From cf82331fe4963ec26be399eeeef4820587ffea1b Mon Sep 17 00:00:00 2001 From: Martin Tzvetanov Grigorov Date: Tue, 12 Sep 2023 14:50:36 +0300 Subject: [PATCH] Use sse2neon.h for supporting Linux ARM64 Signed-off-by: Martin Tzvetanov Grigorov --- src/basic/score_matrix.h | 6 +- src/dp/score_vector2.h | 16 +- src/main.cpp | 4 + src/sse2neon.h | 10101 +++++++++++++++++++++++++++++++++++++ src/util/system.h | 9 + src/util/util.h | 4 + 6 files changed, 10134 insertions(+), 6 deletions(-) create mode 100644 src/sse2neon.h diff --git a/src/basic/score_matrix.h b/src/basic/score_matrix.h index 48e7bb9..74533dd 100644 --- a/src/basic/score_matrix.h +++ b/src/basic/score_matrix.h @@ -164,7 +164,11 @@ struct score_matrix private: - static const double LN_2 = 0.69314718055994530941723212145818; + #if __GNUC__ > 5 + static constexpr double LN_2 = 0.69314718055994530941723212145818; + #else + static const double LN_2 = 0.69314718055994530941723212145818; + #endif template struct Scores diff --git a/src/dp/score_vector2.h b/src/dp/score_vector2.h index 9892303..9e5b15c 100644 --- a/src/dp/score_vector2.h +++ b/src/dp/score_vector2.h @@ -39,12 +39,18 @@ Author: Benjamin Buchfink #ifndef SCORE_VECTOR2_H_ #define SCORE_VECTOR2_H_ -#ifdef __SSSE3__ -#include -#include +#ifdef __x86_64__ + #ifdef __SSSE3__ + #include + #include + #endif + + #include +#elif __aarch64__ + #include "../sse2neon.h" #endif - -#include + +-#include #include "../basic/score_matrix.h" diff --git a/src/main.cpp b/src/main.cpp index 8aa9b8c..d561234 100644 --- a/src/main.cpp +++ b/src/main.cpp @@ -48,6 +48,10 @@ Author: Benjamin Buchfink #include "basic/setup.h" #include "output/view.h" +#ifdef __aarch64__ +#include "sse2neon.h" +#endif + #ifdef EXTRA #include "../../extra/test_sw.h" #include "../../extra/test_io.h" diff --git a/src/sse2neon.h b/src/sse2neon.h new file mode 100644 index 0000000..0db4805 --- /dev/null +++ b/src/sse2neon.h @@ -0,0 +1,10101 @@ +#ifndef SSE2NEON_H +#define SSE2NEON_H + +// This header file provides a simple API translation layer +// between SSE intrinsics to their corresponding Arm/Aarch64 NEON versions +// +// Contributors to this work are: +// John W. Ratcliff +// Brandon Rowlett +// Ken Fast +// Eric van Beurden +// Alexander Potylitsin +// Hasindu Gamaarachchi +// Jim Huang +// Mark Cheng +// Malcolm James MacLeod +// Devin Hussey (easyaspi314) +// Sebastian Pop +// Developer Ecosystem Engineering +// Danila Kutenin +// François Turban (JishinMaster) +// Pei-Hsuan Hung +// Yang-Hao Yuan +// Syoyo Fujita +// Brecht Van Lommel +// Jonathan Hue +// Cuda Chen +// Aymen Qader + +/* + * sse2neon is freely redistributable under the MIT License. + * + * Permission is hereby granted, free of charge, to any person obtaining a copy + * of this software and associated documentation files (the "Software"), to deal + * in the Software without restriction, including without limitation the rights + * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell + * copies of the Software, and to permit persons to whom the Software is + * furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included in + * all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE + * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, + * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE + * SOFTWARE. + */ + +/* Tunable configurations */ + +/* Enable precise implementation of math operations + * This would slow down the computation a bit, but gives consistent result with + * x86 SSE. (e.g. would solve a hole or NaN pixel in the rendering result) + */ +/* _mm_min|max_ps|ss|pd|sd */ +#ifndef SSE2NEON_PRECISE_MINMAX +#define SSE2NEON_PRECISE_MINMAX (0) +#endif +/* _mm_rcp_ps and _mm_div_ps */ +#ifndef SSE2NEON_PRECISE_DIV +#define SSE2NEON_PRECISE_DIV (0) +#endif +/* _mm_sqrt_ps and _mm_rsqrt_ps */ +#ifndef SSE2NEON_PRECISE_SQRT +#define SSE2NEON_PRECISE_SQRT (0) +#endif +/* _mm_dp_pd */ +#ifndef SSE2NEON_PRECISE_DP +#define SSE2NEON_PRECISE_DP (0) +#endif + +/* compiler specific definitions */ +#if defined(__GNUC__) || defined(__clang__) +#pragma push_macro("FORCE_INLINE") +#pragma push_macro("ALIGN_STRUCT") +#define FORCE_INLINE static inline __attribute__((always_inline)) +#define ALIGN_STRUCT(x) __attribute__((aligned(x))) +#define _sse2neon_likely(x) __builtin_expect(!!(x), 1) +#define _sse2neon_unlikely(x) __builtin_expect(!!(x), 0) +#else /* non-GNU / non-clang compilers */ +#warning "Macro name collisions may happen with unsupported compiler." +#ifndef FORCE_INLINE +#define FORCE_INLINE static inline +#endif +#ifndef ALIGN_STRUCT +#define ALIGN_STRUCT(x) __declspec(align(x)) +#endif +#define _sse2neon_likely(x) (x) +#define _sse2neon_unlikely(x) (x) +#endif + +/* C language does not allow initializing a variable with a function call. */ +#ifdef __cplusplus +#define _sse2neon_const static const +#else +#define _sse2neon_const const +#endif + +#include +#include + +#if defined(_WIN32) +/* Definitions for _mm_{malloc,free} are provided by + * from both MinGW-w64 and MSVC. + */ +#define SSE2NEON_ALLOC_DEFINED +#endif + +/* If using MSVC */ +#ifdef _MSC_VER +#include +#if (defined(_M_AMD64) || defined(__x86_64__)) || \ + (defined(_M_ARM) || defined(__arm__)) +#define SSE2NEON_HAS_BITSCAN64 +#endif +#endif + +/* Compiler barrier */ +#define SSE2NEON_BARRIER() \ + do { \ + __asm__ __volatile__("" ::: "memory"); \ + (void) 0; \ + } while (0) + +/* Memory barriers + * __atomic_thread_fence does not include a compiler barrier; instead, + * the barrier is part of __atomic_load/__atomic_store's "volatile-like" + * semantics. + */ +#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L) +#include +#endif + +FORCE_INLINE void _sse2neon_smp_mb(void) +{ + SSE2NEON_BARRIER(); +#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L) && \ + !defined(__STDC_NO_ATOMICS__) + atomic_thread_fence(memory_order_seq_cst); +#elif defined(__GNUC__) || defined(__clang__) + __atomic_thread_fence(__ATOMIC_SEQ_CST); +#else + /* FIXME: MSVC support */ +#endif +} + +/* Architecture-specific build options */ +/* FIXME: #pragma GCC push_options is only available on GCC */ +#if defined(__GNUC__) +#if defined(__arm__) && __ARM_ARCH == 7 +/* According to ARM C Language Extensions Architecture specification, + * __ARM_NEON is defined to a value indicating the Advanced SIMD (NEON) + * architecture supported. + */ +#if !defined(__ARM_NEON) || !defined(__ARM_NEON__) +#error "You must enable NEON instructions (e.g. -mfpu=neon) to use SSE2NEON." +#endif +#if !defined(__clang__) +#pragma GCC push_options +#pragma GCC target("fpu=neon") +#endif +#elif defined(__aarch64__) +#if !defined(__clang__) +#pragma GCC push_options +#pragma GCC target("+simd") +#endif +#elif __ARM_ARCH == 8 +#if !defined(__ARM_NEON) || !defined(__ARM_NEON__) +#error \ + "You must enable NEON instructions (e.g. -mfpu=neon-fp-armv8) to use SSE2NEON." +#endif +#if !defined(__clang__) +#pragma GCC push_options +#endif +#else +#error "Unsupported target. Must be either ARMv7-A+NEON or ARMv8-A." +#endif +#endif + +#include +#if !defined(__aarch64__) && (__ARM_ARCH == 8) +#if defined __has_include && __has_include() +#include +#endif +#endif + +/* Apple Silicon cache lines are double of what is commonly used by Intel, AMD + * and other Arm microarchtectures use. + * From sysctl -a on Apple M1: + * hw.cachelinesize: 128 + */ +#if defined(__APPLE__) && (defined(__aarch64__) || defined(__arm64__)) +#define SSE2NEON_CACHELINE_SIZE 128 +#else +#define SSE2NEON_CACHELINE_SIZE 64 +#endif + +/* Rounding functions require either Aarch64 instructions or libm failback */ +#if !defined(__aarch64__) +#include +#endif + +/* On ARMv7, some registers, such as PMUSERENR and PMCCNTR, are read-only + * or even not accessible in user mode. + * To write or access to these registers in user mode, + * we have to perform syscall instead. + */ +#if !defined(__aarch64__) +#include +#endif + +/* "__has_builtin" can be used to query support for built-in functions + * provided by gcc/clang and other compilers that support it. + */ +#ifndef __has_builtin /* GCC prior to 10 or non-clang compilers */ +/* Compatibility with gcc <= 9 */ +#if defined(__GNUC__) && (__GNUC__ <= 9) +#define __has_builtin(x) HAS##x +#define HAS__builtin_popcount 1 +#define HAS__builtin_popcountll 1 + +// __builtin_shuffle introduced in GCC 4.7.0 +#if (__GNUC__ >= 5) || ((__GNUC__ == 4) && (__GNUC_MINOR__ >= 7)) +#define HAS__builtin_shuffle 1 +#else +#define HAS__builtin_shuffle 0 +#endif + +#define HAS__builtin_shufflevector 0 +#define HAS__builtin_nontemporal_store 0 +#else +#define __has_builtin(x) 0 +#endif +#endif + +/** + * MACRO for shuffle parameter for _mm_shuffle_ps(). + * Argument fp3 is a digit[0123] that represents the fp from argument "b" + * of mm_shuffle_ps that will be placed in fp3 of result. fp2 is the same + * for fp2 in result. fp1 is a digit[0123] that represents the fp from + * argument "a" of mm_shuffle_ps that will be places in fp1 of result. + * fp0 is the same for fp0 of result. + */ +#define _MM_SHUFFLE(fp3, fp2, fp1, fp0) \ + (((fp3) << 6) | ((fp2) << 4) | ((fp1) << 2) | ((fp0))) + +#if __has_builtin(__builtin_shufflevector) +#define _sse2neon_shuffle(type, a, b, ...) \ + __builtin_shufflevector(a, b, __VA_ARGS__) +#elif __has_builtin(__builtin_shuffle) +#define _sse2neon_shuffle(type, a, b, ...) \ + __extension__({ \ + type tmp = {__VA_ARGS__}; \ + __builtin_shuffle(a, b, tmp); \ + }) +#endif + +#ifdef _sse2neon_shuffle +#define vshuffle_s16(a, b, ...) _sse2neon_shuffle(int16x4_t, a, b, __VA_ARGS__) +#define vshuffleq_s16(a, b, ...) _sse2neon_shuffle(int16x8_t, a, b, __VA_ARGS__) +#define vshuffle_s32(a, b, ...) _sse2neon_shuffle(int32x2_t, a, b, __VA_ARGS__) +#define vshuffleq_s32(a, b, ...) _sse2neon_shuffle(int32x4_t, a, b, __VA_ARGS__) +#define vshuffle_s64(a, b, ...) _sse2neon_shuffle(int64x1_t, a, b, __VA_ARGS__) +#define vshuffleq_s64(a, b, ...) _sse2neon_shuffle(int64x2_t, a, b, __VA_ARGS__) +#endif + +/* Rounding mode macros. */ +#define _MM_FROUND_TO_NEAREST_INT 0x00 +#define _MM_FROUND_TO_NEG_INF 0x01 +#define _MM_FROUND_TO_POS_INF 0x02 +#define _MM_FROUND_TO_ZERO 0x03 +#define _MM_FROUND_CUR_DIRECTION 0x04 +#define _MM_FROUND_NO_EXC 0x08 +#define _MM_FROUND_RAISE_EXC 0x00 +#define _MM_FROUND_NINT (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_RAISE_EXC) +#define _MM_FROUND_FLOOR (_MM_FROUND_TO_NEG_INF | _MM_FROUND_RAISE_EXC) +#define _MM_FROUND_CEIL (_MM_FROUND_TO_POS_INF | _MM_FROUND_RAISE_EXC) +#define _MM_FROUND_TRUNC (_MM_FROUND_TO_ZERO | _MM_FROUND_RAISE_EXC) +#define _MM_FROUND_RINT (_MM_FROUND_CUR_DIRECTION | _MM_FROUND_RAISE_EXC) +#define _MM_FROUND_NEARBYINT (_MM_FROUND_CUR_DIRECTION | _MM_FROUND_NO_EXC) +#define _MM_ROUND_NEAREST 0x0000 +#define _MM_ROUND_DOWN 0x2000 +#define _MM_ROUND_UP 0x4000 +#define _MM_ROUND_TOWARD_ZERO 0x6000 +/* Flush zero mode macros. */ +#define _MM_FLUSH_ZERO_MASK 0x8000 +#define _MM_FLUSH_ZERO_ON 0x8000 +#define _MM_FLUSH_ZERO_OFF 0x0000 +/* Denormals are zeros mode macros. */ +#define _MM_DENORMALS_ZERO_MASK 0x0040 +#define _MM_DENORMALS_ZERO_ON 0x0040 +#define _MM_DENORMALS_ZERO_OFF 0x0000 + +/* indicate immediate constant argument in a given range */ +#define __constrange(a, b) const + +/* A few intrinsics accept traditional data types like ints or floats, but + * most operate on data types that are specific to SSE. + * If a vector type ends in d, it contains doubles, and if it does not have + * a suffix, it contains floats. An integer vector type can contain any type + * of integer, from chars to shorts to unsigned long longs. + */ +typedef int64x1_t __m64; +typedef float32x4_t __m128; /* 128-bit vector containing 4 floats */ +// On ARM 32-bit architecture, the float64x2_t is not supported. +// The data type __m128d should be represented in a different way for related +// intrinsic conversion. +#if defined(__aarch64__) +typedef float64x2_t __m128d; /* 128-bit vector containing 2 doubles */ +#else +typedef float32x4_t __m128d; +#endif +typedef int64x2_t __m128i; /* 128-bit vector containing integers */ + +// __int64 is defined in the Intrinsics Guide which maps to different datatype +// in different data model +#if !(defined(_WIN32) || defined(_WIN64) || defined(__int64)) +#if (defined(__x86_64__) || defined(__i386__)) +#define __int64 long long +#else +#define __int64 int64_t +#endif +#endif + +/* type-safe casting between types */ + +#define vreinterpretq_m128_f16(x) vreinterpretq_f32_f16(x) +#define vreinterpretq_m128_f32(x) (x) +#define vreinterpretq_m128_f64(x) vreinterpretq_f32_f64(x) + +#define vreinterpretq_m128_u8(x) vreinterpretq_f32_u8(x) +#define vreinterpretq_m128_u16(x) vreinterpretq_f32_u16(x) +#define vreinterpretq_m128_u32(x) vreinterpretq_f32_u32(x) +#define vreinterpretq_m128_u64(x) vreinterpretq_f32_u64(x) + +#define vreinterpretq_m128_s8(x) vreinterpretq_f32_s8(x) +#define vreinterpretq_m128_s16(x) vreinterpretq_f32_s16(x) +#define vreinterpretq_m128_s32(x) vreinterpretq_f32_s32(x) +#define vreinterpretq_m128_s64(x) vreinterpretq_f32_s64(x) + +#define vreinterpretq_f16_m128(x) vreinterpretq_f16_f32(x) +#define vreinterpretq_f32_m128(x) (x) +#define vreinterpretq_f64_m128(x) vreinterpretq_f64_f32(x) + +#define vreinterpretq_u8_m128(x) vreinterpretq_u8_f32(x) +#define vreinterpretq_u16_m128(x) vreinterpretq_u16_f32(x) +#define vreinterpretq_u32_m128(x) vreinterpretq_u32_f32(x) +#define vreinterpretq_u64_m128(x) vreinterpretq_u64_f32(x) + +#define vreinterpretq_s8_m128(x) vreinterpretq_s8_f32(x) +#define vreinterpretq_s16_m128(x) vreinterpretq_s16_f32(x) +#define vreinterpretq_s32_m128(x) vreinterpretq_s32_f32(x) +#define vreinterpretq_s64_m128(x) vreinterpretq_s64_f32(x) + +#define vreinterpretq_m128i_s8(x) vreinterpretq_s64_s8(x) +#define vreinterpretq_m128i_s16(x) vreinterpretq_s64_s16(x) +#define vreinterpretq_m128i_s32(x) vreinterpretq_s64_s32(x) +#define vreinterpretq_m128i_s64(x) (x) + +#define vreinterpretq_m128i_u8(x) vreinterpretq_s64_u8(x) +#define vreinterpretq_m128i_u16(x) vreinterpretq_s64_u16(x) +#define vreinterpretq_m128i_u32(x) vreinterpretq_s64_u32(x) +#define vreinterpretq_m128i_u64(x) vreinterpretq_s64_u64(x) + +#define vreinterpretq_f32_m128i(x) vreinterpretq_f32_s64(x) +#define vreinterpretq_f64_m128i(x) vreinterpretq_f64_s64(x) + +#define vreinterpretq_s8_m128i(x) vreinterpretq_s8_s64(x) +#define vreinterpretq_s16_m128i(x) vreinterpretq_s16_s64(x) +#define vreinterpretq_s32_m128i(x) vreinterpretq_s32_s64(x) +#define vreinterpretq_s64_m128i(x) (x) + +#define vreinterpretq_u8_m128i(x) vreinterpretq_u8_s64(x) +#define vreinterpretq_u16_m128i(x) vreinterpretq_u16_s64(x) +#define vreinterpretq_u32_m128i(x) vreinterpretq_u32_s64(x) +#define vreinterpretq_u64_m128i(x) vreinterpretq_u64_s64(x) + +#define vreinterpret_m64_s8(x) vreinterpret_s64_s8(x) +#define vreinterpret_m64_s16(x) vreinterpret_s64_s16(x) +#define vreinterpret_m64_s32(x) vreinterpret_s64_s32(x) +#define vreinterpret_m64_s64(x) (x) + +#define vreinterpret_m64_u8(x) vreinterpret_s64_u8(x) +#define vreinterpret_m64_u16(x) vreinterpret_s64_u16(x) +#define vreinterpret_m64_u32(x) vreinterpret_s64_u32(x) +#define vreinterpret_m64_u64(x) vreinterpret_s64_u64(x) + +#define vreinterpret_m64_f16(x) vreinterpret_s64_f16(x) +#define vreinterpret_m64_f32(x) vreinterpret_s64_f32(x) +#define vreinterpret_m64_f64(x) vreinterpret_s64_f64(x) + +#define vreinterpret_u8_m64(x) vreinterpret_u8_s64(x) +#define vreinterpret_u16_m64(x) vreinterpret_u16_s64(x) +#define vreinterpret_u32_m64(x) vreinterpret_u32_s64(x) +#define vreinterpret_u64_m64(x) vreinterpret_u64_s64(x) + +#define vreinterpret_s8_m64(x) vreinterpret_s8_s64(x) +#define vreinterpret_s16_m64(x) vreinterpret_s16_s64(x) +#define vreinterpret_s32_m64(x) vreinterpret_s32_s64(x) +#define vreinterpret_s64_m64(x) (x) + +#define vreinterpret_f32_m64(x) vreinterpret_f32_s64(x) + +#if defined(__aarch64__) +#define vreinterpretq_m128d_s32(x) vreinterpretq_f64_s32(x) +#define vreinterpretq_m128d_s64(x) vreinterpretq_f64_s64(x) + +#define vreinterpretq_m128d_u64(x) vreinterpretq_f64_u64(x) + +#define vreinterpretq_m128d_f32(x) vreinterpretq_f64_f32(x) +#define vreinterpretq_m128d_f64(x) (x) + +#define vreinterpretq_s64_m128d(x) vreinterpretq_s64_f64(x) + +#define vreinterpretq_u32_m128d(x) vreinterpretq_u32_f64(x) +#define vreinterpretq_u64_m128d(x) vreinterpretq_u64_f64(x) + +#define vreinterpretq_f64_m128d(x) (x) +#define vreinterpretq_f32_m128d(x) vreinterpretq_f32_f64(x) +#else +#define vreinterpretq_m128d_s32(x) vreinterpretq_f32_s32(x) +#define vreinterpretq_m128d_s64(x) vreinterpretq_f32_s64(x) + +#define vreinterpretq_m128d_u32(x) vreinterpretq_f32_u32(x) +#define vreinterpretq_m128d_u64(x) vreinterpretq_f32_u64(x) + +#define vreinterpretq_m128d_f32(x) (x) + +#define vreinterpretq_s64_m128d(x) vreinterpretq_s64_f32(x) + +#define vreinterpretq_u32_m128d(x) vreinterpretq_u32_f32(x) +#define vreinterpretq_u64_m128d(x) vreinterpretq_u64_f32(x) + +#define vreinterpretq_f32_m128d(x) (x) +#endif + +// A struct is defined in this header file called 'SIMDVec' which can be used +// by applications which attempt to access the contents of an __m128 struct +// directly. It is important to note that accessing the __m128 struct directly +// is bad coding practice by Microsoft: @see: +// https://docs.microsoft.com/en-us/cpp/cpp/m128 +// +// However, some legacy source code may try to access the contents of an __m128 +// struct directly so the developer can use the SIMDVec as an alias for it. Any +// casting must be done manually by the developer, as you cannot cast or +// otherwise alias the base NEON data type for intrinsic operations. +// +// union intended to allow direct access to an __m128 variable using the names +// that the MSVC compiler provides. This union should really only be used when +// trying to access the members of the vector as integer values. GCC/clang +// allow native access to the float members through a simple array access +// operator (in C since 4.6, in C++ since 4.8). +// +// Ideally direct accesses to SIMD vectors should not be used since it can cause +// a performance hit. If it really is needed however, the original __m128 +// variable can be aliased with a pointer to this union and used to access +// individual components. The use of this union should be hidden behind a macro +// that is used throughout the codebase to access the members instead of always +// declaring this type of variable. +typedef union ALIGN_STRUCT(16) SIMDVec { + float m128_f32[4]; // as floats - DON'T USE. Added for convenience. + int8_t m128_i8[16]; // as signed 8-bit integers. + int16_t m128_i16[8]; // as signed 16-bit integers. + int32_t m128_i32[4]; // as signed 32-bit integers. + int64_t m128_i64[2]; // as signed 64-bit integers. + uint8_t m128_u8[16]; // as unsigned 8-bit integers. + uint16_t m128_u16[8]; // as unsigned 16-bit integers. + uint32_t m128_u32[4]; // as unsigned 32-bit integers. + uint64_t m128_u64[2]; // as unsigned 64-bit integers. +} SIMDVec; + +// casting using SIMDVec +#define vreinterpretq_nth_u64_m128i(x, n) (((SIMDVec *) &x)->m128_u64[n]) +#define vreinterpretq_nth_u32_m128i(x, n) (((SIMDVec *) &x)->m128_u32[n]) +#define vreinterpretq_nth_u8_m128i(x, n) (((SIMDVec *) &x)->m128_u8[n]) + +/* SSE macros */ +#define _MM_GET_FLUSH_ZERO_MODE _sse2neon_mm_get_flush_zero_mode +#define _MM_SET_FLUSH_ZERO_MODE _sse2neon_mm_set_flush_zero_mode +#define _MM_GET_DENORMALS_ZERO_MODE _sse2neon_mm_get_denormals_zero_mode +#define _MM_SET_DENORMALS_ZERO_MODE _sse2neon_mm_set_denormals_zero_mode + +// Function declaration +// SSE +FORCE_INLINE unsigned int _MM_GET_ROUNDING_MODE(); +FORCE_INLINE __m128 _mm_move_ss(__m128, __m128); +FORCE_INLINE __m128 _mm_or_ps(__m128, __m128); +FORCE_INLINE __m128 _mm_set_ps1(float); +FORCE_INLINE __m128 _mm_setzero_ps(void); +// SSE2 +FORCE_INLINE __m128i _mm_and_si128(__m128i, __m128i); +FORCE_INLINE __m128i _mm_castps_si128(__m128); +FORCE_INLINE __m128i _mm_cmpeq_epi32(__m128i, __m128i); +FORCE_INLINE __m128i _mm_cvtps_epi32(__m128); +FORCE_INLINE __m128d _mm_move_sd(__m128d, __m128d); +FORCE_INLINE __m128i _mm_or_si128(__m128i, __m128i); +FORCE_INLINE __m128i _mm_set_epi32(int, int, int, int); +FORCE_INLINE __m128i _mm_set_epi64x(int64_t, int64_t); +FORCE_INLINE __m128d _mm_set_pd(double, double); +FORCE_INLINE __m128i _mm_set1_epi32(int); +FORCE_INLINE __m128i _mm_setzero_si128(); +// SSE4.1 +FORCE_INLINE __m128d _mm_ceil_pd(__m128d); +FORCE_INLINE __m128 _mm_ceil_ps(__m128); +FORCE_INLINE __m128d _mm_floor_pd(__m128d); +FORCE_INLINE __m128 _mm_floor_ps(__m128); +FORCE_INLINE __m128d _mm_round_pd(__m128d, int); +FORCE_INLINE __m128 _mm_round_ps(__m128, int); +// SSE4.2 +FORCE_INLINE uint32_t _mm_crc32_u8(uint32_t, uint8_t); + +/* Backwards compatibility for compilers with lack of specific type support */ + +// Older gcc does not define vld1q_u8_x4 type +#if defined(__GNUC__) && !defined(__clang__) && \ + ((__GNUC__ <= 12 && defined(__arm__)) || \ + (__GNUC__ == 10 && __GNUC_MINOR__ < 3 && defined(__aarch64__)) || \ + (__GNUC__ <= 9 && defined(__aarch64__))) +FORCE_INLINE uint8x16x4_t _sse2neon_vld1q_u8_x4(const uint8_t *p) +{ + uint8x16x4_t ret; + ret.val[0] = vld1q_u8(p + 0); + ret.val[1] = vld1q_u8(p + 16); + ret.val[2] = vld1q_u8(p + 32); + ret.val[3] = vld1q_u8(p + 48); + return ret; +} +#else +// Wraps vld1q_u8_x4 +FORCE_INLINE uint8x16x4_t _sse2neon_vld1q_u8_x4(const uint8_t *p) +{ + return vld1q_u8_x4(p); +} +#endif + +#if !defined(__aarch64__) +/* emulate vaddv u8 variant */ +FORCE_INLINE uint8_t _sse2neon_vaddv_u8(uint8x8_t v8) +{ + const uint64x1_t v1 = vpaddl_u32(vpaddl_u16(vpaddl_u8(v8))); + return vget_lane_u8(vreinterpret_u8_u64(v1), 0); +} +#else +// Wraps vaddv_u8 +FORCE_INLINE uint8_t _sse2neon_vaddv_u8(uint8x8_t v8) +{ + return vaddv_u8(v8); +} +#endif + +#if !defined(__aarch64__) +/* emulate vaddvq u8 variant */ +FORCE_INLINE uint8_t _sse2neon_vaddvq_u8(uint8x16_t a) +{ + uint8x8_t tmp = vpadd_u8(vget_low_u8(a), vget_high_u8(a)); + uint8_t res = 0; + for (int i = 0; i < 8; ++i) + res += tmp[i]; + return res; +} +#else +// Wraps vaddvq_u8 +FORCE_INLINE uint8_t _sse2neon_vaddvq_u8(uint8x16_t a) +{ + return vaddvq_u8(a); +} +#endif + +#if !defined(__aarch64__) +/* emulate vaddvq u16 variant */ +FORCE_INLINE uint16_t _sse2neon_vaddvq_u16(uint16x8_t a) +{ + uint32x4_t m = vpaddlq_u16(a); + uint64x2_t n = vpaddlq_u32(m); + uint64x1_t o = vget_low_u64(n) + vget_high_u64(n); + + return vget_lane_u32((uint32x2_t) o, 0); +} +#else +// Wraps vaddvq_u16 +FORCE_INLINE uint16_t _sse2neon_vaddvq_u16(uint16x8_t a) +{ + return vaddvq_u16(a); +} +#endif + +/* Function Naming Conventions + * The naming convention of SSE intrinsics is straightforward. A generic SSE + * intrinsic function is given as follows: + * _mm__ + * + * The parts of this format are given as follows: + * 1. describes the operation performed by the intrinsic + * 2. identifies the data type of the function's primary arguments + * + * This last part, , is a little complicated. It identifies the + * content of the input values, and can be set to any of the following values: + * + ps - vectors contain floats (ps stands for packed single-precision) + * + pd - vectors cantain doubles (pd stands for packed double-precision) + * + epi8/epi16/epi32/epi64 - vectors contain 8-bit/16-bit/32-bit/64-bit + * signed integers + * + epu8/epu16/epu32/epu64 - vectors contain 8-bit/16-bit/32-bit/64-bit + * unsigned integers + * + si128 - unspecified 128-bit vector or 256-bit vector + * + m128/m128i/m128d - identifies input vector types when they are different + * than the type of the returned vector + * + * For example, _mm_setzero_ps. The _mm implies that the function returns + * a 128-bit vector. The _ps at the end implies that the argument vectors + * contain floats. + * + * A complete example: Byte Shuffle - pshufb (_mm_shuffle_epi8) + * // Set packed 16-bit integers. 128 bits, 8 short, per 16 bits + * __m128i v_in = _mm_setr_epi16(1, 2, 3, 4, 5, 6, 7, 8); + * // Set packed 8-bit integers + * // 128 bits, 16 chars, per 8 bits + * __m128i v_perm = _mm_setr_epi8(1, 0, 2, 3, 8, 9, 10, 11, + * 4, 5, 12, 13, 6, 7, 14, 15); + * // Shuffle packed 8-bit integers + * __m128i v_out = _mm_shuffle_epi8(v_in, v_perm); // pshufb + * + * Data (Number, Binary, Byte Index): + +------+------+-------------+------+------+-------------+ + | 1 | 2 | 3 | 4 | Number + +------+------+------+------+------+------+------+------+ + | 0000 | 0001 | 0000 | 0010 | 0000 | 0011 | 0000 | 0100 | Binary + +------+------+------+------+------+------+------+------+ + | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | Index + +------+------+------+------+------+------+------+------+ + + +------+------+------+------+------+------+------+------+ + | 5 | 6 | 7 | 8 | Number + +------+------+------+------+------+------+------+------+ + | 0000 | 0101 | 0000 | 0110 | 0000 | 0111 | 0000 | 1000 | Binary + +------+------+------+------+------+------+------+------+ + | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | Index + +------+------+------+------+------+------+------+------+ + * Index (Byte Index): + +------+------+------+------+------+------+------+------+ + | 1 | 0 | 2 | 3 | 8 | 9 | 10 | 11 | + +------+------+------+------+------+------+------+------+ + + +------+------+------+------+------+------+------+------+ + | 4 | 5 | 12 | 13 | 6 | 7 | 14 | 15 | + +------+------+------+------+------+------+------+------+ + * Result: + +------+------+------+------+------+------+------+------+ + | 1 | 0 | 2 | 3 | 8 | 9 | 10 | 11 | Index + +------+------+------+------+------+------+------+------+ + | 0001 | 0000 | 0000 | 0010 | 0000 | 0101 | 0000 | 0110 | Binary + +------+------+------+------+------+------+------+------+ + | 256 | 2 | 5 | 6 | Number + +------+------+------+------+------+------+------+------+ + + +------+------+------+------+------+------+------+------+ + | 4 | 5 | 12 | 13 | 6 | 7 | 14 | 15 | Index + +------+------+------+------+------+------+------+------+ + | 0000 | 0011 | 0000 | 0111 | 0000 | 0100 | 0000 | 1000 | Binary + +------+------+------+------+------+------+------+------+ + | 3 | 7 | 4 | 8 | Number + +------+------+------+------+------+------+-------------+ + */ + +/* Constants for use with _mm_prefetch. */ +enum _mm_hint { + _MM_HINT_NTA = 0, /* load data to L1 and L2 cache, mark it as NTA */ + _MM_HINT_T0 = 1, /* load data to L1 and L2 cache */ + _MM_HINT_T1 = 2, /* load data to L2 cache only */ + _MM_HINT_T2 = 3, /* load data to L2 cache only, mark it as NTA */ +}; + +// The bit field mapping to the FPCR(floating-point control register) +typedef struct { + uint16_t res0; + uint8_t res1 : 6; + uint8_t bit22 : 1; + uint8_t bit23 : 1; + uint8_t bit24 : 1; + uint8_t res2 : 7; +#if defined(__aarch64__) + uint32_t res3; +#endif +} fpcr_bitfield; + +// Takes the upper 64 bits of a and places it in the low end of the result +// Takes the lower 64 bits of b and places it into the high end of the result. +FORCE_INLINE __m128 _mm_shuffle_ps_1032(__m128 a, __m128 b) +{ + float32x2_t a32 = vget_high_f32(vreinterpretq_f32_m128(a)); + float32x2_t b10 = vget_low_f32(vreinterpretq_f32_m128(b)); + return vreinterpretq_m128_f32(vcombine_f32(a32, b10)); +} + +// takes the lower two 32-bit values from a and swaps them and places in high +// end of result takes the higher two 32 bit values from b and swaps them and +// places in low end of result. +FORCE_INLINE __m128 _mm_shuffle_ps_2301(__m128 a, __m128 b) +{ + float32x2_t a01 = vrev64_f32(vget_low_f32(vreinterpretq_f32_m128(a))); + float32x2_t b23 = vrev64_f32(vget_high_f32(vreinterpretq_f32_m128(b))); + return vreinterpretq_m128_f32(vcombine_f32(a01, b23)); +} + +FORCE_INLINE __m128 _mm_shuffle_ps_0321(__m128 a, __m128 b) +{ + float32x2_t a21 = vget_high_f32( + vextq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a), 3)); + float32x2_t b03 = vget_low_f32( + vextq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b), 3)); + return vreinterpretq_m128_f32(vcombine_f32(a21, b03)); +} + +FORCE_INLINE __m128 _mm_shuffle_ps_2103(__m128 a, __m128 b) +{ + float32x2_t a03 = vget_low_f32( + vextq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a), 3)); + float32x2_t b21 = vget_high_f32( + vextq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b), 3)); + return vreinterpretq_m128_f32(vcombine_f32(a03, b21)); +} + +FORCE_INLINE __m128 _mm_shuffle_ps_1010(__m128 a, __m128 b) +{ + float32x2_t a10 = vget_low_f32(vreinterpretq_f32_m128(a)); + float32x2_t b10 = vget_low_f32(vreinterpretq_f32_m128(b)); + return vreinterpretq_m128_f32(vcombine_f32(a10, b10)); +} + +FORCE_INLINE __m128 _mm_shuffle_ps_1001(__m128 a, __m128 b) +{ + float32x2_t a01 = vrev64_f32(vget_low_f32(vreinterpretq_f32_m128(a))); + float32x2_t b10 = vget_low_f32(vreinterpretq_f32_m128(b)); + return vreinterpretq_m128_f32(vcombine_f32(a01, b10)); +} + +FORCE_INLINE __m128 _mm_shuffle_ps_0101(__m128 a, __m128 b) +{ + float32x2_t a01 = vrev64_f32(vget_low_f32(vreinterpretq_f32_m128(a))); + float32x2_t b01 = vrev64_f32(vget_low_f32(vreinterpretq_f32_m128(b))); + return vreinterpretq_m128_f32(vcombine_f32(a01, b01)); +} + +// keeps the low 64 bits of b in the low and puts the high 64 bits of a in the +// high +FORCE_INLINE __m128 _mm_shuffle_ps_3210(__m128 a, __m128 b) +{ + float32x2_t a10 = vget_low_f32(vreinterpretq_f32_m128(a)); + float32x2_t b32 = vget_high_f32(vreinterpretq_f32_m128(b)); + return vreinterpretq_m128_f32(vcombine_f32(a10, b32)); +} + +FORCE_INLINE __m128 _mm_shuffle_ps_0011(__m128 a, __m128 b) +{ + float32x2_t a11 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(a)), 1); + float32x2_t b00 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(b)), 0); + return vreinterpretq_m128_f32(vcombine_f32(a11, b00)); +} + +FORCE_INLINE __m128 _mm_shuffle_ps_0022(__m128 a, __m128 b) +{ + float32x2_t a22 = + vdup_lane_f32(vget_high_f32(vreinterpretq_f32_m128(a)), 0); + float32x2_t b00 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(b)), 0); + return vreinterpretq_m128_f32(vcombine_f32(a22, b00)); +} + +FORCE_INLINE __m128 _mm_shuffle_ps_2200(__m128 a, __m128 b) +{ + float32x2_t a00 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(a)), 0); + float32x2_t b22 = + vdup_lane_f32(vget_high_f32(vreinterpretq_f32_m128(b)), 0); + return vreinterpretq_m128_f32(vcombine_f32(a00, b22)); +} + +FORCE_INLINE __m128 _mm_shuffle_ps_3202(__m128 a, __m128 b) +{ + float32_t a0 = vgetq_lane_f32(vreinterpretq_f32_m128(a), 0); + float32x2_t a22 = + vdup_lane_f32(vget_high_f32(vreinterpretq_f32_m128(a)), 0); + float32x2_t a02 = vset_lane_f32(a0, a22, 1); /* TODO: use vzip ?*/ + float32x2_t b32 = vget_high_f32(vreinterpretq_f32_m128(b)); + return vreinterpretq_m128_f32(vcombine_f32(a02, b32)); +} + +FORCE_INLINE __m128 _mm_shuffle_ps_1133(__m128 a, __m128 b) +{ + float32x2_t a33 = + vdup_lane_f32(vget_high_f32(vreinterpretq_f32_m128(a)), 1); + float32x2_t b11 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(b)), 1); + return vreinterpretq_m128_f32(vcombine_f32(a33, b11)); +} + +FORCE_INLINE __m128 _mm_shuffle_ps_2010(__m128 a, __m128 b) +{ + float32x2_t a10 = vget_low_f32(vreinterpretq_f32_m128(a)); + float32_t b2 = vgetq_lane_f32(vreinterpretq_f32_m128(b), 2); + float32x2_t b00 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(b)), 0); + float32x2_t b20 = vset_lane_f32(b2, b00, 1); + return vreinterpretq_m128_f32(vcombine_f32(a10, b20)); +} + +FORCE_INLINE __m128 _mm_shuffle_ps_2001(__m128 a, __m128 b) +{ + float32x2_t a01 = vrev64_f32(vget_low_f32(vreinterpretq_f32_m128(a))); + float32_t b2 = vgetq_lane_f32(b, 2); + float32x2_t b00 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(b)), 0); + float32x2_t b20 = vset_lane_f32(b2, b00, 1); + return vreinterpretq_m128_f32(vcombine_f32(a01, b20)); +} + +FORCE_INLINE __m128 _mm_shuffle_ps_2032(__m128 a, __m128 b) +{ + float32x2_t a32 = vget_high_f32(vreinterpretq_f32_m128(a)); + float32_t b2 = vgetq_lane_f32(b, 2); + float32x2_t b00 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(b)), 0); + float32x2_t b20 = vset_lane_f32(b2, b00, 1); + return vreinterpretq_m128_f32(vcombine_f32(a32, b20)); +} + +// Kahan summation for accurate summation of floating-point numbers. +// http://blog.zachbjornson.com/2019/08/11/fast-float-summation.html +FORCE_INLINE void _sse2neon_kadd_f32(float *sum, float *c, float y) +{ + y -= *c; + float t = *sum + y; + *c = (t - *sum) - y; + *sum = t; +} + +#if defined(__ARM_FEATURE_CRYPTO) && \ + (defined(__aarch64__) || __has_builtin(__builtin_arm_crypto_vmullp64)) +// Wraps vmull_p64 +FORCE_INLINE uint64x2_t _sse2neon_vmull_p64(uint64x1_t _a, uint64x1_t _b) +{ + poly64_t a = vget_lane_p64(vreinterpret_p64_u64(_a), 0); + poly64_t b = vget_lane_p64(vreinterpret_p64_u64(_b), 0); + return vreinterpretq_u64_p128(vmull_p64(a, b)); +} +#else // ARMv7 polyfill +// ARMv7/some A64 lacks vmull_p64, but it has vmull_p8. +// +// vmull_p8 calculates 8 8-bit->16-bit polynomial multiplies, but we need a +// 64-bit->128-bit polynomial multiply. +// +// It needs some work and is somewhat slow, but it is still faster than all +// known scalar methods. +// +// Algorithm adapted to C from +// https://www.workofard.com/2017/07/ghash-for-low-end-cores/, which is adapted +// from "Fast Software Polynomial Multiplication on ARM Processors Using the +// NEON Engine" by Danilo Camara, Conrado Gouvea, Julio Lopez and Ricardo Dahab +// (https://hal.inria.fr/hal-01506572) +static uint64x2_t _sse2neon_vmull_p64(uint64x1_t _a, uint64x1_t _b) +{ + poly8x8_t a = vreinterpret_p8_u64(_a); + poly8x8_t b = vreinterpret_p8_u64(_b); + + // Masks + uint8x16_t k48_32 = vcombine_u8(vcreate_u8(0x0000ffffffffffff), + vcreate_u8(0x00000000ffffffff)); + uint8x16_t k16_00 = vcombine_u8(vcreate_u8(0x000000000000ffff), + vcreate_u8(0x0000000000000000)); + + // Do the multiplies, rotating with vext to get all combinations + uint8x16_t d = vreinterpretq_u8_p16(vmull_p8(a, b)); // D = A0 * B0 + uint8x16_t e = + vreinterpretq_u8_p16(vmull_p8(a, vext_p8(b, b, 1))); // E = A0 * B1 + uint8x16_t f = + vreinterpretq_u8_p16(vmull_p8(vext_p8(a, a, 1), b)); // F = A1 * B0 + uint8x16_t g = + vreinterpretq_u8_p16(vmull_p8(a, vext_p8(b, b, 2))); // G = A0 * B2 + uint8x16_t h = + vreinterpretq_u8_p16(vmull_p8(vext_p8(a, a, 2), b)); // H = A2 * B0 + uint8x16_t i = + vreinterpretq_u8_p16(vmull_p8(a, vext_p8(b, b, 3))); // I = A0 * B3 + uint8x16_t j = + vreinterpretq_u8_p16(vmull_p8(vext_p8(a, a, 3), b)); // J = A3 * B0 + uint8x16_t k = + vreinterpretq_u8_p16(vmull_p8(a, vext_p8(b, b, 4))); // L = A0 * B4 + + // Add cross products + uint8x16_t l = veorq_u8(e, f); // L = E + F + uint8x16_t m = veorq_u8(g, h); // M = G + H + uint8x16_t n = veorq_u8(i, j); // N = I + J + + // Interleave. Using vzip1 and vzip2 prevents Clang from emitting TBL + // instructions. +#if defined(__aarch64__) + uint8x16_t lm_p0 = vreinterpretq_u8_u64( + vzip1q_u64(vreinterpretq_u64_u8(l), vreinterpretq_u64_u8(m))); + uint8x16_t lm_p1 = vreinterpretq_u8_u64( + vzip2q_u64(vreinterpretq_u64_u8(l), vreinterpretq_u64_u8(m))); + uint8x16_t nk_p0 = vreinterpretq_u8_u64( + vzip1q_u64(vreinterpretq_u64_u8(n), vreinterpretq_u64_u8(k))); + uint8x16_t nk_p1 = vreinterpretq_u8_u64( + vzip2q_u64(vreinterpretq_u64_u8(n), vreinterpretq_u64_u8(k))); +#else + uint8x16_t lm_p0 = vcombine_u8(vget_low_u8(l), vget_low_u8(m)); + uint8x16_t lm_p1 = vcombine_u8(vget_high_u8(l), vget_high_u8(m)); + uint8x16_t nk_p0 = vcombine_u8(vget_low_u8(n), vget_low_u8(k)); + uint8x16_t nk_p1 = vcombine_u8(vget_high_u8(n), vget_high_u8(k)); +#endif + // t0 = (L) (P0 + P1) << 8 + // t1 = (M) (P2 + P3) << 16 + uint8x16_t t0t1_tmp = veorq_u8(lm_p0, lm_p1); + uint8x16_t t0t1_h = vandq_u8(lm_p1, k48_32); + uint8x16_t t0t1_l = veorq_u8(t0t1_tmp, t0t1_h); + + // t2 = (N) (P4 + P5) << 24 + // t3 = (K) (P6 + P7) << 32 + uint8x16_t t2t3_tmp = veorq_u8(nk_p0, nk_p1); + uint8x16_t t2t3_h = vandq_u8(nk_p1, k16_00); + uint8x16_t t2t3_l = veorq_u8(t2t3_tmp, t2t3_h); + + // De-interleave +#if defined(__aarch64__) + uint8x16_t t0 = vreinterpretq_u8_u64( + vuzp1q_u64(vreinterpretq_u64_u8(t0t1_l), vreinterpretq_u64_u8(t0t1_h))); + uint8x16_t t1 = vreinterpretq_u8_u64( + vuzp2q_u64(vreinterpretq_u64_u8(t0t1_l), vreinterpretq_u64_u8(t0t1_h))); + uint8x16_t t2 = vreinterpretq_u8_u64( + vuzp1q_u64(vreinterpretq_u64_u8(t2t3_l), vreinterpretq_u64_u8(t2t3_h))); + uint8x16_t t3 = vreinterpretq_u8_u64( + vuzp2q_u64(vreinterpretq_u64_u8(t2t3_l), vreinterpretq_u64_u8(t2t3_h))); +#else + uint8x16_t t1 = vcombine_u8(vget_high_u8(t0t1_l), vget_high_u8(t0t1_h)); + uint8x16_t t0 = vcombine_u8(vget_low_u8(t0t1_l), vget_low_u8(t0t1_h)); + uint8x16_t t3 = vcombine_u8(vget_high_u8(t2t3_l), vget_high_u8(t2t3_h)); + uint8x16_t t2 = vcombine_u8(vget_low_u8(t2t3_l), vget_low_u8(t2t3_h)); +#endif + // Shift the cross products + uint8x16_t t0_shift = vextq_u8(t0, t0, 15); // t0 << 8 + uint8x16_t t1_shift = vextq_u8(t1, t1, 14); // t1 << 16 + uint8x16_t t2_shift = vextq_u8(t2, t2, 13); // t2 << 24 + uint8x16_t t3_shift = vextq_u8(t3, t3, 12); // t3 << 32 + + // Accumulate the products + uint8x16_t cross1 = veorq_u8(t0_shift, t1_shift); + uint8x16_t cross2 = veorq_u8(t2_shift, t3_shift); + uint8x16_t mix = veorq_u8(d, cross1); + uint8x16_t r = veorq_u8(mix, cross2); + return vreinterpretq_u64_u8(r); +} +#endif // ARMv7 polyfill + +// C equivalent: +// __m128i _mm_shuffle_epi32_default(__m128i a, +// __constrange(0, 255) int imm) { +// __m128i ret; +// ret[0] = a[imm & 0x3]; ret[1] = a[(imm >> 2) & 0x3]; +// ret[2] = a[(imm >> 4) & 0x03]; ret[3] = a[(imm >> 6) & 0x03]; +// return ret; +// } +#define _mm_shuffle_epi32_default(a, imm) \ + __extension__({ \ + int32x4_t ret; \ + ret = vmovq_n_s32( \ + vgetq_lane_s32(vreinterpretq_s32_m128i(a), (imm) & (0x3))); \ + ret = vsetq_lane_s32( \ + vgetq_lane_s32(vreinterpretq_s32_m128i(a), ((imm) >> 2) & 0x3), \ + ret, 1); \ + ret = vsetq_lane_s32( \ + vgetq_lane_s32(vreinterpretq_s32_m128i(a), ((imm) >> 4) & 0x3), \ + ret, 2); \ + ret = vsetq_lane_s32( \ + vgetq_lane_s32(vreinterpretq_s32_m128i(a), ((imm) >> 6) & 0x3), \ + ret, 3); \ + vreinterpretq_m128i_s32(ret); \ + }) + +// Takes the upper 64 bits of a and places it in the low end of the result +// Takes the lower 64 bits of a and places it into the high end of the result. +FORCE_INLINE __m128i _mm_shuffle_epi_1032(__m128i a) +{ + int32x2_t a32 = vget_high_s32(vreinterpretq_s32_m128i(a)); + int32x2_t a10 = vget_low_s32(vreinterpretq_s32_m128i(a)); + return vreinterpretq_m128i_s32(vcombine_s32(a32, a10)); +} + +// takes the lower two 32-bit values from a and swaps them and places in low end +// of result takes the higher two 32 bit values from a and swaps them and places +// in high end of result. +FORCE_INLINE __m128i _mm_shuffle_epi_2301(__m128i a) +{ + int32x2_t a01 = vrev64_s32(vget_low_s32(vreinterpretq_s32_m128i(a))); + int32x2_t a23 = vrev64_s32(vget_high_s32(vreinterpretq_s32_m128i(a))); + return vreinterpretq_m128i_s32(vcombine_s32(a01, a23)); +} + +// rotates the least significant 32 bits into the most significant 32 bits, and +// shifts the rest down +FORCE_INLINE __m128i _mm_shuffle_epi_0321(__m128i a) +{ + return vreinterpretq_m128i_s32( + vextq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(a), 1)); +} + +// rotates the most significant 32 bits into the least significant 32 bits, and +// shifts the rest up +FORCE_INLINE __m128i _mm_shuffle_epi_2103(__m128i a) +{ + return vreinterpretq_m128i_s32( + vextq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(a), 3)); +} + +// gets the lower 64 bits of a, and places it in the upper 64 bits +// gets the lower 64 bits of a and places it in the lower 64 bits +FORCE_INLINE __m128i _mm_shuffle_epi_1010(__m128i a) +{ + int32x2_t a10 = vget_low_s32(vreinterpretq_s32_m128i(a)); + return vreinterpretq_m128i_s32(vcombine_s32(a10, a10)); +} + +// gets the lower 64 bits of a, swaps the 0 and 1 elements, and places it in the +// lower 64 bits gets the lower 64 bits of a, and places it in the upper 64 bits +FORCE_INLINE __m128i _mm_shuffle_epi_1001(__m128i a) +{ + int32x2_t a01 = vrev64_s32(vget_low_s32(vreinterpretq_s32_m128i(a))); + int32x2_t a10 = vget_low_s32(vreinterpretq_s32_m128i(a)); + return vreinterpretq_m128i_s32(vcombine_s32(a01, a10)); +} + +// gets the lower 64 bits of a, swaps the 0 and 1 elements and places it in the +// upper 64 bits gets the lower 64 bits of a, swaps the 0 and 1 elements, and +// places it in the lower 64 bits +FORCE_INLINE __m128i _mm_shuffle_epi_0101(__m128i a) +{ + int32x2_t a01 = vrev64_s32(vget_low_s32(vreinterpretq_s32_m128i(a))); + return vreinterpretq_m128i_s32(vcombine_s32(a01, a01)); +} + +FORCE_INLINE __m128i _mm_shuffle_epi_2211(__m128i a) +{ + int32x2_t a11 = vdup_lane_s32(vget_low_s32(vreinterpretq_s32_m128i(a)), 1); + int32x2_t a22 = vdup_lane_s32(vget_high_s32(vreinterpretq_s32_m128i(a)), 