-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPuzzle_algorithm.py
429 lines (408 loc) · 19.6 KB
/
Puzzle_algorithm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
import numpy as np
import timeit
import SimplicialComplex as sc
import json
list_2_pow = [1]
for k in range(16):
list_2_pow.append(list_2_pow[-1] * 2)
def read_file(filename):
with open(filename, 'rb') as f:
data = f.readlines()
data = [x.strip() for x in data]
return data
def give_next_vect(vect, base):
index = 0
vect[index] = (vect[index] + 1) % base[index]
while index < vect.size - 1 and vect[index] == 0:
index += 1
vect[index] = (vect[index] + 1) % base[index]
def puzzle_algo(K, J):
J_array = np.array(J)
p = K.Pic
n = K.n
m = K.m
list_IDCM_bin = sc.IDCM_Garrison_Scott(K)
list_IDCM = []
for IDCM_bin in list_IDCM_bin:
IDCM = np.zeros((m, p))
for i in range(m):
for j in range(p):
if list_2_pow[j] | IDCM_bin[i] == IDCM_bin[i]:
IDCM[i, j] = 1
list_IDCM.append(IDCM.copy())
list_CM = []
ninja = 0
for IDCM in list_IDCM:
CM = np.zeros((n, m))
CM[:, :n] = np.eye(n)
CM[:, n:m] = IDCM[:n, :]
list_CM.append(CM.copy())
print(ninja)
print(CM)
ninja += 1
number_IDCM = len(list_IDCM)
# constructing the prediagram
prediagram_colors = np.zeros((number_IDCM, number_IDCM, m))
prediagram_maps = np.zeros((number_IDCM, number_IDCM, p))
for k in range(number_IDCM):
prediagram_colors[k, k] = np.ones(m)
for i in range(number_IDCM):
for j in range(i + 1, number_IDCM):
sum_IDCM = np.mod(list_IDCM[i] + list_IDCM[j], 2)
non_zeros = np.flatnonzero((sum_IDCM == 1).any(axis=1))
unique_maps = np.unique(sum_IDCM[non_zeros], axis=0)
if (unique_maps.shape[0]) == 1:
phi = unique_maps[0]
print(i, j, phi)
vect_of_non_zeros = np.zeros(n)
vect_of_non_zeros[non_zeros] = 1
for k in range(m):
if (list_CM[i][:, k] == vect_of_non_zeros).all():
prediagram_maps[i, j] = phi.copy()
prediagram_colors[i, j, k] = 1
prediagram_maps[j, i] = phi.copy()
prediagram_colors[j, i, k] = 1
def all_edges_exist(list_generators, list_vertex_of_generator, pos_generator, current_IDCM,
current_IDCM_index):
if pos_generator == len(list_generators):
return True
exit_condition = all_edges_exist(list_generators, list_vertex_of_generator, pos_generator + 1,
current_IDCM, current_IDCM_index)
for index_generator in range(pos_generator, len(list_generators)):
new_IDCM = np.mod(np.dot(list_generators[index_generator], current_IDCM), 2)
index_new_IDCM = -1
for index_CM in range(len(list_CM)):
if (np.mod(np.dot(list_CM[index_CM], new_IDCM), 2) == 0).all():
index_new_IDCM = index_CM
break
if index_new_IDCM < 0:
print("hello")
return False
if prediagram_colors[current_IDCM_index, index_new_IDCM, list_vertex_of_generator[index_generator]] == 0:
return False
phi = prediagram_maps[current_IDCM_index, index_new_IDCM]
indexes_phi = np.flatnonzero(list_CM[current_IDCM_index][:, list_vertex_of_generator[index_generator]])
generator = np.eye(m)
for index_pos_phi in indexes_phi:
generator[index_pos_phi, n:] = phi
print(current_IDCM_index, index_new_IDCM, list_vertex_of_generator[index_generator])
print(generator)
