-
Notifications
You must be signed in to change notification settings - Fork 137
/
run_videomae_vis.py
185 lines (157 loc) · 7.91 KB
/
run_videomae_vis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
# -*- coding: utf-8 -*-
import argparse
import numpy as np
import torch
import torch.backends.cudnn as cudnn
from PIL import Image
from pathlib import Path
from timm.models import create_model
import utils
import modeling_pretrain
from datasets import DataAugmentationForVideoMAE
from torchvision.transforms import ToPILImage
from einops import rearrange
from timm.data.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from decord import VideoReader, cpu
from torchvision import transforms
from transforms import *
from masking_generator import TubeMaskingGenerator
class DataAugmentationForVideoMAE(object):
def __init__(self, args):
self.input_mean = [0.485, 0.456, 0.406] # IMAGENET_DEFAULT_MEAN
self.input_std = [0.229, 0.224, 0.225] # IMAGENET_DEFAULT_STD
normalize = GroupNormalize(self.input_mean, self.input_std)
self.train_augmentation = GroupCenterCrop(args.input_size)
self.transform = transforms.Compose([
self.train_augmentation,
Stack(roll=False),
ToTorchFormatTensor(div=True),
normalize,
])
if args.mask_type == 'tube':
self.masked_position_generator = TubeMaskingGenerator(
args.window_size, args.mask_ratio
)
def __call__(self, images):
process_data , _ = self.transform(images)
return process_data, self.masked_position_generator()
def __repr__(self):
repr = "(DataAugmentationForVideoMAE,\n"
repr += " transform = %s,\n" % str(self.transform)
repr += " Masked position generator = %s,\n" % str(self.masked_position_generator)
repr += ")"
return repr
def get_args():
parser = argparse.ArgumentParser('VideoMAE visualization reconstruction script', add_help=False)
parser.add_argument('img_path', type=str, help='input video path')
parser.add_argument('save_path', type=str, help='save video path')
parser.add_argument('model_path', type=str, help='checkpoint path of model')
parser.add_argument('--mask_type', default='random', choices=['random', 'tube'],
type=str, help='masked strategy of video tokens/patches')
parser.add_argument('--num_frames', type=int, default= 16)
parser.add_argument('--sampling_rate', type=int, default= 4)
parser.add_argument('--decoder_depth', default=4, type=int,
help='depth of decoder')
parser.add_argument('--input_size', default=224, type=int,
help='videos input size for backbone')
parser.add_argument('--device', default='cuda:0',
help='device to use for training / testing')
parser.add_argument('--imagenet_default_mean_and_std', default=True, action='store_true')
parser.add_argument('--mask_ratio', default=0.75, type=float,
help='ratio of the visual tokens/patches need be masked')
# Model parameters
parser.add_argument('--model', default='pretrain_videomae_base_patch16_224', type=str, metavar='MODEL',
help='Name of model to vis')
parser.add_argument('--drop_path', type=float, default=0.0, metavar='PCT',
help='Drop path rate (default: 0.1)')
return parser.parse_args()
def get_model(args):
print(f"Creating model: {args.model}")
model = create_model(
args.model,
pretrained=False,
drop_path_rate=args.drop_path,
drop_block_rate=None,
decoder_depth=args.decoder_depth
)
return model
def main(args):
print(args)
device = torch.device(args.device)
cudnn.benchmark = True
model = get_model(args)
patch_size = model.encoder.patch_embed.patch_size
print("Patch size = %s" % str(patch_size))
args.window_size = (args.num_frames // 2, args.input_size // patch_size[0], args.input_size // patch_size[1])