0); + return vreinterpretq_m128i_s32(vcombine_s32(a11, a22)); +} + +FORCE_INLINE __m128i _mm_shuffle_epi_0122(__m128i a) +{ + int32x2_t a22 = vdup_lane_s32(vget_high_s32(vreinterpretq_s32_m128i(a)), 0); + int32x2_t a01 = vrev64_s32(vget_low_s32(vreinterpretq_s32_m128i(a))); + return vreinterpretq_m128i_s32(vcombine_s32(a22, a01)); +} + +FORCE_INLINE __m128i _mm_shuffle_epi_3332(__m128i a) +{ + int32x2_t a32 = vget_high_s32(vreinterpretq_s32_m128i(a)); + int32x2_t a33 = vdup_lane_s32(vget_high_s32(vreinterpretq_s32_m128i(a)), 1); + return vreinterpretq_m128i_s32(vcombine_s32(a32, a33)); +} + +// FORCE_INLINE __m128i _mm_shuffle_epi32_splat(__m128i a, __constrange(0,255) +// int imm) +#if defined(__aarch64__) +#define _mm_shuffle_epi32_splat(a, imm) \ + __extension__({ \ + vreinterpretq_m128i_s32( \ + vdupq_laneq_s32(vreinterpretq_s32_m128i(a), (imm))); \ + }) +#else +#define _mm_shuffle_epi32_splat(a, imm) \ + __extension__({ \ + vreinterpretq_m128i_s32( \ + vdupq_n_s32(vgetq_lane_s32(vreinterpretq_s32_m128i(a), (imm)))); \ + }) +#endif + +// NEON does not support a general purpose permute intrinsic +// Selects four specific single-precision, floating-point values from a and b, +// based on the mask i. +// +// C equivalent: +// __m128 _mm_shuffle_ps_default(__m128 a, __m128 b, +// __constrange(0, 255) int imm) { +// __m128 ret; +// ret[0] = a[imm & 0x3]; ret[1] = a[(imm >> 2) & 0x3]; +// ret[2] = b[(imm >> 4) & 0x03]; ret[3] = b[(imm >> 6) & 0x03]; +// return ret; +// } +// +// https://msdn.microsoft.com/en-us/library/vstudio/5f0858x0(v=vs.100).aspx +#define _mm_shuffle_ps_default(a, b, imm) \ + __extension__({ \ + float32x4_t ret; \ + ret = vmovq_n_f32( \ + vgetq_lane_f32(vreinterpretq_f32_m128(a), (imm) & (0x3))); \ + ret = vsetq_lane_f32( \ + vgetq_lane_f32(vreinterpretq_f32_m128(a), ((imm) >> 2) & 0x3), \ + ret, 1); \ + ret = vsetq_lane_f32( \ + vgetq_lane_f32(vreinterpretq_f32_m128(b), ((imm) >> 4) & 0x3), \ + ret, 2); \ + ret = vsetq_lane_f32( \ + vgetq_lane_f32(vreinterpretq_f32_m128(b), ((imm) >> 6) & 0x3), \ + ret, 3); \ + vreinterpretq_m128_f32(ret); \ + }) + +// Shuffles the lower 4 signed or unsigned 16-bit integers in a as specified +// by imm. +// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/y41dkk37(v=vs.100) +// FORCE_INLINE __m128i _mm_shufflelo_epi16_function(__m128i a, +// __constrange(0,255) int +// imm) +#define _mm_shufflelo_epi16_function(a, imm) \ + __extension__({ \ + int16x8_t ret = vreinterpretq_s16_m128i(a); \ + int16x4_t lowBits = vget_low_s16(ret); \ + ret = vsetq_lane_s16(vget_lane_s16(lowBits, (imm) & (0x3)), ret, 0); \ + ret = vsetq_lane_s16(vget_lane_s16(lowBits, ((imm) >> 2) & 0x3), ret, \ + 1); \ + ret = vsetq_lane_s16(vget_lane_s16(lowBits, ((imm) >> 4) & 0x3), ret, \ + 2); \ + ret = vsetq_lane_s16(vget_lane_s16(lowBits, ((imm) >> 6) & 0x3), ret, \ + 3); \ + vreinterpretq_m128i_s16(ret); \ + }) + +// Shuffles the upper 4 signed or unsigned 16-bit integers in a as specified +// by imm. +// https://msdn.microsoft.com/en-us/library/13ywktbs(v=vs.100).aspx +// FORCE_INLINE __m128i _mm_shufflehi_epi16_function(__m128i a, +// __constrange(0,255) int +// imm) +#define _mm_shufflehi_epi16_function(a, imm) \ + __extension__({ \ + int16x8_t ret = vreinterpretq_s16_m128i(a); \ + int16x4_t highBits = vget_high_s16(ret); \ + ret = vsetq_lane_s16(vget_lane_s16(highBits, (imm) & (0x3)), ret, 4); \ + ret = vsetq_lane_s16(vget_lane_s16(highBits, ((imm) >> 2) & 0x3), ret, \ + 5); \ + ret = vsetq_lane_s16(vget_lane_s16(highBits, ((imm) >> 4) & 0x3), ret, \ + 6); \ + ret = vsetq_lane_s16(vget_lane_s16(highBits, ((imm) >> 6) & 0x3), ret, \ + 7); \ + vreinterpretq_m128i_s16(ret); \ + }) + +/* MMX */ + +//_mm_empty is a no-op on arm +FORCE_INLINE void _mm_empty(void) {} + +/* SSE */ + +// Adds the four single-precision, floating-point values of a and b. +// +// r0 := a0 + b0 +// r1 := a1 + b1 +// r2 := a2 + b2 +// r3 := a3 + b3 +// +// https://msdn.microsoft.com/en-us/library/vstudio/c9848chc(v=vs.100).aspx +FORCE_INLINE __m128 _mm_add_ps(__m128 a, __m128 b) +{ + return vreinterpretq_m128_f32( + vaddq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); +} + +// adds the scalar single-precision floating point values of a and b. +// https://msdn.microsoft.com/en-us/library/be94x2y6(v=vs.100).aspx +FORCE_INLINE __m128 _mm_add_ss(__m128 a, __m128 b) +{ + float32_t b0 = vgetq_lane_f32(vreinterpretq_f32_m128(b), 0); + float32x4_t value = vsetq_lane_f32(b0, vdupq_n_f32(0), 0); + // the upper values in the result must be the remnants of . + return vreinterpretq_m128_f32(vaddq_f32(a, value)); +} + +// Computes the bitwise AND of the four single-precision, floating-point values +// of a and b. +// +// r0 := a0 & b0 +// r1 := a1 & b1 +// r2 := a2 & b2 +// r3 := a3 & b3 +// +// https://msdn.microsoft.com/en-us/library/vstudio/73ck1xc5(v=vs.100).aspx +FORCE_INLINE __m128 _mm_and_ps(__m128 a, __m128 b) +{ + return vreinterpretq_m128_s32( + vandq_s32(vreinterpretq_s32_m128(a), vreinterpretq_s32_m128(b))); +} + +// Computes the bitwise AND-NOT of the four single-precision, floating-point +// values of a and b. +// +// r0 := ~a0 & b0 +// r1 := ~a1 & b1 +// r2 := ~a2 & b2 +// r3 := ~a3 & b3 +// +// https://msdn.microsoft.com/en-us/library/vstudio/68h7wd02(v=vs.100).aspx +FORCE_INLINE __m128 _mm_andnot_ps(__m128 a, __m128 b) +{ + return vreinterpretq_m128_s32( + vbicq_s32(vreinterpretq_s32_m128(b), + vreinterpretq_s32_m128(a))); // *NOTE* argument swap +} + +// Average packed unsigned 16-bit integers in a and b, and store the results in +// dst. +// +// FOR j := 0 to 3 +// i := j*16 +// dst[i+15:i] := (a[i+15:i] + b[i+15:i] + 1) >> 1 +// ENDFOR +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_avg_pu16 +FORCE_INLINE __m64 _mm_avg_pu16(__m64 a, __m64 b) +{ + return vreinterpret_m64_u16( + vrhadd_u16(vreinterpret_u16_m64(a), vreinterpret_u16_m64(b))); +} + +// Average packed unsigned 8-bit integers in a and b, and store the results in +// dst. +// +// FOR j := 0 to 7 +// i := j*8 +// dst[i+7:i] := (a[i+7:i] + b[i+7:i] + 1) >> 1 +// ENDFOR +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_avg_pu8 +FORCE_INLINE __m64 _mm_avg_pu8(__m64 a, __m64 b) +{ + return vreinterpret_m64_u8( + vrhadd_u8(vreinterpret_u8_m64(a), vreinterpret_u8_m64(b))); +} + +// Compares for equality. +// https://msdn.microsoft.com/en-us/library/vstudio/36aectz5(v=vs.100).aspx +FORCE_INLINE __m128 _mm_cmpeq_ps(__m128 a, __m128 b) +{ + return vreinterpretq_m128_u32( + vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); +} + +// Compares for equality. +// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/k423z28e(v=vs.100) +FORCE_INLINE __m128 _mm_cmpeq_ss(__m128 a, __m128 b) +{ + return _mm_move_ss(a, _mm_cmpeq_ps(a, b)); +} + +// Compares for greater than or equal. +// https://msdn.microsoft.com/en-us/library/vstudio/fs813y2t(v=vs.100).aspx +FORCE_INLINE __m128 _mm_cmpge_ps(__m128 a, __m128 b) +{ + return vreinterpretq_m128_u32( + vcgeq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); +} + +// Compares for greater than or equal. +// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/kesh3ddc(v=vs.100) +FORCE_INLINE __m128 _mm_cmpge_ss(__m128 a, __m128 b) +{ + return _mm_move_ss(a, _mm_cmpge_ps(a, b)); +} + +// Compares for greater than. +// +// r0 := (a0 > b0) ? 0xffffffff : 0x0 +// r1 := (a1 > b1) ? 0xffffffff : 0x0 +// r2 := (a2 > b2) ? 0xffffffff : 0x0 +// r3 := (a3 > b3) ? 0xffffffff : 0x0 +// +// https://msdn.microsoft.com/en-us/library/vstudio/11dy102s(v=vs.100).aspx +FORCE_INLINE __m128 _mm_cmpgt_ps(__m128 a, __m128 b) +{ + return vreinterpretq_m128_u32( + vcgtq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); +} + +// Compares for greater than. +// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/1xyyyy9e(v=vs.100) +FORCE_INLINE __m128 _mm_cmpgt_ss(__m128 a, __m128 b) +{ + return _mm_move_ss(a, _mm_cmpgt_ps(a, b)); +} + +// Compares for less than or equal. +// +// r0 := (a0 <= b0) ? 0xffffffff : 0x0 +// r1 := (a1 <= b1) ? 0xffffffff : 0x0 +// r2 := (a2 <= b2) ? 0xffffffff : 0x0 +// r3 := (a3 <= b3) ? 0xffffffff : 0x0 +// +// https://msdn.microsoft.com/en-us/library/vstudio/1s75w83z(v=vs.100).aspx +FORCE_INLINE __m128 _mm_cmple_ps(__m128 a, __m128 b) +{ + return vreinterpretq_m128_u32( + vcleq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); +} + +// Compares for less than or equal. +// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/a7x0hbhw(v=vs.100) +FORCE_INLINE __m128 _mm_cmple_ss(__m128 a, __m128 b) +{ + return _mm_move_ss(a, _mm_cmple_ps(a, b)); +} + +// Compares for less than +// https://msdn.microsoft.com/en-us/library/vstudio/f330yhc8(v=vs.100).aspx +FORCE_INLINE __m128 _mm_cmplt_ps(__m128 a, __m128 b) +{ + return vreinterpretq_m128_u32( + vcltq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); +} + +// Compares for less than +// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/fy94wye7(v=vs.100) +FORCE_INLINE __m128 _mm_cmplt_ss(__m128 a, __m128 b) +{ + return _mm_move_ss(a, _mm_cmplt_ps(a, b)); +} + +// Compares for inequality. +// https://msdn.microsoft.com/en-us/library/sf44thbx(v=vs.100).aspx +FORCE_INLINE __m128 _mm_cmpneq_ps(__m128 a, __m128 b) +{ + return vreinterpretq_m128_u32(vmvnq_u32( + vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)))); +} + +// Compares for inequality. +// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ekya8fh4(v=vs.100) +FORCE_INLINE __m128 _mm_cmpneq_ss(__m128 a, __m128 b) +{ + return _mm_move_ss(a, _mm_cmpneq_ps(a, b)); +} + +// Compares for not greater than or equal. +// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/wsexys62(v=vs.100) +FORCE_INLINE __m128 _mm_cmpnge_ps(__m128 a, __m128 b) +{ + return vreinterpretq_m128_u32(vmvnq_u32( + vcgeq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)))); +} + +// Compares for not greater than or equal. +// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/fk2y80s8(v=vs.100) +FORCE_INLINE __m128 _mm_cmpnge_ss(__m128 a, __m128 b) +{ + return _mm_move_ss(a, _mm_cmpnge_ps(a, b)); +} + +// Compares for not greater than. +// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/d0xh7w0s(v=vs.100) +FORCE_INLINE __m128 _mm_cmpngt_ps(__m128 a, __m128 b) +{ + return vreinterpretq_m128_u32(vmvnq_u32( + vcgtq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)))); +} + +// Compares for not greater than. +// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/z7x9ydwh(v=vs.100) +FORCE_INLINE __m128 _mm_cmpngt_ss(__m128 a, __m128 b) +{ + return _mm_move_ss(a, _mm_cmpngt_ps(a, b)); +} + +// Compares for not less than or equal. +// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/6a330kxw(v=vs.100) +FORCE_INLINE __m128 _mm_cmpnle_ps(__m128 a, __m128 b) +{ + return vreinterpretq_m128_u32(vmvnq_u32( + vcleq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)))); +} + +// Compares for not less than or equal. +// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/z7x9ydwh(v=vs.100) +FORCE_INLINE __m128 _mm_cmpnle_ss(__m128 a, __m128 b) +{ + return _mm_move_ss(a, _mm_cmpnle_ps(a, b)); +} + +// Compares for not less than. +// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/4686bbdw(v=vs.100) +FORCE_INLINE __m128 _mm_cmpnlt_ps(__m128 a, __m128 b) +{ + return vreinterpretq_m128_u32(vmvnq_u32( + vcltq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)))); +} + +// Compares for not less than. +// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/56b9z2wf(v=vs.100) +FORCE_INLINE __m128 _mm_cmpnlt_ss(__m128 a, __m128 b) +{ + return _mm_move_ss(a, _mm_cmpnlt_ps(a, b)); +} + +// Compares the four 32-bit floats in a and b to check if any values are NaN. +// Ordered compare between each value returns true for "orderable" and false for +// "not orderable" (NaN). +// https://msdn.microsoft.com/en-us/library/vstudio/0h9w00fx(v=vs.100).aspx see +// also: +// http://stackoverflow.com/questions/8627331/what-does-ordered-unordered-comparison-mean +// http://stackoverflow.com/questions/29349621/neon-isnanval-intrinsics +FORCE_INLINE __m128 _mm_cmpord_ps(__m128 a, __m128 b) +{ + // Note: NEON does not have ordered compare builtin + // Need to compare a eq a and b eq b to check for NaN + // Do AND of results to get final + uint32x4_t ceqaa = + vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a)); + uint32x4_t ceqbb = + vceqq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b)); + return vreinterpretq_m128_u32(vandq_u32(ceqaa, ceqbb)); +} + +// Compares for ordered. +// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/343t62da(v=vs.100) +FORCE_INLINE __m128 _mm_cmpord_ss(__m128 a, __m128 b) +{ + return _mm_move_ss(a, _mm_cmpord_ps(a, b)); +} + +// Compares for unordered. +// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/khy6fk1t(v=vs.100) +FORCE_INLINE __m128 _mm_cmpunord_ps(__m128 a, __m128 b) +{ + uint32x4_t f32a = + vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a)); + uint32x4_t f32b = + vceqq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b)); + return vreinterpretq_m128_u32(vmvnq_u32(vandq_u32(f32a, f32b))); +} + +// Compares for unordered. +// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/2as2387b(v=vs.100) +FORCE_INLINE __m128 _mm_cmpunord_ss(__m128 a, __m128 b) +{ + return _mm_move_ss(a, _mm_cmpunord_ps(a, b)); +} + +// Compares the lower single-precision floating point scalar values of a and b +// using an equality operation. : +// https://msdn.microsoft.com/en-us/library/93yx2h2b(v=vs.100).aspx +FORCE_INLINE int _mm_comieq_ss(__m128 a, __m128 b) +{ + uint32x4_t a_eq_b = + vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)); + return vgetq_lane_u32(a_eq_b, 0) & 0x1; +} + +// Compares the lower single-precision floating point scalar values of a and b +// using a greater than or equal operation. : +// https://msdn.microsoft.com/en-us/library/8t80des6(v=vs.100).aspx +FORCE_INLINE int _mm_comige_ss(__m128 a, __m128 b) +{ + uint32x4_t a_ge_b = + vcgeq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)); + return vgetq_lane_u32(a_ge_b, 0) & 0x1; +} + +// Compares the lower single-precision floating point scalar values of a and b +// using a greater than operation. : +// https://msdn.microsoft.com/en-us/library/b0738e0t(v=vs.100).aspx +FORCE_INLINE int _mm_comigt_ss(__m128 a, __m128 b) +{ + uint32x4_t a_gt_b = + vcgtq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)); + return vgetq_lane_u32(a_gt_b, 0) & 0x1; +} + +// Compares the lower single-precision floating point scalar values of a and b +// using a less than or equal operation. : +// https://msdn.microsoft.com/en-us/library/1w4t7c57(v=vs.90).aspx +FORCE_INLINE int _mm_comile_ss(__m128 a, __m128 b) +{ + uint32x4_t a_le_b = + vcleq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)); + return vgetq_lane_u32(a_le_b, 0) & 0x1; +} + +// Compares the lower single-precision floating point scalar values of a and b +// using a less than operation. : +// https://msdn.microsoft.com/en-us/library/2kwe606b(v=vs.90).aspx Important +// note!! The documentation on MSDN is incorrect! If either of the values is a +// NAN the docs say you will get a one, but in fact, it will return a zero!! +FORCE_INLINE int _mm_comilt_ss(__m128 a, __m128 b) +{ + uint32x4_t a_lt_b = + vcltq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)); + return vgetq_lane_u32(a_lt_b, 0) & 0x1; +} + +// Compares the lower single-precision floating point scalar values of a and b +// using an inequality operation. : +// https://msdn.microsoft.com/en-us/library/bafh5e0a(v=vs.90).aspx +FORCE_INLINE int _mm_comineq_ss(__m128 a, __m128 b) +{ + return !_mm_comieq_ss(a, b); +} + +// Convert packed signed 32-bit integers in b to packed single-precision +// (32-bit) floating-point elements, store the results in the lower 2 elements +// of dst, and copy the upper 2 packed elements from a to the upper elements of +// dst. +// +// dst[31:0] := Convert_Int32_To_FP32(b[31:0]) +// dst[63:32] := Convert_Int32_To_FP32(b[63:32]) +// dst[95:64] := a[95:64] +// dst[127:96] := a[127:96] +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvt_pi2ps +FORCE_INLINE __m128 _mm_cvt_pi2ps(__m128 a, __m64 b) +{ + return vreinterpretq_m128_f32( + vcombine_f32(vcvt_f32_s32(vreinterpret_s32_m64(b)), + vget_high_f32(vreinterpretq_f32_m128(a)))); +} + +// Convert packed single-precision (32-bit) floating-point elements in a to +// packed 32-bit integers, and store the results in dst. +// +// FOR j := 0 to 1 +// i := 32*j +// dst[i+31:i] := Convert_FP32_To_Int32(a[i+31:i]) +// ENDFOR +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvt_ps2pi +FORCE_INLINE __m64 _mm_cvt_ps2pi(__m128 a) +{ +#if defined(__aarch64__) || defined(__ARM_FEATURE_DIRECTED_ROUNDING) + return vreinterpret_m64_s32( + vget_low_s32(vcvtnq_s32_f32(vrndiq_f32(vreinterpretq_f32_m128(a))))); +#else + return vreinterpret_m64_s32(vcvt_s32_f32(vget_low_f32( + vreinterpretq_f32_m128(_mm_round_ps(a, _MM_FROUND_CUR_DIRECTION))))); +#endif +} + +// Convert the signed 32-bit integer b to a single-precision (32-bit) +// floating-point element, store the result in the lower element of dst, and +// copy the upper 3 packed elements from a to the upper elements of dst. +// +// dst[31:0] := Convert_Int32_To_FP32(b[31:0]) +// dst[127:32] := a[127:32] +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvt_si2ss +FORCE_INLINE __m128 _mm_cvt_si2ss(__m128 a, int b) +{ + return vreinterpretq_m128_f32( + vsetq_lane_f32((float) b, vreinterpretq_f32_m128(a), 0)); +} + +// Convert the lower single-precision (32-bit) floating-point element in a to a +// 32-bit integer, and store the result in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvt_ss2si +FORCE_INLINE int _mm_cvt_ss2si(__m128 a) +{ +#if defined(__aarch64__) || defined(__ARM_FEATURE_DIRECTED_ROUNDING) + return vgetq_lane_s32(vcvtnq_s32_f32(vrndiq_f32(vreinterpretq_f32_m128(a))), + 0); +#else + float32_t data = vgetq_lane_f32( + vreinterpretq_f32_m128(_mm_round_ps(a, _MM_FROUND_CUR_DIRECTION)), 0); + return (int32_t) data; +#endif +} + +// Convert packed 16-bit integers in a to packed single-precision (32-bit) +// floating-point elements, and store the results in dst. +// +// FOR j := 0 to 3 +// i := j*16 +// m := j*32 +// dst[m+31:m] := Convert_Int16_To_FP32(a[i+15:i]) +// ENDFOR +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtpi16_ps +FORCE_INLINE __m128 _mm_cvtpi16_ps(__m64 a) +{ + return vreinterpretq_m128_f32( + vcvtq_f32_s32(vmovl_s16(vreinterpret_s16_m64(a)))); +} + +// Convert packed 32-bit integers in b to packed single-precision (32-bit) +// floating-point elements, store the results in the lower 2 elements of dst, +// and copy the upper 2 packed elements from a to the upper elements of dst. +// +// dst[31:0] := Convert_Int32_To_FP32(b[31:0]) +// dst[63:32] := Convert_Int32_To_FP32(b[63:32]) +// dst[95:64] := a[95:64] +// dst[127:96] := a[127:96] +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtpi32_ps +FORCE_INLINE __m128 _mm_cvtpi32_ps(__m128 a, __m64 b) +{ + return vreinterpretq_m128_f32( + vcombine_f32(vcvt_f32_s32(vreinterpret_s32_m64(b)), + vget_high_f32(vreinterpretq_f32_m128(a)))); +} + +// Convert packed signed 32-bit integers in a to packed single-precision +// (32-bit) floating-point elements, store the results in the lower 2 elements +// of dst, then convert the packed signed 32-bit integers in b to +// single-precision (32-bit) floating-point element, and store the results in +// the upper 2 elements of dst. +// +// dst[31:0] := Convert_Int32_To_FP32(a[31:0]) +// dst[63:32] := Convert_Int32_To_FP32(a[63:32]) +// dst[95:64] := Convert_Int32_To_FP32(b[31:0]) +// dst[127:96] := Convert_Int32_To_FP32(b[63:32]) +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtpi32x2_ps +FORCE_INLINE __m128 _mm_cvtpi32x2_ps(__m64 a, __m64 b) +{ + return vreinterpretq_m128_f32(vcvtq_f32_s32( + vcombine_s32(vreinterpret_s32_m64(a), vreinterpret_s32_m64(b)))); +} + +// Convert the lower packed 8-bit integers in a to packed single-precision +// (32-bit) floating-point elements, and store the results in dst. +// +// FOR j := 0 to 3 +// i := j*8 +// m := j*32 +// dst[m+31:m] := Convert_Int8_To_FP32(a[i+7:i]) +// ENDFOR +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtpi8_ps +FORCE_INLINE __m128 _mm_cvtpi8_ps(__m64 a) +{ + return vreinterpretq_m128_f32(vcvtq_f32_s32( + vmovl_s16(vget_low_s16(vmovl_s8(vreinterpret_s8_m64(a)))))); +} + +// Convert packed single-precision (32-bit) floating-point elements in a to +// packed 16-bit integers, and store the results in dst. Note: this intrinsic +// will generate 0x7FFF, rather than 0x8000, for input values between 0x7FFF and +// 0x7FFFFFFF. +// +// FOR j := 0 to 3 +// i := 16*j +// k := 32*j +// IF a[k+31:k] >= FP32(0x7FFF) && a[k+31:k] <= FP32(0x7FFFFFFF) +// dst[i+15:i] := 0x7FFF +// ELSE +// dst[i+15:i] := Convert_FP32_To_Int16(a[k+31:k]) +// FI +// ENDFOR +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtps_pi16 +FORCE_INLINE __m64 _mm_cvtps_pi16(__m128 a) +{ + return vreinterpret_m64_s16( + vqmovn_s32(vreinterpretq_s32_m128i(_mm_cvtps_epi32(a)))); +} + +// Convert packed single-precision (32-bit) floating-point elements in a to +// packed 32-bit integers, and store the results in dst. +// +// FOR j := 0 to 1 +// i := 32*j +// dst[i+31:i] := Convert_FP32_To_Int32(a[i+31:i]) +// ENDFOR +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtps_pi32 +#define _mm_cvtps_pi32(a) _mm_cvt_ps2pi(a) + +// Convert packed single-precision (32-bit) floating-point elements in a to +// packed 8-bit integers, and store the results in lower 4 elements of dst. +// Note: this intrinsic will generate 0x7F, rather than 0x80, for input values +// between 0x7F and 0x7FFFFFFF. +// +// FOR j := 0 to 3 +// i := 8*j +// k := 32*j +// IF a[k+31:k] >= FP32(0x7F) && a[k+31:k] <= FP32(0x7FFFFFFF) +// dst[i+7:i] := 0x7F +// ELSE +// dst[i+7:i] := Convert_FP32_To_Int8(a[k+31:k]) +// FI +// ENDFOR +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtps_pi8 +FORCE_INLINE __m64 _mm_cvtps_pi8(__m128 a) +{ + return vreinterpret_m64_s8(vqmovn_s16( + vcombine_s16(vreinterpret_s16_m64(_mm_cvtps_pi16(a)), vdup_n_s16(0)))); +} + +// Convert packed unsigned 16-bit integers in a to packed single-precision +// (32-bit) floating-point elements, and store the results in dst. +// +// FOR j := 0 to 3 +// i := j*16 +// m := j*32 +// dst[m+31:m] := Convert_UInt16_To_FP32(a[i+15:i]) +// ENDFOR +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtpu16_ps +FORCE_INLINE __m128 _mm_cvtpu16_ps(__m64 a) +{ + return vreinterpretq_m128_f32( + vcvtq_f32_u32(vmovl_u16(vreinterpret_u16_m64(a)))); +} + +// Convert the lower packed unsigned 8-bit integers in a to packed +// single-precision (32-bit) floating-point elements, and store the results in +// dst. +// +// FOR j := 0 to 3 +// i := j*8 +// m := j*32 +// dst[m+31:m] := Convert_UInt8_To_FP32(a[i+7:i]) +// ENDFOR +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtpu8_ps +FORCE_INLINE __m128 _mm_cvtpu8_ps(__m64 a) +{ + return vreinterpretq_m128_f32(vcvtq_f32_u32( + vmovl_u16(vget_low_u16(vmovl_u8(vreinterpret_u8_m64(a)))))); +} + +// Convert the signed 32-bit integer b to a single-precision (32-bit) +// floating-point element, store the result in the lower element of dst, and +// copy the upper 3 packed elements from a to the upper elements of dst. +// +// dst[31:0] := Convert_Int32_To_FP32(b[31:0]) +// dst[127:32] := a[127:32] +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi32_ss +#define _mm_cvtsi32_ss(a, b) _mm_cvt_si2ss(a, b) + +// Convert the signed 64-bit integer b to a single-precision (32-bit) +// floating-point element, store the result in the lower element of dst, and +// copy the upper 3 packed elements from a to the upper elements of dst. +// +// dst[31:0] := Convert_Int64_To_FP32(b[63:0]) +// dst[127:32] := a[127:32] +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi64_ss +FORCE_INLINE __m128 _mm_cvtsi64_ss(__m128 a, int64_t b) +{ + return vreinterpretq_m128_f32( + vsetq_lane_f32((float) b, vreinterpretq_f32_m128(a), 0)); +} + +// Copy the lower single-precision (32-bit) floating-point element of a to dst. +// +// dst[31:0] := a[31:0] +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtss_f32 +FORCE_INLINE float _mm_cvtss_f32(__m128 a) +{ + return vgetq_lane_f32(vreinterpretq_f32_m128(a), 0); +} + +// Convert the lower single-precision (32-bit) floating-point element in a to a +// 32-bit integer, and store the result in dst. +// +// dst[31:0] := Convert_FP32_To_Int32(a[31:0]) +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtss_si32 +#define _mm_cvtss_si32(a) _mm_cvt_ss2si(a) + +// Convert the lower single-precision (32-bit) floating-point element in a to a +// 64-bit integer, and store the result in dst. +// +// dst[63:0] := Convert_FP32_To_Int64(a[31:0]) +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtss_si64 +FORCE_INLINE int64_t _mm_cvtss_si64(__m128 a) +{ +#if defined(__aarch64__) || defined(__ARM_FEATURE_DIRECTED_ROUNDING) + return (int64_t) vgetq_lane_f32(vrndiq_f32(vreinterpretq_f32_m128(a)), 0); +#else + float32_t data = vgetq_lane_f32( + vreinterpretq_f32_m128(_mm_round_ps(a, _MM_FROUND_CUR_DIRECTION)), 0); + return (int64_t) data; +#endif +} + +// Convert packed single-precision (32-bit) floating-point elements in a to +// packed 32-bit integers with truncation, and store the results in dst. +// +// FOR j := 0 to 1 +// i := 32*j +// dst[i+31:i] := Convert_FP32_To_Int32_Truncate(a[i+31:i]) +// ENDFOR +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtt_ps2pi +FORCE_INLINE __m64 _mm_cvtt_ps2pi(__m128 a) +{ + return vreinterpret_m64_s32( + vget_low_s32(vcvtq_s32_f32(vreinterpretq_f32_m128(a)))); +} + +// Convert the lower single-precision (32-bit) floating-point element in a to a +// 32-bit integer with truncation, and store the result in dst. +// +// dst[31:0] := Convert_FP32_To_Int32_Truncate(a[31:0]) +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtt_ss2si +FORCE_INLINE int _mm_cvtt_ss2si(__m128 a) +{ + return vgetq_lane_s32(vcvtq_s32_f32(vreinterpretq_f32_m128(a)), 0); +} + +// Convert packed single-precision (32-bit) floating-point elements in a to +// packed 32-bit integers with truncation, and store the results in dst. +// +// FOR j := 0 to 1 +// i := 32*j +// dst[i+31:i] := Convert_FP32_To_Int32_Truncate(a[i+31:i]) +// ENDFOR +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvttps_pi32 +#define _mm_cvttps_pi32(a) _mm_cvtt_ps2pi(a) + +// Convert the lower single-precision (32-bit) floating-point element in a to a +// 32-bit integer with truncation, and store the result in dst. +// +// dst[31:0] := Convert_FP32_To_Int32_Truncate(a[31:0]) +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvttss_si32 +#define _mm_cvttss_si32(a) _mm_cvtt_ss2si(a) + +// Convert the lower single-precision (32-bit) floating-point element in a to a +// 64-bit integer with truncation, and store the result in dst. +// +// dst[63:0] := Convert_FP32_To_Int64_Truncate(a[31:0]) +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvttss_si64 +FORCE_INLINE int64_t _mm_cvttss_si64(__m128 a) +{ + return (int64_t) vgetq_lane_f32(vreinterpretq_f32_m128(a), 0); +} + +// Divides the four single-precision, floating-point values of a and b. +// +// r0 := a0 / b0 +// r1 := a1 / b1 +// r2 := a2 / b2 +// r3 := a3 / b3 +// +// https://msdn.microsoft.com/en-us/library/edaw8147(v=vs.100).aspx +FORCE_INLINE __m128 _mm_div_ps(__m128 a, __m128 b) +{ +#if defined(__aarch64__) && !SSE2NEON_PRECISE_DIV + return vreinterpretq_m128_f32( + vdivq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); +#else + float32x4_t recip = vrecpeq_f32(vreinterpretq_f32_m128(b)); + recip = vmulq_f32(recip, vrecpsq_f32(recip, vreinterpretq_f32_m128(b))); +#if SSE2NEON_PRECISE_DIV + // Additional Netwon-Raphson iteration for accuracy + recip = vmulq_f32(recip, vrecpsq_f32(recip, vreinterpretq_f32_m128(b))); +#endif + return vreinterpretq_m128_f32(vmulq_f32(vreinterpretq_f32_m128(a), recip)); +#endif +} + +// Divides the scalar single-precision floating point value of a by b. +// https://msdn.microsoft.com/en-us/library/4y73xa49(v=vs.100).aspx +FORCE_INLINE __m128 _mm_div_ss(__m128 a, __m128 b) +{ + float32_t value = + vgetq_lane_f32(vreinterpretq_f32_m128(_mm_div_ps(a, b)), 0); + return vreinterpretq_m128_f32( + vsetq_lane_f32(value, vreinterpretq_f32_m128(a), 0)); +} + +// Extract a 16-bit integer from a, selected with imm8, and store the result in +// the lower element of dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_extract_pi16 +#define _mm_extract_pi16(a, imm) \ + (int32_t) vget_lane_u16(vreinterpret_u16_m64(a), (imm)) + +// Free aligned memory that was allocated with _mm_malloc. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_free +#if !defined(SSE2NEON_ALLOC_DEFINED) +FORCE_INLINE void _mm_free(void *addr) +{ + free(addr); +} +#endif + +// Macro: Get the flush zero bits from the MXCSR control and status register. +// The flush zero may contain any of the following flags: _MM_FLUSH_ZERO_ON or +// _MM_FLUSH_ZERO_OFF +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_MM_GET_FLUSH_ZERO_MODE +FORCE_INLINE unsigned int _sse2neon_mm_get_flush_zero_mode() +{ + union { + fpcr_bitfield field; +#if defined(__aarch64__) + uint64_t value; +#else + uint32_t value; +#endif + } r; + +#if defined(__aarch64__) + __asm__ __volatile__("mrs %0, FPCR" : "=r"(r.value)); /* read */ +#else + __asm__ __volatile__("vmrs %0, FPSCR" : "=r"(r.value)); /* read */ +#endif + + return r.field.bit24 ? _MM_FLUSH_ZERO_ON : _MM_FLUSH_ZERO_OFF; +} + +// Macro: Get the rounding mode bits from the MXCSR control and status register. +// The rounding mode may contain any of the following flags: _MM_ROUND_NEAREST, +// _MM_ROUND_DOWN, _MM_ROUND_UP, _MM_ROUND_TOWARD_ZERO +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_MM_GET_ROUNDING_MODE +FORCE_INLINE unsigned int _MM_GET_ROUNDING_MODE() +{ + union { + fpcr_bitfield field; +#if defined(__aarch64__) + uint64_t value; +#else + uint32_t value; +#endif + } r; + +#if defined(__aarch64__) + __asm__ __volatile__("mrs %0, FPCR" : "=r"(r.value)); /* read */ +#else + __asm__ __volatile__("vmrs %0, FPSCR" : "=r"(r.value)); /* read */ +#endif + + if (r.field.bit22) { + return r.field.bit23 ? _MM_ROUND_TOWARD_ZERO : _MM_ROUND_UP; + } else { + return r.field.bit23 ? _MM_ROUND_DOWN : _MM_ROUND_NEAREST; + } +} + +// Copy a to dst, and insert the 16-bit integer i into dst at the location +// specified by imm8. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_insert_pi16 +#define _mm_insert_pi16(a, b, imm) \ + __extension__({ \ + vreinterpret_m64_s16( \ + vset_lane_s16((b), vreinterpret_s16_m64(a), (imm))); \ + }) + +// Loads four single-precision, floating-point values. +// https://msdn.microsoft.com/en-us/library/vstudio/zzd50xxt(v=vs.100).aspx +FORCE_INLINE __m128 _mm_load_ps(const float *p) +{ + return vreinterpretq_m128_f32(vld1q_f32(p)); +} + +// Load a single-precision (32-bit) floating-point element from memory into all +// elements of dst. +// +// dst[31:0] := MEM[mem_addr+31:mem_addr] +// dst[63:32] := MEM[mem_addr+31:mem_addr] +// dst[95:64] := MEM[mem_addr+31:mem_addr] +// dst[127:96] := MEM[mem_addr+31:mem_addr] +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_load_ps1 +#define _mm_load_ps1 _mm_load1_ps + +// Loads an single - precision, floating - point value into the low word and +// clears the upper three words. +// https://msdn.microsoft.com/en-us/library/548bb9h4%28v=vs.90%29.aspx +FORCE_INLINE __m128 _mm_load_ss(const float *p) +{ + return vreinterpretq_m128_f32(vsetq_lane_f32(*p, vdupq_n_f32(0), 0)); +} + +// Loads a single single-precision, floating-point value, copying it into all +// four words +// https://msdn.microsoft.com/en-us/library/vstudio/5cdkf716(v=vs.100).aspx +FORCE_INLINE __m128 _mm_load1_ps(const float *p) +{ + return vreinterpretq_m128_f32(vld1q_dup_f32(p)); +} + +// Sets the upper two single-precision, floating-point values with 64 +// bits of data loaded from the address p; the lower two values are passed +// through from a. +// +// r0 := a0 +// r1 := a1 +// r2 := *p0 +// r3 := *p1 +// +// https://msdn.microsoft.com/en-us/library/w92wta0x(v%3dvs.100).aspx +FORCE_INLINE __m128 _mm_loadh_pi(__m128 a, __m64 const *p) +{ + return vreinterpretq_m128_f32( + vcombine_f32(vget_low_f32(a), vld1_f32((const float32_t *) p))); +} + +// Sets the lower two single-precision, floating-point values with 64 +// bits of data loaded from the address p; the upper two values are passed +// through from a. +// +// Return Value +// r0 := *p0 +// r1 := *p1 +// r2 := a2 +// r3 := a3 +// +// https://msdn.microsoft.com/en-us/library/s57cyak2(v=vs.100).aspx +FORCE_INLINE __m128 _mm_loadl_pi(__m128 a, __m64 const *p) +{ + return vreinterpretq_m128_f32( + vcombine_f32(vld1_f32((const float32_t *) p), vget_high_f32(a))); +} + +// Load 4 single-precision (32-bit) floating-point elements from memory into dst +// in reverse order. mem_addr must be aligned on a 16-byte boundary or a +// general-protection exception may be generated. +// +// dst[31:0] := MEM[mem_addr+127:mem_addr+96] +// dst[63:32] := MEM[mem_addr+95:mem_addr+64] +// dst[95:64] := MEM[mem_addr+63:mem_addr+32] +// dst[127:96] := MEM[mem_addr+31:mem_addr] +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadr_ps +FORCE_INLINE __m128 _mm_loadr_ps(const float *p) +{ + float32x4_t v = vrev64q_f32(vld1q_f32(p)); + return vreinterpretq_m128_f32(vextq_f32(v, v, 2)); +} + +// Loads four single-precision, floating-point values. +// https://msdn.microsoft.com/en-us/library/x1b16s7z%28v=vs.90%29.aspx +FORCE_INLINE __m128 _mm_loadu_ps(const float *p) +{ + // for neon, alignment doesn't matter, so _mm_load_ps and _mm_loadu_ps are + // equivalent for neon + return vreinterpretq_m128_f32(vld1q_f32(p)); +} + +// Load unaligned 16-bit integer from memory into the first element of dst. +// +// dst[15:0] := MEM[mem_addr+15:mem_addr] +// dst[MAX:16] := 0 +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadu_si16 +FORCE_INLINE __m128i _mm_loadu_si16(const void *p) +{ + return vreinterpretq_m128i_s16( + vsetq_lane_s16(*(const int16_t *) p, vdupq_n_s16(0), 0)); +} + +// Load unaligned 64-bit integer from memory into the first element of dst. +// +// dst[63:0] := MEM[mem_addr+63:mem_addr] +// dst[MAX:64] := 0 +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadu_si64 +FORCE_INLINE __m128i _mm_loadu_si64(const void *p) +{ + return vreinterpretq_m128i_s64( + vcombine_s64(vld1_s64((const int64_t *) p), vdup_n_s64(0))); +} + +// Allocate aligned blocks of memory. +// https://software.intel.com/en-us/ +// cpp-compiler-developer-guide-and-reference-allocating-and-freeing-aligned-memory-blocks +#if !defined(SSE2NEON_ALLOC_DEFINED) +FORCE_INLINE void *_mm_malloc(size_t size, size_t align) +{ + void *ptr; + if (align == 1) + return malloc(size); + if (align == 2 || (sizeof(void *) == 8 && align == 4)) + align = sizeof(void *); + if (!posix_memalign(&ptr, align, size)) + return ptr; + return NULL; +} +#endif + +// Conditionally store 8-bit integer elements from a into memory using mask +// (elements are not stored when the highest bit is not set in the corresponding +// element) and a non-temporal memory hint. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_maskmove_si64 +FORCE_INLINE void _mm_maskmove_si64(__m64 a, __m64 mask, char *mem_addr) +{ + int8x8_t shr_mask = vshr_n_s8(vreinterpret_s8_m64(mask), 7); + __m128 b = _mm_load_ps((const float *) mem_addr); + int8x8_t masked = + vbsl_s8(vreinterpret_u8_s8(shr_mask), vreinterpret_s8_m64(a), + vreinterpret_s8_u64(vget_low_u64(vreinterpretq_u64_m128(b)))); + vst1_s8((int8_t *) mem_addr, masked); +} + +// Conditionally store 8-bit integer elements from a into memory using mask +// (elements are not stored when the highest bit is not set in the corresponding +// element) and a non-temporal memory hint. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_maskmovq +#define _m_maskmovq(a, mask, mem_addr) _mm_maskmove_si64(a, mask, mem_addr) + +// Compare packed signed 16-bit integers in a and b, and store packed maximum +// values in dst. +// +// FOR j := 0 to 3 +// i := j*16 +// dst[i+15:i] := MAX(a[i+15:i], b[i+15:i]) +// ENDFOR +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_pi16 +FORCE_INLINE __m64 _mm_max_pi16(__m64 a, __m64 b) +{ + return vreinterpret_m64_s16( + vmax_s16(vreinterpret_s16_m64(a), vreinterpret_s16_m64(b))); +} + +// Computes the maximums of the four single-precision, floating-point values of +// a and b. +// https://msdn.microsoft.com/en-us/library/vstudio/ff5d607a(v=vs.100).aspx +FORCE_INLINE __m128 _mm_max_ps(__m128 a, __m128 b) +{ +#if SSE2NEON_PRECISE_MINMAX + float32x4_t _a = vreinterpretq_f32_m128(a); + float32x4_t _b = vreinterpretq_f32_m128(b); + return vreinterpretq_m128_f32(vbslq_f32(vcgtq_f32(_a, _b), _a, _b)); +#else + return vreinterpretq_m128_f32( + vmaxq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); +#endif +} + +// Compare packed unsigned 8-bit integers in a and b, and store packed maximum +// values in dst. +// +// FOR j := 0 to 7 +// i := j*8 +// dst[i+7:i] := MAX(a[i+7:i], b[i+7:i]) +// ENDFOR +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_pu8 +FORCE_INLINE __m64 _mm_max_pu8(__m64 a, __m64 b) +{ + return vreinterpret_m64_u8( + vmax_u8(vreinterpret_u8_m64(a), vreinterpret_u8_m64(b))); +} + +// Computes the maximum of the two lower scalar single-precision floating point +// values of a and b. +// https://msdn.microsoft.com/en-us/library/s6db5esz(v=vs.100).aspx +FORCE_INLINE __m128 _mm_max_ss(__m128 a, __m128 b) +{ + float32_t value = vgetq_lane_f32(_mm_max_ps(a, b), 0); + return vreinterpretq_m128_f32( + vsetq_lane_f32(value, vreinterpretq_f32_m128(a), 0)); +} + +// Compare packed signed 16-bit integers in a and b, and store packed minimum +// values in dst. +// +// FOR j := 0 to 3 +// i := j*16 +// dst[i+15:i] := MIN(a[i+15:i], b[i+15:i]) +// ENDFOR +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_pi16 +FORCE_INLINE __m64 _mm_min_pi16(__m64 a, __m64 b) +{ + return vreinterpret_m64_s16( + vmin_s16(vreinterpret_s16_m64(a), vreinterpret_s16_m64(b))); +} + +// Computes the minima of the four single-precision, floating-point values of a +// and b. +// https://msdn.microsoft.com/en-us/library/vstudio/wh13kadz(v=vs.100).aspx +FORCE_INLINE __m128 _mm_min_ps(__m128 a, __m128 b) +{ +#if SSE2NEON_PRECISE_MINMAX + float32x4_t _a = vreinterpretq_f32_m128(a); + float32x4_t _b = vreinterpretq_f32_m128(b); + return vreinterpretq_m128_f32(vbslq_f32(vcltq_f32(_a, _b), _a, _b)); +#else + return vreinterpretq_m128_f32( + vminq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); +#endif +} + +// Compare packed unsigned 8-bit integers in a and b, and store packed minimum +// values in dst. +// +// FOR j := 0 to 7 +// i := j*8 +// dst[i+7:i] := MIN(a[i+7:i], b[i+7:i]) +// ENDFOR +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_pu8 +FORCE_INLINE __m64 _mm_min_pu8(__m64 a, __m64 b) +{ + return vreinterpret_m64_u8( + vmin_u8(vreinterpret_u8_m64(a), vreinterpret_u8_m64(b))); +} + +// Computes the minimum of the two lower scalar single-precision floating point +// values of a and b. +// https://msdn.microsoft.com/en-us/library/0a9y7xaa(v=vs.100).aspx +FORCE_INLINE __m128 _mm_min_ss(__m128 a, __m128 b) +{ + float32_t value = vgetq_lane_f32(_mm_min_ps(a, b), 0); + return vreinterpretq_m128_f32( + vsetq_lane_f32(value, vreinterpretq_f32_m128(a), 0)); +} + +// Sets the low word to the single-precision, floating-point value of b +// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/35hdzazd(v=vs.100) +FORCE_INLINE __m128 _mm_move_ss(__m128 a, __m128 b) +{ + return vreinterpretq_m128_f32( + vsetq_lane_f32(vgetq_lane_f32(vreinterpretq_f32_m128(b), 0), + vreinterpretq_f32_m128(a), 0)); +} + +// Moves the upper two values of B into the lower two values of A. +// +// r3 := a3 +// r2 := a2 +// r1 := b3 +// r0 := b2 +FORCE_INLINE __m128 _mm_movehl_ps(__m128 __A, __m128 __B) +{ + float32x2_t a32 = vget_high_f32(vreinterpretq_f32_m128(__A)); + float32x2_t b32 = vget_high_f32(vreinterpretq_f32_m128(__B)); + return vreinterpretq_m128_f32(vcombine_f32(b32, a32)); +} + +// Moves the lower two values of B into the upper two values of A. +// +// r3 := b1 +// r2 := b0 +// r1 := a1 +// r0 := a0 +FORCE_INLINE __m128 _mm_movelh_ps(__m128 __A, __m128 __B) +{ + float32x2_t a10 = vget_low_f32(vreinterpretq_f32_m128(__A)); + float32x2_t b10 = vget_low_f32(vreinterpretq_f32_m128(__B)); + return vreinterpretq_m128_f32(vcombine_f32(a10, b10)); +} + +// Create mask from the most significant bit of each 8-bit element in a, and +// store the result in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_movemask_pi8 +FORCE_INLINE int _mm_movemask_pi8(__m64 a) +{ + uint8x8_t input = vreinterpret_u8_m64(a); +#if defined(__aarch64__) + static const int8x8_t shift = {0, 1, 2, 3, 4, 5, 6, 7}; + uint8x8_t tmp = vshr_n_u8(input, 7); + return vaddv_u8(vshl_u8(tmp, shift)); +#else + // Refer the implementation of `_mm_movemask_epi8` + uint16x4_t high_bits = vreinterpret_u16_u8(vshr_n_u8(input, 7)); + uint32x2_t paired16 = + vreinterpret_u32_u16(vsra_n_u16(high_bits, high_bits, 7)); + uint8x8_t paired32 = + vreinterpret_u8_u32(vsra_n_u32(paired16, paired16, 14)); + return vget_lane_u8(paired32, 0) | ((int) vget_lane_u8(paired32, 4) << 4); +#endif +} + +// NEON does not provide this method +// Creates a 4-bit mask from the most significant bits of the four +// single-precision, floating-point values. +// https://msdn.microsoft.com/en-us/library/vstudio/4490ys29(v=vs.100).aspx +FORCE_INLINE int _mm_movemask_ps(__m128 a) +{ + uint32x4_t input = vreinterpretq_u32_m128(a); +#if defined(__aarch64__) + static const int32x4_t shift = {0, 1, 2, 3}; + uint32x4_t tmp = vshrq_n_u32(input, 31); + return vaddvq_u32(vshlq_u32(tmp, shift)); +#else + // Uses the exact same method as _mm_movemask_epi8, see that for details. + // Shift out everything but the sign bits with a 32-bit unsigned shift + // right. + uint64x2_t high_bits = vreinterpretq_u64_u32(vshrq_n_u32(input, 31)); + // Merge the two pairs together with a 64-bit unsigned shift right + add. + uint8x16_t paired = + vreinterpretq_u8_u64(vsraq_n_u64(high_bits, high_bits, 31)); + // Extract the result. + return vgetq_lane_u8(paired, 0) | (vgetq_lane_u8(paired, 8) << 2); +#endif +} + +// Multiplies the four single-precision, floating-point values of a and b. +// +// r0 := a0 * b0 +// r1 := a1 * b1 +// r2 := a2 * b2 +// r3 := a3 * b3 +// +// https://msdn.microsoft.com/en-us/library/vstudio/22kbk6t9(v=vs.100).aspx +FORCE_INLINE __m128 _mm_mul_ps(__m128 a, __m128 b) +{ + return vreinterpretq_m128_f32( + vmulq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); +} + +// Multiply the lower single-precision (32-bit) floating-point element in a and +// b, store the result in the lower element of dst, and copy the upper 3 packed +// elements from a to the upper elements of dst. +// +// dst[31:0] := a[31:0] * b[31:0] +// dst[127:32] := a[127:32] +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mul_ss +FORCE_INLINE __m128 _mm_mul_ss(__m128 a, __m128 b) +{ + return _mm_move_ss(a, _mm_mul_ps(a, b)); +} + +// Multiply the packed unsigned 16-bit integers in a and b, producing +// intermediate 32-bit integers, and store the high 16 bits of the intermediate +// integers in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mulhi_pu16 +FORCE_INLINE __m64 _mm_mulhi_pu16(__m64 a, __m64 b) +{ + return vreinterpret_m64_u16(vshrn_n_u32( + vmull_u16(vreinterpret_u16_m64(a), vreinterpret_u16_m64(b)), 16)); +} + +// Computes the bitwise OR of the four single-precision, floating-point values +// of a and b. +// https://msdn.microsoft.com/en-us/library/vstudio/7ctdsyy0(v=vs.100).aspx +FORCE_INLINE __m128 _mm_or_ps(__m128 a, __m128 b) +{ + return vreinterpretq_m128_s32( + vorrq_s32(vreinterpretq_s32_m128(a), vreinterpretq_s32_m128(b))); +} + +// Average packed unsigned 8-bit integers in a and b, and store the results in +// dst. +// +// FOR j := 0 to 7 +// i := j*8 +// dst[i+7:i] := (a[i+7:i] + b[i+7:i] + 1) >> 1 +// ENDFOR +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_pavgb +#define _m_pavgb(a, b) _mm_avg_pu8(a, b) + +// Average packed unsigned 16-bit integers in a and b, and store the results in +// dst. +// +// FOR j := 0 to 3 +// i := j*16 +// dst[i+15:i] := (a[i+15:i] + b[i+15:i] + 1) >> 1 +// ENDFOR +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_pavgw +#define _m_pavgw(a, b) _mm_avg_pu16(a, b) + +// Extract a 16-bit integer from a, selected with imm8, and store the result in +// the lower element of dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_pextrw +#define _m_pextrw(a, imm) _mm_extract_pi16(a, imm) + +// Copy a to dst, and insert the 16-bit integer i into dst at the location +// specified by imm8. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=m_pinsrw +#define _m_pinsrw(a, i, imm) _mm_insert_pi16(a, i, imm) + +// Compare packed signed 16-bit integers in a and b, and store packed maximum +// values in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_pmaxsw +#define _m_pmaxsw(a, b) _mm_max_pi16(a, b) + +// Compare packed unsigned 8-bit integers in a and b, and store packed maximum +// values in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_pmaxub +#define _m_pmaxub(a, b) _mm_max_pu8(a, b) + +// Compare packed signed 16-bit integers in a and b, and store packed minimum +// values in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_pminsw +#define _m_pminsw(a, b) _mm_min_pi16(a, b) + +// Compare packed unsigned 8-bit integers in a and b, and store packed minimum +// values in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_pminub +#define _m_pminub(a, b) _mm_min_pu8(a, b) + +// Create mask from the most significant bit of each 8-bit element in a, and +// store the result in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_pmovmskb +#define _m_pmovmskb(a) _mm_movemask_pi8(a) + +// Multiply the packed unsigned 16-bit integers in a and b, producing +// intermediate 32-bit integers, and store the high 16 bits of the intermediate +// integers in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_pmulhuw +#define _m_pmulhuw(a, b) _mm_mulhi_pu16(a, b) + +// Fetch the line of data from memory that contains address p to a location in +// the cache heirarchy specified by the locality hint i. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_prefetch +FORCE_INLINE void _mm_prefetch(char const *p, int i) +{ + switch (i) { + case _MM_HINT_NTA: + __builtin_prefetch(p, 0, 0); + break; + case _MM_HINT_T0: + __builtin_prefetch(p, 0, 3); + break; + case _MM_HINT_T1: + __builtin_prefetch(p, 0, 2); + break; + case _MM_HINT_T2: + __builtin_prefetch(p, 0, 1); + break; + } +} + +// Compute the absolute differences of packed unsigned 8-bit integers in a and +// b, then horizontally sum each consecutive 8 differences to produce four +// unsigned 16-bit integers, and pack these unsigned 16-bit integers in the low +// 16 bits of dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=m_psadbw +#define _m_psadbw(a, b) _mm_sad_pu8(a, b) + +// Shuffle 16-bit integers in a using the control in imm8, and store the results +// in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_pshufw +#define _m_pshufw(a, imm) _mm_shuffle_pi16(a, imm) + +// Compute the approximate reciprocal of packed single-precision (32-bit) +// floating-point elements in a, and store the results in dst. The maximum +// relative error for this approximation is less than 1.5*2^-12. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_rcp_ps +FORCE_INLINE __m128 _mm_rcp_ps(__m128 in) +{ + float32x4_t recip = vrecpeq_f32(vreinterpretq_f32_m128(in)); + recip = vmulq_f32(recip, vrecpsq_f32(recip, vreinterpretq_f32_m128(in))); +#if SSE2NEON_PRECISE_DIV + // Additional Netwon-Raphson iteration for accuracy + recip = vmulq_f32(recip, vrecpsq_f32(recip, vreinterpretq_f32_m128(in))); +#endif + return vreinterpretq_m128_f32(recip); +} + +// Compute the approximate reciprocal of the lower single-precision (32-bit) +// floating-point element in a, store the result in the lower element of dst, +// and copy the upper 3 packed elements from a to the upper elements of dst. The +// maximum relative error for this approximation is less than 1.5*2^-12. +// +// dst[31:0] := (1.0 / a[31:0]) +// dst[127:32] := a[127:32] +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_rcp_ss +FORCE_INLINE __m128 _mm_rcp_ss(__m128 a) +{ + return _mm_move_ss(a, _mm_rcp_ps(a)); +} + +// Computes the approximations of the reciprocal square roots of the four +// single-precision floating point values of in. +// The current precision is 1% error. +// https://msdn.microsoft.com/en-us/library/22hfsh53(v=vs.100).aspx +FORCE_INLINE __m128 _mm_rsqrt_ps(__m128 in) +{ + float32x4_t out = vrsqrteq_f32(vreinterpretq_f32_m128(in)); +#if SSE2NEON_PRECISE_SQRT + // Additional Netwon-Raphson iteration for accuracy + out = vmulq_f32( + out, vrsqrtsq_f32(vmulq_f32(vreinterpretq_f32_m128(in), out), out)); + out = vmulq_f32( + out, vrsqrtsq_f32(vmulq_f32(vreinterpretq_f32_m128(in), out), out)); +#endif + return vreinterpretq_m128_f32(out); +} + +// Compute the approximate reciprocal square root of the lower single-precision +// (32-bit) floating-point element in a, store the result in the lower element +// of dst, and copy the upper 3 packed elements from a to the upper elements of +// dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_rsqrt_ss +FORCE_INLINE __m128 _mm_rsqrt_ss(__m128 in) +{ + return vsetq_lane_f32(vgetq_lane_f32(_mm_rsqrt_ps(in), 0), in, 0); +} + +// Compute the absolute differences of packed unsigned 8-bit integers in a and +// b, then horizontally sum each consecutive 8 differences to produce four +// unsigned 16-bit integers, and pack these unsigned 16-bit integers in the low +// 16 bits of dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sad_pu8 +FORCE_INLINE __m64 _mm_sad_pu8(__m64 a, __m64 b) +{ + uint64x1_t t = vpaddl_u32(vpaddl_u16( + vpaddl_u8(vabd_u8(vreinterpret_u8_m64(a), vreinterpret_u8_m64(b))))); + return vreinterpret_m64_u16( + vset_lane_u16(vget_lane_u64(t, 0), vdup_n_u16(0), 0)); +} + +// Macro: Set the flush zero bits of the MXCSR control and status register to +// the value in unsigned 32-bit integer a. The flush zero may contain any of the +// following flags: _MM_FLUSH_ZERO_ON or _MM_FLUSH_ZERO_OFF +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_MM_SET_FLUSH_ZERO_MODE +FORCE_INLINE void _sse2neon_mm_set_flush_zero_mode(unsigned int flag) +{ + // AArch32 Advanced SIMD arithmetic always uses the Flush-to-zero setting, + // regardless of the value of the FZ bit. + union { + fpcr_bitfield field; +#if defined(__aarch64__) + uint64_t value; +#else + uint32_t value; +#endif + } r; + +#if defined(__aarch64__) + __asm__ __volatile__("mrs %0, FPCR" : "=r"(r.value)); /* read */ +#else + __asm__ __volatile__("vmrs %0, FPSCR" : "=r"(r.value)); /* read */ +#endif + + r.field.bit24 = (flag & _MM_FLUSH_ZERO_MASK) == _MM_FLUSH_ZERO_ON; + +#if defined(__aarch64__) + __asm__ __volatile__("msr FPCR, %0" ::"r"(r)); /* write */ +#else + __asm__ __volatile__("vmsr FPSCR, %0" ::"r"(r)); /* write */ +#endif +} + +// Sets the four single-precision, floating-point values to the four inputs. +// https://msdn.microsoft.com/en-us/library/vstudio/afh0zf75(v=vs.100).aspx +FORCE_INLINE __m128 _mm_set_ps(float w, float z, float y, float x) +{ + float ALIGN_STRUCT(16) data[4] = {x, y, z, w}; + return vreinterpretq_m128_f32(vld1q_f32(data)); +} + +// Sets the four single-precision, floating-point values to w. +// https://msdn.microsoft.com/en-us/library/vstudio/2x1se8ha(v=vs.100).aspx +FORCE_INLINE __m128 _mm_set_ps1(float _w) +{ + return vreinterpretq_m128_f32(vdupq_n_f32(_w)); +} + +// Macro: Set the rounding mode bits of the MXCSR control and status register to +// the value in unsigned 32-bit integer a. The rounding mode may contain any of +// the following flags: _MM_ROUND_NEAREST, _MM_ROUND_DOWN, _MM_ROUND_UP, +// _MM_ROUND_TOWARD_ZERO +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_MM_SET_ROUNDING_MODE +FORCE_INLINE void _MM_SET_ROUNDING_MODE(int rounding) +{ + union { + fpcr_bitfield field; +#if defined(__aarch64__) + uint64_t value; +#else + uint32_t value; +#endif + } r; + +#if defined(__aarch64__) + __asm__ __volatile__("mrs %0, FPCR" : "=r"(r.value)); /* read */ +#else + __asm__ __volatile__("vmrs %0, FPSCR" : "=r"(r.value)); /* read */ +#endif + + switch (rounding) { + case _MM_ROUND_TOWARD_ZERO: + r.field.bit22 = 1; + r.field.bit23 = 1; + break; + case _MM_ROUND_DOWN: + r.field.bit22 = 0; + r.field.bit23 = 1; + break; + case _MM_ROUND_UP: + r.field.bit22 = 1; + r.field.bit23 = 0; + break; + default: //_MM_ROUND_NEAREST + r.field.bit22 = 0; + r.field.bit23 = 0; + } + +#if defined(__aarch64__) + __asm__ __volatile__("msr FPCR, %0" ::"r"(r)); /* write */ +#else + __asm__ __volatile__("vmsr FPSCR, %0" ::"r"(r)); /* write */ +#endif +} + +// Copy single-precision (32-bit) floating-point element a to the lower element +// of dst, and zero the upper 3 elements. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set_ss +FORCE_INLINE __m128 _mm_set_ss(float a) +{ + return vreinterpretq_m128_f32(vsetq_lane_f32(a, vdupq_n_f32(0), 0)); +} + +// Sets the four single-precision, floating-point values to w. +// +// r0 := r1 := r2 := r3 := w +// +// https://msdn.microsoft.com/en-us/library/vstudio/2x1se8ha(v=vs.100).aspx +FORCE_INLINE __m128 _mm_set1_ps(float _w) +{ + return vreinterpretq_m128_f32(vdupq_n_f32(_w)); +} + +// FIXME: _mm_setcsr() implementation supports changing the rounding mode only. +FORCE_INLINE void _mm_setcsr(unsigned int a) +{ + _MM_SET_ROUNDING_MODE(a); +} + +// FIXME: _mm_getcsr() implementation supports reading the rounding mode only. +FORCE_INLINE unsigned int _mm_getcsr() +{ + return _MM_GET_ROUNDING_MODE(); +} + +// Sets the four single-precision, floating-point values to the four inputs in +// reverse order. +// https://msdn.microsoft.com/en-us/library/vstudio/d2172ct3(v=vs.100).aspx +FORCE_INLINE __m128 _mm_setr_ps(float w, float z, float y, float x) +{ + float ALIGN_STRUCT(16) data[4] = {w, z, y, x}; + return vreinterpretq_m128_f32(vld1q_f32(data)); +} + +// Clears the four single-precision, floating-point values. +// https://msdn.microsoft.com/en-us/library/vstudio/tk1t2tbz(v=vs.100).aspx +FORCE_INLINE __m128 _mm_setzero_ps(void) +{ + return vreinterpretq_m128_f32(vdupq_n_f32(0)); +} + +// Shuffle 16-bit integers in a using the control in imm8, and store the results +// in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_shuffle_pi16 +#ifdef _sse2neon_shuffle +#define _mm_shuffle_pi16(a, imm) \ + __extension__({ \ + vreinterpret_m64_s16(vshuffle_s16( \ + vreinterpret_s16_m64(a), vreinterpret_s16_m64(a), (imm & 0x3), \ + ((imm >> 2) & 0x3), ((imm >> 4) & 0x3), ((imm >> 6) & 0x3))); \ + }) +#else +#define _mm_shuffle_pi16(a, imm) \ + __extension__({ \ + int16x4_t ret; \ + ret = \ + vmov_n_s16(vget_lane_s16(vreinterpret_s16_m64(a), (imm) & (0x3))); \ + ret = vset_lane_s16( \ + vget_lane_s16(vreinterpret_s16_m64(a), ((imm) >> 2) & 0x3), ret, \ + 1); \ + ret = vset_lane_s16( \ + vget_lane_s16(vreinterpret_s16_m64(a), ((imm) >> 4) & 0x3), ret, \ + 2); \ + ret = vset_lane_s16( \ + vget_lane_s16(vreinterpret_s16_m64(a), ((imm) >> 6) & 0x3), ret, \ + 3); \ + vreinterpret_m64_s16(ret); \ + }) +#endif + +// Perform a serializing operation on all store-to-memory instructions that were +// issued prior to this instruction. Guarantees that every store instruction +// that precedes, in program order, is globally visible before any store +// instruction which follows the fence in program order. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sfence +FORCE_INLINE void _mm_sfence(void) +{ + _sse2neon_smp_mb(); +} + +// Perform a serializing operation on all load-from-memory and store-to-memory +// instructions that were issued prior to this instruction. Guarantees that +// every memory access that precedes, in program order, the memory fence +// instruction is globally visible before any memory instruction which follows +// the fence in program order. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mfence +FORCE_INLINE void _mm_mfence(void) +{ + _sse2neon_smp_mb(); +} + +// Perform a serializing operation on all load-from-memory instructions that +// were issued prior to this instruction. Guarantees that every load instruction +// that precedes, in program order, is globally visible before any load +// instruction which follows the fence in program order. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_lfence +FORCE_INLINE void _mm_lfence(void) +{ + _sse2neon_smp_mb(); +} + +// FORCE_INLINE __m128 _mm_shuffle_ps(__m128 a, __m128 b, __constrange(0,255) +// int imm) +#ifdef _sse2neon_shuffle +#define _mm_shuffle_ps(a, b, imm) \ + __extension__({ \ + float32x4_t _input1 = vreinterpretq_f32_m128(a); \ + float32x4_t _input2 = vreinterpretq_f32_m128(b); \ + float32x4_t _shuf = \ + vshuffleq_s32(_input1, _input2, (imm) & (0x3), ((imm) >> 2) & 0x3, \ + (((imm) >> 4) & 0x3) + 4, (((imm) >> 6) & 0x3) + 4); \ + vreinterpretq_m128_f32(_shuf); \ + }) +#else // generic +#define _mm_shuffle_ps(a, b, imm) \ + __extension__({ \ + __m128 ret; \ + switch (imm) { \ + case _MM_SHUFFLE(1, 0, 3, 2): \ + ret = _mm_shuffle_ps_1032((a), (b)); \ + break; \ + case _MM_SHUFFLE(2, 3, 0, 1): \ + ret = _mm_shuffle_ps_2301((a), (b)); \ + break; \ + case _MM_SHUFFLE(0, 3, 2, 1): \ + ret = _mm_shuffle_ps_0321((a), (b)); \ + break; \ + case _MM_SHUFFLE(2, 1, 0, 3): \ + ret = _mm_shuffle_ps_2103((a), (b)); \ + break; \ + case _MM_SHUFFLE(1, 0, 1, 0): \ + ret = _mm_movelh_ps((a), (b)); \ + break; \ + case _MM_SHUFFLE(1, 0, 0, 1): \ + ret = _mm_shuffle_ps_1001((a), (b)); \ + break; \ + case _MM_SHUFFLE(0, 1, 0, 1): \ + ret = _mm_shuffle_ps_0101((a), (b)); \ + break; \ + case _MM_SHUFFLE(3, 2, 1, 0): \ + ret = _mm_shuffle_ps_3210((a), (b)); \ + break; \ + case _MM_SHUFFLE(0, 0, 1, 1): \ + ret = _mm_shuffle_ps_0011((a), (b)); \ + break; \ + case _MM_SHUFFLE(0, 0, 2, 2): \ + ret = _mm_shuffle_ps_0022((a), (b)); \ + break; \ + case _MM_SHUFFLE(2, 2, 0, 0): \ + ret = _mm_shuffle_ps_2200((a), (b)); \ + break; \ + case _MM_SHUFFLE(3, 2, 0, 2): \ + ret = _mm_shuffle_ps_3202((a), (b)); \ + break; \ + case _MM_SHUFFLE(3, 2, 3, 2): \ + ret = _mm_movehl_ps((b), (a)); \ + break; \ + case _MM_SHUFFLE(1, 1, 3, 3): \ + ret = _mm_shuffle_ps_1133((a), (b)); \ + break; \ + case _MM_SHUFFLE(2, 0, 1, 0): \ + ret = _mm_shuffle_ps_2010((a), (b)); \ + break; \ + case _MM_SHUFFLE(2, 0, 0, 1): \ + ret = _mm_shuffle_ps_2001((a), (b)); \ + break; \ + case _MM_SHUFFLE(2, 0, 3, 2): \ + ret = _mm_shuffle_ps_2032((a), (b)); \ + break; \ + default: \ + ret = _mm_shuffle_ps_default((a), (b), (imm)); \ + break; \ + } \ + ret; \ + }) +#endif + +// Computes the approximations of square roots of the four single-precision, +// floating-point values of a. First computes reciprocal square roots and then +// reciprocals of the four values. +// +// r0 := sqrt(a0) +// r1 := sqrt(a1) +// r2 := sqrt(a2) +// r3 := sqrt(a3) +// +// https://msdn.microsoft.com/en-us/library/vstudio/8z67bwwk(v=vs.100).aspx +FORCE_INLINE __m128 _mm_sqrt_ps(__m128 in) +{ +#if SSE2NEON_PRECISE_SQRT + float32x4_t recip = vrsqrteq_f32(vreinterpretq_f32_m128(in)); + + // Test for vrsqrteq_f32(0) -> positive infinity case. + // Change to zero, so that s * 1/sqrt(s) result is zero too. + const uint32x4_t pos_inf = vdupq_n_u32(0x7F800000); + const uint32x4_t div_by_zero = + vceqq_u32(pos_inf, vreinterpretq_u32_f32(recip)); + recip = vreinterpretq_f32_u32( + vandq_u32(vmvnq_u32(div_by_zero), vreinterpretq_u32_f32(recip))); + + // Additional Netwon-Raphson iteration for accuracy + recip = vmulq_f32( + vrsqrtsq_f32(vmulq_f32(recip, recip), vreinterpretq_f32_m128(in)), + recip); + recip = vmulq_f32( + vrsqrtsq_f32(vmulq_f32(recip, recip), vreinterpretq_f32_m128(in)), + recip); + + // sqrt(s) = s * 1/sqrt(s) + return vreinterpretq_m128_f32(vmulq_f32(vreinterpretq_f32_m128(in), recip)); +#elif defined(__aarch64__) + return vreinterpretq_m128_f32(vsqrtq_f32(vreinterpretq_f32_m128(in))); +#else + float32x4_t recipsq = vrsqrteq_f32(vreinterpretq_f32_m128(in)); + float32x4_t sq = vrecpeq_f32(recipsq); + return vreinterpretq_m128_f32(sq); +#endif +} + +// Computes the approximation of the square root of the scalar single-precision +// floating point value of in. +// https://msdn.microsoft.com/en-us/library/ahfsc22d(v=vs.100).aspx +FORCE_INLINE __m128 _mm_sqrt_ss(__m128 in) +{ + float32_t value = + vgetq_lane_f32(vreinterpretq_f32_m128(_mm_sqrt_ps(in)), 0); + return vreinterpretq_m128_f32( + vsetq_lane_f32(value, vreinterpretq_f32_m128(in), 0)); +} + +// Stores four single-precision, floating-point values. +// https://msdn.microsoft.com/en-us/library/vstudio/s3h4ay6y(v=vs.100).aspx +FORCE_INLINE void _mm_store_ps(float *p, __m128 a) +{ + vst1q_f32(p, vreinterpretq_f32_m128(a)); +} + +// Store the lower single-precision (32-bit) floating-point element from a into +// 4 contiguous elements in memory. mem_addr must be aligned on a 16-byte +// boundary or a general-protection exception may be generated. +// +// MEM[mem_addr+31:mem_addr] := a[31:0] +// MEM[mem_addr+63:mem_addr+32] := a[31:0] +// MEM[mem_addr+95:mem_addr+64] := a[31:0] +// MEM[mem_addr+127:mem_addr+96] := a[31:0] +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_store_ps1 +FORCE_INLINE void _mm_store_ps1(float *p, __m128 a) +{ + float32_t a0 = vgetq_lane_f32(vreinterpretq_f32_m128(a), 0); + vst1q_f32(p, vdupq_n_f32(a0)); +} + +// Stores the lower single - precision, floating - point value. +// https://msdn.microsoft.com/en-us/library/tzz10fbx(v=vs.100).aspx +FORCE_INLINE void _mm_store_ss(float *p, __m128 a) +{ + vst1q_lane_f32(p, vreinterpretq_f32_m128(a), 0); +} + +// Store the lower single-precision (32-bit) floating-point element from a into +// 4 contiguous elements in memory. mem_addr must be aligned on a 16-byte +// boundary or a general-protection exception may be generated. +// +// MEM[mem_addr+31:mem_addr] := a[31:0] +// MEM[mem_addr+63:mem_addr+32] := a[31:0] +// MEM[mem_addr+95:mem_addr+64] := a[31:0] +// MEM[mem_addr+127:mem_addr+96] := a[31:0] +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_store1_ps +#define _mm_store1_ps _mm_store_ps1 + +// Stores the upper two single-precision, floating-point values of a to the +// address p. +// +// *p0 := a2 +// *p1 := a3 +// +// https://msdn.microsoft.com/en-us/library/a7525fs8(v%3dvs.90).aspx +FORCE_INLINE void _mm_storeh_pi(__m64 *p, __m128 a) +{ + *p = vreinterpret_m64_f32(vget_high_f32(a)); +} + +// Stores the lower two single-precision floating point values of a to the +// address p. +// +// *p0 := a0 +// *p1 := a1 +// +// https://msdn.microsoft.com/en-us/library/h54t98ks(v=vs.90).aspx +FORCE_INLINE void _mm_storel_pi(__m64 *p, __m128 a) +{ + *p = vreinterpret_m64_f32(vget_low_f32(a)); +} + +// Store 4 single-precision (32-bit) floating-point elements from a into memory +// in reverse order. mem_addr must be aligned on a 16-byte boundary or a +// general-protection exception may be generated. +// +// MEM[mem_addr+31:mem_addr] := a[127:96] +// MEM[mem_addr+63:mem_addr+32] := a[95:64] +// MEM[mem_addr+95:mem_addr+64] := a[63:32] +// MEM[mem_addr+127:mem_addr+96] := a[31:0] +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storer_ps +FORCE_INLINE void _mm_storer_ps(float *p, __m128 a) +{ + float32x4_t tmp = vrev64q_f32(vreinterpretq_f32_m128(a)); + float32x4_t rev = vextq_f32(tmp, tmp, 2); + vst1q_f32(p, rev); +} + +// Stores four single-precision, floating-point values. +// https://msdn.microsoft.com/en-us/library/44e30x22(v=vs.100).aspx +FORCE_INLINE void _mm_storeu_ps(float *p, __m128 a) +{ + vst1q_f32(p, vreinterpretq_f32_m128(a)); +} + +// Stores 16-bits of integer data a at the address p. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storeu_si16 +FORCE_INLINE void _mm_storeu_si16(void *p, __m128i a) +{ + vst1q_lane_s16((int16_t *) p, vreinterpretq_s16_m128i(a), 0); +} + +// Stores 64-bits of integer data a at the address p. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storeu_si64 +FORCE_INLINE void _mm_storeu_si64(void *p, __m128i a) +{ + vst1q_lane_s64((int64_t *) p, vreinterpretq_s64_m128i(a), 0); +} + +// Store 64-bits of integer data from a into memory using a non-temporal memory +// hint. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_stream_pi +FORCE_INLINE void _mm_stream_pi(__m64 *p, __m64 a) +{ + vst1_s64((int64_t *) p, vreinterpret_s64_m64(a)); +} + +// Store 128-bits (composed of 4 packed single-precision (32-bit) floating- +// point elements) from a into memory using a non-temporal memory hint. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_stream_ps +FORCE_INLINE void _mm_stream_ps(float *p, __m128 a) +{ +#if __has_builtin(__builtin_nontemporal_store) + __builtin_nontemporal_store(a, (float32x4_t *) p); +#else + vst1q_f32(p, vreinterpretq_f32_m128(a)); +#endif +} + +// Subtracts the four single-precision, floating-point values of a and b. +// +// r0 := a0 - b0 +// r1 := a1 - b1 +// r2 := a2 - b2 +// r3 := a3 - b3 +// +// https://msdn.microsoft.com/en-us/library/vstudio/1zad2k61(v=vs.100).aspx +FORCE_INLINE __m128 _mm_sub_ps(__m128 a, __m128 b) +{ + return vreinterpretq_m128_f32( + vsubq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); +} + +// Subtract the lower single-precision (32-bit) floating-point element in b from +// the lower single-precision (32-bit) floating-point element in a, store the +// result in the lower element of dst, and copy the upper 3 packed elements from +// a to the upper elements of dst. +// +// dst[31:0] := a[31:0] - b[31:0] +// dst[127:32] := a[127:32] +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sub_ss +FORCE_INLINE __m128 _mm_sub_ss(__m128 a, __m128 b) +{ + return _mm_move_ss(a, _mm_sub_ps(a, b)); +} + +// Macro: Transpose the 4x4 matrix formed by the 4 rows of single-precision +// (32-bit) floating-point elements in row0, row1, row2, and row3, and store the +// transposed matrix in these vectors (row0 now contains column 0, etc.). +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=MM_TRANSPOSE4_PS +#define _MM_TRANSPOSE4_PS(row0, row1, row2, row3) \ + do { \ + float32x4x2_t ROW01 = vtrnq_f32(row0, row1); \ + float32x4x2_t ROW23 = vtrnq_f32(row2, row3); \ + row0 = vcombine_f32(vget_low_f32(ROW01.val[0]), \ + vget_low_f32(ROW23.val[0])); \ + row1 = vcombine_f32(vget_low_f32(ROW01.val[1]), \ + vget_low_f32(ROW23.val[1])); \ + row2 = vcombine_f32(vget_high_f32(ROW01.val[0]), \ + vget_high_f32(ROW23.val[0])); \ + row3 = vcombine_f32(vget_high_f32(ROW01.val[1]), \ + vget_high_f32(ROW23.val[1])); \ + } while (0) + +// according to the documentation, these intrinsics behave the same as the +// non-'u' versions. We'll just alias them here. +#define _mm_ucomieq_ss _mm_comieq_ss +#define _mm_ucomige_ss _mm_comige_ss +#define _mm_ucomigt_ss _mm_comigt_ss +#define _mm_ucomile_ss _mm_comile_ss +#define _mm_ucomilt_ss _mm_comilt_ss +#define _mm_ucomineq_ss _mm_comineq_ss + +// Return vector of type __m128i with undefined elements. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=mm_undefined_si128 +FORCE_INLINE __m128i _mm_undefined_si128(void) +{ +#if defined(__GNUC__) || defined(__clang__) +#pragma GCC diagnostic push +#pragma GCC diagnostic ignored "-Wuninitialized" +#endif + __m128i a; + return a; +#if defined(__GNUC__) || defined(__clang__) +#pragma GCC diagnostic pop +#endif +} + +// Return vector of type __m128 with undefined elements. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_undefined_ps +FORCE_INLINE __m128 _mm_undefined_ps(void) +{ +#if defined(__GNUC__) || defined(__clang__) +#pragma GCC diagnostic push +#pragma GCC diagnostic ignored "-Wuninitialized" +#endif + __m128 a; + return a; +#if defined(__GNUC__) || defined(__clang__) +#pragma GCC diagnostic pop +#endif +} + +// Selects and interleaves the upper two single-precision, floating-point values +// from a and b. +// +// r0 := a2 +// r1 := b2 +// r2 := a3 +// r3 := b3 +// +// https://msdn.microsoft.com/en-us/library/skccxx7d%28v=vs.90%29.aspx +FORCE_INLINE __m128 _mm_unpackhi_ps(__m128 a, __m128 b) +{ +#if defined(__aarch64__) + return vreinterpretq_m128_f32( + vzip2q_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); +#else + float32x2_t a1 = vget_high_f32(vreinterpretq_f32_m128(a)); + float32x2_t b1 = vget_high_f32(vreinterpretq_f32_m128(b)); + float32x2x2_t result = vzip_f32(a1, b1); + return vreinterpretq_m128_f32(vcombine_f32(result.val[0], result.val[1])); +#endif +} + +// Selects and interleaves the lower two single-precision, floating-point values +// from a and b. +// +// r0 := a0 +// r1 := b0 +// r2 := a1 +// r3 := b1 +// +// https://msdn.microsoft.com/en-us/library/25st103b%28v=vs.90%29.aspx +FORCE_INLINE __m128 _mm_unpacklo_ps(__m128 a, __m128 b) +{ +#if defined(__aarch64__) + return vreinterpretq_m128_f32( + vzip1q_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); +#else + float32x2_t a1 = vget_low_f32(vreinterpretq_f32_m128(a)); + float32x2_t b1 = vget_low_f32(vreinterpretq_f32_m128(b)); + float32x2x2_t result = vzip_f32(a1, b1); + return vreinterpretq_m128_f32(vcombine_f32(result.val[0], result.val[1])); +#endif +} + +// Computes bitwise EXOR (exclusive-or) of the four single-precision, +// floating-point values of a and b. +// https://msdn.microsoft.com/en-us/library/ss6k3wk8(v=vs.100).aspx +FORCE_INLINE __m128 _mm_xor_ps(__m128 a, __m128 b) +{ + return vreinterpretq_m128_s32( + veorq_s32(vreinterpretq_s32_m128(a), vreinterpretq_s32_m128(b))); +} + +/* SSE2 */ + +// Adds the 8 signed or unsigned 16-bit integers in a to the 8 signed or +// unsigned 16-bit integers in b. +// https://msdn.microsoft.com/en-us/library/fceha5k4(v=vs.100).aspx +FORCE_INLINE __m128i _mm_add_epi16(__m128i a, __m128i b) +{ + return vreinterpretq_m128i_s16( + vaddq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b))); +} + +// Adds the 4 signed or unsigned 32-bit integers in a to the 4 signed or +// unsigned 32-bit integers in b. +// +// r0 := a0 + b0 +// r1 := a1 + b1 +// r2 := a2 + b2 +// r3 := a3 + b3 +// +// https://msdn.microsoft.com/en-us/library/vstudio/09xs4fkk(v=vs.100).aspx +FORCE_INLINE __m128i _mm_add_epi32(__m128i a, __m128i b) +{ + return vreinterpretq_m128i_s32( + vaddq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b))); +} + +// Adds the 4 signed or unsigned 64-bit integers in a to the 4 signed or +// unsigned 32-bit integers in b. +// https://msdn.microsoft.com/en-us/library/vstudio/09xs4fkk(v=vs.100).aspx +FORCE_INLINE __m128i _mm_add_epi64(__m128i a, __m128i b) +{ + return vreinterpretq_m128i_s64( + vaddq_s64(vreinterpretq_s64_m128i(a), vreinterpretq_s64_m128i(b))); +} + +// Adds the 16 signed or unsigned 8-bit integers in a to the 16 signed or +// unsigned 8-bit integers in b. +// https://technet.microsoft.com/en-us/subscriptions/yc7tcyzs(v=vs.90) +FORCE_INLINE __m128i _mm_add_epi8(__m128i a, __m128i b) +{ + return vreinterpretq_m128i_s8( + vaddq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b))); +} + +// Add packed double-precision (64-bit) floating-point elements in a and b, and +// store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_add_pd +FORCE_INLINE __m128d _mm_add_pd(__m128d a, __m128d b) +{ +#if defined(__aarch64__) + return vreinterpretq_m128d_f64( + vaddq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b))); +#else + double *da = (double *) &a; + double *db = (double *) &b; + double c[2]; + c[0] = da[0] + db[0]; + c[1] = da[1] + db[1]; + return vld1q_f32((float32_t *) c); +#endif +} + +// Add the lower double-precision (64-bit) floating-point element in a and b, +// store the result in the lower element of dst, and copy the upper element from +// a to the upper element of dst. +// +// dst[63:0] := a[63:0] + b[63:0] +// dst[127:64] := a[127:64] +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_add_sd +FORCE_INLINE __m128d _mm_add_sd(__m128d a, __m128d b) +{ +#if defined(__aarch64__) + return _mm_move_sd(a, _mm_add_pd(a, b)); +#else + double *da = (double *) &a; + double *db = (double *) &b; + double c[2]; + c[0] = da[0] + db[0]; + c[1] = da[1]; + return vld1q_f32((float32_t *) c); +#endif +} + +// Add 64-bit integers a and b, and store the result in dst. +// +// dst[63:0] := a[63:0] + b[63:0] +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_add_si64 +FORCE_INLINE __m64 _mm_add_si64(__m64 a, __m64 b) +{ + return vreinterpret_m64_s64( + vadd_s64(vreinterpret_s64_m64(a), vreinterpret_s64_m64(b))); +} + +// Adds the 8 signed 16-bit integers in a to the 8 signed 16-bit integers in b +// and saturates. +// +// r0 := SignedSaturate(a0 + b0) +// r1 := SignedSaturate(a1 + b1) +// ... +// r7 := SignedSaturate(a7 + b7) +// +// https://msdn.microsoft.com/en-us/library/1a306ef8(v=vs.100).aspx +FORCE_INLINE __m128i _mm_adds_epi16(__m128i a, __m128i b) +{ + return vreinterpretq_m128i_s16( + vqaddq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b))); +} + +// Add packed signed 8-bit integers in a and b using saturation, and store the +// results in dst. +// +// FOR j := 0 to 15 +// i := j*8 +// dst[i+7:i] := Saturate8( a[i+7:i] + b[i+7:i] ) +// ENDFOR +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_adds_epi8 +FORCE_INLINE __m128i _mm_adds_epi8(__m128i a, __m128i b) +{ + return vreinterpretq_m128i_s8( + vqaddq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b))); +} + +// Add packed unsigned 16-bit integers in a and b using saturation, and store +// the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_adds_epu16 +FORCE_INLINE __m128i _mm_adds_epu16(__m128i a, __m128i b) +{ + return vreinterpretq_m128i_u16( + vqaddq_u16(vreinterpretq_u16_m128i(a), vreinterpretq_u16_m128i(b))); +} + +// Adds the 16 unsigned 8-bit integers in a to the 16 unsigned 8-bit integers in +// b and saturates.. +// https://msdn.microsoft.com/en-us/library/9hahyddy(v=vs.100).aspx +FORCE_INLINE __m128i _mm_adds_epu8(__m128i a, __m128i b) +{ + return vreinterpretq_m128i_u8( + vqaddq_u8(vreinterpretq_u8_m128i(a), vreinterpretq_u8_m128i(b))); +} + +// Compute the bitwise AND of packed double-precision (64-bit) floating-point +// elements in a and b, and store the results in dst. +// +// FOR j := 0 to 1 +// i := j*64 +// dst[i+63:i] := a[i+63:i] AND b[i+63:i] +// ENDFOR +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_and_pd +FORCE_INLINE __m128d _mm_and_pd(__m128d a, __m128d b) +{ + return vreinterpretq_m128d_s64( + vandq_s64(vreinterpretq_s64_m128d(a), vreinterpretq_s64_m128d(b))); +} + +// Computes the bitwise AND of the 128-bit value in a and the 128-bit value in +// b. +// +// r := a & b +// +// https://msdn.microsoft.com/en-us/library/vstudio/6d1txsa8(v=vs.100).aspx +FORCE_INLINE __m128i _mm_and_si128(__m128i a, __m128i b) +{ + return vreinterpretq_m128i_s32( + vandq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b))); +} + +// Compute the bitwise NOT of packed double-precision (64-bit) floating-point +// elements in a and then AND with b, and store the results in dst. +// +// FOR j := 0 to 1 +// i := j*64 +// dst[i+63:i] := ((NOT a[i+63:i]) AND b[i+63:i]) +// ENDFOR +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_andnot_pd +FORCE_INLINE __m128d _mm_andnot_pd(__m128d a, __m128d b) +{ + // *NOTE* argument swap + return vreinterpretq_m128d_s64( + vbicq_s64(vreinterpretq_s64_m128d(b), vreinterpretq_s64_m128d(a))); +} + +// Computes the bitwise AND of the 128-bit value in b and the bitwise NOT of the +// 128-bit value in a. +// +// r := (~a) & b +// +// https://msdn.microsoft.com/en-us/library/vstudio/1beaceh8(v=vs.100).aspx +FORCE_INLINE __m128i _mm_andnot_si128(__m128i a, __m128i b) +{ + return vreinterpretq_m128i_s32( + vbicq_s32(vreinterpretq_s32_m128i(b), + vreinterpretq_s32_m128i(a))); // *NOTE* argument swap +} + +// Computes the average of the 8 unsigned 16-bit integers in a and the 8 +// unsigned 16-bit integers in b and rounds. +// +// r0 := (a0 + b0) / 2 +// r1 := (a1 + b1) / 2 +// ... +// r7 := (a7 + b7) / 2 +// +// https://msdn.microsoft.com/en-us/library/vstudio/y13ca3c8(v=vs.90).aspx +FORCE_INLINE __m128i _mm_avg_epu16(__m128i a, __m128i b) +{ + return (__m128i) vrhaddq_u16(vreinterpretq_u16_m128i(a), + vreinterpretq_u16_m128i(b)); +} + +// Computes the average of the 16 unsigned 8-bit integers in a and the 16 +// unsigned 8-bit integers in b and rounds. +// +// r0 := (a0 + b0) / 2 +// r1 := (a1 + b1) / 2 +// ... +// r15 := (a15 + b15) / 2 +// +// https://msdn.microsoft.com/en-us/library/vstudio/8zwh554a(v%3dvs.90).aspx +FORCE_INLINE __m128i _mm_avg_epu8(__m128i a, __m128i b) +{ + return vreinterpretq_m128i_u8( + vrhaddq_u8(vreinterpretq_u8_m128i(a), vreinterpretq_u8_m128i(b))); +} + +// Shift a left by imm8 bytes while shifting in zeros, and store the results in +// dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_bslli_si128 +#define _mm_bslli_si128(a, imm) _mm_slli_si128(a, imm) + +// Shift a right by imm8 bytes while shifting in zeros, and store the results in +// dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_bsrli_si128 +#define _mm_bsrli_si128(a, imm) _mm_srli_si128(a, imm) + +// Cast vector of type __m128d to type __m128. This intrinsic is only used for +// compilation and does not generate any instructions, thus it has zero latency. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_castpd_ps +FORCE_INLINE __m128 _mm_castpd_ps(__m128d a) +{ + return vreinterpretq_m128_s64(vreinterpretq_s64_m128d(a)); +} + +// Cast vector of type __m128d to type __m128i. This intrinsic is only used for +// compilation and does not generate any instructions, thus it has zero latency. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_castpd_si128 +FORCE_INLINE __m128i _mm_castpd_si128(__m128d a) +{ + return vreinterpretq_m128i_s64(vreinterpretq_s64_m128d(a)); +} + +// Cast vector of type __m128 to type __m128d. This intrinsic is only used for +// compilation and does not generate any instructions, thus it has zero latency. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_castps_pd +FORCE_INLINE __m128d _mm_castps_pd(__m128 a) +{ + return vreinterpretq_m128d_s32(vreinterpretq_s32_m128(a)); +} + +// Applies a type cast to reinterpret four 32-bit floating point values passed +// in as a 128-bit parameter as packed 32-bit integers. +// https://msdn.microsoft.com/en-us/library/bb514099.aspx +FORCE_INLINE __m128i _mm_castps_si128(__m128 a) +{ + return vreinterpretq_m128i_s32(vreinterpretq_s32_m128(a)); +} + +// Cast vector of type __m128i to type __m128d. This intrinsic is only used for +// compilation and does not generate any instructions, thus it has zero latency. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_castsi128_pd +FORCE_INLINE __m128d _mm_castsi128_pd(__m128i a) +{ +#if defined(__aarch64__) + return vreinterpretq_m128d_f64(vreinterpretq_f64_m128i(a)); +#else + return vreinterpretq_m128d_f32(vreinterpretq_f32_m128i(a)); +#endif +} + +// Applies a type cast to reinterpret four 32-bit integers passed in as a +// 128-bit parameter as packed 32-bit floating point values. +// https://msdn.microsoft.com/en-us/library/bb514029.aspx +FORCE_INLINE __m128 _mm_castsi128_ps(__m128i a) +{ + return vreinterpretq_m128_s32(vreinterpretq_s32_m128i(a)); +} + +// Invalidate and flush the cache line that contains p from all levels of the +// cache hierarchy. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_clflush +#if defined(__APPLE__) +#include +#endif +FORCE_INLINE void _mm_clflush(void const *p) +{ + (void) p; + + /* sys_icache_invalidate is supported since macOS 10.5. + * However, it does not work on non-jailbroken iOS devices, although the + * compilation is successful. + */ +#if defined(__APPLE__) + sys_icache_invalidate((void *) (uintptr_t) p, SSE2NEON_CACHELINE_SIZE); +#elif defined(__GNUC__) || defined(__clang__) + uintptr_t ptr = (uintptr_t) p; + __builtin___clear_cache((char *) ptr, + (char *) ptr + SSE2NEON_CACHELINE_SIZE); +#else + /* FIXME: MSVC support */ +#endif +} + +// Compares the 8 signed or unsigned 16-bit integers in a and the 8 signed or +// unsigned 16-bit integers in b for equality. +// https://msdn.microsoft.com/en-us/library/2ay060te(v=vs.100).aspx +FORCE_INLINE __m128i _mm_cmpeq_epi16(__m128i a, __m128i b) +{ + return vreinterpretq_m128i_u16( + vceqq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b))); +} + +// Compare packed 32-bit integers in a and b for equality, and store the results +// in dst +FORCE_INLINE __m128i _mm_cmpeq_epi32(__m128i a, __m128i b) +{ + return vreinterpretq_m128i_u32( + vceqq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b))); +} + +// Compares the 16 signed or unsigned 8-bit integers in a and the 16 signed or +// unsigned 8-bit integers in b for equality. +// https://msdn.microsoft.com/en-us/library/windows/desktop/bz5xk21a(v=vs.90).aspx +FORCE_INLINE __m128i _mm_cmpeq_epi8(__m128i a, __m128i b) +{ + return vreinterpretq_m128i_u8( + vceqq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b))); +} + +// Compare packed double-precision (64-bit) floating-point elements in a and b +// for equality, and store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpeq_pd +FORCE_INLINE __m128d _mm_cmpeq_pd(__m128d a, __m128d b) +{ +#if defined(__aarch64__) + return vreinterpretq_m128d_u64( + vceqq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b))); +#else + // (a == b) -> (a_lo == b_lo) && (a_hi == b_hi) + uint32x4_t cmp = + vceqq_u32(vreinterpretq_u32_m128d(a), vreinterpretq_u32_m128d(b)); + uint32x4_t swapped = vrev64q_u32(cmp); + return vreinterpretq_m128d_u32(vandq_u32(cmp, swapped)); +#endif +} + +// Compare the lower double-precision (64-bit) floating-point elements in a and +// b for equality, store the result in the lower element of dst, and copy the +// upper element from a to the upper element of dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpeq_sd +FORCE_INLINE __m128d _mm_cmpeq_sd(__m128d a, __m128d b) +{ + return _mm_move_sd(a, _mm_cmpeq_pd(a, b)); +} + +// Compare packed double-precision (64-bit) floating-point elements in a and b +// for greater-than-or-equal, and store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpge_pd +FORCE_INLINE __m128d _mm_cmpge_pd(__m128d a, __m128d b) +{ +#if defined(__aarch64__) + return vreinterpretq_m128d_u64( + vcgeq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b))); +#else + uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); + uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a)); + uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b)); + uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b)); + uint64_t d[2]; + d[0] = (*(double *) &a0) >= (*(double *) &b0) ? ~UINT64_C(0) : UINT64_C(0); + d[1] = (*(double *) &a1) >= (*(double *) &b1) ? ~UINT64_C(0) : UINT64_C(0); + + return vreinterpretq_m128d_u64(vld1q_u64(d)); +#endif +} + +// Compare the lower double-precision (64-bit) floating-point elements in a and +// b for greater-than-or-equal, store the result in the lower element of dst, +// and copy the upper element from a to the upper element of dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpge_sd +FORCE_INLINE __m128d _mm_cmpge_sd(__m128d a, __m128d b) +{ +#if defined(__aarch64__) + return _mm_move_sd(a, _mm_cmpge_pd(a, b)); +#else + // expand "_mm_cmpge_pd()" to reduce unnecessary operations + uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); + uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a)); + uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b)); + uint64_t d[2]; + d[0] = (*(double *) &a0) >= (*(double *) &b0) ? ~UINT64_C(0) : UINT64_C(0); + d[1] = a1; + + return vreinterpretq_m128d_u64(vld1q_u64(d)); +#endif +} + +// Compares the 8 signed 16-bit integers in a and the 8 signed 16-bit integers +// in b for greater than. +// +// r0 := (a0 > b0) ? 