# if (generator!=list_generators[index_generator]).any():
# return False
exit_condition = exit_condition and all_edges_exist(list_generators, list_vertex_of_generator,
index_generator + 1, new_IDCM, index_new_IDCM)
if not exit_condition:
return False
return exit_condition
list_conn_comp = []
for k in range(m):
list_conn_comp.append([])
for v in np.unique(prediagram_colors[:, :, k], axis=0):
list_conn_comp[k].append(np.flatnonzero(v).tolist())
print(list_conn_comp[k])
index_wedged_vertices = np.flatnonzero(J_array)
if index_wedged_vertices.size == 0:
return list_IDCM_bin
number_of_realizable_puzzle = 0
# we choose one IDCM lambda0 for the vertex i_0
i_0 = index_wedged_vertices[0]
for i in range(number_IDCM):
multi_list_of_cases = []
list_conn_comp = []
# we then need to enumerate every possible choice of IDCM as a neighbour of lambda0
for k in index_wedged_vertices:
conn_comp_k = np.unique(prediagram_colors[:, :, k], axis=0)
k_conn_comp_of_i = np.flatnonzero(conn_comp_k[conn_comp_k[:, i] == 1])
list_conn_comp.append(k_conn_comp_of_i)
cases = np.zeros((k_conn_comp_of_i.size ** (J_array[k]), J_array[k]), dtype=int)
for l in range(1, cases.shape[0]):
cases[l] = cases[l - 1].copy()
give_next_vect(cases[l], k_conn_comp_of_i.size * np.ones(J_array[k]))
multi_list_of_cases.append(cases)
number_of_cases = 1
for v in multi_list_of_cases:
number_of_cases *= v.shape[0]
array_of_all_cases = np.zeros((number_of_cases, len(multi_list_of_cases)), dtype=int)
base_table = [v.shape[0] for v in multi_list_of_cases]
for k in range(1, number_of_cases):
array_of_all_cases[k] = array_of_all_cases[k - 1].copy()
give_next_vect(array_of_all_cases[k], base_table)
# We have an array with all the indexes of the all the cases
for case in array_of_all_cases:
explicit_case = []
for a in range(case.size):
explicit_case.append(list_conn_comp[a][multi_list_of_cases[a][case[a]]].tolist())
# here we list all the generators of the subgroup we chose
# print(i,explicit_case)
list_generators = []
list_vertex_of_generator = []
for index_list_connected_IDCM in range(len(explicit_case)):
for index_IDCM in explicit_case[index_list_connected_IDCM]:
if i != index_IDCM:
phi = prediagram_maps[i, index_IDCM]
indexes_phi = np.flatnonzero(list_CM[i][:, index_wedged_vertices[index_list_connected_IDCM]])
generator = np.eye(m)
for index_pos_phi in indexes_phi:
generator[index_pos_phi, n:] = phi
already_here = False
for other_generator in list_generators:
if (generator == other_generator).all():
already_here = True
break
if not already_here:
list_generators.append(generator.copy())
list_vertex_of_generator.append(index_wedged_vertices[index_list_connected_IDCM])
# print(list_generators)
print(i, explicit_case)
# we then have to try if the subgroup generated by the generators produce only IDCM when acting on lambda0
number_generators = len(list_generators)
if all_edges_exist(list_generators, list_vertex_of_generator, 0,
list_IDCM[i].copy(), i):
number_of_realizable_puzzle += 1