args.patch_size = patch_size
model.to(device)
checkpoint = torch.load(args.model_path, map_location='cpu')
model.load_state_dict(checkpoint['model'])
model.eval()
if args.save_path:
Path(args.save_path).mkdir(parents=True, exist_ok=True)
with open(args.img_path, 'rb') as f:
vr = VideoReader(f, ctx=cpu(0))
duration = len(vr)
new_length = 1
new_step = 1
skip_length = new_length * new_step
# frame_id_list = [1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61]
tmp = np.arange(0,32, 2) + 60
frame_id_list = tmp.tolist()
# average_duration = (duration - skip_length + 1) // args.num_frames
# if average_duration > 0:
# frame_id_list = np.multiply(list(range(args.num_frames)),
# average_duration)
# frame_id_list = frame_id_list + np.random.randint(average_duration,
# size=args.num_frames)
video_data = vr.get_batch(frame_id_list).asnumpy()
print(video_data.shape)
img = [Image.fromarray(video_data[vid, :, :, :]).convert('RGB') for vid, _ in enumerate(frame_id_list)]
transforms = DataAugmentationForVideoMAE(args)
img, bool_masked_pos = transforms((img, None)) # T*C,H,W
# print(img.shape)
img = img.view((args.num_frames , 3) + img.size()[-2:]).transpose(0,1) # T*C,H,W -> T,C,H,W -> C,T,H,W
# img = img.view(( -1 , args.num_frames) + img.size()[-2:])
bool_masked_pos = torch.from_numpy(bool_masked_pos)
with torch.no_grad():
# img = img[None, :]
# bool_masked_pos = bool_masked_pos[None, :]
img = img.unsqueeze(0)
print(img.shape)
bool_masked_pos = bool_masked_pos.unsqueeze(0)
img = img.to(device, non_blocking=True)
bool_masked_pos = bool_masked_pos.to(device, non_blocking=True).flatten(1).to(torch.bool)
outputs = model(img, bool_masked_pos)
#save original video
mean = torch.as_tensor(IMAGENET_DEFAULT_MEAN).to(device)[None, :, None, None, None]
std = torch.as_tensor(IMAGENET_DEFAULT_STD).to(device)[None, :, None, None, None]
ori_img = img * std + mean # in [0, 1]
imgs = [ToPILImage()(ori_img[0,:,vid,:,:].cpu()) for vid, _ in enumerate(frame_id_list) ]
for id, im in enumerate(imgs):
im.save(f"{args.save_path}/ori_img{id}.jpg")
img_squeeze = rearrange(ori_img, 'b c (t p0) (h p1) (w p2) -> b (t h w) (p0 p1 p2) c', p0=2, p1=patch_size[0], p2=patch_size[0])
img_norm = (img_squeeze - img_squeeze.mean(dim=-2, keepdim=True)) / (img_squeeze.var(dim=-2, unbiased=True, keepdim=True).sqrt() + 1e-6)
img_patch = rearrange(img_norm, 'b n p c -> b n (p c)')
img_patch[bool_masked_pos] = outputs
#make mask
mask = torch.ones_like(img_patch)
mask[bool_masked_pos] = 0
mask = rearrange(mask, 'b n (p c) -> b n p c', c=3)
mask = rearrange(mask, 'b (t h w) (p0 p1 p2) c -> b c (t p0) (h p1) (w p2) ', p0=2, p1=patch_size[0], p2=patch_size[1], h=14, w=14)
#save reconstruction video
rec_img = rearrange(img_patch, 'b n (p c) -> b n p c', c=3)
# Notice: To visualize the reconstruction video, we add the predict and the original mean and var of each patch.
rec_img = rec_img * (img_squeeze.var(dim=-2, unbiased=True, keepdim=True).sqrt() + 1e-6) + img_squeeze.mean(dim=-2, keepdim=True)
rec_img = rearrange(rec_img, 'b (t h w) (p0 p1 p2) c -> b c (t p0) (h p1) (w p2)', p0=2, p1=patch_size[0], p2=patch_size[1], h=14, w=14)
imgs = [ ToPILImage()(rec_img[0, :, vid, :, :].cpu().clamp(0,0.996)) for vid, _ in enumerate(frame_id_list) ]
for id, im in enumerate(imgs):
im.save(f"{args.save_path}/rec_img{id}.jpg")
#save masked video
img_mask = rec_img * mask
imgs = [ToPILImage()(img_mask[0, :, vid, :, :].cpu()) for vid, _ in enumerate(frame_id_list)]
for id, im in enumerate(imgs):
im.save(f"{args.save_path}/mask_img{id}.jpg")
if __name__ == '__main__':
opts = get_args()
main(opts)