0xffff : 0x0 +// r1 := (a1 > b1) ? 0xffff : 0x0 +// ... +// r7 := (a7 > b7) ? 0xffff : 0x0 +// +// https://technet.microsoft.com/en-us/library/xd43yfsa(v=vs.100).aspx +FORCE_INLINE __m128i _mm_cmpgt_epi16(__m128i a, __m128i b) +{ + return vreinterpretq_m128i_u16( + vcgtq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b))); +} + +// Compares the 4 signed 32-bit integers in a and the 4 signed 32-bit integers +// in b for greater than. +// https://msdn.microsoft.com/en-us/library/vstudio/1s9f2z0y(v=vs.100).aspx +FORCE_INLINE __m128i _mm_cmpgt_epi32(__m128i a, __m128i b) +{ + return vreinterpretq_m128i_u32( + vcgtq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b))); +} + +// Compares the 16 signed 8-bit integers in a and the 16 signed 8-bit integers +// in b for greater than. +// +// r0 := (a0 > b0) ? 0xff : 0x0 +// r1 := (a1 > b1) ? 0xff : 0x0 +// ... +// r15 := (a15 > b15) ? 0xff : 0x0 +// +// https://msdn.microsoft.com/zh-tw/library/wf45zt2b(v=vs.100).aspx +FORCE_INLINE __m128i _mm_cmpgt_epi8(__m128i a, __m128i b) +{ + return vreinterpretq_m128i_u8( + vcgtq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b))); +} + +// Compare packed double-precision (64-bit) floating-point elements in a and b +// for greater-than, and store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpgt_pd +FORCE_INLINE __m128d _mm_cmpgt_pd(__m128d a, __m128d b) +{ +#if defined(__aarch64__) + return vreinterpretq_m128d_u64( + vcgtq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b))); +#else + uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); + uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a)); + uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b)); + uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b)); + uint64_t d[2]; + d[0] = (*(double *) &a0) > (*(double *) &b0) ? ~UINT64_C(0) : UINT64_C(0); + d[1] = (*(double *) &a1) > (*(double *) &b1) ? ~UINT64_C(0) : UINT64_C(0); + + return vreinterpretq_m128d_u64(vld1q_u64(d)); +#endif +} + +// Compare the lower double-precision (64-bit) floating-point elements in a and +// b for greater-than, store the result in the lower element of dst, and copy +// the upper element from a to the upper element of dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpgt_sd +FORCE_INLINE __m128d _mm_cmpgt_sd(__m128d a, __m128d b) +{ +#if defined(__aarch64__) + return _mm_move_sd(a, _mm_cmpgt_pd(a, b)); +#else + // expand "_mm_cmpge_pd()" to reduce unnecessary operations + uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); + uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a)); + uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b)); + uint64_t d[2]; + d[0] = (*(double *) &a0) > (*(double *) &b0) ? ~UINT64_C(0) : UINT64_C(0); + d[1] = a1; + + return vreinterpretq_m128d_u64(vld1q_u64(d)); +#endif +} + +// Compare packed double-precision (64-bit) floating-point elements in a and b +// for less-than-or-equal, and store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmple_pd +FORCE_INLINE __m128d _mm_cmple_pd(__m128d a, __m128d b) +{ +#if defined(__aarch64__) + return vreinterpretq_m128d_u64( + vcleq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b))); +#else + uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); + uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a)); + uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b)); + uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b)); + uint64_t d[2]; + d[0] = (*(double *) &a0) <= (*(double *) &b0) ? ~UINT64_C(0) : UINT64_C(0); + d[1] = (*(double *) &a1) <= (*(double *) &b1) ? ~UINT64_C(0) : UINT64_C(0); + + return vreinterpretq_m128d_u64(vld1q_u64(d)); +#endif +} + +// Compare the lower double-precision (64-bit) floating-point elements in a and +// b for less-than-or-equal, store the result in the lower element of dst, and +// copy the upper element from a to the upper element of dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmple_sd +FORCE_INLINE __m128d _mm_cmple_sd(__m128d a, __m128d b) +{ +#if defined(__aarch64__) + return _mm_move_sd(a, _mm_cmple_pd(a, b)); +#else + // expand "_mm_cmpge_pd()" to reduce unnecessary operations + uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); + uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a)); + uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b)); + uint64_t d[2]; + d[0] = (*(double *) &a0) <= (*(double *) &b0) ? ~UINT64_C(0) : UINT64_C(0); + d[1] = a1; + + return vreinterpretq_m128d_u64(vld1q_u64(d)); +#endif +} + +// Compares the 8 signed 16-bit integers in a and the 8 signed 16-bit integers +// in b for less than. +// +// r0 := (a0 < b0) ? 0xffff : 0x0 +// r1 := (a1 < b1) ? 0xffff : 0x0 +// ... +// r7 := (a7 < b7) ? 0xffff : 0x0 +// +// https://technet.microsoft.com/en-us/library/t863edb2(v=vs.100).aspx +FORCE_INLINE __m128i _mm_cmplt_epi16(__m128i a, __m128i b) +{ + return vreinterpretq_m128i_u16( + vcltq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b))); +} + + +// Compares the 4 signed 32-bit integers in a and the 4 signed 32-bit integers +// in b for less than. +// https://msdn.microsoft.com/en-us/library/vstudio/4ak0bf5d(v=vs.100).aspx +FORCE_INLINE __m128i _mm_cmplt_epi32(__m128i a, __m128i b) +{ + return vreinterpretq_m128i_u32( + vcltq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b))); +} + +// Compares the 16 signed 8-bit integers in a and the 16 signed 8-bit integers +// in b for lesser than. +// https://msdn.microsoft.com/en-us/library/windows/desktop/9s46csht(v=vs.90).aspx +FORCE_INLINE __m128i _mm_cmplt_epi8(__m128i a, __m128i b) +{ + return vreinterpretq_m128i_u8( + vcltq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b))); +} + +// Compare packed double-precision (64-bit) floating-point elements in a and b +// for less-than, and store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmplt_pd +FORCE_INLINE __m128d _mm_cmplt_pd(__m128d a, __m128d b) +{ +#if defined(__aarch64__) + return vreinterpretq_m128d_u64( + vcltq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b))); +#else + uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); + uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a)); + uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b)); + uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b)); + uint64_t d[2]; + d[0] = (*(double *) &a0) < (*(double *) &b0) ? ~UINT64_C(0) : UINT64_C(0); + d[1] = (*(double *) &a1) < (*(double *) &b1) ? ~UINT64_C(0) : UINT64_C(0); + + return vreinterpretq_m128d_u64(vld1q_u64(d)); +#endif +} + +// Compare the lower double-precision (64-bit) floating-point elements in a and +// b for less-than, store the result in the lower element of dst, and copy the +// upper element from a to the upper element of dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmplt_sd +FORCE_INLINE __m128d _mm_cmplt_sd(__m128d a, __m128d b) +{ +#if defined(__aarch64__) + return _mm_move_sd(a, _mm_cmplt_pd(a, b)); +#else + uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); + uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a)); + uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b)); + uint64_t d[2]; + d[0] = (*(double *) &a0) < (*(double *) &b0) ? ~UINT64_C(0) : UINT64_C(0); + d[1] = a1; + + return vreinterpretq_m128d_u64(vld1q_u64(d)); +#endif +} + +// Compare packed double-precision (64-bit) floating-point elements in a and b +// for not-equal, and store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpneq_pd +FORCE_INLINE __m128d _mm_cmpneq_pd(__m128d a, __m128d b) +{ +#if defined(__aarch64__) + return vreinterpretq_m128d_s32(vmvnq_s32(vreinterpretq_s32_u64( + vceqq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b))))); +#else + // (a == b) -> (a_lo == b_lo) && (a_hi == b_hi) + uint32x4_t cmp = + vceqq_u32(vreinterpretq_u32_m128d(a), vreinterpretq_u32_m128d(b)); + uint32x4_t swapped = vrev64q_u32(cmp); + return vreinterpretq_m128d_u32(vmvnq_u32(vandq_u32(cmp, swapped))); +#endif +} + +// Compare the lower double-precision (64-bit) floating-point elements in a and +// b for not-equal, store the result in the lower element of dst, and copy the +// upper element from a to the upper element of dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpneq_sd +FORCE_INLINE __m128d _mm_cmpneq_sd(__m128d a, __m128d b) +{ + return _mm_move_sd(a, _mm_cmpneq_pd(a, b)); +} + +// Compare packed double-precision (64-bit) floating-point elements in a and b +// for not-greater-than-or-equal, and store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnge_pd +FORCE_INLINE __m128d _mm_cmpnge_pd(__m128d a, __m128d b) +{ +#if defined(__aarch64__) + return vreinterpretq_m128d_u64(veorq_u64( + vcgeq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)), + vdupq_n_u64(UINT64_MAX))); +#else + uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); + uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a)); + uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b)); + uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b)); + uint64_t d[2]; + d[0] = + !((*(double *) &a0) >= (*(double *) &b0)) ? ~UINT64_C(0) : UINT64_C(0); + d[1] = + !((*(double *) &a1) >= (*(double *) &b1)) ? ~UINT64_C(0) : UINT64_C(0); + + return vreinterpretq_m128d_u64(vld1q_u64(d)); +#endif +} + +// Compare the lower double-precision (64-bit) floating-point elements in a and +// b for not-greater-than-or-equal, store the result in the lower element of +// dst, and copy the upper element from a to the upper element of dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnge_sd +FORCE_INLINE __m128d _mm_cmpnge_sd(__m128d a, __m128d b) +{ + return _mm_move_sd(a, _mm_cmpnge_pd(a, b)); +} + +// Compare packed double-precision (64-bit) floating-point elements in a and b +// for not-greater-than, and store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_cmpngt_pd +FORCE_INLINE __m128d _mm_cmpngt_pd(__m128d a, __m128d b) +{ +#if defined(__aarch64__) + return vreinterpretq_m128d_u64(veorq_u64( + vcgtq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)), + vdupq_n_u64(UINT64_MAX))); +#else + uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); + uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a)); + uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b)); + uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b)); + uint64_t d[2]; + d[0] = + !((*(double *) &a0) > (*(double *) &b0)) ? ~UINT64_C(0) : UINT64_C(0); + d[1] = + !((*(double *) &a1) > (*(double *) &b1)) ? ~UINT64_C(0) : UINT64_C(0); + + return vreinterpretq_m128d_u64(vld1q_u64(d)); +#endif +} + +// Compare the lower double-precision (64-bit) floating-point elements in a and +// b for not-greater-than, store the result in the lower element of dst, and +// copy the upper element from a to the upper element of dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpngt_sd +FORCE_INLINE __m128d _mm_cmpngt_sd(__m128d a, __m128d b) +{ + return _mm_move_sd(a, _mm_cmpngt_pd(a, b)); +} + +// Compare packed double-precision (64-bit) floating-point elements in a and b +// for not-less-than-or-equal, and store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnle_pd +FORCE_INLINE __m128d _mm_cmpnle_pd(__m128d a, __m128d b) +{ +#if defined(__aarch64__) + return vreinterpretq_m128d_u64(veorq_u64( + vcleq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)), + vdupq_n_u64(UINT64_MAX))); +#else + uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); + uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a)); + uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b)); + uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b)); + uint64_t d[2]; + d[0] = + !((*(double *) &a0) <= (*(double *) &b0)) ? ~UINT64_C(0) : UINT64_C(0); + d[1] = + !((*(double *) &a1) <= (*(double *) &b1)) ? ~UINT64_C(0) : UINT64_C(0); + + return vreinterpretq_m128d_u64(vld1q_u64(d)); +#endif +} + +// Compare the lower double-precision (64-bit) floating-point elements in a and +// b for not-less-than-or-equal, store the result in the lower element of dst, +// and copy the upper element from a to the upper element of dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnle_sd +FORCE_INLINE __m128d _mm_cmpnle_sd(__m128d a, __m128d b) +{ + return _mm_move_sd(a, _mm_cmpnle_pd(a, b)); +} + +// Compare packed double-precision (64-bit) floating-point elements in a and b +// for not-less-than, and store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnlt_pd +FORCE_INLINE __m128d _mm_cmpnlt_pd(__m128d a, __m128d b) +{ +#if defined(__aarch64__) + return vreinterpretq_m128d_u64(veorq_u64( + vcltq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)), + vdupq_n_u64(UINT64_MAX))); +#else + uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); + uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a)); + uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b)); + uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b)); + uint64_t d[2]; + d[0] = + !((*(double *) &a0) < (*(double *) &b0)) ? ~UINT64_C(0) : UINT64_C(0); + d[1] = + !((*(double *) &a1) < (*(double *) &b1)) ? ~UINT64_C(0) : UINT64_C(0); + + return vreinterpretq_m128d_u64(vld1q_u64(d)); +#endif +} + +// Compare the lower double-precision (64-bit) floating-point elements in a and +// b for not-less-than, store the result in the lower element of dst, and copy +// the upper element from a to the upper element of dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnlt_sd +FORCE_INLINE __m128d _mm_cmpnlt_sd(__m128d a, __m128d b) +{ + return _mm_move_sd(a, _mm_cmpnlt_pd(a, b)); +} + +// Compare packed double-precision (64-bit) floating-point elements in a and b +// to see if neither is NaN, and store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpord_pd +FORCE_INLINE __m128d _mm_cmpord_pd(__m128d a, __m128d b) +{ +#if defined(__aarch64__) + // Excluding NaNs, any two floating point numbers can be compared. + uint64x2_t not_nan_a = + vceqq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(a)); + uint64x2_t not_nan_b = + vceqq_f64(vreinterpretq_f64_m128d(b), vreinterpretq_f64_m128d(b)); + return vreinterpretq_m128d_u64(vandq_u64(not_nan_a, not_nan_b)); +#else + uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); + uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a)); + uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b)); + uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b)); + uint64_t d[2]; + d[0] = ((*(double *) &a0) == (*(double *) &a0) && + (*(double *) &b0) == (*(double *) &b0)) + ? ~UINT64_C(0) + : UINT64_C(0); + d[1] = ((*(double *) &a1) == (*(double *) &a1) && + (*(double *) &b1) == (*(double *) &b1)) + ? ~UINT64_C(0) + : UINT64_C(0); + + return vreinterpretq_m128d_u64(vld1q_u64(d)); +#endif +} + +// Compare the lower double-precision (64-bit) floating-point elements in a and +// b to see if neither is NaN, store the result in the lower element of dst, and +// copy the upper element from a to the upper element of dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpord_sd +FORCE_INLINE __m128d _mm_cmpord_sd(__m128d a, __m128d b) +{ +#if defined(__aarch64__) + return _mm_move_sd(a, _mm_cmpord_pd(a, b)); +#else + uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); + uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b)); + uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a)); + uint64_t d[2]; + d[0] = ((*(double *) &a0) == (*(double *) &a0) && + (*(double *) &b0) == (*(double *) &b0)) + ? ~UINT64_C(0) + : UINT64_C(0); + d[1] = a1; + + return vreinterpretq_m128d_u64(vld1q_u64(d)); +#endif +} + +// Compare packed double-precision (64-bit) floating-point elements in a and b +// to see if either is NaN, and store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpunord_pd +FORCE_INLINE __m128d _mm_cmpunord_pd(__m128d a, __m128d b) +{ +#if defined(__aarch64__) + // Two NaNs are not equal in comparison operation. + uint64x2_t not_nan_a = + vceqq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(a)); + uint64x2_t not_nan_b = + vceqq_f64(vreinterpretq_f64_m128d(b), vreinterpretq_f64_m128d(b)); + return vreinterpretq_m128d_s32( + vmvnq_s32(vreinterpretq_s32_u64(vandq_u64(not_nan_a, not_nan_b)))); +#else + uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); + uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a)); + uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b)); + uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b)); + uint64_t d[2]; + d[0] = ((*(double *) &a0) == (*(double *) &a0) && + (*(double *) &b0) == (*(double *) &b0)) + ? UINT64_C(0) + : ~UINT64_C(0); + d[1] = ((*(double *) &a1) == (*(double *) &a1) && + (*(double *) &b1) == (*(double *) &b1)) + ? UINT64_C(0) + : ~UINT64_C(0); + + return vreinterpretq_m128d_u64(vld1q_u64(d)); +#endif +} + +// Compare the lower double-precision (64-bit) floating-point elements in a and +// b to see if either is NaN, store the result in the lower element of dst, and +// copy the upper element from a to the upper element of dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpunord_sd +FORCE_INLINE __m128d _mm_cmpunord_sd(__m128d a, __m128d b) +{ +#if defined(__aarch64__) + return _mm_move_sd(a, _mm_cmpunord_pd(a, b)); +#else + uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); + uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b)); + uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a)); + uint64_t d[2]; + d[0] = ((*(double *) &a0) == (*(double *) &a0) && + (*(double *) &b0) == (*(double *) &b0)) + ? UINT64_C(0) + : ~UINT64_C(0); + d[1] = a1; + + return vreinterpretq_m128d_u64(vld1q_u64(d)); +#endif +} + +// Compare the lower double-precision (64-bit) floating-point element in a and b +// for greater-than-or-equal, and return the boolean result (0 or 1). +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comige_sd +FORCE_INLINE int _mm_comige_sd(__m128d a, __m128d b) +{ +#if defined(__aarch64__) + return vgetq_lane_u64(vcgeq_f64(a, b), 0) & 0x1; +#else + uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); + uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b)); + + return (*(double *) &a0 >= *(double *) &b0); +#endif +} + +// Compare the lower double-precision (64-bit) floating-point element in a and b +// for greater-than, and return the boolean result (0 or 1). +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comigt_sd +FORCE_INLINE int _mm_comigt_sd(__m128d a, __m128d b) +{ +#if defined(__aarch64__) + return vgetq_lane_u64(vcgtq_f64(a, b), 0) & 0x1; +#else + uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); + uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b)); + + return (*(double *) &a0 > *(double *) &b0); +#endif +} + +// Compare the lower double-precision (64-bit) floating-point element in a and b +// for less-than-or-equal, and return the boolean result (0 or 1). +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comile_sd +FORCE_INLINE int _mm_comile_sd(__m128d a, __m128d b) +{ +#if defined(__aarch64__) + return vgetq_lane_u64(vcleq_f64(a, b), 0) & 0x1; +#else + uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); + uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b)); + + return (*(double *) &a0 <= *(double *) &b0); +#endif +} + +// Compare the lower double-precision (64-bit) floating-point element in a and b +// for less-than, and return the boolean result (0 or 1). +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comilt_sd +FORCE_INLINE int _mm_comilt_sd(__m128d a, __m128d b) +{ +#if defined(__aarch64__) + return vgetq_lane_u64(vcltq_f64(a, b), 0) & 0x1; +#else + uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); + uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b)); + + return (*(double *) &a0 < *(double *) &b0); +#endif +} + +// Compare the lower double-precision (64-bit) floating-point element in a and b +// for equality, and return the boolean result (0 or 1). +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comieq_sd +FORCE_INLINE int _mm_comieq_sd(__m128d a, __m128d b) +{ +#if defined(__aarch64__) + return vgetq_lane_u64(vceqq_f64(a, b), 0) & 0x1; +#else + uint32x4_t a_not_nan = + vceqq_u32(vreinterpretq_u32_m128d(a), vreinterpretq_u32_m128d(a)); + uint32x4_t b_not_nan = + vceqq_u32(vreinterpretq_u32_m128d(b), vreinterpretq_u32_m128d(b)); + uint32x4_t a_and_b_not_nan = vandq_u32(a_not_nan, b_not_nan); + uint32x4_t a_eq_b = + vceqq_u32(vreinterpretq_u32_m128d(a), vreinterpretq_u32_m128d(b)); + uint64x2_t and_results = vandq_u64(vreinterpretq_u64_u32(a_and_b_not_nan), + vreinterpretq_u64_u32(a_eq_b)); + return vgetq_lane_u64(and_results, 0) & 0x1; +#endif +} + +// Compare the lower double-precision (64-bit) floating-point element in a and b +// for not-equal, and return the boolean result (0 or 1). +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comineq_sd +FORCE_INLINE int _mm_comineq_sd(__m128d a, __m128d b) +{ + return !_mm_comieq_sd(a, b); +} + +// Convert packed signed 32-bit integers in a to packed double-precision +// (64-bit) floating-point elements, and store the results in dst. +// +// FOR j := 0 to 1 +// i := j*32 +// m := j*64 +// dst[m+63:m] := Convert_Int32_To_FP64(a[i+31:i]) +// ENDFOR +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepi32_pd +FORCE_INLINE __m128d _mm_cvtepi32_pd(__m128i a) +{ +#if defined(__aarch64__) + return vreinterpretq_m128d_f64( + vcvtq_f64_s64(vmovl_s32(vget_low_s32(vreinterpretq_s32_m128i(a))))); +#else + double a0 = (double) vgetq_lane_s32(vreinterpretq_s32_m128i(a), 0); + double a1 = (double) vgetq_lane_s32(vreinterpretq_s32_m128i(a), 1); + return _mm_set_pd(a1, a0); +#endif +} + +// Converts the four signed 32-bit integer values of a to single-precision, +// floating-point values +// https://msdn.microsoft.com/en-us/library/vstudio/36bwxcx5(v=vs.100).aspx +FORCE_INLINE __m128 _mm_cvtepi32_ps(__m128i a) +{ + return vreinterpretq_m128_f32(vcvtq_f32_s32(vreinterpretq_s32_m128i(a))); +} + +// Convert packed double-precision (64-bit) floating-point elements in a to +// packed 32-bit integers, and store the results in dst. +// +// FOR j := 0 to 1 +// i := 32*j +// k := 64*j +// dst[i+31:i] := Convert_FP64_To_Int32(a[k+63:k]) +// ENDFOR +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtpd_epi32 +FORCE_INLINE __m128i _mm_cvtpd_epi32(__m128d a) +{ +// vrnd32xq_f64 not supported on clang +#if defined(__ARM_FEATURE_FRINT) && !defined(__clang__) + float64x2_t rounded = vrnd32xq_f64(vreinterpretq_f64_m128d(a)); + int64x2_t integers = vcvtq_s64_f64(rounded); + return vreinterpretq_m128i_s32( + vcombine_s32(vmovn_s64(integers), vdup_n_s32(0))); +#else + __m128d rnd = _mm_round_pd(a, _MM_FROUND_CUR_DIRECTION); + double d0 = ((double *) &rnd)[0]; + double d1 = ((double *) &rnd)[1]; + return _mm_set_epi32(0, 0, (int32_t) d1, (int32_t) d0); +#endif +} + +// Convert packed double-precision (64-bit) floating-point elements in a to +// packed 32-bit integers, and store the results in dst. +// +// FOR j := 0 to 1 +// i := 32*j +// k := 64*j +// dst[i+31:i] := Convert_FP64_To_Int32(a[k+63:k]) +// ENDFOR +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtpd_pi32 +FORCE_INLINE __m64 _mm_cvtpd_pi32(__m128d a) +{ + __m128d rnd = _mm_round_pd(a, _MM_FROUND_CUR_DIRECTION); + double d0 = ((double *) &rnd)[0]; + double d1 = ((double *) &rnd)[1]; + int32_t ALIGN_STRUCT(16) data[2] = {(int32_t) d0, (int32_t) d1}; + return vreinterpret_m64_s32(vld1_s32(data)); +} + +// Convert packed double-precision (64-bit) floating-point elements in a to +// packed single-precision (32-bit) floating-point elements, and store the +// results in dst. +// +// FOR j := 0 to 1 +// i := 32*j +// k := 64*j +// dst[i+31:i] := Convert_FP64_To_FP32(a[k+64:k]) +// ENDFOR +// dst[127:64] := 0 +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtpd_ps +FORCE_INLINE __m128 _mm_cvtpd_ps(__m128d a) +{ +#if defined(__aarch64__) + float32x2_t tmp = vcvt_f32_f64(vreinterpretq_f64_m128d(a)); + return vreinterpretq_m128_f32(vcombine_f32(tmp, vdup_n_f32(0))); +#else + float a0 = (float) ((double *) &a)[0]; + float a1 = (float) ((double *) &a)[1]; + return _mm_set_ps(0, 0, a1, a0); +#endif +} + +// Convert packed signed 32-bit integers in a to packed double-precision +// (64-bit) floating-point elements, and store the results in dst. +// +// FOR j := 0 to 1 +// i := j*32 +// m := j*64 +// dst[m+63:m] := Convert_Int32_To_FP64(a[i+31:i]) +// ENDFOR +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtpi32_pd +FORCE_INLINE __m128d _mm_cvtpi32_pd(__m64 a) +{ +#if defined(__aarch64__) + return vreinterpretq_m128d_f64( + vcvtq_f64_s64(vmovl_s32(vreinterpret_s32_m64(a)))); +#else + double a0 = (double) vget_lane_s32(vreinterpret_s32_m64(a), 0); + double a1 = (double) vget_lane_s32(vreinterpret_s32_m64(a), 1); + return _mm_set_pd(a1, a0); +#endif +} + +// Converts the four single-precision, floating-point values of a to signed +// 32-bit integer values. +// +// r0 := (int) a0 +// r1 := (int) a1 +// r2 := (int) a2 +// r3 := (int) a3 +// +// https://msdn.microsoft.com/en-us/library/vstudio/xdc42k5e(v=vs.100).aspx +// *NOTE*. The default rounding mode on SSE is 'round to even', which ARMv7-A +// does not support! It is supported on ARMv8-A however. +FORCE_INLINE __m128i _mm_cvtps_epi32(__m128 a) +{ +#if defined(__ARM_FEATURE_FRINT) + return vreinterpretq_m128i_s32(vcvtq_s32_f32(vrnd32xq_f32(a))); +#elif defined(__aarch64__) || defined(__ARM_FEATURE_DIRECTED_ROUNDING) + switch (_MM_GET_ROUNDING_MODE()) { + case _MM_ROUND_NEAREST: + return vreinterpretq_m128i_s32(vcvtnq_s32_f32(a)); + case _MM_ROUND_DOWN: + return vreinterpretq_m128i_s32(vcvtmq_s32_f32(a)); + case _MM_ROUND_UP: + return vreinterpretq_m128i_s32(vcvtpq_s32_f32(a)); + default: // _MM_ROUND_TOWARD_ZERO + return vreinterpretq_m128i_s32(vcvtq_s32_f32(a)); + } +#else + float *f = (float *) &a; + switch (_MM_GET_ROUNDING_MODE()) { + case _MM_ROUND_NEAREST: { + uint32x4_t signmask = vdupq_n_u32(0x80000000); + float32x4_t half = vbslq_f32(signmask, vreinterpretq_f32_m128(a), + vdupq_n_f32(0.5f)); /* +/- 0.5 */ + int32x4_t r_normal = vcvtq_s32_f32(vaddq_f32( + vreinterpretq_f32_m128(a), half)); /* round to integer: [a + 0.5]*/ + int32x4_t r_trunc = vcvtq_s32_f32( + vreinterpretq_f32_m128(a)); /* truncate to integer: [a] */ + int32x4_t plusone = vreinterpretq_s32_u32(vshrq_n_u32( + vreinterpretq_u32_s32(vnegq_s32(r_trunc)), 31)); /* 1 or 0 */ + int32x4_t r_even = vbicq_s32(vaddq_s32(r_trunc, plusone), + vdupq_n_s32(1)); /* ([a] + {0,1}) & ~1 */ + float32x4_t delta = vsubq_f32( + vreinterpretq_f32_m128(a), + vcvtq_f32_s32(r_trunc)); /* compute delta: delta = (a - [a]) */ + uint32x4_t is_delta_half = + vceqq_f32(delta, half); /* delta == +/- 0.5 */ + return vreinterpretq_m128i_s32( + vbslq_s32(is_delta_half, r_even, r_normal)); + } + case _MM_ROUND_DOWN: + return _mm_set_epi32(floorf(f[3]), floorf(f[2]), floorf(f[1]), + floorf(f[0])); + case _MM_ROUND_UP: + return _mm_set_epi32(ceilf(f[3]), ceilf(f[2]), ceilf(f[1]), + ceilf(f[0])); + default: // _MM_ROUND_TOWARD_ZERO + return _mm_set_epi32((int32_t) f[3], (int32_t) f[2], (int32_t) f[1], + (int32_t) f[0]); + } +#endif +} + +// Convert packed single-precision (32-bit) floating-point elements in a to +// packed double-precision (64-bit) floating-point elements, and store the +// results in dst. +// +// FOR j := 0 to 1 +// i := 64*j +// k := 32*j +// dst[i+63:i] := Convert_FP32_To_FP64(a[k+31:k]) +// ENDFOR +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtps_pd +FORCE_INLINE __m128d _mm_cvtps_pd(__m128 a) +{ +#if defined(__aarch64__) + return vreinterpretq_m128d_f64( + vcvt_f64_f32(vget_low_f32(vreinterpretq_f32_m128(a)))); +#else + double a0 = (double) vgetq_lane_f32(vreinterpretq_f32_m128(a), 0); + double a1 = (double) vgetq_lane_f32(vreinterpretq_f32_m128(a), 1); + return _mm_set_pd(a1, a0); +#endif +} + +// Copy the lower double-precision (64-bit) floating-point element of a to dst. +// +// dst[63:0] := a[63:0] +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsd_f64 +FORCE_INLINE double _mm_cvtsd_f64(__m128d a) +{ +#if defined(__aarch64__) + return (double) vgetq_lane_f64(vreinterpretq_f64_m128d(a), 0); +#else + return ((double *) &a)[0]; +#endif +} + +// Convert the lower double-precision (64-bit) floating-point element in a to a +// 32-bit integer, and store the result in dst. +// +// dst[31:0] := Convert_FP64_To_Int32(a[63:0]) +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsd_si32 +FORCE_INLINE int32_t _mm_cvtsd_si32(__m128d a) +{ +#if defined(__aarch64__) + return (int32_t) vgetq_lane_f64(vrndiq_f64(vreinterpretq_f64_m128d(a)), 0); +#else + __m128d rnd = _mm_round_pd(a, _MM_FROUND_CUR_DIRECTION); + double ret = ((double *) &rnd)[0]; + return (int32_t) ret; +#endif +} + +// Convert the lower double-precision (64-bit) floating-point element in a to a +// 64-bit integer, and store the result in dst. +// +// dst[63:0] := Convert_FP64_To_Int64(a[63:0]) +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsd_si64 +FORCE_INLINE int64_t _mm_cvtsd_si64(__m128d a) +{ +#if defined(__aarch64__) + return (int64_t) vgetq_lane_f64(vrndiq_f64(vreinterpretq_f64_m128d(a)), 0); +#else + __m128d rnd = _mm_round_pd(a, _MM_FROUND_CUR_DIRECTION); + double ret = ((double *) &rnd)[0]; + return (int64_t) ret; +#endif +} + +// Convert the lower double-precision (64-bit) floating-point element in a to a +// 64-bit integer, and store the result in dst. +// +// dst[63:0] := Convert_FP64_To_Int64(a[63:0]) +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsd_si64x +#define _mm_cvtsd_si64x _mm_cvtsd_si64 + +// Convert the lower double-precision (64-bit) floating-point element in b to a +// single-precision (32-bit) floating-point element, store the result in the +// lower element of dst, and copy the upper 3 packed elements from a to the +// upper elements of dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsd_ss +FORCE_INLINE __m128 _mm_cvtsd_ss(__m128 a, __m128d b) +{ +#if defined(__aarch64__) + return vreinterpretq_m128_f32(vsetq_lane_f32( + vget_lane_f32(vcvt_f32_f64(vreinterpretq_f64_m128d(b)), 0), + vreinterpretq_f32_m128(a), 0)); +#else + return vreinterpretq_m128_f32(vsetq_lane_f32((float) ((double *) &b)[0], + vreinterpretq_f32_m128(a), 0)); +#endif +} + +// Copy the lower 32-bit integer in a to dst. +// +// dst[31:0] := a[31:0] +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi128_si32 +FORCE_INLINE int _mm_cvtsi128_si32(__m128i a) +{ + return vgetq_lane_s32(vreinterpretq_s32_m128i(a), 0); +} + +// Copy the lower 64-bit integer in a to dst. +// +// dst[63:0] := a[63:0] +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi128_si64 +FORCE_INLINE int64_t _mm_cvtsi128_si64(__m128i a) +{ + return vgetq_lane_s64(vreinterpretq_s64_m128i(a), 0); +} + +// Copy the lower 64-bit integer in a to dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi128_si64x +#define _mm_cvtsi128_si64x(a) _mm_cvtsi128_si64(a) + +// Convert the signed 32-bit integer b to a double-precision (64-bit) +// floating-point element, store the result in the lower element of dst, and +// copy the upper element from a to the upper element of dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi32_sd +FORCE_INLINE __m128d _mm_cvtsi32_sd(__m128d a, int32_t b) +{ +#if defined(__aarch64__) + return vreinterpretq_m128d_f64( + vsetq_lane_f64((double) b, vreinterpretq_f64_m128d(a), 0)); +#else + double bf = (double) b; + return vreinterpretq_m128d_s64( + vsetq_lane_s64(*(int64_t *) &bf, vreinterpretq_s64_m128d(a), 0)); +#endif +} + +// Copy the lower 64-bit integer in a to dst. +// +// dst[63:0] := a[63:0] +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi128_si64x +#define _mm_cvtsi128_si64x(a) _mm_cvtsi128_si64(a) + +// Moves 32-bit integer a to the least significant 32 bits of an __m128 object, +// zero extending the upper bits. +// +// r0 := a +// r1 := 0x0 +// r2 := 0x0 +// r3 := 0x0 +// +// https://msdn.microsoft.com/en-us/library/ct3539ha%28v=vs.90%29.aspx +FORCE_INLINE __m128i _mm_cvtsi32_si128(int a) +{ + return vreinterpretq_m128i_s32(vsetq_lane_s32(a, vdupq_n_s32(0), 0)); +} + +// Convert the signed 64-bit integer b to a double-precision (64-bit) +// floating-point element, store the result in the lower element of dst, and +// copy the upper element from a to the upper element of dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi64_sd +FORCE_INLINE __m128d _mm_cvtsi64_sd(__m128d a, int64_t b) +{ +#if defined(__aarch64__) + return vreinterpretq_m128d_f64( + vsetq_lane_f64((double) b, vreinterpretq_f64_m128d(a), 0)); +#else + double bf = (double) b; + return vreinterpretq_m128d_s64( + vsetq_lane_s64(*(int64_t *) &bf, vreinterpretq_s64_m128d(a), 0)); +#endif +} + +// Moves 64-bit integer a to the least significant 64 bits of an __m128 object, +// zero extending the upper bits. +// +// r0 := a +// r1 := 0x0 +FORCE_INLINE __m128i _mm_cvtsi64_si128(int64_t a) +{ + return vreinterpretq_m128i_s64(vsetq_lane_s64(a, vdupq_n_s64(0), 0)); +} + +// Copy 64-bit integer a to the lower element of dst, and zero the upper +// element. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi64x_si128 +#define _mm_cvtsi64x_si128(a) _mm_cvtsi64_si128(a) + +// Convert the signed 64-bit integer b to a double-precision (64-bit) +// floating-point element, store the result in the lower element of dst, and +// copy the upper element from a to the upper element of dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi64x_sd +#define _mm_cvtsi64x_sd(a, b) _mm_cvtsi64_sd(a, b) + +// Convert the lower single-precision (32-bit) floating-point element in b to a +// double-precision (64-bit) floating-point element, store the result in the +// lower element of dst, and copy the upper element from a to the upper element +// of dst. +// +// dst[63:0] := Convert_FP32_To_FP64(b[31:0]) +// dst[127:64] := a[127:64] +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtss_sd +FORCE_INLINE __m128d _mm_cvtss_sd(__m128d a, __m128 b) +{ + double d = (double) vgetq_lane_f32(vreinterpretq_f32_m128(b), 0); +#if defined(__aarch64__) + return vreinterpretq_m128d_f64( + vsetq_lane_f64(d, vreinterpretq_f64_m128d(a), 0)); +#else + return vreinterpretq_m128d_s64( + vsetq_lane_s64(*(int64_t *) &d, vreinterpretq_s64_m128d(a), 0)); +#endif +} + +// Convert packed double-precision (64-bit) floating-point elements in a to +// packed 32-bit integers with truncation, and store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvttpd_epi32 +FORCE_INLINE __m128i _mm_cvttpd_epi32(__m128d a) +{ + double a0 = ((double *) &a)[0]; + double a1 = ((double *) &a)[1]; + return _mm_set_epi32(0, 0, (int32_t) a1, (int32_t) a0); +} + +// Convert packed double-precision (64-bit) floating-point elements in a to +// packed 32-bit integers with truncation, and store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvttpd_pi32 +FORCE_INLINE __m64 _mm_cvttpd_pi32(__m128d a) +{ + double a0 = ((double *) &a)[0]; + double a1 = ((double *) &a)[1]; + int32_t ALIGN_STRUCT(16) data[2] = {(int32_t) a0, (int32_t) a1}; + return vreinterpret_m64_s32(vld1_s32(data)); +} + +// Converts the four single-precision, floating-point values of a to signed +// 32-bit integer values using truncate. +// https://msdn.microsoft.com/en-us/library/vstudio/1h005y6x(v=vs.100).aspx +FORCE_INLINE __m128i _mm_cvttps_epi32(__m128 a) +{ + return vreinterpretq_m128i_s32(vcvtq_s32_f32(vreinterpretq_f32_m128(a))); +} + +// Convert the lower double-precision (64-bit) floating-point element in a to a +// 32-bit integer with truncation, and store the result in dst. +// +// dst[63:0] := Convert_FP64_To_Int32_Truncate(a[63:0]) +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvttsd_si32 +FORCE_INLINE int32_t _mm_cvttsd_si32(__m128d a) +{ + double ret = *((double *) &a); + return (int32_t) ret; +} + +// Convert the lower double-precision (64-bit) floating-point element in a to a +// 64-bit integer with truncation, and store the result in dst. +// +// dst[63:0] := Convert_FP64_To_Int64_Truncate(a[63:0]) +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvttsd_si64 +FORCE_INLINE int64_t _mm_cvttsd_si64(__m128d a) +{ +#if defined(__aarch64__) + return vgetq_lane_s64(vcvtq_s64_f64(vreinterpretq_f64_m128d(a)), 0); +#else + double ret = *((double *) &a); + return (int64_t) ret; +#endif +} + +// Convert the lower double-precision (64-bit) floating-point element in a to a +// 64-bit integer with truncation, and store the result in dst. +// +// dst[63:0] := Convert_FP64_To_Int64_Truncate(a[63:0]) +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvttsd_si64x +#define _mm_cvttsd_si64x(a) _mm_cvttsd_si64(a) + +// Divide packed double-precision (64-bit) floating-point elements in a by +// packed elements in b, and store the results in dst. +// +// FOR j := 0 to 1 +// i := 64*j +// dst[i+63:i] := a[i+63:i] / b[i+63:i] +// ENDFOR +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_div_pd +FORCE_INLINE __m128d _mm_div_pd(__m128d a, __m128d b) +{ +#if defined(__aarch64__) + return vreinterpretq_m128d_f64( + vdivq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b))); +#else + double *da = (double *) &a; + double *db = (double *) &b; + double c[2]; + c[0] = da[0] / db[0]; + c[1] = da[1] / db[1]; + return vld1q_f32((float32_t *) c); +#endif +} + +// Divide the lower double-precision (64-bit) floating-point element in a by the +// lower double-precision (64-bit) floating-point element in b, store the result +// in the lower element of dst, and copy the upper element from a to the upper +// element of dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_div_sd +FORCE_INLINE __m128d _mm_div_sd(__m128d a, __m128d b) +{ +#if defined(__aarch64__) + float64x2_t tmp = + vdivq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)); + return vreinterpretq_m128d_f64( + vsetq_lane_f64(vgetq_lane_f64(vreinterpretq_f64_m128d(a), 1), tmp, 1)); +#else + return _mm_move_sd(a, _mm_div_pd(a, b)); +#endif +} + +// Extracts the selected signed or unsigned 16-bit integer from a and zero +// extends. +// https://msdn.microsoft.com/en-us/library/6dceta0c(v=vs.100).aspx +// FORCE_INLINE int _mm_extract_epi16(__m128i a, __constrange(0,8) int imm) +#define _mm_extract_epi16(a, imm) \ + vgetq_lane_u16(vreinterpretq_u16_m128i(a), (imm)) + +// Inserts the least significant 16 bits of b into the selected 16-bit integer +// of a. +// https://msdn.microsoft.com/en-us/library/kaze8hz1%28v=vs.100%29.aspx +// FORCE_INLINE __m128i _mm_insert_epi16(__m128i a, int b, +// __constrange(0,8) int imm) +#define _mm_insert_epi16(a, b, imm) \ + __extension__({ \ + vreinterpretq_m128i_s16( \ + vsetq_lane_s16((b), vreinterpretq_s16_m128i(a), (imm))); \ + }) + +// Loads two double-precision from 16-byte aligned memory, floating-point +// values. +// +// dst[127:0] := MEM[mem_addr+127:mem_addr] +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_load_pd +FORCE_INLINE __m128d _mm_load_pd(const double *p) +{ +#if defined(__aarch64__) + return vreinterpretq_m128d_f64(vld1q_f64(p)); +#else + const float *fp = (const float *) p; + float ALIGN_STRUCT(16) data[4] = {fp[0], fp[1], fp[2], fp[3]}; + return vreinterpretq_m128d_f32(vld1q_f32(data)); +#endif +} + +// Load a double-precision (64-bit) floating-point element from memory into both +// elements of dst. +// +// dst[63:0] := MEM[mem_addr+63:mem_addr] +// dst[127:64] := MEM[mem_addr+63:mem_addr] +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_load_pd1 +#define _mm_load_pd1 _mm_load1_pd + +// Load a double-precision (64-bit) floating-point element from memory into the +// lower of dst, and zero the upper element. mem_addr does not need to be +// aligned on any particular boundary. +// +// dst[63:0] := MEM[mem_addr+63:mem_addr] +// dst[127:64] := 0 +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_load_sd +FORCE_INLINE __m128d _mm_load_sd(const double *p) +{ +#if defined(__aarch64__) + return vreinterpretq_m128d_f64(vsetq_lane_f64(*p, vdupq_n_f64(0), 0)); +#else + const float *fp = (const float *) p; + float ALIGN_STRUCT(16) data[4] = {fp[0], fp[1], 0, 0}; + return vreinterpretq_m128d_f32(vld1q_f32(data)); +#endif +} + +// Loads 128-bit value. : +// https://msdn.microsoft.com/en-us/library/atzzad1h(v=vs.80).aspx +FORCE_INLINE __m128i _mm_load_si128(const __m128i *p) +{ + return vreinterpretq_m128i_s32(vld1q_s32((const int32_t *) p)); +} + +// Load a double-precision (64-bit) floating-point element from memory into both +// elements of dst. +// +// dst[63:0] := MEM[mem_addr+63:mem_addr] +// dst[127:64] := MEM[mem_addr+63:mem_addr] +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_load1_pd +FORCE_INLINE __m128d _mm_load1_pd(const double *p) +{ +#if defined(__aarch64__) + return vreinterpretq_m128d_f64(vld1q_dup_f64(p)); +#else + return vreinterpretq_m128d_s64(vdupq_n_s64(*(const int64_t *) p)); +#endif +} + +// Load a double-precision (64-bit) floating-point element from memory into the +// upper element of dst, and copy the lower element from a to dst. mem_addr does +// not need to be aligned on any particular boundary. +// +// dst[63:0] := a[63:0] +// dst[127:64] := MEM[mem_addr+63:mem_addr] +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadh_pd +FORCE_INLINE __m128d _mm_loadh_pd(__m128d a, const double *p) +{ +#if defined(__aarch64__) + return vreinterpretq_m128d_f64( + vcombine_f64(vget_low_f64(vreinterpretq_f64_m128d(a)), vld1_f64(p))); +#else + return vreinterpretq_m128d_f32(vcombine_f32( + vget_low_f32(vreinterpretq_f32_m128d(a)), vld1_f32((const float *) p))); +#endif +} + +// Load 64-bit integer from memory into the first element of dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadl_epi64 +FORCE_INLINE __m128i _mm_loadl_epi64(__m128i const *p) +{ + /* Load the lower 64 bits of the value pointed to by p into the + * lower 64 bits of the result, zeroing the upper 64 bits of the result. + */ + return vreinterpretq_m128i_s32( + vcombine_s32(vld1_s32((int32_t const *) p), vcreate_s32(0))); +} + +// Load a double-precision (64-bit) floating-point element from memory into the +// lower element of dst, and copy the upper element from a to dst. mem_addr does +// not need to be aligned on any particular boundary. +// +// dst[63:0] := MEM[mem_addr+63:mem_addr] +// dst[127:64] := a[127:64] +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadl_pd +FORCE_INLINE __m128d _mm_loadl_pd(__m128d a, const double *p) +{ +#if defined(__aarch64__) + return vreinterpretq_m128d_f64( + vcombine_f64(vld1_f64(p), vget_high_f64(vreinterpretq_f64_m128d(a)))); +#else + return vreinterpretq_m128d_f32( + vcombine_f32(vld1_f32((const float *) p), + vget_high_f32(vreinterpretq_f32_m128d(a)))); +#endif +} + +// Load 2 double-precision (64-bit) floating-point elements from memory into dst +// in reverse order. mem_addr must be aligned on a 16-byte boundary or a +// general-protection exception may be generated. +// +// dst[63:0] := MEM[mem_addr+127:mem_addr+64] +// dst[127:64] := MEM[mem_addr+63:mem_addr] +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadr_pd +FORCE_INLINE __m128d _mm_loadr_pd(const double *p) +{ +#if defined(__aarch64__) + float64x2_t v = vld1q_f64(p); + return vreinterpretq_m128d_f64(vextq_f64(v, v, 1)); +#else + int64x2_t v = vld1q_s64((const int64_t *) p); + return vreinterpretq_m128d_s64(vextq_s64(v, v, 1)); +#endif +} + +// Loads two double-precision from unaligned memory, floating-point values. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadu_pd +FORCE_INLINE __m128d _mm_loadu_pd(const double *p) +{ + return _mm_load_pd(p); +} + +// Loads 128-bit value. : +// https://msdn.microsoft.com/zh-cn/library/f4k12ae8(v=vs.90).aspx +FORCE_INLINE __m128i _mm_loadu_si128(const __m128i *p) +{ + return vreinterpretq_m128i_s32(vld1q_s32((const int32_t *) p)); +} + +// Load unaligned 32-bit integer from memory into the first element of dst. +// +// dst[31:0] := MEM[mem_addr+31:mem_addr] +// dst[MAX:32] := 0 +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadu_si32 +FORCE_INLINE __m128i _mm_loadu_si32(const void *p) +{ + return vreinterpretq_m128i_s32( + vsetq_lane_s32(*(const int32_t *) p, vdupq_n_s32(0), 0)); +} + +// Multiplies the 8 signed 16-bit integers from a by the 8 signed 16-bit +// integers from b. +// +// r0 := (a0 * b0) + (a1 * b1) +// r1 := (a2 * b2) + (a3 * b3) +// r2 := (a4 * b4) + (a5 * b5) +// r3 := (a6 * b6) + (a7 * b7) +// https://msdn.microsoft.com/en-us/library/yht36sa6(v=vs.90).aspx +FORCE_INLINE __m128i _mm_madd_epi16(__m128i a, __m128i b) +{ + int32x4_t low = vmull_s16(vget_low_s16(vreinterpretq_s16_m128i(a)), + vget_low_s16(vreinterpretq_s16_m128i(b))); +#if defined(__aarch64__) + int32x4_t high = + vmull_high_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)); + + return vreinterpretq_m128i_s32(vpaddq_s32(low, high)); +#else + int32x4_t high = vmull_s16(vget_high_s16(vreinterpretq_s16_m128i(a)), + vget_high_s16(vreinterpretq_s16_m128i(b))); + + int32x2_t low_sum = vpadd_s32(vget_low_s32(low), vget_high_s32(low)); + int32x2_t high_sum = vpadd_s32(vget_low_s32(high), vget_high_s32(high)); + + return vreinterpretq_m128i_s32(vcombine_s32(low_sum, high_sum)); +#endif +} + +// Conditionally store 8-bit integer elements from a into memory using mask +// (elements are not stored when the highest bit is not set in the corresponding +// element) and a non-temporal memory hint. mem_addr does not need to be aligned +// on any particular boundary. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_maskmoveu_si128 +FORCE_INLINE void _mm_maskmoveu_si128(__m128i a, __m128i mask, char *mem_addr) +{ + int8x16_t shr_mask = vshrq_n_s8(vreinterpretq_s8_m128i(mask), 7); + __m128 b = _mm_load_ps((const float *) mem_addr); + int8x16_t masked = + vbslq_s8(vreinterpretq_u8_s8(shr_mask), vreinterpretq_s8_m128i(a), + vreinterpretq_s8_m128(b)); + vst1q_s8((int8_t *) mem_addr, masked); +} + +// Computes the pairwise maxima of the 8 signed 16-bit integers from a and the 8 +// signed 16-bit integers from b. +// https://msdn.microsoft.com/en-us/LIBRary/3x060h7c(v=vs.100).aspx +FORCE_INLINE __m128i _mm_max_epi16(__m128i a, __m128i b) +{ + return vreinterpretq_m128i_s16( + vmaxq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b))); +} + +// Computes the pairwise maxima of the 16 unsigned 8-bit integers from a and the +// 16 unsigned 8-bit integers from b. +// https://msdn.microsoft.com/en-us/library/st6634za(v=vs.100).aspx +FORCE_INLINE __m128i _mm_max_epu8(__m128i a, __m128i b) +{ + return vreinterpretq_m128i_u8( + vmaxq_u8(vreinterpretq_u8_m128i(a), vreinterpretq_u8_m128i(b))); +} + +// Compare packed double-precision (64-bit) floating-point elements in a and b, +// and store packed maximum values in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_pd +FORCE_INLINE __m128d _mm_max_pd(__m128d a, __m128d b) +{ +#if defined(__aarch64__) +#if SSE2NEON_PRECISE_MINMAX + float64x2_t _a = vreinterpretq_f64_m128d(a); + float64x2_t _b = vreinterpretq_f64_m128d(b); + return vreinterpretq_m128d_f64(vbslq_f64(vcgtq_f64(_a, _b), _a, _b)); +#else + return vreinterpretq_m128d_f64( + vmaxq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b))); +#endif +#else + uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); + uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a)); + uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b)); + uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b)); + uint64_t d[2]; + d[0] = (*(double *) &a0) > (*(double *) &b0) ? a0 : b0; + d[1] = (*(double *) &a1) > (*(double *) &b1) ? a1 : b1; + + return vreinterpretq_m128d_u64(vld1q_u64(d)); +#endif +} + +// Compare the lower double-precision (64-bit) floating-point elements in a and +// b, store the maximum value in the lower element of dst, and copy the upper +// element from a to the upper element of dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_sd +FORCE_INLINE __m128d _mm_max_sd(__m128d a, __m128d b) +{ +#if defined(__aarch64__) + return _mm_move_sd(a, _mm_max_pd(a, b)); +#else + double *da = (double *) &a; + double *db = (double *) &b; + double c[2] = {da[0] > db[0] ? da[0] : db[0], da[1]}; + return vreinterpretq_m128d_f32(vld1q_f32((float32_t *) c)); +#endif +} + +// Computes the pairwise minima of the 8 signed 16-bit integers from a and the 8 +// signed 16-bit integers from b. +// https://msdn.microsoft.com/en-us/library/vstudio/6te997ew(v=vs.100).aspx +FORCE_INLINE __m128i _mm_min_epi16(__m128i a, __m128i b) +{ + return vreinterpretq_m128i_s16( + vminq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b))); +} + +// Computes the pairwise minima of the 16 unsigned 8-bit integers from a and the +// 16 unsigned 8-bit integers from b. +// https://msdn.microsoft.com/ko-kr/library/17k8cf58(v=vs.100).aspxx +FORCE_INLINE __m128i _mm_min_epu8(__m128i a, __m128i b) +{ + return vreinterpretq_m128i_u8( + vminq_u8(vreinterpretq_u8_m128i(a), vreinterpretq_u8_m128i(b))); +} + +// Compare packed double-precision (64-bit) floating-point elements in a and b, +// and store packed minimum values in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_pd +FORCE_INLINE __m128d _mm_min_pd(__m128d a, __m128d b) +{ +#if defined(__aarch64__) +#if SSE2NEON_PRECISE_MINMAX + float64x2_t _a = vreinterpretq_f64_m128d(a); + float64x2_t _b = vreinterpretq_f64_m128d(b); + return vreinterpretq_m128d_f64(vbslq_f64(vcltq_f64(_a, _b), _a, _b)); +#else + return vreinterpretq_m128d_f64( + vminq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b))); +#endif +#else + uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); + uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a)); + uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b)); + uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b)); + uint64_t d[2]; + d[0] = (*(double *) &a0) < (*(double *) &b0) ? a0 : b0; + d[1] = (*(double *) &a1) < (*(double *) &b1) ? a1 : b1; + return vreinterpretq_m128d_u64(vld1q_u64(d)); +#endif +} + +// Compare the lower double-precision (64-bit) floating-point elements in a and +// b, store the minimum value in the lower element of dst, and copy the upper +// element from a to the upper element of dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_sd +FORCE_INLINE __m128d _mm_min_sd(__m128d a, __m128d b) +{ +#if defined(__aarch64__) + return _mm_move_sd(a, _mm_min_pd(a, b)); +#else + double *da = (double *) &a; + double *db = (double *) &b; + double c[2] = {da[0] < db[0] ? da[0] : db[0], da[1]}; + return vreinterpretq_m128d_f32(vld1q_f32((float32_t *) c)); +#endif +} + +// Copy the lower 64-bit integer in a to the lower element of dst, and zero the +// upper element. +// +// dst[63:0] := a[63:0] +// dst[127:64] := 0 +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_move_epi64 +FORCE_INLINE __m128i _mm_move_epi64(__m128i a) +{ + return vreinterpretq_m128i_s64( + vsetq_lane_s64(0, vreinterpretq_s64_m128i(a), 1)); +} + +// Move the lower double-precision (64-bit) floating-point element from b to the +// lower element of dst, and copy the upper element from a to the upper element +// of dst. +// +// dst[63:0] := b[63:0] +// dst[127:64] := a[127:64] +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_move_sd +FORCE_INLINE __m128d _mm_move_sd(__m128d a, __m128d b) +{ + return vreinterpretq_m128d_f32( + vcombine_f32(vget_low_f32(vreinterpretq_f32_m128d(b)), + vget_high_f32(vreinterpretq_f32_m128d(a)))); +} + +// NEON does not provide a version of this function. +// Creates a 16-bit mask from the most significant bits of the 16 signed or +// unsigned 8-bit integers in a and zero extends the upper bits. +// https://msdn.microsoft.com/en-us/library/vstudio/s090c8fk(v=vs.100).aspx +FORCE_INLINE int _mm_movemask_epi8(__m128i a) +{ + // Use increasingly wide shifts+adds to collect the sign bits + // together. + // Since the widening shifts would be rather confusing to follow in little + // endian, everything will be illustrated in big endian order instead. This + // has a different result - the bits would actually be reversed on a big + // endian machine. + + // Starting input (only half the elements are shown): + // 89 ff 1d c0 00 10 99 33 + uint8x16_t input = vreinterpretq_u8_m128i(a); + + // Shift out everything but the sign bits with an unsigned shift right. + // + // Bytes of the vector:: + // 89 ff 1d c0 00 10 99 33 + // \ \ \ \ \ \ \ \ high_bits = (uint16x4_t)(input >> 7) + // | | | | | | | | + // 01 01 00 01 00 00 01 00 + // + // Bits of first important lane(s): + // 10001001 (89) + // \______ + // | + // 00000001 (01) + uint16x8_t high_bits = vreinterpretq_u16_u8(vshrq_n_u8(input, 7)); + + // Merge the even lanes together with a 16-bit unsigned shift right + add. + // 'xx' represents garbage data which will be ignored in the final result. + // In the important bytes, the add functions like a binary OR. + // + // 01 01 00 01 00 00 01 00 + // \_ | \_ | \_ | \_ | paired16 = (uint32x4_t)(input + (input >> 7)) + // \| \| \| \| + // xx 03 xx 01 xx 00 xx 02 + // + // 00000001 00000001 (01 01) + // \_______ | + // \| + // xxxxxxxx xxxxxx11 (xx 03) + uint32x4_t paired16 = + vreinterpretq_u32_u16(vsraq_n_u16(high_bits, high_bits, 7)); + + // Repeat with a wider 32-bit shift + add. + // xx 03 xx 01 xx 00 xx 02 + // \____ | \____ | paired32 = (uint64x1_t)(paired16 + (paired16 >> + // 14)) + // \| \| + // xx xx xx 0d xx xx xx 02 + // + // 00000011 00000001 (03 01) + // \\_____ || + // '----.\|| + // xxxxxxxx xxxx1101 (xx 0d) + uint64x2_t paired32 = + vreinterpretq_u64_u32(vsraq_n_u32(paired16, paired16, 14)); + + // Last, an even wider 64-bit shift + add to get our result in the low 8 bit + // lanes. xx xx xx 0d xx xx xx 02 + // \_________ | paired64 = (uint8x8_t)(paired32 + (paired32 >> + // 28)) + // \| + // xx xx xx xx xx xx xx d2 + // + // 00001101 00000010 (0d 02) + // \ \___ | | + // '---. \| | + // xxxxxxxx 11010010 (xx d2) + uint8x16_t paired64 = + vreinterpretq_u8_u64(vsraq_n_u64(paired32, paired32, 28)); + + // Extract the low 8 bits from each 64-bit lane with 2 8-bit extracts. + // xx xx xx xx xx xx xx d2 + // || return paired64[0] + // d2 + // Note: Little endian would return the correct value 4b (01001011) instead. + return vgetq_lane_u8(paired64, 0) | ((int) vgetq_lane_u8(paired64, 8) << 8); +} + +// Set each bit of mask dst based on the most significant bit of the +// corresponding packed double-precision (64-bit) floating-point element in a. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_movemask_pd +FORCE_INLINE int _mm_movemask_pd(__m128d a) +{ + uint64x2_t input = vreinterpretq_u64_m128d(a); + uint64x2_t high_bits = vshrq_n_u64(input, 63); + return vgetq_lane_u64(high_bits, 0) | (vgetq_lane_u64(high_bits, 1) << 1); +} + +// Copy the lower 64-bit integer in a to dst. +// +// dst[63:0] := a[63:0] +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_movepi64_pi64 +FORCE_INLINE __m64 _mm_movepi64_pi64(__m128i a) +{ + return vreinterpret_m64_s64(vget_low_s64(vreinterpretq_s64_m128i(a))); +} + +// Copy the 64-bit integer a to the lower element of dst, and zero the upper +// element. +// +// dst[63:0] := a[63:0] +// dst[127:64] := 0 +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_movpi64_epi64 +FORCE_INLINE __m128i _mm_movpi64_epi64(__m64 a) +{ + return vreinterpretq_m128i_s64( + vcombine_s64(vreinterpret_s64_m64(a), vdup_n_s64(0))); +} + +// Multiply the low unsigned 32-bit integers from each packed 64-bit element in +// a and b, and store the unsigned 64-bit results in dst. +// +// r0 := (a0 & 0xFFFFFFFF) * (b0 & 0xFFFFFFFF) +// r1 := (a2 & 0xFFFFFFFF) * (b2 & 0xFFFFFFFF) +FORCE_INLINE __m128i _mm_mul_epu32(__m128i a, __m128i b) +{ + // vmull_u32 upcasts instead of masking, so we downcast. + uint32x2_t a_lo = vmovn_u64(vreinterpretq_u64_m128i(a)); + uint32x2_t b_lo = vmovn_u64(vreinterpretq_u64_m128i(b)); + return vreinterpretq_m128i_u64(vmull_u32(a_lo, b_lo)); +} + +// Multiply packed double-precision (64-bit) floating-point elements in a and b, +// and store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mul_pd +FORCE_INLINE __m128d _mm_mul_pd(__m128d a, __m128d b) +{ +#if defined(__aarch64__) + return vreinterpretq_m128d_f64( + vmulq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b))); +#else + double *da = (double *) &a; + double *db = (double *) &b; + double c[2]; + c[0] = da[0] * db[0]; + c[1] = da[1] * db[1]; + return vld1q_f32((float32_t *) c); +#endif +} + +// Multiply the lower double-precision (64-bit) floating-point element in a and +// b, store the result in the lower element of dst, and copy the upper element +// from a to the upper element of dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=mm_mul_sd +FORCE_INLINE __m128d _mm_mul_sd(__m128d a, __m128d b) +{ + return _mm_move_sd(a, _mm_mul_pd(a, b)); +} + +// Multiply the low unsigned 32-bit integers from a and b, and store the +// unsigned 64-bit result in dst. +// +// dst[63:0] := a[31:0] * b[31:0] +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mul_su32 +FORCE_INLINE __m64 _mm_mul_su32(__m64 a, __m64 b) +{ + return vreinterpret_m64_u64(vget_low_u64( + vmull_u32(vreinterpret_u32_m64(a), vreinterpret_u32_m64(b)))); +} + +// Multiplies the 8 signed 16-bit integers from a by the 8 signed 16-bit +// integers from b. +// +// r0 := (a0 * b0)[31:16] +// r1 := (a1 * b1)[31:16] +// ... +// r7 := (a7 * b7)[31:16] +// +// https://msdn.microsoft.com/en-us/library/vstudio/59hddw1d(v=vs.100).aspx +FORCE_INLINE __m128i _mm_mulhi_epi16(__m128i a, __m128i b) +{ + /* FIXME: issue with large values because of result saturation */ + // int16x8_t ret = vqdmulhq_s16(vreinterpretq_s16_m128i(a), + // vreinterpretq_s16_m128i(b)); /* =2*a*b */ return + // vreinterpretq_m128i_s16(vshrq_n_s16(ret, 1)); + int16x4_t a3210 = vget_low_s16(vreinterpretq_s16_m128i(a)); + int16x4_t b3210 = vget_low_s16(vreinterpretq_s16_m128i(b)); + int32x4_t ab3210 = vmull_s16(a3210, b3210); /* 3333222211110000 */ + int16x4_t a7654 = vget_high_s16(vreinterpretq_s16_m128i(a)); + int16x4_t b7654 = vget_high_s16(vreinterpretq_s16_m128i(b)); + int32x4_t ab7654 = vmull_s16(a7654, b7654); /* 7777666655554444 */ + uint16x8x2_t r = + vuzpq_u16(vreinterpretq_u16_s32(ab3210), vreinterpretq_u16_s32(ab7654)); + return vreinterpretq_m128i_u16(r.val[1]); +} + +// Multiply the packed unsigned 16-bit integers in a and b, producing +// intermediate 32-bit integers, and store the high 16 bits of the intermediate +// integers in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mulhi_epu16 +FORCE_INLINE __m128i _mm_mulhi_epu16(__m128i a, __m128i b) +{ + uint16x4_t a3210 = vget_low_u16(vreinterpretq_u16_m128i(a)); + uint16x4_t b3210 = vget_low_u16(vreinterpretq_u16_m128i(b)); + uint32x4_t ab3210 = vmull_u16(a3210, b3210); +#if defined(__aarch64__) + uint32x4_t ab7654 = + vmull_high_u16(vreinterpretq_u16_m128i(a), vreinterpretq_u16_m128i(b)); + uint16x8_t r = vuzp2q_u16(vreinterpretq_u16_u32(ab3210), + vreinterpretq_u16_u32(ab7654)); + return vreinterpretq_m128i_u16(r); +#else + uint16x4_t a7654 = vget_high_u16(vreinterpretq_u16_m128i(a)); + uint16x4_t b7654 = vget_high_u16(vreinterpretq_u16_m128i(b)); + uint32x4_t ab7654 = vmull_u16(a7654, b7654); + uint16x8x2_t r = + vuzpq_u16(vreinterpretq_u16_u32(ab3210), vreinterpretq_u16_u32(ab7654)); + return vreinterpretq_m128i_u16(r.val[1]); +#endif +} + +// Multiplies the 8 signed or unsigned 16-bit integers from a by the 8 signed or +// unsigned 16-bit integers from b. +// +// r0 := (a0 * b0)[15:0] +// r1 := (a1 * b1)[15:0] +// ... +// r7 := (a7 * b7)[15:0] +// +// https://msdn.microsoft.com/en-us/library/vstudio/9ks1472s(v=vs.100).aspx +FORCE_INLINE __m128i _mm_mullo_epi16(__m128i a, __m128i b) +{ + return vreinterpretq_m128i_s16( + vmulq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b))); +} + +// Compute the bitwise OR of packed double-precision (64-bit) floating-point +// elements in a and b, and store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=mm_or_pd +FORCE_INLINE __m128d _mm_or_pd(__m128d a, __m128d b) +{ + return vreinterpretq_m128d_s64( + vorrq_s64(vreinterpretq_s64_m128d(a), vreinterpretq_s64_m128d(b))); +} + +// Computes the bitwise OR of the 128-bit value in a and the 128-bit value in b. +// +// r := a | b +// +// https://msdn.microsoft.com/en-us/library/vstudio/ew8ty0db(v=vs.100).aspx +FORCE_INLINE __m128i _mm_or_si128(__m128i a, __m128i b) +{ + return vreinterpretq_m128i_s32( + vorrq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b))); +} + +// Packs the 16 signed 16-bit integers from a and b into 8-bit integers and +// saturates. +// https://msdn.microsoft.com/en-us/library/k4y4f7w5%28v=vs.90%29.aspx +FORCE_INLINE __m128i _mm_packs_epi16(__m128i a, __m128i b) +{ + return vreinterpretq_m128i_s8( + vcombine_s8(vqmovn_s16(vreinterpretq_s16_m128i(a)), + vqmovn_s16(vreinterpretq_s16_m128i(b)))); +} + +// Packs the 8 signed 32-bit integers from a and b into signed 16-bit integers +// and saturates. +// +// r0 := SignedSaturate(a0) +// r1 := SignedSaturate(a1) +// r2 := SignedSaturate(a2) +// r3 := SignedSaturate(a3) +// r4 := SignedSaturate(b0) +// r5 := SignedSaturate(b1) +// r6 := SignedSaturate(b2) +// r7 := SignedSaturate(b3) +// +// https://msdn.microsoft.com/en-us/library/393t56f9%28v=vs.90%29.aspx +FORCE_INLINE __m128i _mm_packs_epi32(__m128i a, __m128i b) +{ + return vreinterpretq_m128i_s16( + vcombine_s16(vqmovn_s32(vreinterpretq_s32_m128i(a)), + vqmovn_s32(vreinterpretq_s32_m128i(b)))); +} + +// Packs the 16 signed 16 - bit integers from a and b into 8 - bit unsigned +// integers and saturates. +// +// r0 := UnsignedSaturate(a0) +// r1 := UnsignedSaturate(a1) +// ... +// r7 := UnsignedSaturate(a7) +// r8 := UnsignedSaturate(b0) +// r9 := UnsignedSaturate(b1) +// ... +// r15 := UnsignedSaturate(b7) +// +// https://msdn.microsoft.com/en-us/library/07ad1wx4(v=vs.100).aspx +FORCE_INLINE __m128i _mm_packus_epi16(const __m128i a, const __m128i b) +{ + return vreinterpretq_m128i_u8( + vcombine_u8(vqmovun_s16(vreinterpretq_s16_m128i(a)), + vqmovun_s16(vreinterpretq_s16_m128i(b)))); +} + +// Pause the processor. This is typically used in spin-wait loops and depending +// on the x86 processor typical values are in the 40-100 cycle range. The +// 'yield' instruction isn't a good fit because it's effectively a nop on most +// Arm cores. Experience with several databases has shown has shown an 'isb' is +// a reasonable approximation. +FORCE_INLINE void _mm_pause() +{ + __asm__ __volatile__("isb\n"); +} + +// Compute the absolute differences of packed unsigned 8-bit integers in a and +// b, then horizontally sum each consecutive 8 differences to produce two +// unsigned 16-bit integers, and pack these unsigned 16-bit integers in the low +// 16 bits of 64-bit elements in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sad_epu8 +FORCE_INLINE __m128i _mm_sad_epu8(__m128i a, __m128i b) +{ + uint16x8_t t = vpaddlq_u8(vabdq_u8((uint8x16_t) a, (uint8x16_t) b)); + return vreinterpretq_m128i_u64(vpaddlq_u32(vpaddlq_u16(t))); +} + +// Sets the 8 signed 16-bit integer values. +// https://msdn.microsoft.com/en-au/library/3e0fek84(v=vs.90).aspx +FORCE_INLINE __m128i _mm_set_epi16(short i7, + short i6, + short i5, + short i4, + short i3, + short i2, + short i1, + short i0) +{ + int16_t ALIGN_STRUCT(16) data[8] = {i0, i1, i2, i3, i4, i5, i6, i7}; + return vreinterpretq_m128i_s16(vld1q_s16(data)); +} + +// Sets the 4 signed 32-bit integer values. +// https://msdn.microsoft.com/en-us/library/vstudio/019beekt(v=vs.100).aspx +FORCE_INLINE __m128i _mm_set_epi32(int i3, int i2, int i1, int i0) +{ + int32_t ALIGN_STRUCT(16) data[4] = {i0, i1, i2, i3}; + return vreinterpretq_m128i_s32(vld1q_s32(data)); +} + +// Returns the __m128i structure with its two 64-bit integer values +// initialized to the values of the two 64-bit integers passed in. +// https://msdn.microsoft.com/en-us/library/dk2sdw0h(v=vs.120).aspx +FORCE_INLINE __m128i _mm_set_epi64(__m64 i1, __m64 i2) +{ + return _mm_set_epi64x((int64_t) i1, (int64_t) i2); +} + +// Returns the __m128i structure with its two 64-bit integer values +// initialized to the values of the two 64-bit integers passed in. +// https://msdn.microsoft.com/en-us/library/dk2sdw0h(v=vs.120).aspx +FORCE_INLINE __m128i _mm_set_epi64x(int64_t i1, int64_t i2) +{ + return vreinterpretq_m128i_s64( + vcombine_s64(vcreate_s64(i2), vcreate_s64(i1))); +} + +// Sets the 16 signed 8-bit integer values. +// https://msdn.microsoft.com/en-us/library/x0cx8zd3(v=vs.90).aspx +FORCE_INLINE __m128i _mm_set_epi8(signed char b15, + signed char b14, + signed char b13, + signed char b12, + signed char b11, + signed char b10, + signed char b9, + signed char b8, + signed char b7, + signed char b6, + signed char b5, + signed char b4, + signed char b3, + signed char b2, + signed char b1, + signed char b0) +{ + int8_t ALIGN_STRUCT(16) + data[16] = {(int8_t) b0, (int8_t) b1, (int8_t) b2, (int8_t) b3, + (int8_t) b4, (int8_t) b5, (int8_t) b6, (int8_t) b7, + (int8_t) b8, (int8_t) b9, (int8_t) b10, (int8_t) b11, + (int8_t) b12, (int8_t) b13, (int8_t) b14, (int8_t) b15}; + return (__m128i) vld1q_s8(data); +} + +// Set packed double-precision (64-bit) floating-point elements in dst with the +// supplied values. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set_pd +FORCE_INLINE __m128d _mm_set_pd(double e1, double e0) +{ + double ALIGN_STRUCT(16) data[2] = {e0, e1}; +#if defined(__aarch64__) + return vreinterpretq_m128d_f64(vld1q_f64((float64_t *) data)); +#else + return vreinterpretq_m128d_f32(vld1q_f32((float32_t *) data)); +#endif +} + +// Broadcast double-precision (64-bit) floating-point value a to all elements of +// dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set_pd1 +#define _mm_set_pd1 _mm_set1_pd + +// Copy double-precision (64-bit) floating-point element a to the lower element +// of dst, and zero the upper element. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set_sd +FORCE_INLINE __m128d _mm_set_sd(double a) +{ +#if defined(__aarch64__) + return vreinterpretq_m128d_f64(vsetq_lane_f64(a, vdupq_n_f64(0), 0)); +#else + return _mm_set_pd(0, a); +#endif +} + +// Sets the 8 signed 16-bit integer values to w. +// +// r0 := w +// r1 := w +// ... +// r7 := w +// +// https://msdn.microsoft.com/en-us/library/k0ya3x0e(v=vs.90).aspx +FORCE_INLINE __m128i _mm_set1_epi16(short w) +{ + return vreinterpretq_m128i_s16(vdupq_n_s16(w)); +} + +// Sets the 4 signed 32-bit integer values to i. +// +// r0 := i +// r1 := i +// r2 := i +// r3 := I +// +// https://msdn.microsoft.com/en-us/library/vstudio/h4xscxat(v=vs.100).aspx +FORCE_INLINE __m128i _mm_set1_epi32(int _i) +{ + return vreinterpretq_m128i_s32(vdupq_n_s32(_i)); +} + +// Sets the 2 signed 64-bit integer values to i. +// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/whtfzhzk(v=vs.100) +FORCE_INLINE __m128i _mm_set1_epi64(__m64 _i) +{ + return vreinterpretq_m128i_s64(vdupq_n_s64((int64_t) _i)); +} + +// Sets the 2 signed 64-bit integer values to i. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set1_epi64x +FORCE_INLINE __m128i _mm_set1_epi64x(int64_t _i) +{ + return vreinterpretq_m128i_s64(vdupq_n_s64(_i)); +} + +// Sets the 16 signed 8-bit integer values to b. +// +// r0 := b +// r1 := b +// ... +// r15 := b +// +// https://msdn.microsoft.com/en-us/library/6e14xhyf(v=vs.100).aspx +FORCE_INLINE __m128i _mm_set1_epi8(signed char w) +{ + return vreinterpretq_m128i_s8(vdupq_n_s8(w)); +} + +// Broadcast double-precision (64-bit) floating-point value a to all elements of +// dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set1_pd +FORCE_INLINE __m128d _mm_set1_pd(double d) +{ +#if defined(__aarch64__) + return vreinterpretq_m128d_f64(vdupq_n_f64(d)); +#else + return vreinterpretq_m128d_s64(vdupq_n_s64(*(int64_t *) &d)); +#endif +} + +// Sets the 8 signed 16-bit integer values in reverse order. +// +// Return Value +// r0 := w0 +// r1 := w1 +// ... +// r7 := w7 +FORCE_INLINE __m128i _mm_setr_epi16(short w0, + short w1, + short w2, + short w3, + short w4, + short w5, + short w6, + short w7) +{ + int16_t ALIGN_STRUCT(16) data[8] = {w0, w1, w2, w3, w4, w5, w6, w7}; + return vreinterpretq_m128i_s16(vld1q_s16((int16_t *) data)); +} + +// Sets the 4 signed 32-bit integer values in reverse order +// https://technet.microsoft.com/en-us/library/security/27yb3ee5(v=vs.90).aspx +FORCE_INLINE __m128i _mm_setr_epi32(int i3, int i2, int i1, int i0) +{ + int32_t ALIGN_STRUCT(16) data[4] = {i3, i2, i1, i0}; + return vreinterpretq_m128i_s32(vld1q_s32(data)); +} + +// Set packed 64-bit integers in dst with the supplied values in reverse order. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_setr_epi64 +FORCE_INLINE __m128i _mm_setr_epi64(__m64 e1, __m64 e0) +{ + return vreinterpretq_m128i_s64(vcombine_s64(e1, e0)); +} + +// Sets the 16 signed 8-bit integer values in reverse order. +// https://msdn.microsoft.com/en-us/library/2khb9c7k(v=vs.90).aspx +FORCE_INLINE __m128i _mm_setr_epi8(signed char b0, + signed char b1, + signed char b2, + signed char b3, + signed char b4, + signed char b5, + signed char b6, + signed char b7, + signed char b8, + signed char b9, + signed char b10, + signed char b11, + signed char b12, + signed char b13, + signed char b14, + signed char b15) +{ + int8_t ALIGN_STRUCT(16) + data[16] = {(int8_t) b0, (int8_t) b1, (int8_t) b2, (int8_t) b3, + (int8_t) b4, (int8_t) b5, (int8_t) b6, (int8_t) b7, + (int8_t) b8, (int8_t) b9, (int8_t) b10, (int8_t) b11, + (int8_t) b12, (int8_t) b13, (int8_t) b14, (int8_t) b15}; + return (__m128i) vld1q_s8(data); +} + +// Set packed double-precision (64-bit) floating-point elements in dst with the +// supplied values in reverse order. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_setr_pd +FORCE_INLINE __m128d _mm_setr_pd(double e1, double e0) +{ + return _mm_set_pd(e0, e1); +} + +// Return vector of type __m128d with all elements set to zero. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_setzero_pd +FORCE_INLINE __m128d _mm_setzero_pd(void) +{ +#if defined(__aarch64__) + return vreinterpretq_m128d_f64(vdupq_n_f64(0)); +#else + return vreinterpretq_m128d_f32(vdupq_n_f32(0)); +#endif +} + +// Sets the 128-bit value to zero +// https://msdn.microsoft.com/en-us/library/vstudio/ys7dw0kh(v=vs.100).aspx +FORCE_INLINE __m128i _mm_setzero_si128(void) +{ + return vreinterpretq_m128i_s32(vdupq_n_s32(0)); +} + +// Shuffles the 4 signed or unsigned 32-bit integers in a as specified by imm. +// https://msdn.microsoft.com/en-us/library/56f67xbk%28v=vs.90%29.aspx +// FORCE_INLINE __m128i _mm_shuffle_epi32(__m128i a, +// __constrange(0,255) int imm) +#ifdef _sse2neon_shuffle +#define _mm_shuffle_epi32(a, imm) \ + __extension__({ \ + int32x4_t _input = vreinterpretq_s32_m128i(a); \ + int32x4_t _shuf = \ + vshuffleq_s32(_input, _input, (imm) & (0x3), ((imm) >> 2) & 0x3, \ + ((imm) >> 4) & 0x3, ((imm) >> 6) & 0x3); \ + vreinterpretq_m128i_s32(_shuf); \ + }) +#else // generic +#define _mm_shuffle_epi32(a, imm) \ + __extension__({ \ + __m128i ret; \ + switch (imm) { \ + case _MM_SHUFFLE(1, 0, 3, 2): \ + ret = _mm_shuffle_epi_1032((a)); \ + break; \ + case _MM_SHUFFLE(2, 3, 0, 1): \ + ret = _mm_shuffle_epi_2301((a)); \ + break; \ + case _MM_SHUFFLE(0, 3, 2, 1): \ + ret = _mm_shuffle_epi_0321((a)); \ + break; \ + case _MM_SHUFFLE(2, 1, 0, 3): \ + ret = _mm_shuffle_epi_2103((a)); \ + break; \ + case _MM_SHUFFLE(1, 0, 1, 0): \ + ret = _mm_shuffle_epi_1010((a)); \ + break; \ + case _MM_SHUFFLE(1, 0, 0, 1): \ + ret = _mm_shuffle_epi_1001((a)); \ + break; \ + case _MM_SHUFFLE(0, 1, 0, 1): \ + ret = _mm_shuffle_epi_0101((a)); \ + break; \ + case _MM_SHUFFLE(2, 2, 1, 1): \ + ret = _mm_shuffle_epi_2211((a)); \ + break; \ + case _MM_SHUFFLE(0, 1, 2, 2): \ + ret = _mm_shuffle_epi_0122((a)); \ + break; \ + case _MM_SHUFFLE(3, 3, 3, 2): \ + ret = _mm_shuffle_epi_3332((a)); \ + break; \ + case _MM_SHUFFLE(0, 0, 0, 0): \ + ret = _mm_shuffle_epi32_splat((a), 0); \ + break; \ + case _MM_SHUFFLE(1, 1, 1, 1): \ + ret = _mm_shuffle_epi32_splat((a), 1); \ + break; \ + case _MM_SHUFFLE(2, 2, 2, 2): \ + ret = _mm_shuffle_epi32_splat((a), 2); \ + break; \ + case _MM_SHUFFLE(3, 3, 3, 3): \ + ret = _mm_shuffle_epi32_splat((a), 3); \ + break; \ + default: \ + ret = _mm_shuffle_epi32_default((a), (imm)); \ + break; \ + } \ + ret; \ + }) +#endif + +// Shuffle double-precision (64-bit) floating-point elements using the control +// in imm8, and store the results in dst. +// +// dst[63:0] := (imm8[0] == 0) ? a[63:0] : a[127:64] +// dst[127:64] := (imm8[1] == 0) ? b[63:0] : b[127:64] +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_shuffle_pd +#ifdef _sse2neon_shuffle +#define _mm_shuffle_pd(a, b, imm8) \ + vreinterpretq_m128d_s64( \ + vshuffleq_s64(vreinterpretq_s64_m128d(a), vreinterpretq_s64_m128d(b), \ + imm8 & 0x1, ((imm8 & 0x2) >> 1) + 2)) +#else +#define _mm_shuffle_pd(a, b, imm8) \ + _mm_castsi128_pd(_mm_set_epi64x( \ + vgetq_lane_s64(vreinterpretq_s64_m128d(b), (imm8 & 0x2) >> 1), \ + vgetq_lane_s64(vreinterpretq_s64_m128d(a), imm8 & 0x1))) +#endif + +// FORCE_INLINE __m128i _mm_shufflehi_epi16(__m128i a, +// __constrange(0,255) int imm) +#ifdef _sse2neon_shuffle +#define _mm_shufflehi_epi16(a, imm) \ + __extension__({ \ + int16x8_t _input = vreinterpretq_s16_m128i(a); \ + int16x8_t _shuf = \ + vshuffleq_s16(_input, _input, 0, 1, 2, 3, ((imm) & (0x3)) + 4, \ + (((imm) >> 2) & 0x3) + 4, (((imm) >> 4) & 0x3) + 4, \ + (((imm) >> 6) & 0x3) + 4); \ + vreinterpretq_m128i_s16(_shuf); \ + }) +#else // generic +#define _mm_shufflehi_epi16(a, imm) _mm_shufflehi_epi16_function((a), (imm)) +#endif + +// FORCE_INLINE __m128i _mm_shufflelo_epi16(__m128i a, +// __constrange(0,255) int imm) +#ifdef _sse2neon_shuffle +#define _mm_shufflelo_epi16(a, imm) \ + __extension__({ \ + int16x8_t _input = vreinterpretq_s16_m128i(a); \ + int16x8_t _shuf = vshuffleq_s16( \ + _input, _input, ((imm) & (0x3)), (((imm) >> 2) & 0x3), \ + (((imm) >> 4) & 0x3), (((imm) >> 6) & 0x3), 4, 5, 6, 7); \ + vreinterpretq_m128i_s16(_shuf); \ + }) +#else // generic +#define _mm_shufflelo_epi16(a, imm) _mm_shufflelo_epi16_function((a), (imm)) +#endif + +// Shift packed 16-bit integers in a left by count while shifting in zeros, and +// store the results in dst. +// +// FOR j := 0 to 7 +// i := j*16 +// IF count[63:0] > 15 +// dst[i+15:i] := 0 +// ELSE +// dst[i+15:i] := ZeroExtend16(a[i+15:i] << count[63:0]) +// FI +// ENDFOR +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sll_epi16 +FORCE_INLINE __m128i _mm_sll_epi16(__m128i a, __m128i count) +{ + uint64_t c = vreinterpretq_nth_u64_m128i(count, 0); + if (_sse2neon_unlikely(c & ~15)) + return _mm_setzero_si128(); + + int16x8_t vc = vdupq_n_s16((int16_t) c); + return vreinterpretq_m128i_s16(vshlq_s16(vreinterpretq_s16_m128i(a), vc)); +} + +// Shift packed 32-bit integers in a left by count while shifting in zeros, and +// store the results in dst. +// +// FOR j := 0 to 3 +// i := j*32 +// IF count[63:0] > 31 +// dst[i+31:i] := 0 +// ELSE +// dst[i+31:i] := ZeroExtend32(a[i+31:i] << count[63:0]) +// FI +// ENDFOR +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sll_epi32 +FORCE_INLINE __m128i _mm_sll_epi32(__m128i a, __m128i count) +{ + uint64_t c = vreinterpretq_nth_u64_m128i(count, 0); + if (_sse2neon_unlikely(c & ~31)) + return _mm_setzero_si128(); + + int32x4_t vc = vdupq_n_s32((int32_t) c); + return vreinterpretq_m128i_s32(vshlq_s32(vreinterpretq_s32_m128i(a), vc)); +} + +// Shift packed 64-bit integers in a left by count while shifting in zeros, and +// store the results in dst. +// +// FOR j := 0 to 1 +// i := j*64 +// IF count[63:0] > 63 +// dst[i+63:i] := 0 +// ELSE +// dst[i+63:i] := ZeroExtend64(a[i+63:i] << count[63:0]) +// FI +// ENDFOR +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sll_epi64 +FORCE_INLINE __m128i _mm_sll_epi64(__m128i a, __m128i count) +{ + uint64_t c = vreinterpretq_nth_u64_m128i(count, 0); + if (_sse2neon_unlikely(c & ~63)) + return _mm_setzero_si128(); + + int64x2_t vc = vdupq_n_s64((int64_t) c); + return vreinterpretq_m128i_s64(vshlq_s64(vreinterpretq_s64_m128i(a), vc)); +} + +// Shift packed 16-bit integers in a left by imm8 while shifting in zeros, and +// store the results in dst. +// +// FOR j := 0 to 7 +// i := j*16 +// IF imm8[7:0] > 15 +// dst[i+15:i] := 0 +// ELSE +// dst[i+15:i] := ZeroExtend16(a[i+15:i] << imm8[7:0]) +// FI +// ENDFOR +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_slli_epi16 +FORCE_INLINE __m128i _mm_slli_epi16(__m128i a, int imm) +{ + if (_sse2neon_unlikely(imm & ~15)) + return _mm_setzero_si128(); + return vreinterpretq_m128i_s16( + vshlq_s16(vreinterpretq_s16_m128i(a), vdupq_n_s16(imm))); +} + +// Shift packed 32-bit integers in a left by imm8 while shifting in zeros, and +// store the results in dst. +// +// FOR j := 0 to 3 +// i := j*32 +// IF imm8[7:0] > 31 +// dst[i+31:i] := 0 +// ELSE +// dst[i+31:i] := ZeroExtend32(a[i+31:i] << imm8[7:0]) +// FI +// ENDFOR +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_slli_epi32 +FORCE_INLINE __m128i _mm_slli_epi32(__m128i a, int imm) +{ + if (_sse2neon_unlikely(imm & ~31)) + return _mm_setzero_si128(); + return vreinterpretq_m128i_s32( + vshlq_s32(vreinterpretq_s32_m128i(a), vdupq_n_s32(imm))); +} + +// Shift packed 64-bit integers in a left by imm8 while shifting in zeros, and +// store the results in dst. +// +// FOR j := 0 to 1 +// i := j*64 +// IF imm8[7:0] > 63 +// dst[i+63:i] := 0 +// ELSE +// dst[i+63:i] := ZeroExtend64(a[i+63:i] << imm8[7:0]) +// FI +// ENDFOR +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_slli_epi64 +FORCE_INLINE __m128i _mm_slli_epi64(__m128i a, int imm) +{ + if (_sse2neon_unlikely(imm & ~63)) + return _mm_setzero_si128(); + return vreinterpretq_m128i_s64( + vshlq_s64(vreinterpretq_s64_m128i(a), vdupq_n_s64(imm))); +} + +// Shift a left by imm8 bytes while shifting in zeros, and store the results in +// dst. +// +// tmp := imm8[7:0] +// IF tmp > 15 +// tmp := 16 +// FI +// dst[127:0] := a[127:0] << (tmp*8) +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_slli_si128 +#define _mm_slli_si128(a, imm) \ + __extension__({ \ + int8x16_t ret; \ + if (_sse2neon_unlikely(imm == 0)) \ + ret = vreinterpretq_s8_m128i(a); \ + else if (_sse2neon_unlikely((imm) & ~15)) \ + ret = vdupq_n_s8(0); \ + else \ + ret = vextq_s8(vdupq_n_s8(0), vreinterpretq_s8_m128i(a), \ + ((imm <= 0 || imm > 15) ? 0 : (16 - imm))); \ + vreinterpretq_m128i_s8(ret); \ + }) + +// Compute the square root of packed double-precision (64-bit) floating-point +// elements in a, and store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sqrt_pd +FORCE_INLINE __m128d _mm_sqrt_pd(__m128d a) +{ +#if defined(__aarch64__) + return vreinterpretq_m128d_f64(vsqrtq_f64(vreinterpretq_f64_m128d(a))); +#else + double a0 = sqrt(((double *) &a)[0]); + double a1 = sqrt(((double *) &a)[1]); + return _mm_set_pd(a1, a0); +#endif +} + +// Compute the square root of the lower double-precision (64-bit) floating-point +// element in b, store the result in the lower element of dst, and copy the +// upper element from a to the upper element of dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sqrt_sd +FORCE_INLINE __m128d _mm_sqrt_sd(__m128d a, __m128d b) +{ +#if defined(__aarch64__) + return _mm_move_sd(a, _mm_sqrt_pd(b)); +#else + return _mm_set_pd(((double *) &a)[1], sqrt(((double *) &b)[0])); +#endif +} + +// Shift packed 16-bit integers in a right by count while shifting in sign bits, +// and store the results in dst. +// +// FOR j := 0 to 7 +// i := j*16 +// IF count[63:0] > 15 +// dst[i+15:i] := (a[i+15] ? 0xFFFF : 0x0) +// ELSE +// dst[i+15:i] := SignExtend16(a[i+15:i] >> count[63:0]) +// FI +// ENDFOR +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sra_epi16 +FORCE_INLINE __m128i _mm_sra_epi16(__m128i a, __m128i count) +{ + int64_t c = (int64_t) vget_low_s64((int64x2_t) count); + if (_sse2neon_unlikely(c & ~15)) + return _mm_cmplt_epi16(a, _mm_setzero_si128()); + return vreinterpretq_m128i_s16(vshlq_s16((int16x8_t) a, vdupq_n_s16(-c))); +} + +// Shift packed 32-bit integers in a right by count while shifting in sign bits, +// and store the results in dst. +// +// FOR j := 0 to 3 +// i := j*32 +// IF count[63:0] > 31 +// dst[i+31:i] := (a[i+31] ? 