# array_cases_generators = np.zeros((2 ** number_generators, number_generators))
# for k in range(1, 2 ** number_generators):
# array_cases_generators[k] = array_cases_generators[k - 1].copy()
# give_next_vect(array_cases_generators[k], 2 * np.ones(number_generators))
# puzzle_is_realizable = True
# # print(i,list_generators)
# for case_generator in array_cases_generators:
# if np.count_nonzero(case_generator)>1:
# new_IDCM = list_IDCM[i].copy()
# for generator_index in np.flatnonzero(case_generator):
# new_IDCM = np.mod(np.dot(list_generators[generator_index], new_IDCM), 2)
# # print(i,explicit_case,new_IDCM)
# IDCM_is_non_singular = False
# for index_CM in range(len(list_CM)):
# CM = list_CM[index_CM]
# if (np.mod(np.dot(CM, new_IDCM), 2) == 0).all():
# IDCM_is_non_singular = True
# break
# if not IDCM_is_non_singular:
# puzzle_is_realizable = False
# break
# if puzzle_is_realizable:
# number_of_realizable_puzzle += 1
# if explicit_case[0][0] != explicit_case[1][0] and i!= explicit_case[0][0] and i!= explicit_case[1][0]:
# print("hello")
# print(i,list_CM[i])
# print(explicit_case[0][0],list_CM[explicit_case[0][0]])
# print(explicit_case[1][0],list_CM[explicit_case[1][0]])
print(number_of_realizable_puzzle)
def is_prediagram_disconnected(K, IDCM_mode=False):
p = K.Pic
n = K.n
m = K.m
list_IDCM_bin = sc.IDCM_Garrison_Scott(K)
if len(list_IDCM_bin)==1:
return True
# print("number of IDCM: ", len(list_IDCM_bin))
list_IDCM = []
for IDCM_bin in list_IDCM_bin:
IDCM = np.zeros((m, p))
for i in range(m):
for j in range(p):
if list_2_pow[j] | IDCM_bin[i] == IDCM_bin[i]:
IDCM[i, j] = 1
list_IDCM.append(IDCM.copy())
list_CM = []
ninja = 0
for IDCM in list_IDCM:
CM = np.zeros((n, m))
CM[:, :n] = np.eye(n)
CM[:, n:m] = IDCM[:n, :]
list_CM.append(CM.copy())
ninja += 1
number_IDCM = len(list_IDCM)
# constructing the prediagram
prediagram_colors = np.zeros((number_IDCM, number_IDCM, m))
prediagram_maps = np.zeros((number_IDCM, number_IDCM, p))
for k in range(number_IDCM):
if IDCM_mode:
prediagram_colors[k, k] = np.zeros(m)
else:
prediagram_colors[k, k] = np.ones(m)
disconnected = True
for i in range(number_IDCM):
for j in range(i + 1, number_IDCM):
sum_IDCM = np.mod(list_IDCM[i] + list_IDCM[j], 2)
non_zeros = np.flatnonzero((sum_IDCM == 1).any(axis=1))
unique_maps = np.unique(sum_IDCM[non_zeros], axis=0)
if (unique_maps.shape[0]) == 1:
phi = unique_maps[0]
vect_of_non_zeros = np.zeros(n)
vect_of_non_zeros[non_zeros] = 1
for k in range(m):
if (list_CM[i][:, k] == vect_of_non_zeros).all():
disconnected = False
prediagram_maps[i, j] = phi.copy()
prediagram_colors[i, j, k] = 1
prediagram_maps[j, i] = phi.copy()
prediagram_colors[j, i, k] = 1
J_max = np.zeros(m)
for k in range(m):
graph_k = prediagram_colors[:,:,k]
multiplicity = np.max(np.count_nonzero(np.unique(graph_k,axis=0),axis=1))
if multiplicity>0:
J_max[k]=multiplicity+1
return J_max
def puzzle_algo_V2(K, J, IDCM_mode=False):
J_array = np.array(J)
p = K.Pic
n = K.n
m = K.m
list_IDCM_bin = sc.IDCM_Garrison_Scott(K)
# print("number of IDCM: ", len(list_IDCM_bin))
list_IDCM = []
for IDCM_bin in list_IDCM_bin:
IDCM = np.zeros((m, p))
for i in range(m):
