch_end = self._process_result(training_step_output, split_batch) - return training_step_output_for_epoch_end, training_step_output - # ----------------------------------------- # process hybrid (1.0) # ----------------------------------------- @@ -413,29 +406,6 @@ def _process_training_step_output_1_0(self, training_step_output, split_batch): return training_step_output_for_epoch_end, training_step_output - def _process_result(self, training_step_output, split_batch): - training_step_output.track_batch_size(len(split_batch)) - m = """ - TrainResult and EvalResult were deprecated in 0.9.1 and support will drop in 1.0.0. - Use self.log and .write from the LightningModule to log metrics and write predictions. - training_step can now only return a scalar (for the loss) or a dictionary with anything you want. - - Option 1: - return loss - - Option 2: - return {'loss': loss, 'anything_else': ...} - - Option 3: - return {'loss': loss, 'hiddens': hiddens, 'anything_else': ...} - """ - rank_zero_warn(m) - - training_step_output_for_epoch_end = copy(training_step_output) - training_step_output_for_epoch_end.detach() - - return training_step_output_for_epoch_end - def optimizer_step(self, optimizer, opt_idx, batch_idx, train_step_and_backward_closure): model_ref = self.trainer.get_model()