for j in range(p):
if list_2_pow[j] | IDCM_bin[i] == IDCM_bin[i]:
IDCM[i, j] = 1
list_IDCM.append(IDCM.copy())
list_CM = []
ninja = 0
for IDCM in list_IDCM:
CM = np.zeros((n, m))
CM[:, :n] = np.eye(n)
CM[:, n:m] = IDCM[:n, :]
list_CM.append(CM.copy())
ninja += 1
number_IDCM = len(list_IDCM)
# constructing the prediagram
prediagram_colors = np.zeros((number_IDCM, number_IDCM, m))
prediagram_maps = np.zeros((number_IDCM, number_IDCM, p))
for k in range(number_IDCM):
if IDCM_mode:
prediagram_colors[k, k] = np.zeros(m)
else:
prediagram_colors[k, k] = np.ones(m)
for i in range(number_IDCM):
for j in range(i + 1, number_IDCM):
sum_IDCM = np.mod(list_IDCM[i] + list_IDCM[j], 2)
non_zeros = np.flatnonzero((sum_IDCM == 1).any(axis=1))
unique_maps = np.unique(sum_IDCM[non_zeros], axis=0)
if (unique_maps.shape[0]) == 1:
phi = unique_maps[0]
vect_of_non_zeros = np.zeros(n)
vect_of_non_zeros[non_zeros] = 1
for k in range(m):
if (list_CM[i][:, k] == vect_of_non_zeros).all():
prediagram_maps[i, j] = phi.copy()
prediagram_colors[i, j, k] = 1
prediagram_maps[j, i] = phi.copy()
prediagram_colors[j, i, k] = 1
nbr_vertices = np.prod(J_array + 1)
array_vertices = np.zeros((nbr_vertices, m))
for k in range(1, nbr_vertices):
array_vertices[k] = array_vertices[k - 1].copy()
give_next_vect(array_vertices[k], J_array + 1)
array_depth = (np.count_nonzero(array_vertices, axis=1))
list_indexes_depth = []
for depth in range(np.count_nonzero(J_array) + 1):
list_indexes_depth.append(list((np.flatnonzero(array_depth == depth))))
def construct_puzzle(depth, position, current_puzzle, list_puzzles,memory_IDCM):
if depth > np.count_nonzero(J_array):
list_puzzles.append(current_puzzle)
if len(list_puzzles)%50==0:
print(len(list_puzzles))
elif position == len(list_indexes_depth[depth]):
construct_puzzle(depth + 1, 0, current_puzzle, list_puzzles,memory_IDCM)
else:
current_vertex = array_vertices[list_indexes_depth[depth][position]]
list_neighbours = []
# I find all the vertices adjacent to the current vertex which has already their images fixed
for lower_depth in range(depth + 1):
for index_other_vertex in list_indexes_depth[lower_depth]:
if lower_depth < depth or index_other_vertex < list_indexes_depth[depth][position]:
other_vertex = array_vertices[index_other_vertex]
position_of_edge = np.flatnonzero(current_vertex - other_vertex)
if position_of_edge.size == 1:
list_neighbours.append((index_other_vertex, position_of_edge[0]))
marker_of_possible_IDCM = memory_IDCM.copy()
for index_data_neighbour in range(len(list_neighbours)):
data_neighbour = list_neighbours[index_data_neighbour]
index_neighbour, p = data_neighbour
neighbour_IDCM = current_puzzle[index_neighbour]
for data_neighbour2 in list_neighbours[index_data_neighbour + 1:]:
index_neighbour2, q = data_neighbour2
neighbour_IDCM2 = current_puzzle[index_neighbour2]
if p != q and (list_CM[neighbour_IDCM][:, p] == list_CM[neighbour_IDCM][:, q]).all() and (
list_CM[neighbour_IDCM2][:, p] == list_CM[neighbour_IDCM2][:, q]).all() and (
list_CM[neighbour_IDCM][:, p] == list_CM[neighbour_IDCM2][:, q]).all():
opposite_corner_vertex = array_vertices[index_neighbour].copy()
opposite_corner_vertex[q] = array_vertices[index_neighbour2][q]
index_opposite_corner = -1
for k in range(nbr_vertices):
if (opposite_corner_vertex == array_vertices[k]).all():
index_opposite_corner = k
break
opposite_corner_IDCM = current_puzzle[index_opposite_corner]
mandatory_IDCM = np.mod(
list_IDCM[opposite_corner_IDCM] + list_IDCM[neighbour_IDCM] + list_IDCM[neighbour_IDCM2], 2)
index_mandatory_IDCM = -1
for index_IDCM in range(len(list_IDCM)):
if (list_IDCM[index_IDCM] == mandatory_IDCM).all():
index_mandatory_IDCM = index_IDCM
break
marker_mandatory_IDCM = np.zeros(number_IDCM)
if index_mandatory_IDCM >= 0:
marker_mandatory_IDCM[index_mandatory_IDCM] = 1
marker_of_possible_IDCM = np.multiply(marker_of_possible_IDCM, marker_mandatory_IDCM)
if np.count_nonzero(marker_of_possible_IDCM) == 0:
break
marker_of_possible_IDCM = np.multiply(marker_of_possible_IDCM, prediagram_colors[:, neighbour_IDCM, p])
if np.count_nonzero(marker_of_possible_IDCM) == 0:
break
indexes_possible_IDCM = np.flatnonzero(marker_of_possible_IDCM)
if indexes_possible_IDCM.size != 0:
for index_IDCM in indexes_possible_IDCM:
new_puzzle = current_puzzle.copy()
new_puzzle[list_indexes_depth[depth][position]] = index_IDCM
new_memory_IDCM = memory_IDCM.copy()
if IDCM_mode:
new_memory_IDCM[index_IDCM] = 0
construct_puzzle(depth, position + 1, new_puzzle, list_puzzles,new_memory_IDCM)
original_puzzle = -1 * np.ones(nbr_vertices, dtype=int)
final_list_puzzles = []
construct_puzzle(0, 0, original_puzzle, final_list_puzzles,np.ones(number_IDCM))
# if len(final_list_puzzles) != len(list_IDCM):
# K.compute_MNF_set()
# K.MNF_bin_to_MNF()
# print("hello", K.MNF_set, len(final_list_puzzles), len(list_IDCM))
return final_list_puzzles
#K = sc.PureSimplicialComplex([[1, 2], [1, 6], [2, 3], [3, 4], [4, 5],[5,6]])
# wedged_K1 = sc.multiple_wedge(K, [6,1 ,0, 0, 0,0])
# print(wedged_K1.facets)
# start = timeit.default_timer()
# print(len(sc.Garrison_Scott(wedged_K1)))
# stop = timeit.default_timer()
# print("Time spent for GS: ", stop - start)
#start = timeit.default_timer()
#P = puzzle_algo_V2(K, [1, 1, 1, 0, 0,0])
#stop = timeit.default_timer()
#print("Time spent for puzzle: ", stop - start)
#print(len(P),P)
# for n in range(8, 9):
# m = n + 4
# results = read_file('final_results/PLS_%d_%d' % (m, n))
# start = timeit.default_timer()
# for i in range(len(results)):
# K_byte = results[i]
# K = sc.PureSimplicialComplex(json.loads(K_byte))
# # K.compute_MNF_set()
# # K.MNF_bin_to_MNF()
# J = [0]*K.m
# puzzle_algo_V2(K,J)
# # print(i/len(results)*100,"%")
# stop = timeit.default_timer()
# print("(",n,",",m,")","Puzzle mean",(stop-start)/len(results))
# start = timeit.default_timer()
# for i in range(min(len(results),100)):
# K_byte = results[i]
# K = sc.PureSimplicialComplex(json.loads(K_byte))
# J = [0]*K.m
# print(i/min(len(results),100)*100,"%")
# sc.Garrison_Scott(sc.multiple_wedge(K,J))
# stop = timeit.default_timer()
# print("(",n,",",m,")","GS mean",(stop-start)/min(len(results),100))