0xFFFFFFFF : 0x0) +// ELSE +// dst[i+31:i] := SignExtend32(a[i+31:i] >> count[63:0]) +// FI +// ENDFOR +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sra_epi32 +FORCE_INLINE __m128i _mm_sra_epi32(__m128i a, __m128i count) +{ + int64_t c = (int64_t) vget_low_s64((int64x2_t) count); + if (_sse2neon_unlikely(c & ~31)) + return _mm_cmplt_epi32(a, _mm_setzero_si128()); + return vreinterpretq_m128i_s32(vshlq_s32((int32x4_t) a, vdupq_n_s32(-c))); +} + +// Shift packed 16-bit integers in a right by imm8 while shifting in sign +// bits, and store the results in dst. +// +// FOR j := 0 to 7 +// i := j*16 +// IF imm8[7:0] > 15 +// dst[i+15:i] := (a[i+15] ? 0xFFFF : 0x0) +// ELSE +// dst[i+15:i] := SignExtend16(a[i+15:i] >> imm8[7:0]) +// FI +// ENDFOR +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_srai_epi16 +FORCE_INLINE __m128i _mm_srai_epi16(__m128i a, int imm) +{ + const int count = (imm & ~15) ? 15 : imm; + return (__m128i) vshlq_s16((int16x8_t) a, vdupq_n_s16(-count)); +} + +// Shift packed 32-bit integers in a right by imm8 while shifting in sign bits, +// and store the results in dst. +// +// FOR j := 0 to 3 +// i := j*32 +// IF imm8[7:0] > 31 +// dst[i+31:i] := (a[i+31] ? 0xFFFFFFFF : 0x0) +// ELSE +// dst[i+31:i] := SignExtend32(a[i+31:i] >> imm8[7:0]) +// FI +// ENDFOR +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_srai_epi32 +// FORCE_INLINE __m128i _mm_srai_epi32(__m128i a, __constrange(0,255) int imm) +#define _mm_srai_epi32(a, imm) \ + __extension__({ \ + __m128i ret; \ + if (_sse2neon_unlikely((imm) == 0)) { \ + ret = a; \ + } else if (_sse2neon_likely(0 < (imm) && (imm) < 32)) { \ + ret = vreinterpretq_m128i_s32( \ + vshlq_s32(vreinterpretq_s32_m128i(a), vdupq_n_s32(-(imm)))); \ + } else { \ + ret = vreinterpretq_m128i_s32( \ + vshrq_n_s32(vreinterpretq_s32_m128i(a), 31)); \ + } \ + ret; \ + }) + +// Shift packed 16-bit integers in a right by count while shifting in zeros, and +// store the results in dst. +// +// FOR j := 0 to 7 +// i := j*16 +// IF count[63:0] > 15 +// dst[i+15:i] := 0 +// ELSE +// dst[i+15:i] := ZeroExtend16(a[i+15:i] >> count[63:0]) +// FI +// ENDFOR +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_srl_epi16 +FORCE_INLINE __m128i _mm_srl_epi16(__m128i a, __m128i count) +{ + uint64_t c = vreinterpretq_nth_u64_m128i(count, 0); + if (_sse2neon_unlikely(c & ~15)) + return _mm_setzero_si128(); + + int16x8_t vc = vdupq_n_s16(-(int16_t) c); + return vreinterpretq_m128i_u16(vshlq_u16(vreinterpretq_u16_m128i(a), vc)); +} + +// Shift packed 32-bit integers in a right by count while shifting in zeros, and +// store the results in dst. +// +// FOR j := 0 to 3 +// i := j*32 +// IF count[63:0] > 31 +// dst[i+31:i] := 0 +// ELSE +// dst[i+31:i] := ZeroExtend32(a[i+31:i] >> count[63:0]) +// FI +// ENDFOR +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_srl_epi32 +FORCE_INLINE __m128i _mm_srl_epi32(__m128i a, __m128i count) +{ + uint64_t c = vreinterpretq_nth_u64_m128i(count, 0); + if (_sse2neon_unlikely(c & ~31)) + return _mm_setzero_si128(); + + int32x4_t vc = vdupq_n_s32(-(int32_t) c); + return vreinterpretq_m128i_u32(vshlq_u32(vreinterpretq_u32_m128i(a), vc)); +} + +// Shift packed 64-bit integers in a right by count while shifting in zeros, and +// store the results in dst. +// +// FOR j := 0 to 1 +// i := j*64 +// IF count[63:0] > 63 +// dst[i+63:i] := 0 +// ELSE +// dst[i+63:i] := ZeroExtend64(a[i+63:i] >> count[63:0]) +// FI +// ENDFOR +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_srl_epi64 +FORCE_INLINE __m128i _mm_srl_epi64(__m128i a, __m128i count) +{ + uint64_t c = vreinterpretq_nth_u64_m128i(count, 0); + if (_sse2neon_unlikely(c & ~63)) + return _mm_setzero_si128(); + + int64x2_t vc = vdupq_n_s64(-(int64_t) c); + return vreinterpretq_m128i_u64(vshlq_u64(vreinterpretq_u64_m128i(a), vc)); +} + +// Shift packed 16-bit integers in a right by imm8 while shifting in zeros, and +// store the results in dst. +// +// FOR j := 0 to 7 +// i := j*16 +// IF imm8[7:0] > 15 +// dst[i+15:i] := 0 +// ELSE +// dst[i+15:i] := ZeroExtend16(a[i+15:i] >> imm8[7:0]) +// FI +// ENDFOR +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_srli_epi16 +#define _mm_srli_epi16(a, imm) \ + __extension__({ \ + __m128i ret; \ + if (_sse2neon_unlikely((imm) & ~15)) { \ + ret = _mm_setzero_si128(); \ + } else { \ + ret = vreinterpretq_m128i_u16( \ + vshlq_u16(vreinterpretq_u16_m128i(a), vdupq_n_s16(-(imm)))); \ + } \ + ret; \ + }) + +// Shift packed 32-bit integers in a right by imm8 while shifting in zeros, and +// store the results in dst. +// +// FOR j := 0 to 3 +// i := j*32 +// IF imm8[7:0] > 31 +// dst[i+31:i] := 0 +// ELSE +// dst[i+31:i] := ZeroExtend32(a[i+31:i] >> imm8[7:0]) +// FI +// ENDFOR +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_srli_epi32 +// FORCE_INLINE __m128i _mm_srli_epi32(__m128i a, __constrange(0,255) int imm) +#define _mm_srli_epi32(a, imm) \ + __extension__({ \ + __m128i ret; \ + if (_sse2neon_unlikely((imm) & ~31)) { \ + ret = _mm_setzero_si128(); \ + } else { \ + ret = vreinterpretq_m128i_u32( \ + vshlq_u32(vreinterpretq_u32_m128i(a), vdupq_n_s32(-(imm)))); \ + } \ + ret; \ + }) + +// Shift packed 64-bit integers in a right by imm8 while shifting in zeros, and +// store the results in dst. +// +// FOR j := 0 to 1 +// i := j*64 +// IF imm8[7:0] > 63 +// dst[i+63:i] := 0 +// ELSE +// dst[i+63:i] := ZeroExtend64(a[i+63:i] >> imm8[7:0]) +// FI +// ENDFOR +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_srli_epi64 +#define _mm_srli_epi64(a, imm) \ + __extension__({ \ + __m128i ret; \ + if (_sse2neon_unlikely((imm) & ~63)) { \ + ret = _mm_setzero_si128(); \ + } else { \ + ret = vreinterpretq_m128i_u64( \ + vshlq_u64(vreinterpretq_u64_m128i(a), vdupq_n_s64(-(imm)))); \ + } \ + ret; \ + }) + +// Shift a right by imm8 bytes while shifting in zeros, and store the results in +// dst. +// +// tmp := imm8[7:0] +// IF tmp > 15 +// tmp := 16 +// FI +// dst[127:0] := a[127:0] >> (tmp*8) +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_srli_si128 +#define _mm_srli_si128(a, imm) \ + __extension__({ \ + int8x16_t ret; \ + if (_sse2neon_unlikely((imm) & ~15)) \ + ret = vdupq_n_s8(0); \ + else \ + ret = vextq_s8(vreinterpretq_s8_m128i(a), vdupq_n_s8(0), \ + (imm > 15 ? 0 : imm)); \ + vreinterpretq_m128i_s8(ret); \ + }) + +// Store 128-bits (composed of 2 packed double-precision (64-bit) floating-point +// elements) from a into memory. mem_addr must be aligned on a 16-byte boundary +// or a general-protection exception may be generated. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_store_pd +FORCE_INLINE void _mm_store_pd(double *mem_addr, __m128d a) +{ +#if defined(__aarch64__) + vst1q_f64((float64_t *) mem_addr, vreinterpretq_f64_m128d(a)); +#else + vst1q_f32((float32_t *) mem_addr, vreinterpretq_f32_m128d(a)); +#endif +} + +// Store the lower double-precision (64-bit) floating-point element from a into +// 2 contiguous elements in memory. mem_addr must be aligned on a 16-byte +// boundary or a general-protection exception may be generated. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_store_pd1 +FORCE_INLINE void _mm_store_pd1(double *mem_addr, __m128d a) +{ +#if defined(__aarch64__) + float64x1_t a_low = vget_low_f64(vreinterpretq_f64_m128d(a)); + vst1q_f64((float64_t *) mem_addr, + vreinterpretq_f64_m128d(vcombine_f64(a_low, a_low))); +#else + float32x2_t a_low = vget_low_f32(vreinterpretq_f32_m128d(a)); + vst1q_f32((float32_t *) mem_addr, + vreinterpretq_f32_m128d(vcombine_f32(a_low, a_low))); +#endif +} + +// Store the lower double-precision (64-bit) floating-point element from a into +// memory. mem_addr does not need to be aligned on any particular boundary. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=mm_store_sd +FORCE_INLINE void _mm_store_sd(double *mem_addr, __m128d a) +{ +#if defined(__aarch64__) + vst1_f64((float64_t *) mem_addr, vget_low_f64(vreinterpretq_f64_m128d(a))); +#else + vst1_u64((uint64_t *) mem_addr, vget_low_u64(vreinterpretq_u64_m128d(a))); +#endif +} + +// Stores four 32-bit integer values as (as a __m128i value) at the address p. +// https://msdn.microsoft.com/en-us/library/vstudio/edk11s13(v=vs.100).aspx +FORCE_INLINE void _mm_store_si128(__m128i *p, __m128i a) +{ + vst1q_s32((int32_t *) p, vreinterpretq_s32_m128i(a)); +} + +// Store the lower double-precision (64-bit) floating-point element from a into +// 2 contiguous elements in memory. mem_addr must be aligned on a 16-byte +// boundary or a general-protection exception may be generated. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#expand=9,526,5601&text=_mm_store1_pd +#define _mm_store1_pd _mm_store_pd1 + +// Store the upper double-precision (64-bit) floating-point element from a into +// memory. +// +// MEM[mem_addr+63:mem_addr] := a[127:64] +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storeh_pd +FORCE_INLINE void _mm_storeh_pd(double *mem_addr, __m128d a) +{ +#if defined(__aarch64__) + vst1_f64((float64_t *) mem_addr, vget_high_f64(vreinterpretq_f64_m128d(a))); +#else + vst1_f32((float32_t *) mem_addr, vget_high_f32(vreinterpretq_f32_m128d(a))); +#endif +} + +// Reads the lower 64 bits of b and stores them into the lower 64 bits of a. +// https://msdn.microsoft.com/en-us/library/hhwf428f%28v=vs.90%29.aspx +FORCE_INLINE void _mm_storel_epi64(__m128i *a, __m128i b) +{ + vst1_u64((uint64_t *) a, vget_low_u64(vreinterpretq_u64_m128i(b))); +} + +// Store the lower double-precision (64-bit) floating-point element from a into +// memory. +// +// MEM[mem_addr+63:mem_addr] := a[63:0] +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storel_pd +FORCE_INLINE void _mm_storel_pd(double *mem_addr, __m128d a) +{ +#if defined(__aarch64__) + vst1_f64((float64_t *) mem_addr, vget_low_f64(vreinterpretq_f64_m128d(a))); +#else + vst1_f32((float32_t *) mem_addr, vget_low_f32(vreinterpretq_f32_m128d(a))); +#endif +} + +// Store 2 double-precision (64-bit) floating-point elements from a into memory +// in reverse order. mem_addr must be aligned on a 16-byte boundary or a +// general-protection exception may be generated. +// +// MEM[mem_addr+63:mem_addr] := a[127:64] +// MEM[mem_addr+127:mem_addr+64] := a[63:0] +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storer_pd +FORCE_INLINE void _mm_storer_pd(double *mem_addr, __m128d a) +{ + float32x4_t f = vreinterpretq_f32_m128d(a); + _mm_store_pd(mem_addr, vreinterpretq_m128d_f32(vextq_f32(f, f, 2))); +} + +// Store 128-bits (composed of 2 packed double-precision (64-bit) floating-point +// elements) from a into memory. mem_addr does not need to be aligned on any +// particular boundary. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storeu_pd +FORCE_INLINE void _mm_storeu_pd(double *mem_addr, __m128d a) +{ + _mm_store_pd(mem_addr, a); +} + +// Stores 128-bits of integer data a at the address p. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storeu_si128 +FORCE_INLINE void _mm_storeu_si128(__m128i *p, __m128i a) +{ + vst1q_s32((int32_t *) p, vreinterpretq_s32_m128i(a)); +} + +// Stores 32-bits of integer data a at the address p. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storeu_si32 +FORCE_INLINE void _mm_storeu_si32(void *p, __m128i a) +{ + vst1q_lane_s32((int32_t *) p, vreinterpretq_s32_m128i(a), 0); +} + +// Store 128-bits (composed of 2 packed double-precision (64-bit) floating-point +// elements) from a into memory using a non-temporal memory hint. mem_addr must +// be aligned on a 16-byte boundary or a general-protection exception may be +// generated. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_stream_pd +FORCE_INLINE void _mm_stream_pd(double *p, __m128d a) +{ +#if __has_builtin(__builtin_nontemporal_store) + __builtin_nontemporal_store(a, (float32x4_t *) p); +#elif defined(__aarch64__) + vst1q_f64(p, vreinterpretq_f64_m128d(a)); +#else + vst1q_s64((int64_t *) p, vreinterpretq_s64_m128d(a)); +#endif +} + +// Stores the data in a to the address p without polluting the caches. If the +// cache line containing address p is already in the cache, the cache will be +// updated. +// https://msdn.microsoft.com/en-us/library/ba08y07y%28v=vs.90%29.aspx +FORCE_INLINE void _mm_stream_si128(__m128i *p, __m128i a) +{ +#if __has_builtin(__builtin_nontemporal_store) + __builtin_nontemporal_store(a, p); +#else + vst1q_s64((int64_t *) p, vreinterpretq_s64_m128i(a)); +#endif +} + +// Store 32-bit integer a into memory using a non-temporal hint to minimize +// cache pollution. If the cache line containing address mem_addr is already in +// the cache, the cache will be updated. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_stream_si32 +FORCE_INLINE void _mm_stream_si32(int *p, int a) +{ + vst1q_lane_s32((int32_t *) p, vdupq_n_s32(a), 0); +} + +// Store 64-bit integer a into memory using a non-temporal hint to minimize +// cache pollution. If the cache line containing address mem_addr is already in +// the cache, the cache will be updated. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_stream_si64 +FORCE_INLINE void _mm_stream_si64(__int64 *p, __int64 a) +{ + vst1_s64((int64_t *) p, vdup_n_s64((int64_t) a)); +} + +// Subtract packed 16-bit integers in b from packed 16-bit integers in a, and +// store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sub_epi16 +FORCE_INLINE __m128i _mm_sub_epi16(__m128i a, __m128i b) +{ + return vreinterpretq_m128i_s16( + vsubq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b))); +} + +// Subtracts the 4 signed or unsigned 32-bit integers of b from the 4 signed or +// unsigned 32-bit integers of a. +// +// r0 := a0 - b0 +// r1 := a1 - b1 +// r2 := a2 - b2 +// r3 := a3 - b3 +// +// https://msdn.microsoft.com/en-us/library/vstudio/fhh866h0(v=vs.100).aspx +FORCE_INLINE __m128i _mm_sub_epi32(__m128i a, __m128i b) +{ + return vreinterpretq_m128i_s32( + vsubq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b))); +} + +// Subtract 2 packed 64-bit integers in b from 2 packed 64-bit integers in a, +// and store the results in dst. +// r0 := a0 - b0 +// r1 := a1 - b1 +FORCE_INLINE __m128i _mm_sub_epi64(__m128i a, __m128i b) +{ + return vreinterpretq_m128i_s64( + vsubq_s64(vreinterpretq_s64_m128i(a), vreinterpretq_s64_m128i(b))); +} + +// Subtract packed 8-bit integers in b from packed 8-bit integers in a, and +// store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sub_epi8 +FORCE_INLINE __m128i _mm_sub_epi8(__m128i a, __m128i b) +{ + return vreinterpretq_m128i_s8( + vsubq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b))); +} + +// Subtract packed double-precision (64-bit) floating-point elements in b from +// packed double-precision (64-bit) floating-point elements in a, and store the +// results in dst. +// +// FOR j := 0 to 1 +// i := j*64 +// dst[i+63:i] := a[i+63:i] - b[i+63:i] +// ENDFOR +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=mm_sub_pd +FORCE_INLINE __m128d _mm_sub_pd(__m128d a, __m128d b) +{ +#if defined(__aarch64__) + return vreinterpretq_m128d_f64( + vsubq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b))); +#else + double *da = (double *) &a; + double *db = (double *) &b; + double c[2]; + c[0] = da[0] - db[0]; + c[1] = da[1] - db[1]; + return vld1q_f32((float32_t *) c); +#endif +} + +// Subtract the lower double-precision (64-bit) floating-point element in b from +// the lower double-precision (64-bit) floating-point element in a, store the +// result in the lower element of dst, and copy the upper element from a to the +// upper element of dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sub_sd +FORCE_INLINE __m128d _mm_sub_sd(__m128d a, __m128d b) +{ + return _mm_move_sd(a, _mm_sub_pd(a, b)); +} + +// Subtract 64-bit integer b from 64-bit integer a, and store the result in dst. +// +// dst[63:0] := a[63:0] - b[63:0] +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sub_si64 +FORCE_INLINE __m64 _mm_sub_si64(__m64 a, __m64 b) +{ + return vreinterpret_m64_s64( + vsub_s64(vreinterpret_s64_m64(a), vreinterpret_s64_m64(b))); +} + +// Subtracts the 8 signed 16-bit integers of b from the 8 signed 16-bit integers +// of a and saturates. +// +// r0 := SignedSaturate(a0 - b0) +// r1 := SignedSaturate(a1 - b1) +// ... +// r7 := SignedSaturate(a7 - b7) +// +// https://technet.microsoft.com/en-us/subscriptions/3247z5b8(v=vs.90) +FORCE_INLINE __m128i _mm_subs_epi16(__m128i a, __m128i b) +{ + return vreinterpretq_m128i_s16( + vqsubq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b))); +} + +// Subtracts the 16 signed 8-bit integers of b from the 16 signed 8-bit integers +// of a and saturates. +// +// r0 := SignedSaturate(a0 - b0) +// r1 := SignedSaturate(a1 - b1) +// ... +// r15 := SignedSaturate(a15 - b15) +// +// https://technet.microsoft.com/en-us/subscriptions/by7kzks1(v=vs.90) +FORCE_INLINE __m128i _mm_subs_epi8(__m128i a, __m128i b) +{ + return vreinterpretq_m128i_s8( + vqsubq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b))); +} + +// Subtracts the 8 unsigned 16-bit integers of bfrom the 8 unsigned 16-bit +// integers of a and saturates.. +// https://technet.microsoft.com/en-us/subscriptions/index/f44y0s19(v=vs.90).aspx +FORCE_INLINE __m128i _mm_subs_epu16(__m128i a, __m128i b) +{ + return vreinterpretq_m128i_u16( + vqsubq_u16(vreinterpretq_u16_m128i(a), vreinterpretq_u16_m128i(b))); +} + +// Subtracts the 16 unsigned 8-bit integers of b from the 16 unsigned 8-bit +// integers of a and saturates. +// +// r0 := UnsignedSaturate(a0 - b0) +// r1 := UnsignedSaturate(a1 - b1) +// ... +// r15 := UnsignedSaturate(a15 - b15) +// +// https://technet.microsoft.com/en-us/subscriptions/yadkxc18(v=vs.90) +FORCE_INLINE __m128i _mm_subs_epu8(__m128i a, __m128i b) +{ + return vreinterpretq_m128i_u8( + vqsubq_u8(vreinterpretq_u8_m128i(a), vreinterpretq_u8_m128i(b))); +} + +#define _mm_ucomieq_sd _mm_comieq_sd +#define _mm_ucomige_sd _mm_comige_sd +#define _mm_ucomigt_sd _mm_comigt_sd +#define _mm_ucomile_sd _mm_comile_sd +#define _mm_ucomilt_sd _mm_comilt_sd +#define _mm_ucomineq_sd _mm_comineq_sd + +// Return vector of type __m128d with undefined elements. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_undefined_pd +FORCE_INLINE __m128d _mm_undefined_pd(void) +{ +#if defined(__GNUC__) || defined(__clang__) +#pragma GCC diagnostic push +#pragma GCC diagnostic ignored "-Wuninitialized" +#endif + __m128d a; + return a; +#if defined(__GNUC__) || defined(__clang__) +#pragma GCC diagnostic pop +#endif +} + +// Interleaves the upper 4 signed or unsigned 16-bit integers in a with the +// upper 4 signed or unsigned 16-bit integers in b. +// +// r0 := a4 +// r1 := b4 +// r2 := a5 +// r3 := b5 +// r4 := a6 +// r5 := b6 +// r6 := a7 +// r7 := b7 +// +// https://msdn.microsoft.com/en-us/library/03196cz7(v=vs.100).aspx +FORCE_INLINE __m128i _mm_unpackhi_epi16(__m128i a, __m128i b) +{ +#if defined(__aarch64__) + return vreinterpretq_m128i_s16( + vzip2q_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b))); +#else + int16x4_t a1 = vget_high_s16(vreinterpretq_s16_m128i(a)); + int16x4_t b1 = vget_high_s16(vreinterpretq_s16_m128i(b)); + int16x4x2_t result = vzip_s16(a1, b1); + return vreinterpretq_m128i_s16(vcombine_s16(result.val[0], result.val[1])); +#endif +} + +// Interleaves the upper 2 signed or unsigned 32-bit integers in a with the +// upper 2 signed or unsigned 32-bit integers in b. +// https://msdn.microsoft.com/en-us/library/65sa7cbs(v=vs.100).aspx +FORCE_INLINE __m128i _mm_unpackhi_epi32(__m128i a, __m128i b) +{ +#if defined(__aarch64__) + return vreinterpretq_m128i_s32( + vzip2q_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b))); +#else + int32x2_t a1 = vget_high_s32(vreinterpretq_s32_m128i(a)); + int32x2_t b1 = vget_high_s32(vreinterpretq_s32_m128i(b)); + int32x2x2_t result = vzip_s32(a1, b1); + return vreinterpretq_m128i_s32(vcombine_s32(result.val[0], result.val[1])); +#endif +} + +// Interleaves the upper signed or unsigned 64-bit integer in a with the +// upper signed or unsigned 64-bit integer in b. +// +// r0 := a1 +// r1 := b1 +FORCE_INLINE __m128i _mm_unpackhi_epi64(__m128i a, __m128i b) +{ + int64x1_t a_h = vget_high_s64(vreinterpretq_s64_m128i(a)); + int64x1_t b_h = vget_high_s64(vreinterpretq_s64_m128i(b)); + return vreinterpretq_m128i_s64(vcombine_s64(a_h, b_h)); +} + +// Interleaves the upper 8 signed or unsigned 8-bit integers in a with the upper +// 8 signed or unsigned 8-bit integers in b. +// +// r0 := a8 +// r1 := b8 +// r2 := a9 +// r3 := b9 +// ... +// r14 := a15 +// r15 := b15 +// +// https://msdn.microsoft.com/en-us/library/t5h7783k(v=vs.100).aspx +FORCE_INLINE __m128i _mm_unpackhi_epi8(__m128i a, __m128i b) +{ +#if defined(__aarch64__) + return vreinterpretq_m128i_s8( + vzip2q_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b))); +#else + int8x8_t a1 = + vreinterpret_s8_s16(vget_high_s16(vreinterpretq_s16_m128i(a))); + int8x8_t b1 = + vreinterpret_s8_s16(vget_high_s16(vreinterpretq_s16_m128i(b))); + int8x8x2_t result = vzip_s8(a1, b1); + return vreinterpretq_m128i_s8(vcombine_s8(result.val[0], result.val[1])); +#endif +} + +// Unpack and interleave double-precision (64-bit) floating-point elements from +// the high half of a and b, and store the results in dst. +// +// DEFINE INTERLEAVE_HIGH_QWORDS(src1[127:0], src2[127:0]) { +// dst[63:0] := src1[127:64] +// dst[127:64] := src2[127:64] +// RETURN dst[127:0] +// } +// dst[127:0] := INTERLEAVE_HIGH_QWORDS(a[127:0], b[127:0]) +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_unpackhi_pd +FORCE_INLINE __m128d _mm_unpackhi_pd(__m128d a, __m128d b) +{ +#if defined(__aarch64__) + return vreinterpretq_m128d_f64( + vzip2q_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b))); +#else + return vreinterpretq_m128d_s64( + vcombine_s64(vget_high_s64(vreinterpretq_s64_m128d(a)), + vget_high_s64(vreinterpretq_s64_m128d(b)))); +#endif +} + +// Interleaves the lower 4 signed or unsigned 16-bit integers in a with the +// lower 4 signed or unsigned 16-bit integers in b. +// +// r0 := a0 +// r1 := b0 +// r2 := a1 +// r3 := b1 +// r4 := a2 +// r5 := b2 +// r6 := a3 +// r7 := b3 +// +// https://msdn.microsoft.com/en-us/library/btxb17bw%28v=vs.90%29.aspx +FORCE_INLINE __m128i _mm_unpacklo_epi16(__m128i a, __m128i b) +{ +#if defined(__aarch64__) + return vreinterpretq_m128i_s16( + vzip1q_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b))); +#else + int16x4_t a1 = vget_low_s16(vreinterpretq_s16_m128i(a)); + int16x4_t b1 = vget_low_s16(vreinterpretq_s16_m128i(b)); + int16x4x2_t result = vzip_s16(a1, b1); + return vreinterpretq_m128i_s16(vcombine_s16(result.val[0], result.val[1])); +#endif +} + +// Interleaves the lower 2 signed or unsigned 32 - bit integers in a with the +// lower 2 signed or unsigned 32 - bit integers in b. +// +// r0 := a0 +// r1 := b0 +// r2 := a1 +// r3 := b1 +// +// https://msdn.microsoft.com/en-us/library/x8atst9d(v=vs.100).aspx +FORCE_INLINE __m128i _mm_unpacklo_epi32(__m128i a, __m128i b) +{ +#if defined(__aarch64__) + return vreinterpretq_m128i_s32( + vzip1q_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b))); +#else + int32x2_t a1 = vget_low_s32(vreinterpretq_s32_m128i(a)); + int32x2_t b1 = vget_low_s32(vreinterpretq_s32_m128i(b)); + int32x2x2_t result = vzip_s32(a1, b1); + return vreinterpretq_m128i_s32(vcombine_s32(result.val[0], result.val[1])); +#endif +} + +FORCE_INLINE __m128i _mm_unpacklo_epi64(__m128i a, __m128i b) +{ + int64x1_t a_l = vget_low_s64(vreinterpretq_s64_m128i(a)); + int64x1_t b_l = vget_low_s64(vreinterpretq_s64_m128i(b)); + return vreinterpretq_m128i_s64(vcombine_s64(a_l, b_l)); +} + +// Interleaves the lower 8 signed or unsigned 8-bit integers in a with the lower +// 8 signed or unsigned 8-bit integers in b. +// +// r0 := a0 +// r1 := b0 +// r2 := a1 +// r3 := b1 +// ... +// r14 := a7 +// r15 := b7 +// +// https://msdn.microsoft.com/en-us/library/xf7k860c%28v=vs.90%29.aspx +FORCE_INLINE __m128i _mm_unpacklo_epi8(__m128i a, __m128i b) +{ +#if defined(__aarch64__) + return vreinterpretq_m128i_s8( + vzip1q_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b))); +#else + int8x8_t a1 = vreinterpret_s8_s16(vget_low_s16(vreinterpretq_s16_m128i(a))); + int8x8_t b1 = vreinterpret_s8_s16(vget_low_s16(vreinterpretq_s16_m128i(b))); + int8x8x2_t result = vzip_s8(a1, b1); + return vreinterpretq_m128i_s8(vcombine_s8(result.val[0], result.val[1])); +#endif +} + +// Unpack and interleave double-precision (64-bit) floating-point elements from +// the low half of a and b, and store the results in dst. +// +// DEFINE INTERLEAVE_QWORDS(src1[127:0], src2[127:0]) { +// dst[63:0] := src1[63:0] +// dst[127:64] := src2[63:0] +// RETURN dst[127:0] +// } +// dst[127:0] := INTERLEAVE_QWORDS(a[127:0], b[127:0]) +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_unpacklo_pd +FORCE_INLINE __m128d _mm_unpacklo_pd(__m128d a, __m128d b) +{ +#if defined(__aarch64__) + return vreinterpretq_m128d_f64( + vzip1q_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b))); +#else + return vreinterpretq_m128d_s64( + vcombine_s64(vget_low_s64(vreinterpretq_s64_m128d(a)), + vget_low_s64(vreinterpretq_s64_m128d(b)))); +#endif +} + +// Compute the bitwise XOR of packed double-precision (64-bit) floating-point +// elements in a and b, and store the results in dst. +// +// FOR j := 0 to 1 +// i := j*64 +// dst[i+63:i] := a[i+63:i] XOR b[i+63:i] +// ENDFOR +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_xor_pd +FORCE_INLINE __m128d _mm_xor_pd(__m128d a, __m128d b) +{ + return vreinterpretq_m128d_s64( + veorq_s64(vreinterpretq_s64_m128d(a), vreinterpretq_s64_m128d(b))); +} + +// Computes the bitwise XOR of the 128-bit value in a and the 128-bit value in +// b. https://msdn.microsoft.com/en-us/library/fzt08www(v=vs.100).aspx +FORCE_INLINE __m128i _mm_xor_si128(__m128i a, __m128i b) +{ + return vreinterpretq_m128i_s32( + veorq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b))); +} + +/* SSE3 */ + +// Alternatively add and subtract packed double-precision (64-bit) +// floating-point elements in a to/from packed elements in b, and store the +// results in dst. +// +// FOR j := 0 to 1 +// i := j*64 +// IF ((j & 1) == 0) +// dst[i+63:i] := a[i+63:i] - b[i+63:i] +// ELSE +// dst[i+63:i] := a[i+63:i] + b[i+63:i] +// FI +// ENDFOR +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_addsub_pd +FORCE_INLINE __m128d _mm_addsub_pd(__m128d a, __m128d b) +{ + _sse2neon_const __m128d mask = _mm_set_pd(1.0f, -1.0f); +#if defined(__aarch64__) + return vreinterpretq_m128d_f64(vfmaq_f64(vreinterpretq_f64_m128d(a), + vreinterpretq_f64_m128d(b), + vreinterpretq_f64_m128d(mask))); +#else + return _mm_add_pd(_mm_mul_pd(b, mask), a); +#endif +} + +// Alternatively add and subtract packed single-precision (32-bit) +// floating-point elements in a to/from packed elements in b, and store the +// results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=addsub_ps +FORCE_INLINE __m128 _mm_addsub_ps(__m128 a, __m128 b) +{ + _sse2neon_const __m128 mask = _mm_setr_ps(-1.0f, 1.0f, -1.0f, 1.0f); +#if defined(__aarch64__) || defined(__ARM_FEATURE_FMA) /* VFPv4+ */ + return vreinterpretq_m128_f32(vfmaq_f32(vreinterpretq_f32_m128(a), + vreinterpretq_f32_m128(mask), + vreinterpretq_f32_m128(b))); +#else + return _mm_add_ps(_mm_mul_ps(b, mask), a); +#endif +} + +// Horizontally add adjacent pairs of double-precision (64-bit) floating-point +// elements in a and b, and pack the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hadd_pd +FORCE_INLINE __m128d _mm_hadd_pd(__m128d a, __m128d b) +{ +#if defined(__aarch64__) + return vreinterpretq_m128d_f64( + vpaddq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b))); +#else + double *da = (double *) &a; + double *db = (double *) &b; + double c[] = {da[0] + da[1], db[0] + db[1]}; + return vreinterpretq_m128d_u64(vld1q_u64((uint64_t *) c)); +#endif +} + +// Computes pairwise add of each argument as single-precision, floating-point +// values a and b. +// https://msdn.microsoft.com/en-us/library/yd9wecaa.aspx +FORCE_INLINE __m128 _mm_hadd_ps(__m128 a, __m128 b) +{ +#if defined(__aarch64__) + return vreinterpretq_m128_f32( + vpaddq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); +#else + float32x2_t a10 = vget_low_f32(vreinterpretq_f32_m128(a)); + float32x2_t a32 = vget_high_f32(vreinterpretq_f32_m128(a)); + float32x2_t b10 = vget_low_f32(vreinterpretq_f32_m128(b)); + float32x2_t b32 = vget_high_f32(vreinterpretq_f32_m128(b)); + return vreinterpretq_m128_f32( + vcombine_f32(vpadd_f32(a10, a32), vpadd_f32(b10, b32))); +#endif +} + +// Horizontally subtract adjacent pairs of double-precision (64-bit) +// floating-point elements in a and b, and pack the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hsub_pd +FORCE_INLINE __m128d _mm_hsub_pd(__m128d _a, __m128d _b) +{ +#if defined(__aarch64__) + float64x2_t a = vreinterpretq_f64_m128d(_a); + float64x2_t b = vreinterpretq_f64_m128d(_b); + return vreinterpretq_m128d_f64( + vsubq_f64(vuzp1q_f64(a, b), vuzp2q_f64(a, b))); +#else + double *da = (double *) &_a; + double *db = (double *) &_b; + double c[] = {da[0] - da[1], db[0] - db[1]}; + return vreinterpretq_m128d_u64(vld1q_u64((uint64_t *) c)); +#endif +} + +// Horizontally subtract adjacent pairs of single-precision (32-bit) +// floating-point elements in a and b, and pack the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hsub_ps +FORCE_INLINE __m128 _mm_hsub_ps(__m128 _a, __m128 _b) +{ + float32x4_t a = vreinterpretq_f32_m128(_a); + float32x4_t b = vreinterpretq_f32_m128(_b); +#if defined(__aarch64__) + return vreinterpretq_m128_f32( + vsubq_f32(vuzp1q_f32(a, b), vuzp2q_f32(a, b))); +#else + float32x4x2_t c = vuzpq_f32(a, b); + return vreinterpretq_m128_f32(vsubq_f32(c.val[0], c.val[1])); +#endif +} + +// Load 128-bits of integer data from unaligned memory into dst. This intrinsic +// may perform better than _mm_loadu_si128 when the data crosses a cache line +// boundary. +// +// dst[127:0] := MEM[mem_addr+127:mem_addr] +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_lddqu_si128 +#define _mm_lddqu_si128 _mm_loadu_si128 + +// Load a double-precision (64-bit) floating-point element from memory into both +// elements of dst. +// +// dst[63:0] := MEM[mem_addr+63:mem_addr] +// dst[127:64] := MEM[mem_addr+63:mem_addr] +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loaddup_pd +#define _mm_loaddup_pd _mm_load1_pd + +// Duplicate the low double-precision (64-bit) floating-point element from a, +// and store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_movedup_pd +FORCE_INLINE __m128d _mm_movedup_pd(__m128d a) +{ +#if defined(__aarch64__) + return vreinterpretq_m128d_f64( + vdupq_laneq_f64(vreinterpretq_f64_m128d(a), 0)); +#else + return vreinterpretq_m128d_u64( + vdupq_n_u64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 0))); +#endif +} + +// Duplicate odd-indexed single-precision (32-bit) floating-point elements +// from a, and store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_movehdup_ps +FORCE_INLINE __m128 _mm_movehdup_ps(__m128 a) +{ +#if defined(__aarch64__) + return vreinterpretq_m128_f32( + vtrn2q_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a))); +#elif defined(_sse2neon_shuffle) + return vreinterpretq_m128_f32(vshuffleq_s32( + vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a), 1, 1, 3, 3)); +#else + float32_t a1 = vgetq_lane_f32(vreinterpretq_f32_m128(a), 1); + float32_t a3 = vgetq_lane_f32(vreinterpretq_f32_m128(a), 3); + float ALIGN_STRUCT(16) data[4] = {a1, a1, a3, a3}; + return vreinterpretq_m128_f32(vld1q_f32(data)); +#endif +} + +// Duplicate even-indexed single-precision (32-bit) floating-point elements +// from a, and store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_moveldup_ps +FORCE_INLINE __m128 _mm_moveldup_ps(__m128 a) +{ +#if defined(__aarch64__) + return vreinterpretq_m128_f32( + vtrn1q_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a))); +#elif defined(_sse2neon_shuffle) + return vreinterpretq_m128_f32(vshuffleq_s32( + vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a), 0, 0, 2, 2)); +#else + float32_t a0 = vgetq_lane_f32(vreinterpretq_f32_m128(a), 0); + float32_t a2 = vgetq_lane_f32(vreinterpretq_f32_m128(a), 2); + float ALIGN_STRUCT(16) data[4] = {a0, a0, a2, a2}; + return vreinterpretq_m128_f32(vld1q_f32(data)); +#endif +} + +/* SSSE3 */ + +// Compute the absolute value of packed signed 16-bit integers in a, and store +// the unsigned results in dst. +// +// FOR j := 0 to 7 +// i := j*16 +// dst[i+15:i] := ABS(a[i+15:i]) +// ENDFOR +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_abs_epi16 +FORCE_INLINE __m128i _mm_abs_epi16(__m128i a) +{ + return vreinterpretq_m128i_s16(vabsq_s16(vreinterpretq_s16_m128i(a))); +} + +// Compute the absolute value of packed signed 32-bit integers in a, and store +// the unsigned results in dst. +// +// FOR j := 0 to 3 +// i := j*32 +// dst[i+31:i] := ABS(a[i+31:i]) +// ENDFOR +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_abs_epi32 +FORCE_INLINE __m128i _mm_abs_epi32(__m128i a) +{ + return vreinterpretq_m128i_s32(vabsq_s32(vreinterpretq_s32_m128i(a))); +} + +// Compute the absolute value of packed signed 8-bit integers in a, and store +// the unsigned results in dst. +// +// FOR j := 0 to 15 +// i := j*8 +// dst[i+7:i] := ABS(a[i+7:i]) +// ENDFOR +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_abs_epi8 +FORCE_INLINE __m128i _mm_abs_epi8(__m128i a) +{ + return vreinterpretq_m128i_s8(vabsq_s8(vreinterpretq_s8_m128i(a))); +} + +// Compute the absolute value of packed signed 16-bit integers in a, and store +// the unsigned results in dst. +// +// FOR j := 0 to 3 +// i := j*16 +// dst[i+15:i] := ABS(a[i+15:i]) +// ENDFOR +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_abs_pi16 +FORCE_INLINE __m64 _mm_abs_pi16(__m64 a) +{ + return vreinterpret_m64_s16(vabs_s16(vreinterpret_s16_m64(a))); +} + +// Compute the absolute value of packed signed 32-bit integers in a, and store +// the unsigned results in dst. +// +// FOR j := 0 to 1 +// i := j*32 +// dst[i+31:i] := ABS(a[i+31:i]) +// ENDFOR +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_abs_pi32 +FORCE_INLINE __m64 _mm_abs_pi32(__m64 a) +{ + return vreinterpret_m64_s32(vabs_s32(vreinterpret_s32_m64(a))); +} + +// Compute the absolute value of packed signed 8-bit integers in a, and store +// the unsigned results in dst. +// +// FOR j := 0 to 7 +// i := j*8 +// dst[i+7:i] := ABS(a[i+7:i]) +// ENDFOR +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_abs_pi8 +FORCE_INLINE __m64 _mm_abs_pi8(__m64 a) +{ + return vreinterpret_m64_s8(vabs_s8(vreinterpret_s8_m64(a))); +} + +// Concatenate 16-byte blocks in a and b into a 32-byte temporary result, shift +// the result right by imm8 bytes, and store the low 16 bytes in dst. +// +// tmp[255:0] := ((a[127:0] << 128)[255:0] OR b[127:0]) >> (imm8*8) +// dst[127:0] := tmp[127:0] +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_alignr_epi8 +#define _mm_alignr_epi8(a, b, imm) \ + __extension__({ \ + uint8x16_t _a = vreinterpretq_u8_m128i(a); \ + uint8x16_t _b = vreinterpretq_u8_m128i(b); \ + __m128i ret; \ + if (_sse2neon_unlikely((imm) & ~31)) \ + ret = vreinterpretq_m128i_u8(vdupq_n_u8(0)); \ + else if (imm >= 16) \ + ret = _mm_srli_si128(a, imm >= 16 ? imm - 16 : 0); \ + else \ + ret = \ + vreinterpretq_m128i_u8(vextq_u8(_b, _a, imm < 16 ? imm : 0)); \ + ret; \ + }) + +// Concatenate 8-byte blocks in a and b into a 16-byte temporary result, shift +// the result right by imm8 bytes, and store the low 8 bytes in dst. +// +// tmp[127:0] := ((a[63:0] << 64)[127:0] OR b[63:0]) >> (imm8*8) +// dst[63:0] := tmp[63:0] +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_alignr_pi8 +#define _mm_alignr_pi8(a, b, imm) \ + __extension__({ \ + __m64 ret; \ + if (_sse2neon_unlikely((imm) >= 16)) { \ + ret = vreinterpret_m64_s8(vdup_n_s8(0)); \ + } else { \ + uint8x8_t tmp_low, tmp_high; \ + if ((imm) >= 8) { \ + const int idx = (imm) -8; \ + tmp_low = vreinterpret_u8_m64(a); \ + tmp_high = vdup_n_u8(0); \ + ret = vreinterpret_m64_u8(vext_u8(tmp_low, tmp_high, idx)); \ + } else { \ + const int idx = (imm); \ + tmp_low = vreinterpret_u8_m64(b); \ + tmp_high = vreinterpret_u8_m64(a); \ + ret = vreinterpret_m64_u8(vext_u8(tmp_low, tmp_high, idx)); \ + } \ + } \ + ret; \ + }) + +// Computes pairwise add of each argument as a 16-bit signed or unsigned integer +// values a and b. +FORCE_INLINE __m128i _mm_hadd_epi16(__m128i _a, __m128i _b) +{ + int16x8_t a = vreinterpretq_s16_m128i(_a); + int16x8_t b = vreinterpretq_s16_m128i(_b); +#if defined(__aarch64__) + return vreinterpretq_m128i_s16(vpaddq_s16(a, b)); +#else + return vreinterpretq_m128i_s16( + vcombine_s16(vpadd_s16(vget_low_s16(a), vget_high_s16(a)), + vpadd_s16(vget_low_s16(b), vget_high_s16(b)))); +#endif +} + +// Computes pairwise add of each argument as a 32-bit signed or unsigned integer +// values a and b. +FORCE_INLINE __m128i _mm_hadd_epi32(__m128i _a, __m128i _b) +{ + int32x4_t a = vreinterpretq_s32_m128i(_a); + int32x4_t b = vreinterpretq_s32_m128i(_b); +#if defined(__aarch64__) + return vreinterpretq_m128i_s32(vpaddq_s32(a, b)); +#else + return vreinterpretq_m128i_s32( + vcombine_s32(vpadd_s32(vget_low_s32(a), vget_high_s32(a)), + vpadd_s32(vget_low_s32(b), vget_high_s32(b)))); +#endif +} + +// Horizontally add adjacent pairs of 16-bit integers in a and b, and pack the +// signed 16-bit results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hadd_pi16 +FORCE_INLINE __m64 _mm_hadd_pi16(__m64 a, __m64 b) +{ + return vreinterpret_m64_s16( + vpadd_s16(vreinterpret_s16_m64(a), vreinterpret_s16_m64(b))); +} + +// Horizontally add adjacent pairs of 32-bit integers in a and b, and pack the +// signed 32-bit results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hadd_pi32 +FORCE_INLINE __m64 _mm_hadd_pi32(__m64 a, __m64 b) +{ + return vreinterpret_m64_s32( + vpadd_s32(vreinterpret_s32_m64(a), vreinterpret_s32_m64(b))); +} + +// Computes saturated pairwise sub of each argument as a 16-bit signed +// integer values a and b. +FORCE_INLINE __m128i _mm_hadds_epi16(__m128i _a, __m128i _b) +{ +#if defined(__aarch64__) + int16x8_t a = vreinterpretq_s16_m128i(_a); + int16x8_t b = vreinterpretq_s16_m128i(_b); + return vreinterpretq_s64_s16( + vqaddq_s16(vuzp1q_s16(a, b), vuzp2q_s16(a, b))); +#else + int32x4_t a = vreinterpretq_s32_m128i(_a); + int32x4_t b = vreinterpretq_s32_m128i(_b); + // Interleave using vshrn/vmovn + // [a0|a2|a4|a6|b0|b2|b4|b6] + // [a1|a3|a5|a7|b1|b3|b5|b7] + int16x8_t ab0246 = vcombine_s16(vmovn_s32(a), vmovn_s32(b)); + int16x8_t ab1357 = vcombine_s16(vshrn_n_s32(a, 16), vshrn_n_s32(b, 16)); + // Saturated add + return vreinterpretq_m128i_s16(vqaddq_s16(ab0246, ab1357)); +#endif +} + +// Horizontally add adjacent pairs of signed 16-bit integers in a and b using +// saturation, and pack the signed 16-bit results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hadds_pi16 +FORCE_INLINE __m64 _mm_hadds_pi16(__m64 _a, __m64 _b) +{ + int16x4_t a = vreinterpret_s16_m64(_a); + int16x4_t b = vreinterpret_s16_m64(_b); +#if defined(__aarch64__) + return vreinterpret_s64_s16(vqadd_s16(vuzp1_s16(a, b), vuzp2_s16(a, b))); +#else + int16x4x2_t res = vuzp_s16(a, b); + return vreinterpret_s64_s16(vqadd_s16(res.val[0], res.val[1])); +#endif +} + +// Horizontally subtract adjacent pairs of 16-bit integers in a and b, and pack +// the signed 16-bit results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hsub_epi16 +FORCE_INLINE __m128i _mm_hsub_epi16(__m128i _a, __m128i _b) +{ + int16x8_t a = vreinterpretq_s16_m128i(_a); + int16x8_t b = vreinterpretq_s16_m128i(_b); +#if defined(__aarch64__) + return vreinterpretq_m128i_s16( + vsubq_s16(vuzp1q_s16(a, b), vuzp2q_s16(a, b))); +#else + int16x8x2_t c = vuzpq_s16(a, b); + return vreinterpretq_m128i_s16(vsubq_s16(c.val[0], c.val[1])); +#endif +} + +// Horizontally subtract adjacent pairs of 32-bit integers in a and b, and pack +// the signed 32-bit results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hsub_epi32 +FORCE_INLINE __m128i _mm_hsub_epi32(__m128i _a, __m128i _b) +{ + int32x4_t a = vreinterpretq_s32_m128i(_a); + int32x4_t b = vreinterpretq_s32_m128i(_b); +#if defined(__aarch64__) + return vreinterpretq_m128i_s32( + vsubq_s32(vuzp1q_s32(a, b), vuzp2q_s32(a, b))); +#else + int32x4x2_t c = vuzpq_s32(a, b); + return vreinterpretq_m128i_s32(vsubq_s32(c.val[0], c.val[1])); +#endif +} + +// Horizontally subtract adjacent pairs of 16-bit integers in a and b, and pack +// the signed 16-bit results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hsub_pi16 +FORCE_INLINE __m64 _mm_hsub_pi16(__m64 _a, __m64 _b) +{ + int16x4_t a = vreinterpret_s16_m64(_a); + int16x4_t b = vreinterpret_s16_m64(_b); +#if defined(__aarch64__) + return vreinterpret_m64_s16(vsub_s16(vuzp1_s16(a, b), vuzp2_s16(a, b))); +#else + int16x4x2_t c = vuzp_s16(a, b); + return vreinterpret_m64_s16(vsub_s16(c.val[0], c.val[1])); +#endif +} + +// Horizontally subtract adjacent pairs of 32-bit integers in a and b, and pack +// the signed 32-bit results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=mm_hsub_pi32 +FORCE_INLINE __m64 _mm_hsub_pi32(__m64 _a, __m64 _b) +{ + int32x2_t a = vreinterpret_s32_m64(_a); + int32x2_t b = vreinterpret_s32_m64(_b); +#if defined(__aarch64__) + return vreinterpret_m64_s32(vsub_s32(vuzp1_s32(a, b), vuzp2_s32(a, b))); +#else + int32x2x2_t c = vuzp_s32(a, b); + return vreinterpret_m64_s32(vsub_s32(c.val[0], c.val[1])); +#endif +} + +// Computes saturated pairwise difference of each argument as a 16-bit signed +// integer values a and b. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hsubs_epi16 +FORCE_INLINE __m128i _mm_hsubs_epi16(__m128i _a, __m128i _b) +{ + int16x8_t a = vreinterpretq_s16_m128i(_a); + int16x8_t b = vreinterpretq_s16_m128i(_b); +#if defined(__aarch64__) + return vreinterpretq_m128i_s16( + vqsubq_s16(vuzp1q_s16(a, b), vuzp2q_s16(a, b))); +#else + int16x8x2_t c = vuzpq_s16(a, b); + return vreinterpretq_m128i_s16(vqsubq_s16(c.val[0], c.val[1])); +#endif +} + +// Horizontally subtract adjacent pairs of signed 16-bit integers in a and b +// using saturation, and pack the signed 16-bit results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hsubs_pi16 +FORCE_INLINE __m64 _mm_hsubs_pi16(__m64 _a, __m64 _b) +{ + int16x4_t a = vreinterpret_s16_m64(_a); + int16x4_t b = vreinterpret_s16_m64(_b); +#if defined(__aarch64__) + return vreinterpret_m64_s16(vqsub_s16(vuzp1_s16(a, b), vuzp2_s16(a, b))); +#else + int16x4x2_t c = vuzp_s16(a, b); + return vreinterpret_m64_s16(vqsub_s16(c.val[0], c.val[1])); +#endif +} + +// Vertically multiply each unsigned 8-bit integer from a with the corresponding +// signed 8-bit integer from b, producing intermediate signed 16-bit integers. +// Horizontally add adjacent pairs of intermediate signed 16-bit integers, +// and pack the saturated results in dst. +// +// FOR j := 0 to 7 +// i := j*16 +// dst[i+15:i] := Saturate_To_Int16( a[i+15:i+8]*b[i+15:i+8] + +// a[i+7:i]*b[i+7:i] ) +// ENDFOR +FORCE_INLINE __m128i _mm_maddubs_epi16(__m128i _a, __m128i _b) +{ +#if defined(__aarch64__) + uint8x16_t a = vreinterpretq_u8_m128i(_a); + int8x16_t b = vreinterpretq_s8_m128i(_b); + int16x8_t tl = vmulq_s16(vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(a))), + vmovl_s8(vget_low_s8(b))); + int16x8_t th = vmulq_s16(vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(a))), + vmovl_s8(vget_high_s8(b))); + return vreinterpretq_m128i_s16( + vqaddq_s16(vuzp1q_s16(tl, th), vuzp2q_s16(tl, th))); +#else + // This would be much simpler if x86 would choose to zero extend OR sign + // extend, not both. This could probably be optimized better. + uint16x8_t a = vreinterpretq_u16_m128i(_a); + int16x8_t b = vreinterpretq_s16_m128i(_b); + + // Zero extend a + int16x8_t a_odd = vreinterpretq_s16_u16(vshrq_n_u16(a, 8)); + int16x8_t a_even = vreinterpretq_s16_u16(vbicq_u16(a, vdupq_n_u16(0xff00))); + + // Sign extend by shifting left then shifting right. + int16x8_t b_even = vshrq_n_s16(vshlq_n_s16(b, 8), 8); + int16x8_t b_odd = vshrq_n_s16(b, 8); + + // multiply + int16x8_t prod1 = vmulq_s16(a_even, b_even); + int16x8_t prod2 = vmulq_s16(a_odd, b_odd); + + // saturated add + return vreinterpretq_m128i_s16(vqaddq_s16(prod1, prod2)); +#endif +} + +// Vertically multiply each unsigned 8-bit integer from a with the corresponding +// signed 8-bit integer from b, producing intermediate signed 16-bit integers. +// Horizontally add adjacent pairs of intermediate signed 16-bit integers, and +// pack the saturated results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_maddubs_pi16 +FORCE_INLINE __m64 _mm_maddubs_pi16(__m64 _a, __m64 _b) +{ + uint16x4_t a = vreinterpret_u16_m64(_a); + int16x4_t b = vreinterpret_s16_m64(_b); + + // Zero extend a + int16x4_t a_odd = vreinterpret_s16_u16(vshr_n_u16(a, 8)); + int16x4_t a_even = vreinterpret_s16_u16(vand_u16(a, vdup_n_u16(0xff))); + + // Sign extend by shifting left then shifting right. + int16x4_t b_even = vshr_n_s16(vshl_n_s16(b, 8), 8); + int16x4_t b_odd = vshr_n_s16(b, 8); + + // multiply + int16x4_t prod1 = vmul_s16(a_even, b_even); + int16x4_t prod2 = vmul_s16(a_odd, b_odd); + + // saturated add + return vreinterpret_m64_s16(vqadd_s16(prod1, prod2)); +} + +// Multiply packed signed 16-bit integers in a and b, producing intermediate +// signed 32-bit integers. Shift right by 15 bits while rounding up, and store +// the packed 16-bit integers in dst. +// +// r0 := Round(((int32_t)a0 * (int32_t)b0) >> 15) +// r1 := Round(((int32_t)a1 * (int32_t)b1) >> 15) +// r2 := Round(((int32_t)a2 * (int32_t)b2) >> 15) +// ... +// r7 := Round(((int32_t)a7 * (int32_t)b7) >> 15) +FORCE_INLINE __m128i _mm_mulhrs_epi16(__m128i a, __m128i b) +{ + // Has issues due to saturation + // return vreinterpretq_m128i_s16(vqrdmulhq_s16(a, b)); + + // Multiply + int32x4_t mul_lo = vmull_s16(vget_low_s16(vreinterpretq_s16_m128i(a)), + vget_low_s16(vreinterpretq_s16_m128i(b))); + int32x4_t mul_hi = vmull_s16(vget_high_s16(vreinterpretq_s16_m128i(a)), + vget_high_s16(vreinterpretq_s16_m128i(b))); + + // Rounding narrowing shift right + // narrow = (int16_t)((mul + 16384) >> 15); + int16x4_t narrow_lo = vrshrn_n_s32(mul_lo, 15); + int16x4_t narrow_hi = vrshrn_n_s32(mul_hi, 15); + + // Join together + return vreinterpretq_m128i_s16(vcombine_s16(narrow_lo, narrow_hi)); +} + +// Multiply packed signed 16-bit integers in a and b, producing intermediate +// signed 32-bit integers. Truncate each intermediate integer to the 18 most +// significant bits, round by adding 1, and store bits [16:1] to dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mulhrs_pi16 +FORCE_INLINE __m64 _mm_mulhrs_pi16(__m64 a, __m64 b) +{ + int32x4_t mul_extend = + vmull_s16((vreinterpret_s16_m64(a)), (vreinterpret_s16_m64(b))); + + // Rounding narrowing shift right + return vreinterpret_m64_s16(vrshrn_n_s32(mul_extend, 15)); +} + +// Shuffle packed 8-bit integers in a according to shuffle control mask in the +// corresponding 8-bit element of b, and store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_shuffle_epi8 +FORCE_INLINE __m128i _mm_shuffle_epi8(__m128i a, __m128i b) +{ + int8x16_t tbl = vreinterpretq_s8_m128i(a); // input a + uint8x16_t idx = vreinterpretq_u8_m128i(b); // input b + uint8x16_t idx_masked = + vandq_u8(idx, vdupq_n_u8(0x8F)); // avoid using meaningless bits +#if defined(__aarch64__) + return vreinterpretq_m128i_s8(vqtbl1q_s8(tbl, idx_masked)); +#elif defined(__GNUC__) + int8x16_t ret; + // %e and %f represent the even and odd D registers + // respectively. + __asm__ __volatile__( + "vtbl.8 %e[ret], {%e[tbl], %f[tbl]}, %e[idx]\n" + "vtbl.8 %f[ret], {%e[tbl], %f[tbl]}, %f[idx]\n" + : [ret] "=&w"(ret) + : [tbl] "w"(tbl), [idx] "w"(idx_masked)); + return vreinterpretq_m128i_s8(ret); +#else + // use this line if testing on aarch64 + int8x8x2_t a_split = {vget_low_s8(tbl), vget_high_s8(tbl)}; + return vreinterpretq_m128i_s8( + vcombine_s8(vtbl2_s8(a_split, vget_low_u8(idx_masked)), + vtbl2_s8(a_split, vget_high_u8(idx_masked)))); +#endif +} + +// Shuffle packed 8-bit integers in a according to shuffle control mask in the +// corresponding 8-bit element of b, and store the results in dst. +// +// FOR j := 0 to 7 +// i := j*8 +// IF b[i+7] == 1 +// dst[i+7:i] := 0 +// ELSE +// index[2:0] := b[i+2:i] +// dst[i+7:i] := a[index*8+7:index*8] +// FI +// ENDFOR +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_shuffle_pi8 +FORCE_INLINE __m64 _mm_shuffle_pi8(__m64 a, __m64 b) +{ + const int8x8_t controlMask = + vand_s8(vreinterpret_s8_m64(b), vdup_n_s8((int8_t) (0x1 << 7 | 0x07))); + int8x8_t res = vtbl1_s8(vreinterpret_s8_m64(a), controlMask); + return vreinterpret_m64_s8(res); +} + +// Negate packed 16-bit integers in a when the corresponding signed +// 16-bit integer in b is negative, and store the results in dst. +// Element in dst are zeroed out when the corresponding element +// in b is zero. +// +// for i in 0..7 +// if b[i] < 0 +// r[i] := -a[i] +// else if b[i] == 0 +// r[i] := 0 +// else +// r[i] := a[i] +// fi +// done +FORCE_INLINE __m128i _mm_sign_epi16(__m128i _a, __m128i _b) +{ + int16x8_t a = vreinterpretq_s16_m128i(_a); + int16x8_t b = vreinterpretq_s16_m128i(_b); + + // signed shift right: faster than vclt + // (b < 0) ? 0xFFFF : 0 + uint16x8_t ltMask = vreinterpretq_u16_s16(vshrq_n_s16(b, 15)); + // (b == 0) ? 0xFFFF : 0 +#if defined(__aarch64__) + int16x8_t zeroMask = vreinterpretq_s16_u16(vceqzq_s16(b)); +#else + int16x8_t zeroMask = vreinterpretq_s16_u16(vceqq_s16(b, vdupq_n_s16(0))); +#endif + + // bitwise select either a or negative 'a' (vnegq_s16(a) equals to negative + // 'a') based on ltMask + int16x8_t masked = vbslq_s16(ltMask, vnegq_s16(a), a); + // res = masked & (~zeroMask) + int16x8_t res = vbicq_s16(masked, zeroMask); + return vreinterpretq_m128i_s16(res); +} + +// Negate packed 32-bit integers in a when the corresponding signed +// 32-bit integer in b is negative, and store the results in dst. +// Element in dst are zeroed out when the corresponding element +// in b is zero. +// +// for i in 0..3 +// if b[i] < 0 +// r[i] := -a[i] +// else if b[i] == 0 +// r[i] := 0 +// else +// r[i] := a[i] +// fi +// done +FORCE_INLINE __m128i _mm_sign_epi32(__m128i _a, __m128i _b) +{ + int32x4_t a = vreinterpretq_s32_m128i(_a); + int32x4_t b = vreinterpretq_s32_m128i(_b); + + // signed shift right: faster than vclt + // (b < 0) ? 0xFFFFFFFF : 0 + uint32x4_t ltMask = vreinterpretq_u32_s32(vshrq_n_s32(b, 31)); + + // (b == 0) ? 0xFFFFFFFF : 0 +#if defined(__aarch64__) + int32x4_t zeroMask = vreinterpretq_s32_u32(vceqzq_s32(b)); +#else + int32x4_t zeroMask = vreinterpretq_s32_u32(vceqq_s32(b, vdupq_n_s32(0))); +#endif + + // bitwise select either a or negative 'a' (vnegq_s32(a) equals to negative + // 'a') based on ltMask + int32x4_t masked = vbslq_s32(ltMask, vnegq_s32(a), a); + // res = masked & (~zeroMask) + int32x4_t res = vbicq_s32(masked, zeroMask); + return vreinterpretq_m128i_s32(res); +} + +// Negate packed 8-bit integers in a when the corresponding signed +// 8-bit integer in b is negative, and store the results in dst. +// Element in dst are zeroed out when the corresponding element +// in b is zero. +// +// for i in 0..15 +// if b[i] < 0 +// r[i] := -a[i] +// else if b[i] == 0 +// r[i] := 0 +// else +// r[i] := a[i] +// fi +// done +FORCE_INLINE __m128i _mm_sign_epi8(__m128i _a, __m128i _b) +{ + int8x16_t a = vreinterpretq_s8_m128i(_a); + int8x16_t b = vreinterpretq_s8_m128i(_b); + + // signed shift right: faster than vclt + // (b < 0) ? 0xFF : 0 + uint8x16_t ltMask = vreinterpretq_u8_s8(vshrq_n_s8(b, 7)); + + // (b == 0) ? 0xFF : 0 +#if defined(__aarch64__) + int8x16_t zeroMask = vreinterpretq_s8_u8(vceqzq_s8(b)); +#else + int8x16_t zeroMask = vreinterpretq_s8_u8(vceqq_s8(b, vdupq_n_s8(0))); +#endif + + // bitwise select either a or negative 'a' (vnegq_s8(a) return negative 'a') + // based on ltMask + int8x16_t masked = vbslq_s8(ltMask, vnegq_s8(a), a); + // res = masked & (~zeroMask) + int8x16_t res = vbicq_s8(masked, zeroMask); + + return vreinterpretq_m128i_s8(res); +} + +// Negate packed 16-bit integers in a when the corresponding signed 16-bit +// integer in b is negative, and store the results in dst. Element in dst are +// zeroed out when the corresponding element in b is zero. +// +// FOR j := 0 to 3 +// i := j*16 +// IF b[i+15:i] < 0 +// dst[i+15:i] := -(a[i+15:i]) +// ELSE IF b[i+15:i] == 0 +// dst[i+15:i] := 0 +// ELSE +// dst[i+15:i] := a[i+15:i] +// FI +// ENDFOR +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sign_pi16 +FORCE_INLINE __m64 _mm_sign_pi16(__m64 _a, __m64 _b) +{ + int16x4_t a = vreinterpret_s16_m64(_a); + int16x4_t b = vreinterpret_s16_m64(_b); + + // signed shift right: faster than vclt + // (b < 0) ? 0xFFFF : 0 + uint16x4_t ltMask = vreinterpret_u16_s16(vshr_n_s16(b, 15)); + + // (b == 0) ? 0xFFFF : 0 +#if defined(__aarch64__) + int16x4_t zeroMask = vreinterpret_s16_u16(vceqz_s16(b)); +#else + int16x4_t zeroMask = vreinterpret_s16_u16(vceq_s16(b, vdup_n_s16(0))); +#endif + + // bitwise select either a or negative 'a' (vneg_s16(a) return negative 'a') + // based on ltMask + int16x4_t masked = vbsl_s16(ltMask, vneg_s16(a), a); + // res = masked & (~zeroMask) + int16x4_t res = vbic_s16(masked, zeroMask); + + return vreinterpret_m64_s16(res); +} + +// Negate packed 32-bit integers in a when the corresponding signed 32-bit +// integer in b is negative, and store the results in dst. Element in dst are +// zeroed out when the corresponding element in b is zero. +// +// FOR j := 0 to 1 +// i := j*32 +// IF b[i+31:i] < 0 +// dst[i+31:i] := -(a[i+31:i]) +// ELSE IF b[i+31:i] == 0 +// dst[i+31:i] := 0 +// ELSE +// dst[i+31:i] := a[i+31:i] +// FI +// ENDFOR +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sign_pi32 +FORCE_INLINE __m64 _mm_sign_pi32(__m64 _a, __m64 _b) +{ + int32x2_t a = vreinterpret_s32_m64(_a); + int32x2_t b = vreinterpret_s32_m64(_b); + + // signed shift right: faster than vclt + // (b < 0) ? 0xFFFFFFFF : 0 + uint32x2_t ltMask = vreinterpret_u32_s32(vshr_n_s32(b, 31)); + + // (b == 0) ? 0xFFFFFFFF : 0 +#if defined(__aarch64__) + int32x2_t zeroMask = vreinterpret_s32_u32(vceqz_s32(b)); +#else + int32x2_t zeroMask = vreinterpret_s32_u32(vceq_s32(b, vdup_n_s32(0))); +#endif + + // bitwise select either a or negative 'a' (vneg_s32(a) return negative 'a') + // based on ltMask + int32x2_t masked = vbsl_s32(ltMask, vneg_s32(a), a); + // res = masked & (~zeroMask) + int32x2_t res = vbic_s32(masked, zeroMask); + + return vreinterpret_m64_s32(res); +} + +// Negate packed 8-bit integers in a when the corresponding signed 8-bit integer +// in b is negative, and store the results in dst. Element in dst are zeroed out +// when the corresponding element in b is zero. +// +// FOR j := 0 to 7 +// i := j*8 +// IF b[i+7:i] < 0 +// dst[i+7:i] := -(a[i+7:i]) +// ELSE IF b[i+7:i] == 0 +// dst[i+7:i] := 0 +// ELSE +// dst[i+7:i] := a[i+7:i] +// FI +// ENDFOR +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sign_pi8 +FORCE_INLINE __m64 _mm_sign_pi8(__m64 _a, __m64 _b) +{ + int8x8_t a = vreinterpret_s8_m64(_a); + int8x8_t b = vreinterpret_s8_m64(_b); + + // signed shift right: faster than vclt + // (b < 0) ? 0xFF : 0 + uint8x8_t ltMask = vreinterpret_u8_s8(vshr_n_s8(b, 7)); + + // (b == 0) ? 0xFF : 0 +#if defined(__aarch64__) + int8x8_t zeroMask = vreinterpret_s8_u8(vceqz_s8(b)); +#else + int8x8_t zeroMask = vreinterpret_s8_u8(vceq_s8(b, vdup_n_s8(0))); +#endif + + // bitwise select either a or negative 'a' (vneg_s8(a) return negative 'a') + // based on ltMask + int8x8_t masked = vbsl_s8(ltMask, vneg_s8(a), a); + // res = masked & (~zeroMask) + int8x8_t res = vbic_s8(masked, zeroMask); + + return vreinterpret_m64_s8(res); +} + +/* SSE4.1 */ + +// Blend packed 16-bit integers from a and b using control mask imm8, and store +// the results in dst. +// +// FOR j := 0 to 7 +// i := j*16 +// IF imm8[j] +// dst[i+15:i] := b[i+15:i] +// ELSE +// dst[i+15:i] := a[i+15:i] +// FI +// ENDFOR +// FORCE_INLINE __m128i _mm_blend_epi16(__m128i a, __m128i b, +// __constrange(0,255) int imm) +#define _mm_blend_epi16(a, b, imm) \ + __extension__({ \ + const uint16_t _mask[8] = {((imm) & (1 << 0)) ? (uint16_t) -1 : 0x0, \ + ((imm) & (1 << 1)) ? (uint16_t) -1 : 0x0, \ + ((imm) & (1 << 2)) ? (uint16_t) -1 : 0x0, \ + ((imm) & (1 << 3)) ? (uint16_t) -1 : 0x0, \ + ((imm) & (1 << 4)) ? (uint16_t) -1 : 0x0, \ + ((imm) & (1 << 5)) ? (uint16_t) -1 : 0x0, \ + ((imm) & (1 << 6)) ? (uint16_t) -1 : 0x0, \ + ((imm) & (1 << 7)) ? (uint16_t) -1 : 0x0}; \ + uint16x8_t _mask_vec = vld1q_u16(_mask); \ + uint16x8_t _a = vreinterpretq_u16_m128i(a); \ + uint16x8_t _b = vreinterpretq_u16_m128i(b); \ + vreinterpretq_m128i_u16(vbslq_u16(_mask_vec, _b, _a)); \ + }) + +// Blend packed double-precision (64-bit) floating-point elements from a and b +// using control mask imm8, and store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_blend_pd +#define _mm_blend_pd(a, b, imm) \ + __extension__({ \ + const uint64_t _mask[2] = { \ + ((imm) & (1 << 0)) ? ~UINT64_C(0) : UINT64_C(0), \ + ((imm) & (1 << 1)) ? ~UINT64_C(0) : UINT64_C(0)}; \ + uint64x2_t _mask_vec = vld1q_u64(_mask); \ + uint64x2_t _a = vreinterpretq_u64_m128d(a); \ + uint64x2_t _b = vreinterpretq_u64_m128d(b); \ + vreinterpretq_m128d_u64(vbslq_u64(_mask_vec, _b, _a)); \ + }) + +// Blend packed single-precision (32-bit) floating-point elements from a and b +// using mask, and store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_blend_ps +FORCE_INLINE __m128 _mm_blend_ps(__m128 _a, __m128 _b, const char imm8) +{ + const uint32_t ALIGN_STRUCT(16) + data[4] = {((imm8) & (1 << 0)) ? UINT32_MAX : 0, + ((imm8) & (1 << 1)) ? UINT32_MAX : 0, + ((imm8) & (1 << 2)) ? UINT32_MAX : 0, + ((imm8) & (1 << 3)) ? UINT32_MAX : 0}; + uint32x4_t mask = vld1q_u32(data); + float32x4_t a = vreinterpretq_f32_m128(_a); + float32x4_t b = vreinterpretq_f32_m128(_b); + return vreinterpretq_m128_f32(vbslq_f32(mask, b, a)); +} + +// Blend packed 8-bit integers from a and b using mask, and store the results in +// dst. +// +// FOR j := 0 to 15 +// i := j*8 +// IF mask[i+7] +// dst[i+7:i] := b[i+7:i] +// ELSE +// dst[i+7:i] := a[i+7:i] +// FI +// ENDFOR +FORCE_INLINE __m128i _mm_blendv_epi8(__m128i _a, __m128i _b, __m128i _mask) +{ + // Use a signed shift right to create a mask with the sign bit + uint8x16_t mask = + vreinterpretq_u8_s8(vshrq_n_s8(vreinterpretq_s8_m128i(_mask), 7)); + uint8x16_t a = vreinterpretq_u8_m128i(_a); + uint8x16_t b = vreinterpretq_u8_m128i(_b); + return vreinterpretq_m128i_u8(vbslq_u8(mask, b, a)); +} + +// Blend packed double-precision (64-bit) floating-point elements from a and b +// using mask, and store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_blendv_pd +FORCE_INLINE __m128d _mm_blendv_pd(__m128d _a, __m128d _b, __m128d _mask) +{ + uint64x2_t mask = + vreinterpretq_u64_s64(vshrq_n_s64(vreinterpretq_s64_m128d(_mask), 63)); +#if defined(__aarch64__) + float64x2_t a = vreinterpretq_f64_m128d(_a); + float64x2_t b = vreinterpretq_f64_m128d(_b); + return vreinterpretq_m128d_f64(vbslq_f64(mask, b, a)); +#else + uint64x2_t a = vreinterpretq_u64_m128d(_a); + uint64x2_t b = vreinterpretq_u64_m128d(_b); + return vreinterpretq_m128d_u64(vbslq_u64(mask, b, a)); +#endif +} + +// Blend packed single-precision (32-bit) floating-point elements from a and b +// using mask, and store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_blendv_ps +FORCE_INLINE __m128 _mm_blendv_ps(__m128 _a, __m128 _b, __m128 _mask) +{ + // Use a signed shift right to create a mask with the sign bit + uint32x4_t mask = + vreinterpretq_u32_s32(vshrq_n_s32(vreinterpretq_s32_m128(_mask), 31)); + float32x4_t a = vreinterpretq_f32_m128(_a); + float32x4_t b = vreinterpretq_f32_m128(_b); + return vreinterpretq_m128_f32(vbslq_f32(mask, b, a)); +} + +// Round the packed double-precision (64-bit) floating-point elements in a up +// to an integer value, and store the results as packed double-precision +// floating-point elements in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_ceil_pd +FORCE_INLINE __m128d _mm_ceil_pd(__m128d a) +{ +#if defined(__aarch64__) + return vreinterpretq_m128d_f64(vrndpq_f64(vreinterpretq_f64_m128d(a))); +#else + double *f = (double *) &a; + return _mm_set_pd(ceil(f[1]), ceil(f[0])); +#endif +} + +// Round the packed single-precision (32-bit) floating-point elements in a up to +// an integer value, and store the results as packed single-precision +// floating-point elements in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_ceil_ps +FORCE_INLINE __m128 _mm_ceil_ps(__m128 a) +{ +#if defined(__aarch64__) || defined(__ARM_FEATURE_DIRECTED_ROUNDING) + return vreinterpretq_m128_f32(vrndpq_f32(vreinterpretq_f32_m128(a))); +#else + float *f = (float *) &a; + return _mm_set_ps(ceilf(f[3]), ceilf(f[2]), ceilf(f[1]), ceilf(f[0])); +#endif +} + +// Round the lower double-precision (64-bit) floating-point element in b up to +// an integer value, store the result as a double-precision floating-point +// element in the lower element of dst, and copy the upper element from a to the +// upper element of dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_ceil_sd +FORCE_INLINE __m128d _mm_ceil_sd(__m128d a, __m128d b) +{ + return _mm_move_sd(a, _mm_ceil_pd(b)); +} + +// Round the lower single-precision (32-bit) floating-point element in b up to +// an integer value, store the result as a single-precision floating-point +// element in the lower element of dst, and copy the upper 3 packed elements +// from a to the upper elements of dst. +// +// dst[31:0] := CEIL(b[31:0]) +// dst[127:32] := a[127:32] +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_ceil_ss +FORCE_INLINE __m128 _mm_ceil_ss(__m128 a, __m128 b) +{ + return _mm_move_ss(a, _mm_ceil_ps(b)); +} + +// Compare packed 64-bit integers in a and b for equality, and store the results +// in dst +FORCE_INLINE __m128i _mm_cmpeq_epi64(__m128i a, __m128i b) +{ +#if defined(__aarch64__) + return vreinterpretq_m128i_u64( + vceqq_u64(vreinterpretq_u64_m128i(a), vreinterpretq_u64_m128i(b))); +#else + // ARMv7 lacks vceqq_u64 + // (a == b) -> (a_lo == b_lo) && (a_hi == b_hi) + uint32x4_t cmp = + vceqq_u32(vreinterpretq_u32_m128i(a), vreinterpretq_u32_m128i(b)); + uint32x4_t swapped = vrev64q_u32(cmp); + return vreinterpretq_m128i_u32(vandq_u32(cmp, swapped)); +#endif +} + +// Converts the four signed 16-bit integers in the lower 64 bits to four signed +// 32-bit integers. +FORCE_INLINE __m128i _mm_cvtepi16_epi32(__m128i a) +{ + return vreinterpretq_m128i_s32( + vmovl_s16(vget_low_s16(vreinterpretq_s16_m128i(a)))); +} + +// Converts the two signed 16-bit integers in the lower 32 bits two signed +// 32-bit integers. +FORCE_INLINE __m128i _mm_cvtepi16_epi64(__m128i a) +{ + int16x8_t s16x8 = vreinterpretq_s16_m128i(a); /* xxxx xxxx xxxx 0B0A */ + int32x4_t s32x4 = vmovl_s16(vget_low_s16(s16x8)); /* 000x 000x 000B 000A */ + int64x2_t s64x2 = vmovl_s32(vget_low_s32(s32x4)); /* 0000 000B 0000 000A */ + return vreinterpretq_m128i_s64(s64x2); +} + +// Converts the two signed 32-bit integers in the lower 64 bits to two signed +// 64-bit integers. +FORCE_INLINE __m128i _mm_cvtepi32_epi64(__m128i a) +{ + return vreinterpretq_m128i_s64( + vmovl_s32(vget_low_s32(vreinterpretq_s32_m128i(a)))); +} + +// Converts the four unsigned 8-bit integers in the lower 16 bits to four +// unsigned 32-bit integers. +FORCE_INLINE __m128i _mm_cvtepi8_epi16(__m128i a) +{ + int8x16_t s8x16 = vreinterpretq_s8_m128i(a); /* xxxx xxxx xxxx DCBA */ + int16x8_t s16x8 = vmovl_s8(vget_low_s8(s8x16)); /* 0x0x 0x0x 0D0C 0B0A */ + return vreinterpretq_m128i_s16(s16x8); +} + +// Converts the four unsigned 8-bit integers in the lower 32 bits to four +// unsigned 32-bit integers. +FORCE_INLINE __m128i _mm_cvtepi8_epi32(__m128i a) +{ + int8x16_t s8x16 = vreinterpretq_s8_m128i(a); /* xxxx xxxx xxxx DCBA */ + int16x8_t s16x8 = vmovl_s8(vget_low_s8(s8x16)); /* 0x0x 0x0x 0D0C 0B0A */ + int32x4_t s32x4 = vmovl_s16(vget_low_s16(s16x8)); /* 000D 000C 000B 000A */ + return vreinterpretq_m128i_s32(s32x4); +} + +// Converts the two signed 8-bit integers in the lower 32 bits to four +// signed 64-bit integers. +FORCE_INLINE __m128i _mm_cvtepi8_epi64(__m128i a) +{ + int8x16_t s8x16 = vreinterpretq_s8_m128i(a); /* xxxx xxxx xxxx xxBA */ + int16x8_t s16x8 = vmovl_s8(vget_low_s8(s8x16)); /* 0x0x 0x0x 0x0x 0B0A */ + int32x4_t s32x4 = vmovl_s16(vget_low_s16(s16x8)); /* 000x 000x 000B 000A */ + int64x2_t s64x2 = vmovl_s32(vget_low_s32(s32x4)); /* 0000 000B 0000 000A */ + return vreinterpretq_m128i_s64(s64x2); +} + +// Converts the four unsigned 16-bit integers in the lower 64 bits to four +// unsigned 32-bit integers. +FORCE_INLINE __m128i _mm_cvtepu16_epi32(__m128i a) +{ + return vreinterpretq_m128i_u32( + vmovl_u16(vget_low_u16(vreinterpretq_u16_m128i(a)))); +} + +// Converts the two unsigned 16-bit integers in the lower 32 bits to two +// unsigned 64-bit integers. +FORCE_INLINE __m128i _mm_cvtepu16_epi64(__m128i a) +{ + uint16x8_t u16x8 = vreinterpretq_u16_m128i(a); /* xxxx xxxx xxxx 0B0A */ + uint32x4_t u32x4 = vmovl_u16(vget_low_u16(u16x8)); /* 000x 000x 000B 000A */ + uint64x2_t u64x2 = vmovl_u32(vget_low_u32(u32x4)); /* 0000 000B 0000 000A */ + return vreinterpretq_m128i_u64(u64x2); +} + +// Converts the two unsigned 32-bit integers in the lower 64 bits to two +// unsigned 64-bit integers. +FORCE_INLINE __m128i _mm_cvtepu32_epi64(__m128i a) +{ + return vreinterpretq_m128i_u64( + vmovl_u32(vget_low_u32(vreinterpretq_u32_m128i(a)))); +} + +// Zero extend packed unsigned 8-bit integers in a to packed 16-bit integers, +// and store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepu8_epi16 +FORCE_INLINE __m128i _mm_cvtepu8_epi16(__m128i a) +{ + uint8x16_t u8x16 = vreinterpretq_u8_m128i(a); /* xxxx xxxx HGFE DCBA */ + uint16x8_t u16x8 = vmovl_u8(vget_low_u8(u8x16)); /* 0H0G 0F0E 0D0C 0B0A */ + return vreinterpretq_m128i_u16(u16x8); +} + +// Converts the four unsigned 8-bit integers in the lower 32 bits to four +// unsigned 32-bit integers. +// https://msdn.microsoft.com/en-us/library/bb531467%28v=vs.100%29.aspx +FORCE_INLINE __m128i _mm_cvtepu8_epi32(__m128i a) +{ + uint8x16_t u8x16 = vreinterpretq_u8_m128i(a); /* xxxx xxxx xxxx DCBA */ + uint16x8_t u16x8 = vmovl_u8(vget_low_u8(u8x16)); /* 0x0x 0x0x 0D0C 0B0A */ + uint32x4_t u32x4 = vmovl_u16(vget_low_u16(u16x8)); /* 000D 000C 000B 000A */ + return vreinterpretq_m128i_u32(u32x4); +} + +// Converts the two unsigned 8-bit integers in the lower 16 bits to two +// unsigned 64-bit integers. +FORCE_INLINE __m128i _mm_cvtepu8_epi64(__m128i a) +{ + uint8x16_t u8x16 = vreinterpretq_u8_m128i(a); /* xxxx xxxx xxxx xxBA */ + uint16x8_t u16x8 = vmovl_u8(vget_low_u8(u8x16)); /* 0x0x 0x0x 0x0x 0B0A */ + uint32x4_t u32x4 = vmovl_u16(vget_low_u16(u16x8)); /* 000x 000x 000B 000A */ + uint64x2_t u64x2 = vmovl_u32(vget_low_u32(u32x4)); /* 0000 000B 0000 000A */ + return vreinterpretq_m128i_u64(u64x2); +} + +// Conditionally multiply the packed double-precision (64-bit) floating-point +// elements in a and b using the high 4 bits in imm8, sum the four products, and +// conditionally store the sum in dst using the low 4 bits of imm8. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_dp_pd +FORCE_INLINE __m128d _mm_dp_pd(__m128d a, __m128d b, const int imm) +{ + // Generate mask value from constant immediate bit value + const int64_t bit0Mask = imm & 0x01 ? UINT64_MAX : 0; + const int64_t bit1Mask = imm & 0x02 ? UINT64_MAX : 0; +#if !SSE2NEON_PRECISE_DP + const int64_t bit4Mask = imm & 0x10 ? UINT64_MAX : 0; + const int64_t bit5Mask = imm & 0x20 ? UINT64_MAX : 0; +#endif + // Conditional multiplication +#if !SSE2NEON_PRECISE_DP + __m128d mul = _mm_mul_pd(a, b); + const __m128d mulMask = + _mm_castsi128_pd(_mm_set_epi64x(bit5Mask, bit4Mask)); + __m128d tmp = _mm_and_pd(mul, mulMask); +#else +#if defined(__aarch64__) + double d0 = (imm & 0x10) ? vgetq_lane_f64(vreinterpretq_f64_m128d(a), 0) * + vgetq_lane_f64(vreinterpretq_f64_m128d(b), 0) + : 0; + double d1 = (imm & 0x20) ? vgetq_lane_f64(vreinterpretq_f64_m128d(a), 1) * + vgetq_lane_f64(vreinterpretq_f64_m128d(b), 1) + : 0; +#else + double d0 = (imm & 0x10) ? ((double *) &a)[0] * ((double *) &b)[0] : 0; + double d1 = (imm & 0x20) ? ((double *) &a)[1] * ((double *) &b)[1] : 0; +#endif + __m128d tmp = _mm_set_pd(d1, d0); +#endif + // Sum the products +#if defined(__aarch64__) + double sum = vpaddd_f64(vreinterpretq_f64_m128d(tmp)); +#else + double sum = *((double *) &tmp) + *(((double *) &tmp) + 1); +#endif + // Conditionally store the sum + const __m128d sumMask = + _mm_castsi128_pd(_mm_set_epi64x(bit1Mask, bit0Mask)); + __m128d res = _mm_and_pd(_mm_set_pd1(sum), sumMask); + return res; +} + +// Conditionally multiply the packed single-precision (32-bit) floating-point +// elements in a and b using the high 4 bits in imm8, sum the four products, +// and conditionally store the sum in dst using the low 4 bits of imm. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_dp_ps +FORCE_INLINE __m128 _mm_dp_ps(__m128 a, __m128 b, const int imm) +{ +#if defined(__aarch64__) + /* shortcuts */ + if (imm == 0xFF) { + return _mm_set1_ps(vaddvq_f32(_mm_mul_ps(a, b))); + } + if (imm == 0x7F) { + float32x4_t m = _mm_mul_ps(a, b); + m[3] = 0; + return _mm_set1_ps(vaddvq_f32(m)); + } +#endif + + float s = 0, c = 0; + float32x4_t f32a = vreinterpretq_f32_m128(a); + float32x4_t f32b = vreinterpretq_f32_m128(b); + + /* To improve the accuracy of floating-point summation, Kahan algorithm + * is used for each operation. + */ + if (imm & (1 << 4)) + _sse2neon_kadd_f32(&s, &c, f32a[0] * f32b[0]); + if (imm & (1 << 5)) + _sse2neon_kadd_f32(&s, &c, f32a[1] * f32b[1]); + if (imm & (1 << 6)) + _sse2neon_kadd_f32(&s, &c, f32a[2] * f32b[2]); + if (imm & (1 << 7)) + _sse2neon_kadd_f32(&s, &c, f32a[3] * f32b[3]); + s += c; + + float32x4_t res = { + (imm & 0x1) ? s : 0, + (imm & 0x2) ? s : 0, + (imm & 0x4) ? s : 0, + (imm & 0x8) ? s : 0, + }; + return vreinterpretq_m128_f32(res); +} + +// Extracts the selected signed or unsigned 32-bit integer from a and zero +// extends. +// FORCE_INLINE int _mm_extract_epi32(__m128i a, __constrange(0,4) int imm) +#define _mm_extract_epi32(a, imm) \ + vgetq_lane_s32(vreinterpretq_s32_m128i(a), (imm)) + +// Extracts the selected signed or unsigned 64-bit integer from a and zero +// extends. +// FORCE_INLINE __int64 _mm_extract_epi64(__m128i a, __constrange(0,2) int imm) +#define _mm_extract_epi64(a, imm) \ + vgetq_lane_s64(vreinterpretq_s64_m128i(a), (imm)) + +// Extracts the selected signed or unsigned 8-bit integer from a and zero +// extends. +// FORCE_INLINE int _mm_extract_epi8(__m128i a, __constrange(0,16) int imm) +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_extract_epi8 +#define _mm_extract_epi8(a, imm) vgetq_lane_u8(vreinterpretq_u8_m128i(a), (imm)) + +// Extracts the selected single-precision (32-bit) floating-point from a. +// FORCE_INLINE int _mm_extract_ps(__m128 a, __constrange(0,4) int imm) +#define _mm_extract_ps(a, imm) vgetq_lane_s32(vreinterpretq_s32_m128(a), (imm)) + +// Round the packed double-precision (64-bit) floating-point elements in a down +// to an integer value, and store the results as packed double-precision +// floating-point elements in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_floor_pd +FORCE_INLINE __m128d _mm_floor_pd(__m128d a) +{ +#if defined(__aarch64__) + return vreinterpretq_m128d_f64(vrndmq_f64(vreinterpretq_f64_m128d(a))); +#else + double *f = (double *) &a; + return _mm_set_pd(floor(f[1]), floor(f[0])); +#endif +} + +// Round the packed single-precision (32-bit) floating-point elements in a down +// to an integer value, and store the results as packed single-precision +// floating-point elements in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_floor_ps +FORCE_INLINE __m128 _mm_floor_ps(__m128 a) +{ +#if defined(__aarch64__) || defined(__ARM_FEATURE_DIRECTED_ROUNDING) + return vreinterpretq_m128_f32(vrndmq_f32(vreinterpretq_f32_m128(a))); +#else + float *f = (float *) &a; + return _mm_set_ps(floorf(f[3]), floorf(f[2]), floorf(f[1]), floorf(f[0])); +#endif +} + +// Round the lower double-precision (64-bit) floating-point element in b down to +// an integer value, store the result as a double-precision floating-point +// element in the lower element of dst, and copy the upper element from a to the +// upper element of dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_floor_sd +FORCE_INLINE __m128d _mm_floor_sd(__m128d a, __m128d b) +{ + return _mm_move_sd(a, _mm_floor_pd(b)); +} + +// Round the lower single-precision (32-bit) floating-point element in b down to +// an integer value, store the result as a single-precision floating-point +// element in the lower element of dst, and copy the upper 3 packed elements +// from a to the upper elements of dst. +// +// dst[31:0] := FLOOR(b[31:0]) +// dst[127:32] := a[127:32] +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_floor_ss +FORCE_INLINE __m128 _mm_floor_ss(__m128 a, __m128 b) +{ + return _mm_move_ss(a, _mm_floor_ps(b)); +} + +// Inserts the least significant 32 bits of b into the selected 32-bit integer +// of a. +// FORCE_INLINE __m128i _mm_insert_epi32(__m128i a, int b, +// __constrange(0,4) int imm) +#define _mm_insert_epi32(a, b, imm) \ + __extension__({ \ + vreinterpretq_m128i_s32( \ + vsetq_lane_s32((b), vreinterpretq_s32_m128i(a), (imm))); \ + }) + +// Inserts the least significant 64 bits of b into the selected 64-bit integer +// of a. +// FORCE_INLINE __m128i _mm_insert_epi64(__m128i a, __int64 b, +// __constrange(0,2) int imm) +#define _mm_insert_epi64(a, b, imm) \ + __extension__({ \ + vreinterpretq_m128i_s64( \ + vsetq_lane_s64((b), vreinterpretq_s64_m128i(a), (imm))); \ + }) + +// Inserts the least significant 8 bits of b into the selected 8-bit integer +// of a. +// FORCE_INLINE __m128i _mm_insert_epi8(__m128i a, int b, +// __constrange(0,16) int imm) +#define _mm_insert_epi8(a, b, imm) \ + __extension__({ \ + vreinterpretq_m128i_s8( \ + vsetq_lane_s8((b), vreinterpretq_s8_m128i(a), (imm))); \ + }) + +// Copy a to tmp, then insert a single-precision (32-bit) floating-point +// element from b into tmp using the control in imm8. Store tmp to dst using +// the mask in imm8 (elements are zeroed out when the corresponding bit is set). +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=insert_ps +#define _mm_insert_ps(a, b, imm8) \ + __extension__({ \ + float32x4_t tmp1 = \ + vsetq_lane_f32(vgetq_lane_f32(b, (imm8 >> 6) & 0x3), \ + vreinterpretq_f32_m128(a), 0); \ + float32x4_t tmp2 = \ + vsetq_lane_f32(vgetq_lane_f32(tmp1, 0), vreinterpretq_f32_m128(a), \ + ((imm8 >> 4) & 0x3)); \ + const uint32_t data[4] = {((imm8) & (1 << 0)) ? UINT32_MAX : 0, \ + ((imm8) & (1 << 1)) ? UINT32_MAX : 0, \ + ((imm8) & (1 << 2)) ? UINT32_MAX : 0, \ + ((imm8) & (1 << 3)) ? UINT32_MAX : 0}; \ + uint32x4_t mask = vld1q_u32(data); \ + float32x4_t all_zeros = vdupq_n_f32(0); \ + \ + vreinterpretq_m128_f32( \ + vbslq_f32(mask, all_zeros, vreinterpretq_f32_m128(tmp2))); \ + }) + +// epi versions of min/max +// Computes the pariwise maximums of the four signed 32-bit integer values of a +// and b. +// +// A 128-bit parameter that can be defined with the following equations: +// r0 := (a0 > b0) ? a0 : b0 +// r1 := (a1 > b1) ? a1 : b1 +// r2 := (a2 > b2) ? a2 : b2 +// r3 := (a3 > b3) ? a3 : b3 +// +// https://msdn.microsoft.com/en-us/library/vstudio/bb514055(v=vs.100).aspx +FORCE_INLINE __m128i _mm_max_epi32(__m128i a, __m128i b) +{ + return vreinterpretq_m128i_s32( + vmaxq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b))); +} + +// Compare packed signed 8-bit integers in a and b, and store packed maximum +// values in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_epi8 +FORCE_INLINE __m128i _mm_max_epi8(__m128i a, __m128i b) +{ + return vreinterpretq_m128i_s8( + vmaxq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b))); +} + +// Compare packed unsigned 16-bit integers in a and b, and store packed maximum +// values in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_epu16 +FORCE_INLINE __m128i _mm_max_epu16(__m128i a, __m128i b) +{ + return vreinterpretq_m128i_u16( + vmaxq_u16(vreinterpretq_u16_m128i(a), vreinterpretq_u16_m128i(b))); +} + +// Compare packed unsigned 32-bit integers in a and b, and store packed maximum +// values in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_epu32 +FORCE_INLINE __m128i _mm_max_epu32(__m128i a, __m128i b) +{ + return vreinterpretq_m128i_u32( + vmaxq_u32(vreinterpretq_u32_m128i(a), vreinterpretq_u32_m128i(b))); +} + +// Computes the pariwise minima of the four signed 32-bit integer values of a +// and b. +// +// A 128-bit parameter that can be defined with the following equations: +// r0 := (a0 < b0) ? a0 : b0 +// r1 := (a1 < b1) ? a1 : b1 +// r2 := (a2 < b2) ? a2 : b2 +// r3 := (a3 < b3) ? a3 : b3 +// +// https://msdn.microsoft.com/en-us/library/vstudio/bb531476(v=vs.100).aspx +FORCE_INLINE __m128i _mm_min_epi32(__m128i a, __m128i b) +{ + return vreinterpretq_m128i_s32( + vminq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b))); +} + +// Compare packed signed 8-bit integers in a and b, and store packed minimum +// values in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_epi8 +FORCE_INLINE __m128i _mm_min_epi8(__m128i a, __m128i b) +{ + return vreinterpretq_m128i_s8( + vminq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b))); +} + +// Compare packed unsigned 16-bit integers in a and b, and store packed minimum +// values in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_epu16 +FORCE_INLINE __m128i _mm_min_epu16(__m128i a, __m128i b) +{ + return vreinterpretq_m128i_u16( + vminq_u16(vreinterpretq_u16_m128i(a), vreinterpretq_u16_m128i(b))); +} + +// Compare packed unsigned 32-bit integers in a and b, and store packed minimum +// values in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_epu32 +FORCE_INLINE __m128i _mm_min_epu32(__m128i a, __m128i b) +{ + return vreinterpretq_m128i_u32( + vminq_u32(vreinterpretq_u32_m128i(a), vreinterpretq_u32_m128i(b))); +} + +// Horizontally compute the minimum amongst the packed unsigned 16-bit integers +// in a, store the minimum and index in dst, and zero the remaining bits in dst. +// +// index[2:0] := 0 +// min[15:0] := a[15:0] +// FOR j := 0 to 7 +// i := j*16 +// IF a[i+15:i] < min[15:0] +// index[2:0] := j +// min[15:0] := a[i+15:i] +// FI +// ENDFOR +// dst[15:0] := min[15:0] +// dst[18:16] := index[2:0] +// dst[127:19] := 0 +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_minpos_epu16 +FORCE_INLINE __m128i _mm_minpos_epu16(__m128i a) +{ + __m128i dst; + uint16_t min, idx = 0; +#if defined(__aarch64__) + // Find the minimum value + min = vminvq_u16(vreinterpretq_u16_m128i(a)); + + // Get the index of the minimum value + static const uint16_t idxv[] = {0, 1, 2, 3, 4, 5, 6, 7}; + uint16x8_t minv = vdupq_n_u16(min); + uint16x8_t cmeq = vceqq_u16(minv, vreinterpretq_u16_m128i(a)); + idx = vminvq_u16(vornq_u16(vld1q_u16(idxv), cmeq)); +#else + // Find the minimum value + __m64 tmp; + tmp = vreinterpret_m64_u16( + vmin_u16(vget_low_u16(vreinterpretq_u16_m128i(a)), + vget_high_u16(vreinterpretq_u16_m128i(a)))); + tmp = vreinterpret_m64_u16( + vpmin_u16(vreinterpret_u16_m64(tmp), vreinterpret_u16_m64(tmp))); + tmp = vreinterpret_m64_u16( + vpmin_u16(vreinterpret_u16_m64(tmp), vreinterpret_u16_m64(tmp))); + min = vget_lane_u16(vreinterpret_u16_m64(tmp), 0); + // Get the index of the minimum value + int i; + for (i = 0; i < 8; i++) { + if (min == vgetq_lane_u16(vreinterpretq_u16_m128i(a), 0)) { + idx = (uint16_t) i; + break; + } + a = _mm_srli_si128(a, 2); + } +#endif + // Generate result + dst = _mm_setzero_si128(); + dst = vreinterpretq_m128i_u16( + vsetq_lane_u16(min, vreinterpretq_u16_m128i(dst), 0)); + dst = vreinterpretq_m128i_u16( + vsetq_lane_u16(idx, vreinterpretq_u16_m128i(dst), 1)); + return dst; +} + +// Compute the sum of absolute differences (SADs) of quadruplets of unsigned +// 8-bit integers in a compared to those in b, and store the 16-bit results in +// dst. Eight SADs are performed using one quadruplet from b and eight +// quadruplets from a. One quadruplet is selected from b starting at on the +// offset specified in imm8. Eight quadruplets are formed from sequential 8-bit +// integers selected from a starting at the offset specified in imm8. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mpsadbw_epu8 +FORCE_INLINE __m128i _mm_mpsadbw_epu8(__m128i a, __m128i b, const int imm) +{ + uint8x16_t _a, _b; + + switch (imm & 0x4) { + case 0: + // do nothing + _a = vreinterpretq_u8_m128i(a); + break; + case 4: + _a = vreinterpretq_u8_u32(vextq_u32(vreinterpretq_u32_m128i(a), + vreinterpretq_u32_m128i(a), 1)); + break; + default: +#if defined(__GNUC__) || defined(__clang__) + __builtin_unreachable(); +#endif + break; + } + + switch (imm & 0x3) { + case 0: + _b = vreinterpretq_u8_u32( + vdupq_n_u32(vgetq_lane_u32(vreinterpretq_u32_m128i(b), 0))); + break; + case 1: + _b = vreinterpretq_u8_u32( + vdupq_n_u32(vgetq_lane_u32(vreinterpretq_u32_m128i(b), 1))); + break; + case 2: + _b = vreinterpretq_u8_u32( + vdupq_n_u32(vgetq_lane_u32(vreinterpretq_u32_m128i(b), 2))); + break; + case 3: + _b = vreinterpretq_u8_u32( + vdupq_n_u32(vgetq_lane_u32(vreinterpretq_u32_m128i(b), 3))); + break; + default: +#if defined(__GNUC__) || defined(__clang__) + __builtin_unreachable(); +#endif + break; + } + + int16x8_t c04, c15, c26, c37; + uint8x8_t low_b = vget_low_u8(_b); + c04 = vreinterpretq_s16_u16(vabdl_u8(vget_low_u8(_a), low_b)); + uint8x16_t _a_1 = vextq_u8(_a, _a, 1); + c15 = vreinterpretq_s16_u16(vabdl_u8(vget_low_u8(_a_1), low_b)); + uint8x16_t _a_2 = vextq_u8(_a, _a, 2); + c26 = vreinterpretq_s16_u16(vabdl_u8(vget_low_u8(_a_2), low_b)); + uint8x16_t _a_3 = vextq_u8(_a, _a, 3); + c37 = vreinterpretq_s16_u16(vabdl_u8(vget_low_u8(_a_3), low_b)); +#if defined(__aarch64__) + // |0|4|2|6| + c04 = vpaddq_s16(c04, c26); + // |1|5|3|7| + c15 = vpaddq_s16(c15, c37); + + int32x4_t trn1_c = + vtrn1q_s32(vreinterpretq_s32_s16(c04), vreinterpretq_s32_s16(c15)); + int32x4_t trn2_c = + vtrn2q_s32(vreinterpretq_s32_s16(c04), vreinterpretq_s32_s16(c15)); + return vreinterpretq_m128i_s16(vpaddq_s16(vreinterpretq_s16_s32(trn1_c), + vreinterpretq_s16_s32(trn2_c))); +#else + int16x4_t c01, c23, c45, c67; + c01 = vpadd_s16(vget_low_s16(c04), vget_low_s16(c15)); + c23 = vpadd_s16(vget_low_s16(c26), vget_low_s16(c37)); + c45 = vpadd_s16(vget_high_s16(c04), vget_high_s16(c15)); + c67 = vpadd_s16(vget_high_s16(c26), vget_high_s16(c37)); + + return vreinterpretq_m128i_s16( + vcombine_s16(vpadd_s16(c01, c23), vpadd_s16(c45, c67))); +#endif +} + +// Multiply the low signed 32-bit integers from each packed 64-bit element in +// a and b, and store the signed 64-bit results in dst. +// +// r0 := (int64_t)(int32_t)a0 * (int64_t)(int32_t)b0 +// r1 := (int64_t)(int32_t)a2 * (int64_t)(int32_t)b2 +FORCE_INLINE __m128i _mm_mul_epi32(__m128i a, __m128i b) +{ + // vmull_s32 upcasts instead of masking, so we downcast. + int32x2_t a_lo = vmovn_s64(vreinterpretq_s64_m128i(a)); + int32x2_t b_lo = vmovn_s64(vreinterpretq_s64_m128i(b)); + return vreinterpretq_m128i_s64(vmull_s32(a_lo, b_lo)); +} + +// Multiplies the 4 signed or unsigned 32-bit integers from a by the 4 signed or +// unsigned 32-bit integers from b. +// https://msdn.microsoft.com/en-us/library/vstudio/bb531409(v=vs.100).aspx +FORCE_INLINE __m128i _mm_mullo_epi32(__m128i a, __m128i b) +{ + return vreinterpretq_m128i_s32( + vmulq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b))); +} + +// Packs the 8 unsigned 32-bit integers from a and b into unsigned 16-bit +// integers and saturates. +// +// r0 := UnsignedSaturate(a0) +// r1 := UnsignedSaturate(a1) +// r2 := UnsignedSaturate(a2) +// r3 := UnsignedSaturate(a3) +// r4 := UnsignedSaturate(b0) +// r5 := UnsignedSaturate(b1) +// r6 := UnsignedSaturate(b2) +// r7 := UnsignedSaturate(b3) +FORCE_INLINE __m128i _mm_packus_epi32(__m128i a, __m128i b) +{ + return vreinterpretq_m128i_u16( + vcombine_u16(vqmovun_s32(vreinterpretq_s32_m128i(a)), + vqmovun_s32(vreinterpretq_s32_m128i(b)))); +} + +// Round the packed double-precision (64-bit) floating-point elements in a using +// the rounding parameter, and store the results as packed double-precision +// floating-point elements in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_round_pd +FORCE_INLINE __m128d _mm_round_pd(__m128d a, int rounding) +{ +#if defined(__aarch64__) + switch (rounding) { + case (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC): + return vreinterpretq_m128d_f64(vrndnq_f64(vreinterpretq_f64_m128d(a))); + case (_MM_FROUND_TO_NEG_INF | _MM_FROUND_NO_EXC): + return _mm_floor_pd(a); + case (_MM_FROUND_TO_POS_INF | _MM_FROUND_NO_EXC): + return _mm_ceil_pd(a); + case (_MM_FROUND_TO_ZERO | _MM_FROUND_NO_EXC): + return vreinterpretq_m128d_f64(vrndq_f64(vreinterpretq_f64_m128d(a))); + default: //_MM_FROUND_CUR_DIRECTION + return vreinterpretq_m128d_f64(vrndiq_f64(vreinterpretq_f64_m128d(a))); + } +#else + double *v_double = (double *) &a; + + if (rounding == (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC) || + (rounding == _MM_FROUND_CUR_DIRECTION && + _MM_GET_ROUNDING_MODE() == _MM_ROUND_NEAREST)) { + double res[2], tmp; + for (int i = 0; i < 2; i++) { + tmp = (v_double[i] < 0) ? -v_double[i] : v_double[i]; + double roundDown = floor(tmp); // Round down value + double roundUp = ceil(tmp); // Round up value + double diffDown = tmp - roundDown; + double diffUp = roundUp - tmp; + if (diffDown < diffUp) { + /* If it's closer to the round down value, then use it */ + res[i] = roundDown; + } else if (diffDown > diffUp) { + /* If it's closer to the round up value, then use it */ + res[i] = roundUp; + } else { + /* If it's equidistant between round up and round down value, + * pick the one which is an even number */ + double half = roundDown / 2; + if (half != floor(half)) { + /* If the round down value is odd, return the round up value + */ + res[i] = roundUp; + } else { + /* If the round up value is odd, return the round down value + */ + res[i] = roundDown; + } + } + res[i] = (v_double[i] < 0) ? -res[i] : res[i]; + } + return _mm_set_pd(res[1], res[0]); + } else if (rounding == (_MM_FROUND_TO_NEG_INF | _MM_FROUND_NO_EXC) || + (rounding == _MM_FROUND_CUR_DIRECTION && + _MM_GET_ROUNDING_MODE() == _MM_ROUND_DOWN)) { + return _mm_floor_pd(a); + } else if (rounding == (_MM_FROUND_TO_POS_INF | _MM_FROUND_NO_EXC) || + (rounding == _MM_FROUND_CUR_DIRECTION && + _MM_GET_ROUNDING_MODE() == _MM_ROUND_UP)) { + return _mm_ceil_pd(a); + } + return _mm_set_pd(v_double[1] > 0 ? floor(v_double[1]) : ceil(v_double[1]), + v_double[0] > 0 ? floor(v_double[0]) : ceil(v_double[0])); +#endif +} + +// Round the packed single-precision (32-bit) floating-point elements in a using +// the rounding parameter, and store the results as packed single-precision +// floating-point elements in dst. +// software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_round_ps +FORCE_INLINE __m128 _mm_round_ps(__m128 a, int rounding) +{ +#if defined(__aarch64__) || defined(__ARM_FEATURE_DIRECTED_ROUNDING) + switch (rounding) { + case (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC): + return vreinterpretq_m128_f32(vrndnq_f32(vreinterpretq_f32_m128(a))); + case (_MM_FROUND_TO_NEG_INF | _MM_FROUND_NO_EXC): + return _mm_floor_ps(a); + case (_MM_FROUND_TO_POS_INF | _MM_FROUND_NO_EXC): + return _mm_ceil_ps(a); + case (_MM_FROUND_TO_ZERO | _MM_FROUND_NO_EXC): + return vreinterpretq_m128_f32(vrndq_f32(vreinterpretq_f32_m128(a))); + default: //_MM_FROUND_CUR_DIRECTION + return vreinterpretq_m128_f32(vrndiq_f32(vreinterpretq_f32_m128(a))); + } +#else + float *v_float = (float *) &a; + + if (rounding == (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC) || + (rounding == _MM_FROUND_CUR_DIRECTION && + _MM_GET_ROUNDING_MODE() == _MM_ROUND_NEAREST)) { + uint32x4_t signmask = vdupq_n_u32(0x80000000); + float32x4_t half = vbslq_f32(signmask, vreinterpretq_f32_m128(a), + vdupq_n_f32(0.5f)); /* +/- 0.5 */ + int32x4_t r_normal = vcvtq_s32_f32(vaddq_f32( + vreinterpretq_f32_m128(a), half)); /* round to integer: [a + 0.5]*/ + int32x4_t r_trunc = vcvtq_s32_f32( + vreinterpretq_f32_m128(a)); /* truncate to integer: [a] */ + int32x4_t plusone = vreinterpretq_s32_u32(vshrq_n_u32( + vreinterpretq_u32_s32(vnegq_s32(r_trunc)), 31)); /* 1 or 0 */ + int32x4_t r_even = vbicq_s32(vaddq_s32(r_trunc, plusone), + vdupq_n_s32(1)); /* ([a] + {0,1}) & ~1 */ + float32x4_t delta = vsubq_f32( + vreinterpretq_f32_m128(a), + vcvtq_f32_s32(r_trunc)); /* compute delta: delta = (a - [a]) */ + uint32x4_t is_delta_half = + vceqq_f32(delta, half); /* delta == +/- 0.5 */ + return vreinterpretq_m128_f32( + vcvtq_f32_s32(vbslq_s32(is_delta_half, r_even, r_normal))); + } else if (rounding == (_MM_FROUND_TO_NEG_INF | _MM_FROUND_NO_EXC) || + (rounding == _MM_FROUND_CUR_DIRECTION && + _MM_GET_ROUNDING_MODE() == _MM_ROUND_DOWN)) { + return _mm_floor_ps(a); + } else if (rounding == (_MM_FROUND_TO_POS_INF | _MM_FROUND_NO_EXC) || + (rounding == _MM_FROUND_CUR_DIRECTION && + _MM_GET_ROUNDING_MODE() == _MM_ROUND_UP)) { + return _mm_ceil_ps(a); + } + return _mm_set_ps(v_float[3] > 0 ? floorf(v_float[3]) : ceilf(v_float[3]), + v_float[2] > 0 ? floorf(v_float[2]) : ceilf(v_float[2]), + v_float[1] > 0 ? floorf(v_float[1]) : ceilf(v_float[1]), + v_float[0] > 0 ? floorf(v_float[0]) : ceilf(v_float[0])); +#endif +} + +// Round the lower double-precision (64-bit) floating-point element in b using +// the rounding parameter, store the result as a double-precision floating-point +// element in the lower element of dst, and copy the upper element from a to the +// upper element of dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_round_sd +FORCE_INLINE __m128d _mm_round_sd(__m128d a, __m128d b, int rounding) +{ + return _mm_move_sd(a, _mm_round_pd(b, rounding)); +} + +// Round the lower single-precision (32-bit) floating-point element in b using +// the rounding parameter, store the result as a single-precision floating-point +// element in the lower element of dst, and copy the upper 3 packed elements +// from a to the upper elements of dst. Rounding is done according to the +// rounding[3:0] parameter, which can be one of: +// (_MM_FROUND_TO_NEAREST_INT |_MM_FROUND_NO_EXC) // round to nearest, and +// suppress exceptions +// (_MM_FROUND_TO_NEG_INF |_MM_FROUND_NO_EXC) // round down, and +// suppress exceptions +// (_MM_FROUND_TO_POS_INF |_MM_FROUND_NO_EXC) // round up, and suppress +// exceptions +// (_MM_FROUND_TO_ZERO |_MM_FROUND_NO_EXC) // truncate, and suppress +// exceptions _MM_FROUND_CUR_DIRECTION // use MXCSR.RC; see +// _MM_SET_ROUNDING_MODE +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_round_ss +FORCE_INLINE __m128 _mm_round_ss(__m128 a, __m128 b, int rounding) +{ + return _mm_move_ss(a, _mm_round_ps(b, rounding)); +} + +// Load 128-bits of integer data from memory into dst using a non-temporal +// memory hint. mem_addr must be aligned on a 16-byte boundary or a +// general-protection exception may be generated. +// +// dst[127:0] := MEM[mem_addr+127:mem_addr] +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_stream_load_si128 +FORCE_INLINE __m128i _mm_stream_load_si128(__m128i *p) +{ +#if __has_builtin(__builtin_nontemporal_store) + return __builtin_nontemporal_load(p); +#else + return vreinterpretq_m128i_s64(vld1q_s64((int64_t *) p)); +#endif +} + +// Compute the bitwise NOT of a and then AND with a 128-bit vector containing +// all 1's, and return 1 if the result is zero, otherwise return 0. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_test_all_ones +FORCE_INLINE int _mm_test_all_ones(__m128i a) +{ + return (uint64_t) (vgetq_lane_s64(a, 0) & vgetq_lane_s64(a, 1)) == + ~(uint64_t) 0; +} + +// Compute the bitwise AND of 128 bits (representing integer data) in a and +// mask, and return 1 if the result is zero, otherwise return 0. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_test_all_zeros +FORCE_INLINE int _mm_test_all_zeros(__m128i a, __m128i mask) +{ + int64x2_t a_and_mask = + vandq_s64(vreinterpretq_s64_m128i(a), vreinterpretq_s64_m128i(mask)); + return !(vgetq_lane_s64(a_and_mask, 0) | vgetq_lane_s64(a_and_mask, 1)); +} + +// Compute the bitwise AND of 128 bits (representing integer data) in a and +// mask, and set ZF to 1 if the result is zero, otherwise set ZF to 0. Compute +// the bitwise NOT of a and then AND with mask, and set CF to 1 if the result is +// zero, otherwise set CF to 0. Return 1 if both the ZF and CF values are zero, +// otherwise return 0. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=mm_test_mix_ones_zero +FORCE_INLINE int _mm_test_mix_ones_zeros(__m128i a, __m128i mask) +{ + uint64x2_t zf = + vandq_u64(vreinterpretq_u64_m128i(mask), vreinterpretq_u64_m128i(a)); + uint64x2_t cf = + vbicq_u64(vreinterpretq_u64_m128i(mask), vreinterpretq_u64_m128i(a)); + uint64x2_t result = vandq_u64(zf, cf); + return !(vgetq_lane_u64(result, 0) | vgetq_lane_u64(result, 1)); +} + +// Compute the bitwise AND of 128 bits (representing integer data) in a and b, +// and set ZF to 1 if the result is zero, otherwise set ZF to 0. Compute the +// bitwise NOT of a and then AND with b, and set CF to 1 if the result is zero, +// otherwise set CF to 0. Return the CF value. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_testc_si128 +FORCE_INLINE int _mm_testc_si128(__m128i a, __m128i b) +{ + int64x2_t s64 = + vbicq_s64(vreinterpretq_s64_m128i(b), vreinterpretq_s64_m128i(a)); + return !(vgetq_lane_s64(s64, 0) | vgetq_lane_s64(s64, 1)); +} + +// Compute the bitwise AND of 128 bits (representing integer data) in a and b, +// and set ZF to 1 if the result is zero, otherwise set ZF to 0. Compute the +// bitwise NOT of a and then AND with b, and set CF to 1 if the result is zero, +// otherwise set CF to 0. Return 1 if both the ZF and CF values are zero, +// otherwise return 0. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_testnzc_si128 +#define _mm_testnzc_si128(a, b) _mm_test_mix_ones_zeros(a, b) + +// Compute the bitwise AND of 128 bits (representing integer data) in a and b, +// and set ZF to 1 if the result is zero, otherwise set ZF to 0. Compute the +// bitwise NOT of a and then AND with b, and set CF to 1 if the result is zero, +// otherwise set CF to 0. Return the ZF value. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_testz_si128 +FORCE_INLINE int _mm_testz_si128(__m128i a, __m128i b) +{ + int64x2_t s64 = + vandq_s64(vreinterpretq_s64_m128i(a), vreinterpretq_s64_m128i(b)); + return !(vgetq_lane_s64(s64, 0) | vgetq_lane_s64(s64, 1)); +} + +/* SSE4.2 */ + +const static uint16_t _sse2neon_cmpestr_mask16b[8] ALIGN_STRUCT(16) = { + 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, +}; +const static uint8_t _sse2neon_cmpestr_mask8b[16] ALIGN_STRUCT(16) = { + 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, + 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, +}; + +/* specify the source data format */ +#define _SIDD_UBYTE_OPS 0x00 /* unsigned 8-bit characters */ +#define _SIDD_UWORD_OPS 0x01 /* unsigned 16-bit characters */ +#define _SIDD_SBYTE_OPS 0x02 /* signed 8-bit characters */ +#define _SIDD_SWORD_OPS 0x03 /* signed 16-bit characters */ + +/* specify the comparison operation */ +#define _SIDD_CMP_EQUAL_ANY 0x00 /* compare equal any: strchr */ +#define _SIDD_CMP_RANGES 0x04 /* compare ranges */ +#define _SIDD_CMP_EQUAL_EACH 0x08 /* compare equal each: strcmp */ +#define _SIDD_CMP_EQUAL_ORDERED 0x0C /* compare equal ordered */ + +/* specify the polarity */ +#define _SIDD_POSITIVE_POLARITY 0x00 +#define _SIDD_MASKED_POSITIVE_POLARITY 0x20 +#define _SIDD_NEGATIVE_POLARITY 0x10 /* negate results */ +#define _SIDD_MASKED_NEGATIVE_POLARITY \ + 0x30 /* negate results only before end of string */ + +/* specify the output selection in _mm_cmpXstri */ +#define _SIDD_LEAST_SIGNIFICANT 0x00 +#define _SIDD_MOST_SIGNIFICANT 0x40 + +/* specify the output selection in _mm_cmpXstrm */ +#define _SIDD_BIT_MASK 0x00 +#define _SIDD_UNIT_MASK 0x40 + +/* Pattern Matching for C macros. + * https://github.com/pfultz2/Cloak/wiki/C-Preprocessor-tricks,-tips,-and-idioms + */ + +/* catenate */ +#define SSE2NEON_PRIMITIVE_CAT(a, ...) a##__VA_ARGS__ +#define SSE2NEON_CAT(a, b) SSE2NEON_PRIMITIVE_CAT(a, b) + +#define SSE2NEON_IIF(c) SSE2NEON_PRIMITIVE_CAT(SSE2NEON_IIF_, c) +/* run the 2nd parameter */ +#define SSE2NEON_IIF_0(t, ...) __VA_ARGS__ +/* run the 1st parameter */ +#define SSE2NEON_IIF_1(t, ...) t + +#define SSE2NEON_COMPL(b) SSE2NEON_PRIMITIVE_CAT(SSE2NEON_COMPL_, b) +#define SSE2NEON_COMPL_0 1 +#define SSE2NEON_COMPL_1 0 + +#define SSE2NEON_DEC(x) SSE2NEON_PRIMITIVE_CAT(SSE2NEON_DEC_, x) +#define SSE2NEON_DEC_1 0 +#define SSE2NEON_DEC_2 1 +#define SSE2NEON_DEC_3 2 +#define SSE2NEON_DEC_4 3 +#define SSE2NEON_DEC_5 4 +#define SSE2NEON_DEC_6 5 +#define SSE2NEON_DEC_7 6 +#define SSE2NEON_DEC_8 7 +#define SSE2NEON_DEC_9 8 +#define SSE2NEON_DEC_10 9 +#define SSE2NEON_DEC_11 10 +#define SSE2NEON_DEC_12 11 +#define SSE2NEON_DEC_13 12 +#define SSE2NEON_DEC_14 13 +#define SSE2NEON_DEC_15 14 +#define SSE2NEON_DEC_16 15 + +/* detection */ +#define SSE2NEON_CHECK_N(x, n, ...) n +#define SSE2NEON_CHECK(...) SSE2NEON_CHECK_N(__VA_ARGS__, 0, ) +#define SSE2NEON_PROBE(x) x, 1, + +#define SSE2NEON_NOT(x) SSE2NEON_CHECK(SSE2NEON_PRIMITIVE_CAT(SSE2NEON_NOT_, x)) +#define SSE2NEON_NOT_0 SSE2NEON_PROBE(~) + +#define SSE2NEON_BOOL(x) SSE2NEON_COMPL(SSE2NEON_NOT(x)) +#define SSE2NEON_IF(c) SSE2NEON_IIF(SSE2NEON_BOOL(c)) + +#define SSE2NEON_EAT(...) +#define SSE2NEON_EXPAND(...) __VA_ARGS__ +#define SSE2NEON_WHEN(c) SSE2NEON_IF(c)(SSE2NEON_EXPAND, SSE2NEON_EAT) + +/* recursion */ +/* deferred expression */ +#define SSE2NEON_EMPTY() +#define SSE2NEON_DEFER(id) id SSE2NEON_EMPTY() +#define SSE2NEON_OBSTRUCT(...) __VA_ARGS__ SSE2NEON_DEFER(SSE2NEON_EMPTY)() +#define SSE2NEON_EXPAND(...) __VA_ARGS__ + +#define SSE2NEON_EVAL(...) \ + SSE2NEON_EVAL1(SSE2NEON_EVAL1(SSE2NEON_EVAL1(__VA_ARGS__))) +#define SSE2NEON_EVAL1(...) \ + SSE2NEON_EVAL2(SSE2NEON_EVAL2(SSE2NEON_EVAL2(__VA_ARGS__))) +#define SSE2NEON_EVAL2(...) \ + SSE2NEON_EVAL3(SSE2NEON_EVAL3(SSE2NEON_EVAL3(__VA_ARGS__))) +#define SSE2NEON_EVAL3(...) __VA_ARGS__ + +#define SSE2NEON_REPEAT(count, macro, ...) \ + SSE2NEON_WHEN(count) \ + (SSE2NEON_OBSTRUCT(SSE2NEON_REPEAT_INDIRECT)()( \ + SSE2NEON_DEC(count), macro, \ + __VA_ARGS__) SSE2NEON_OBSTRUCT(macro)(SSE2NEON_DEC(count), \ + __VA_ARGS__)) +#define SSE2NEON_REPEAT_INDIRECT() SSE2NEON_REPEAT + +#define SSE2NEON_SIZE_OF_byte 8 +#define SSE2NEON_NUMBER_OF_LANES_byte 16 +#define SSE2NEON_SIZE_OF_word 16 +#define SSE2NEON_NUMBER_OF_LANES_word 8 + +#define SSE2NEON_COMPARE_EQUAL_THEN_FILL_LANE(i, type) \ + mtx[i] = vreinterpretq_m128i_##type(vceqq_##type( \ + vdupq_n_##type(vgetq_lane_##type(vreinterpretq_##type##_m128i(b), i)), \ + vreinterpretq_##type##_m128i(a))); + +#define SSE2NEON_FILL_LANE(i, type) \ + vec_b[i] = \ + vdupq_n_##type(vgetq_lane_##type(vreinterpretq_##type##_m128i(b), i)); + +#define PCMPSTR_RANGES(a, b, mtx, data_type_prefix, type_prefix, size, \ + number_of_lanes, byte_or_word) \ + do { \ + SSE2NEON_CAT( \ + data_type_prefix, \ + SSE2NEON_CAT(size, \ + SSE2NEON_CAT(x, SSE2NEON_CAT(number_of_lanes, _t)))) \ + vec_b[number_of_lanes]; \ + __m128i mask = SSE2NEON_IIF(byte_or_word)( \ + vreinterpretq_m128i_u16(vdupq_n_u16(0xff)), \ + vreinterpretq_m128i_u32(vdupq_n_u32(0xffff))); \ + SSE2NEON_EVAL(SSE2NEON_REPEAT(number_of_lanes, SSE2NEON_FILL_LANE, \ + SSE2NEON_CAT(type_prefix, size))) \ + for (int i = 0; i < number_of_lanes; i++) { \ + mtx[i] = SSE2NEON_CAT(vreinterpretq_m128i_u, \ + size)(SSE2NEON_CAT(vbslq_u, size)( \ + SSE2NEON_CAT(vreinterpretq_u, \ + SSE2NEON_CAT(size, _m128i))(mask), \ + SSE2NEON_CAT(vcgeq_, SSE2NEON_CAT(type_prefix, size))( \ + vec_b[i], \ + SSE2NEON_CAT( \ + vreinterpretq_, \ + SSE2NEON_CAT(type_prefix, \ + SSE2NEON_CAT(size, _m128i(a))))), \ + SSE2NEON_CAT(vcleq_, SSE2NEON_CAT(type_prefix, size))( \ + vec_b[i], \ + SSE2NEON_CAT( \ + vreinterpretq_, \ + SSE2NEON_CAT(type_prefix, \ + SSE2NEON_CAT(size, _m128i(a))))))); \ + } \ + } while (0) + +#define PCMPSTR_EQ(a, b, mtx, size, number_of_lanes) \ + do { \ + SSE2NEON_EVAL(SSE2NEON_REPEAT(number_of_lanes, \ + SSE2NEON_COMPARE_EQUAL_THEN_FILL_LANE, \ + SSE2NEON_CAT(u, size))) \ + } while (0) + +#define SSE2NEON_CMP_EQUAL_ANY_IMPL(type) \ + static int _sse2neon_cmp_##type##_equal_any(__m128i a, int la, __m128i b, \ + int lb) \ + { \ + __m128i mtx[16]; \ + PCMPSTR_EQ(a, b, mtx, SSE2NEON_CAT(SSE2NEON_SIZE_OF_, type), \ + SSE2NEON_CAT(SSE2NEON_NUMBER_OF_LANES_, type)); \ + return SSE2NEON_CAT( \ + _sse2neon_aggregate_equal_any_, \ + SSE2NEON_CAT( \ + SSE2NEON_CAT(SSE2NEON_SIZE_OF_, type), \ + SSE2NEON_CAT(x, SSE2NEON_CAT(SSE2NEON_NUMBER_OF_LANES_, \ + type))))(la, lb, mtx); \ + } + +#define SSE2NEON_CMP_RANGES_IMPL(type, data_type, us, byte_or_word) \ + static int _sse2neon_cmp_##us##type##_ranges(__m128i a, int la, __m128i b, \ + int lb) \ + { \ + __m128i mtx[16]; \ + PCMPSTR_RANGES( \ + a, b, mtx, data_type, us, SSE2NEON_CAT(SSE2NEON_SIZE_OF_, type), \ + SSE2NEON_CAT(SSE2NEON_NUMBER_OF_LANES_, type), byte_or_word); \ + return SSE2NEON_CAT( \ + _sse2neon_aggregate_ranges_, \ + SSE2NEON_CAT( \ + SSE2NEON_CAT(SSE2NEON_SIZE_OF_, type), \ + SSE2NEON_CAT(x, SSE2NEON_CAT(SSE2NEON_NUMBER_OF_LANES_, \ + type))))(la, lb, mtx); \ + } + +#define SSE2NEON_CMP_EQUAL_ORDERED_IMPL(type) \ + static int _sse2neon_cmp_##type##_equal_ordered(__m128i a, int la, \ + __m128i b, int lb) \ + { \ + __m128i mtx[16]; \ + PCMPSTR_EQ(a, b, mtx, SSE2NEON_CAT(SSE2NEON_SIZE_OF_, type), \ + SSE2NEON_CAT(SSE2NEON_NUMBER_OF_LANES_, type)); \ + return SSE2NEON_CAT( \ + _sse2neon_aggregate_equal_ordered_, \ + SSE2NEON_CAT( \ + SSE2NEON_CAT(SSE2NEON_SIZE_OF_, type), \ + SSE2NEON_CAT(x, \ + SSE2NEON_CAT(SSE2NEON_NUMBER_OF_LANES_, type))))( \ + SSE2NEON_CAT(SSE2NEON_NUMBER_OF_LANES_, type), la, lb, mtx); \ + } + +static int _sse2neon_aggregate_equal_any_8x16(int la, int lb, __m128i mtx[16]) +{ + int res = 0; + int m = (1 << la) - 1; + uint8x8_t vec_mask = vld1_u8(_sse2neon_cmpestr_mask8b); + uint8x8_t t_lo = vtst_u8(vdup_n_u8(m & 0xff), vec_mask); + uint8x8_t t_hi = vtst_u8(vdup_n_u8(m >> 8), vec_mask); + uint8x16_t vec = vcombine_u8(t_lo, t_hi); + for (int j = 0; j < lb; j++) { + mtx[j] = vreinterpretq_m128i_u8( + vandq_u8(vec, vreinterpretq_u8_m128i(mtx[j]))); + mtx[j] = vreinterpretq_m128i_u8( + vshrq_n_u8(vreinterpretq_u8_m128i(mtx[j]), 7)); + int tmp = _sse2neon_vaddvq_u8(vreinterpretq_u8_m128i(mtx[j])) ? 1 : 0; + res |= (tmp << j); + } + return res; +} + +static int _sse2neon_aggregate_equal_any_16x8(int la, int lb, __m128i mtx[16]) +{ + int res = 0; + int m = (1 << la) - 1; + uint16x8_t vec = + vtstq_u16(vdupq_n_u16(m), vld1q_u16(_sse2neon_cmpestr_mask16b)); + for (int j = 0; j < lb; j++) { + mtx[j] = vreinterpretq_m128i_u16( + vandq_u16(vec, vreinterpretq_u16_m128i(mtx[j]))); + mtx[j] = vreinterpretq_m128i_u16( + vshrq_n_u16(vreinterpretq_u16_m128i(mtx[j]), 15)); + int tmp = _sse2neon_vaddvq_u16(vreinterpretq_u16_m128i(mtx[j])) ? 1 : 0; + res |= (tmp << j); + } + return res; +} + +/* clang-format off */ +#define SSE2NEON_GENERATE_CMP_EQUAL_ANY(prefix) \ + prefix##IMPL(byte) \ + prefix##IMPL(word) +/* clang-format on */ + +SSE2NEON_GENERATE_CMP_EQUAL_ANY(SSE2NEON_CMP_EQUAL_ANY_) + +static int _sse2neon_aggregate_ranges_16x8(int la, int lb, __m128i mtx[16]) +{ + int res = 0; + int m = (1 << la) - 1; + uint16x8_t vec = + vtstq_u16(vdupq_n_u16(m), vld1q_u16(_sse2neon_cmpestr_mask16b)); + for (int j = 0; j < lb; j++) { + mtx[j] = vreinterpretq_m128i_u16( + vandq_u16(vec, vreinterpretq_u16_m128i(mtx[j]))); + mtx[j] = vreinterpretq_m128i_u16( + vshrq_n_u16(vreinterpretq_u16_m128i(mtx[j]), 15)); + __m128i tmp = vreinterpretq_m128i_u32( + vshrq_n_u32(vreinterpretq_u32_m128i(mtx[j]), 16)); + uint32x4_t vec_res = vandq_u32(vreinterpretq_u32_m128i(mtx[j]), + vreinterpretq_u32_m128i(tmp)); +#if defined(__aarch64__) + int t = vaddvq_u32(vec_res) ? 1 : 0; +#else + uint64x2_t sumh = vpaddlq_u32(vec_res); + int t = vgetq_lane_u64(sumh, 0) + vgetq_lane_u64(sumh, 1); +#endif + res |= (t << j); + } + return res; +} + +static int _sse2neon_aggregate_ranges_8x16(int la, int lb, __m128i mtx[16]) +{ + int res = 0; + int m = (1 << la) - 1; + uint8x8_t vec_mask = vld1_u8(_sse2neon_cmpestr_mask8b); + uint8x8_t t_lo = vtst_u8(vdup_n_u8(m & 0xff), vec_mask); + uint8x8_t t_hi = vtst_u8(vdup_n_u8(m >> 8), vec_mask); + uint8x16_t vec = vcombine_u8(t_lo, t_hi); + for (int j = 0; j < lb; j++) { + mtx[j] = vreinterpretq_m128i_u8( + vandq_u8(vec, vreinterpretq_u8_m128i(mtx[j]))); + mtx[j] = vreinterpretq_m128i_u8( + vshrq_n_u8(vreinterpretq_u8_m128i(mtx[j]), 7)); + __m128i tmp = vreinterpretq_m128i_u16( + vshrq_n_u16(vreinterpretq_u16_m128i(mtx[j]), 8)); + uint16x8_t vec_res = vandq_u16(vreinterpretq_u16_m128i(mtx[j]), + vreinterpretq_u16_m128i(tmp)); + int t = _sse2neon_vaddvq_u16(vec_res) ? 1 : 0; + res |= (t << j); + } + return res; +} + +#define SSE2NEON_CMP_RANGES_IS_BYTE 1 +#define SSE2NEON_CMP_RANGES_IS_WORD 0 + +/* clang-format off */ +#define SSE2NEON_GENERATE_CMP_RANGES(prefix) \ + prefix##IMPL(byte, uint, u, prefix##IS_BYTE) \ + prefix##IMPL(byte, int, s, prefix##IS_BYTE) \ + prefix##IMPL(word, uint, u, prefix##IS_WORD) \ + prefix##IMPL(word, int, s, prefix##IS_WORD) +/* clang-format on */ + +SSE2NEON_GENERATE_CMP_RANGES(SSE2NEON_CMP_RANGES_) + +#undef SSE2NEON_CMP_RANGES_IS_BYTE +#undef SSE2NEON_CMP_RANGES_IS_WORD + +static int _sse2neon_cmp_byte_equal_each(__m128i a, int la, __m128i b, int lb) +{ + uint8x16_t mtx = + vceqq_u8(vreinterpretq_u8_m128i(a), vreinterpretq_u8_m128i(b)); + int m0 = (la < lb) ? 0 : ((1 << la) - (1 << lb)); + int m1 = 0x10000 - (1 << la); + int tb = 0x10000 - (1 << lb); + uint8x8_t vec_mask, vec0_lo, vec0_hi, vec1_lo, vec1_hi; + uint8x8_t tmp_lo, tmp_hi, res_lo, res_hi; + vec_mask = vld1_u8(_sse2neon_cmpestr_mask8b); + vec0_lo = vtst_u8(vdup_n_u8(m0), vec_mask); + vec0_hi = vtst_u8(vdup_n_u8(m0 >> 8), vec_mask); + vec1_lo = vtst_u8(vdup_n_u8(m1), vec_mask); + vec1_hi = vtst_u8(vdup_n_u8(m1 >> 8), vec_mask); + tmp_lo = vtst_u8(vdup_n_u8(tb), vec_mask); + tmp_hi = vtst_u8(vdup_n_u8(tb >> 8), vec_mask); + + res_lo = vbsl_u8(vec0_lo, vdup_n_u8(0), vget_low_u8(mtx)); + res_hi = vbsl_u8(vec0_hi, vdup_n_u8(0), vget_high_u8(mtx)); + res_lo = vbsl_u8(vec1_lo, tmp_lo, res_lo); + res_hi = vbsl_u8(vec1_hi, tmp_hi, res_hi); + res_lo = vand_u8(res_lo, vec_mask); + res_hi = vand_u8(res_hi, vec_mask); + + int res = _sse2neon_vaddv_u8(res_lo) + (_sse2neon_vaddv_u8(res_hi) << 8); + return res; +} + +static int _sse2neon_cmp_word_equal_each(__m128i a, int la, __m128i b, int lb) +{ + uint16x8_t mtx = + vceqq_u16(vreinterpretq_u16_m128i(a), vreinterpretq_u16_m128i(b)); + int m0 = (la < lb) ? 0 : ((1 << la) - (1 << lb)); + int m1 = 0x100 - (1 << la); + int tb = 0x100 - (1 << lb); + uint16x8_t vec_mask = vld1q_u16(_sse2neon_cmpestr_mask16b); + uint16x8_t vec0 = vtstq_u16(vdupq_n_u16(m0), vec_mask); + uint16x8_t vec1 = vtstq_u16(vdupq_n_u16(m1), vec_mask); + uint16x8_t tmp = vtstq_u16(vdupq_n_u16(tb), vec_mask); + mtx = vbslq_u16(vec0, vdupq_n_u16(0), mtx); + mtx = vbslq_u16(vec1, tmp, mtx); + mtx = vandq_u16(mtx, vec_mask); + return _sse2neon_vaddvq_u16(mtx); +} + +#define SSE2NEON_AGGREGATE_EQUAL_ORDER_IS_UBYTE 1 +#define SSE2NEON_AGGREGATE_EQUAL_ORDER_IS_UWORD 0 + +#define SSE2NEON_AGGREGATE_EQUAL_ORDER_IMPL(size, number_of_lanes, data_type) \ + static int _sse2neon_aggregate_equal_ordered_##size##x##number_of_lanes( \ + int bound, int la, int lb, __m128i mtx[16]) \ + { \ + int res = 0; \ + int m1 = SSE2NEON_IIF(data_type)(0x10000, 0x100) - (1 << la); \ + uint##size##x8_t vec_mask = SSE2NEON_IIF(data_type)( \ + vld1_u##size(_sse2neon_cmpestr_mask##size##b), \ + vld1q_u##size(_sse2neon_cmpestr_mask##size##b)); \ + uint##size##x##number_of_lanes##_t vec1 = SSE2NEON_IIF(data_type)( \ + vcombine_u##size(vtst_u##size(vdup_n_u##size(m1), vec_mask), \ + vtst_u##size(vdup_n_u##size(m1 >> 8), vec_mask)), \ + vtstq_u##size(vdupq_n_u##size(m1), vec_mask)); \ + uint##size##x##number_of_lanes##_t vec_minusone = vdupq_n_u##size(-1); \ + uint##size##x##number_of_lanes##_t vec_zero = vdupq_n_u##size(0); \ + for (int j = 0; j < lb; j++) { \ + mtx[j] = vreinterpretq_m128i_u##size(vbslq_u##size( \ + vec1, vec_minusone, vreinterpretq_u##size##_m128i(mtx[j]))); \ + } \ + for (int j = lb; j < bound; j++) { \ + mtx[j] = vreinterpretq_m128i_u##size( \ + vbslq_u##size(vec1, vec_minusone, vec_zero)); \ + } \ + unsigned SSE2NEON_IIF(data_type)(char, short) *ptr = \ + (unsigned SSE2NEON_IIF(data_type)(char, short) *) mtx; \ + for (int i = 0; i < bound; i++) { \ + int val = 1; \ + for (int j = 0, k = i; j < bound - i && k < bound; j++, k++) \ + val &= ptr[k * bound + j]; \ + res += val << i; \ + } \ + return res; \ + } + +/* clang-format off */ +#define SSE2NEON_GENERATE_AGGREGATE_EQUAL_ORDER(prefix) \ + prefix##IMPL(8, 16, prefix##IS_UBYTE) \ + prefix##IMPL(16, 8, prefix##IS_UWORD) +/* clang-format on */ + +SSE2NEON_GENERATE_AGGREGATE_EQUAL_ORDER(SSE2NEON_AGGREGATE_EQUAL_ORDER_) + +#undef SSE2NEON_AGGREGATE_EQUAL_ORDER_IS_UBYTE +#undef SSE2NEON_AGGREGATE_EQUAL_ORDER_IS_UWORD + +/* clang-format off */ +#define SSE2NEON_GENERATE_CMP_EQUAL_ORDERED(prefix) \ + prefix##IMPL(byte) \ + prefix##IMPL(word) +/* clang-format on */ + +SSE2NEON_GENERATE_CMP_EQUAL_ORDERED(SSE2NEON_CMP_EQUAL_ORDERED_) + +#define SSE2NEON_CMPESTR_LIST \ + _(CMP_UBYTE_EQUAL_ANY, cmp_byte_equal_any) \ + _(CMP_UWORD_EQUAL_ANY, cmp_word_equal_any) \ + _(CMP_SBYTE_EQUAL_ANY, cmp_byte_equal_any) \ + _(CMP_SWORD_EQUAL_ANY, cmp_word_equal_any) \ + _(CMP_UBYTE_RANGES, cmp_ubyte_ranges) \ + _(CMP_UWORD_RANGES, cmp_uword_ranges) \ + _(CMP_SBYTE_RANGES, cmp_sbyte_ranges) \ + _(CMP_SWORD_RANGES, cmp_sword_ranges) \ + _(CMP_UBYTE_EQUAL_EACH, cmp_byte_equal_each) \ + _(CMP_UWORD_EQUAL_EACH, cmp_word_equal_each) \ + _(CMP_SBYTE_EQUAL_EACH, cmp_byte_equal_each) \ + _(CMP_SWORD_EQUAL_EACH, cmp_word_equal_each) \ + _(CMP_UBYTE_EQUAL_ORDERED, cmp_byte_equal_ordered) \ + _(CMP_UWORD_EQUAL_ORDERED, cmp_word_equal_ordered) \ + _(CMP_SBYTE_EQUAL_ORDERED, cmp_byte_equal_ordered) \ + _(CMP_SWORD_EQUAL_ORDERED, cmp_word_equal_ordered) + +enum { +#define _(name, func_suffix) name, + SSE2NEON_CMPESTR_LIST +#undef _ +}; +typedef int (*cmpestr_func_t)(__m128i a, int la, __m128i b, int lb); +static cmpestr_func_t _sse2neon_cmpfunc_table[] = { +#define _(name, func_suffix) _sse2neon_##func_suffix, + SSE2NEON_CMPESTR_LIST +#undef _ +}; + +FORCE_INLINE int _sse2neon_sido_negative(int res, int lb, int imm8, int bound) +{ + switch (imm8 & 0x30) { + case _SIDD_NEGATIVE_POLARITY: + res ^= 0xffffffff; + break; + case _SIDD_MASKED_NEGATIVE_POLARITY: + res ^= (1 << lb) - 1; + break; + default: + break; + } + + return res & ((bound == 8) ? 0xFF : 0xFFFF); +} + +FORCE_INLINE int _sse2neon_clz(unsigned int x) +{ +#if _MSC_VER + DWORD cnt = 0; + if (_BitScanForward(&cnt, x)) + return cnt; + return 32; +#else + return x != 0 ? __builtin_clz(x) : 32; +#endif +} + +FORCE_INLINE int _sse2neon_ctz(unsigned int x) +{ +#if _MSC_VER + DWORD cnt = 0; + if (_BitScanReverse(&cnt, x)) + return 31 - cnt; + return 32; +#else + return x != 0 ? __builtin_ctz(x) : 32; +#endif +} + +FORCE_INLINE int _sse2neon_ctzll(unsigned long long x) +{ +#if _MSC_VER + unsigned long cnt; +#ifdef defined(SSE2NEON_HAS_BITSCAN64) + (defined(_M_AMD64) || defined(__x86_64__)) + if((_BitScanForward64(&cnt, x)) + return (int)(cnt); +#else + if (_BitScanForward(&cnt, (unsigned long) (x))) + return (int) cnt; + if (_BitScanForward(&cnt, (unsigned long) (x >> 32))) + return (int) (cnt + 32); +#endif + return 64; +#else + return x != 0 ? __builtin_ctzll(x) : 64; +#endif +} + +#define SSE2NEON_MIN(x, y) (x) < (y) ? (x) : (y) + +#define SSE2NEON_CMPSTR_SET_UPPER(var, imm) \ + const int var = (imm & 0x01) ? 8 : 16 + +#define SSE2NEON_CMPESTRX_LEN_PAIR(a, b, la, lb) \ + int tmp1 = la ^ (la >> 31); \ + la = tmp1 - (la >> 31); \ + int tmp2 = lb ^ (lb >> 31); \ + lb = tmp2 - (lb >> 31); \ + la = SSE2NEON_MIN(la, bound); \ + lb = SSE2NEON_MIN(lb, bound) + +// Compare all pairs of character in string a and b, +// then aggregate the result. +// As the only difference of PCMPESTR* and PCMPISTR* is the way to calculate the +// length of string, we use SSE2NEON_CMP{I,E}STRX_GET_LEN to get the length of +// string a and b. +#define SSE2NEON_COMP_AGG(a, b, la, lb, imm8, IE) \ + SSE2NEON_CMPSTR_SET_UPPER(bound, imm8); \ + SSE2NEON_##IE##_LEN_PAIR(a, b, la, lb); \ + int r2 = (_sse2neon_cmpfunc_table[imm8 & 0x0f])(a, la, b, lb); \ + r2 = _sse2neon_sido_negative(r2, lb, imm8, bound) + +#define SSE2NEON_CMPSTR_GENERATE_INDEX(r2, bound, imm8) \ + return (r2 == 0) ? bound \ + : ((imm8 & 0x40) ? (31 - _sse2neon_clz(r2)) \ + : _sse2neon_ctz(r2)) + +#define SSE2NEON_CMPSTR_GENERATE_MASK(dst) \ + __m128i dst = vreinterpretq_m128i_u8(vdupq_n_u8(0)); \ + if (imm8 & 0x40) { \ + if (bound == 8) { \ + uint16x8_t tmp = vtstq_u16(vdupq_n_u16(r2), \ + vld1q_u16(_sse2neon_cmpestr_mask16b)); \ + dst = vreinterpretq_m128i_u16(vbslq_u16( \ + tmp, vdupq_n_u16(-1), vreinterpretq_u16_m128i(dst))); \ + } else { \ + uint8x16_t vec_r2 = \ + vcombine_u8(vdup_n_u8(r2), vdup_n_u8(r2 >> 8)); \ + uint8x16_t tmp = \ + vtstq_u8(vec_r2, vld1q_u8(_sse2neon_cmpestr_mask8b)); \ + dst = vreinterpretq_m128i_u8( \ + vbslq_u8(tmp, vdupq_n_u8(-1), vreinterpretq_u8_m128i(dst))); \ + } \ + } else { \ + if (bound == 16) { \ + dst = vreinterpretq_m128i_u16( \ + vsetq_lane_u16(r2 & 0xffff, vreinterpretq_u16_m128i(dst), 0)); \ + } else { \ + dst = vreinterpretq_m128i_u8( \ + vsetq_lane_u8(r2 & 0xff, vreinterpretq_u8_m128i(dst), 0)); \ + } \ + } \ + return dst + +// Compare packed strings in a and b with lengths la and lb using the control +// in imm8, and returns 1 if b did not contain a null character and the +// resulting mask was zero, and 0 otherwise. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpestra +FORCE_INLINE int _mm_cmpestra(__m128i a, + int la, + __m128i b, + int lb, + const int imm8) +{ + int lb_cpy = lb; + SSE2NEON_COMP_AGG(a, b, la, lb, imm8, CMPESTRX); + return !r2 & (lb_cpy > bound); +} + +// Compare packed strings in a and b with lengths la and lb using the control in +// imm8, and returns 1 if the resulting mask was non-zero, and 0 otherwise. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpestrc +FORCE_INLINE int _mm_cmpestrc(__m128i a, + int la, + __m128i b, + int lb, + const int imm8) +{ + SSE2NEON_COMP_AGG(a, b, la, lb, imm8, CMPESTRX); + return r2 != 0; +} + +// Compare packed strings in a and b with lengths la and lb using the control +// in imm8, and store the generated index in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpestri +FORCE_INLINE int _mm_cmpestri(__m128i a, + int la, + __m128i b, + int lb, + const int imm8) +{ + SSE2NEON_COMP_AGG(a, b, la, lb, imm8, CMPESTRX); + SSE2NEON_CMPSTR_GENERATE_INDEX(r2, bound, imm8); +} + +// Compare packed strings in a and b with lengths la and lb using the control +// in imm8, and store the generated mask in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpestrm +FORCE_INLINE __m128i +_mm_cmpestrm(__m128i a, int la, __m128i b, int lb, const int imm8) +{ + SSE2NEON_COMP_AGG(a, b, la, lb, imm8, CMPESTRX); + SSE2NEON_CMPSTR_GENERATE_MASK(dst); +} + +// Compare packed strings in a and b with lengths la and lb using the control in +// imm8, and returns bit 0 of the resulting bit mask. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpestro +FORCE_INLINE int _mm_cmpestro(__m128i a, + int la, + __m128i b, + int lb, + const int imm8) +{ + SSE2NEON_COMP_AGG(a, b, la, lb, imm8, CMPESTRX); + return r2 & 1; +} + +// Compare packed strings in a and b with lengths la and lb using the control in +// imm8, and returns 1 if any character in a was null, and 0 otherwise. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpestrs +FORCE_INLINE int _mm_cmpestrs(__m128i a, + int la, + __m128i b, + int lb, + const int imm8) +{ + SSE2NEON_CMPSTR_SET_UPPER(bound, imm8); + return la <= (bound - 1); +} + +// Compare packed strings in a and b with lengths la and lb using the control in +// imm8, and returns 1 if any character in b was null, and 0 otherwise. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpestrz +FORCE_INLINE int _mm_cmpestrz(__m128i a, + int la, + __m128i b, + int lb, + const int imm8) +{ + SSE2NEON_CMPSTR_SET_UPPER(bound, imm8); + return lb <= (bound - 1); +} + +#define SSE2NEON_CMPISTRX_LENGTH(str, len, imm8) \ + do { \ + if (imm8 & 0x01) { \ + uint16x8_t equal_mask_##str = \ + vceqq_u16(vreinterpretq_u16_m128i(str), vdupq_n_u16(0)); \ + uint8x8_t res_##str = vshrn_n_u16(equal_mask_##str, 4); \ + uint64_t matches_##str = \ + vget_lane_u64(vreinterpret_u64_u8(res_##str), 0); \ + len = _sse2neon_ctzll(matches_##str) >> 3; \ + } else { \ + uint16x8_t equal_mask_##str = vreinterpretq_u16_u8( \ + vceqq_u8(vreinterpretq_u8_m128i(str), vdupq_n_u8(0))); \ + uint8x8_t res_##str = vshrn_n_u16(equal_mask_##str, 4); \ + uint64_t matches_##str = \ + vget_lane_u64(vreinterpret_u64_u8(res_##str), 0); \ + len = _sse2neon_ctzll(matches_##str) >> 2; \ + } \ + } while (0) + +#define SSE2NEON_CMPISTRX_LEN_PAIR(a, b, la, lb) \ + int la, lb; \ + do { \ + SSE2NEON_CMPISTRX_LENGTH(a, la, imm8); \ + SSE2NEON_CMPISTRX_LENGTH(b, lb, imm8); \ + } while (0) + +// Compare packed strings with implicit lengths in a and b using the control in +// imm8, and returns 1 if b did not contain a null character and the resulting +// mask was zero, and 0 otherwise. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpistra +FORCE_INLINE int _mm_cmpistra(__m128i a, __m128i b, const int imm8) +{ + SSE2NEON_COMP_AGG(a, b, la, lb, imm8, CMPISTRX); + return !r2 & (lb >= bound); +} + +// Compare packed strings with implicit lengths in a and b using the control in +// imm8, and returns 1 if the resulting mask was non-zero, and 0 otherwise. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpistrc +FORCE_INLINE int _mm_cmpistrc(__m128i a, __m128i b, const int imm8) +{ + SSE2NEON_COMP_AGG(a, b, la, lb, imm8, CMPISTRX); + return r2 != 0; +} + +// Compare packed strings with implicit lengths in a and b using the control in +// imm8, and store the generated index in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpistri +FORCE_INLINE int _mm_cmpistri(__m128i a, __m128i b, const int imm8) +{ + SSE2NEON_COMP_AGG(a, b, la, lb, imm8, CMPISTRX); + SSE2NEON_CMPSTR_GENERATE_INDEX(r2, bound, imm8); +} + +// Compare packed strings with implicit lengths in a and b using the control in +// imm8, and store the generated mask in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpistrm +FORCE_INLINE __m128i _mm_cmpistrm(__m128i a, __m128i b, const int imm8) +{ + SSE2NEON_COMP_AGG(a, b, la, lb, imm8, CMPISTRX); + SSE2NEON_CMPSTR_GENERATE_MASK(dst); +} + +// Compare packed strings with implicit lengths in a and b using the control in +// imm8, and returns bit 0 of the resulting bit mask. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpistro +FORCE_INLINE int _mm_cmpistro(__m128i a, __m128i b, const int imm8) +{ + SSE2NEON_COMP_AGG(a, b, la, lb, imm8, CMPISTRX); + return r2 & 1; +} + +// Compare packed strings with implicit lengths in a and b using the control in +// imm8, and returns 1 if any character in a was null, and 0 otherwise. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpistrs +FORCE_INLINE int _mm_cmpistrs(__m128i a, __m128i b, const int imm8) +{ + SSE2NEON_CMPSTR_SET_UPPER(bound, imm8); + int la; + SSE2NEON_CMPISTRX_LENGTH(a, la, imm8); + return la <= (bound - 1); +} + +// Compare packed strings with implicit lengths in a and b using the control in +// imm8, and returns 1 if any character in b was null, and 0 otherwise. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpistrz +FORCE_INLINE int _mm_cmpistrz(__m128i a, __m128i b, const int imm8) +{ + SSE2NEON_CMPSTR_SET_UPPER(bound, imm8); + int lb; + SSE2NEON_CMPISTRX_LENGTH(b, lb, imm8); + return lb <= (bound - 1); +} + +// Compares the 2 signed 64-bit integers in a and the 2 signed 64-bit integers +// in b for greater than. +FORCE_INLINE __m128i _mm_cmpgt_epi64(__m128i a, __m128i b) +{ +#if defined(__aarch64__) + return vreinterpretq_m128i_u64( + vcgtq_s64(vreinterpretq_s64_m128i(a), vreinterpretq_s64_m128i(b))); +#else + return vreinterpretq_m128i_s64(vshrq_n_s64( + vqsubq_s64(vreinterpretq_s64_m128i(b), vreinterpretq_s64_m128i(a)), + 63)); +#endif +} + +// Starting with the initial value in crc, accumulates a CRC32 value for +// unsigned 16-bit integer v. +// https://msdn.microsoft.com/en-us/library/bb531411(v=vs.100) +FORCE_INLINE uint32_t _mm_crc32_u16(uint32_t crc, uint16_t v) +{ +#if defined(__aarch64__) && defined(__ARM_FEATURE_CRC32) + __asm__ __volatile__("crc32ch %w[c], %w[c], %w[v]\n\t" + : [c] "+r"(crc) + : [v] "r"(v)); +#elif (__ARM_ARCH == 8) && defined(__ARM_FEATURE_CRC32) + crc = __crc32ch(crc, v); +#else + crc = _mm_crc32_u8(crc, v & 0xff); + crc = _mm_crc32_u8(crc, (v >> 8) & 0xff); +#endif + return crc; +} + +// Starting with the initial value in crc, accumulates a CRC32 value for +// unsigned 32-bit integer v. +// https://msdn.microsoft.com/en-us/library/bb531394(v=vs.100) +FORCE_INLINE uint32_t _mm_crc32_u32(uint32_t crc, uint32_t v) +{ +#if defined(__aarch64__) && defined(__ARM_FEATURE_CRC32) + __asm__ __volatile__("crc32cw %w[c], %w[c], %w[v]\n\t" + : [c] "+r"(crc) + : [v] "r"(v)); +#elif (__ARM_ARCH == 8) && defined(__ARM_FEATURE_CRC32) + crc = __crc32cw(crc, v); +#else + crc = _mm_crc32_u16(crc, v & 0xffff); + crc = _mm_crc32_u16(crc, (v >> 16) & 0xffff); +#endif + return crc; +} + +// Starting with the initial value in crc, accumulates a CRC32 value for +// unsigned 64-bit integer v. +// https://msdn.microsoft.com/en-us/library/bb514033(v=vs.100) +FORCE_INLINE uint64_t _mm_crc32_u64(uint64_t crc, uint64_t v) +{ +#if defined(__aarch64__) && defined(__ARM_FEATURE_CRC32) + __asm__ __volatile__("crc32cx %w[c], %w[c], %x[v]\n\t" + : [c] "+r"(crc) + : [v] "r"(v)); +#else + crc = _mm_crc32_u32((uint32_t) (crc), v & 0xffffffff); + crc = _mm_crc32_u32((uint32_t) (crc), (v >> 32) & 0xffffffff); +#endif + return crc; +} + +// Starting with the initial value in crc, accumulates a CRC32 value for +// unsigned 8-bit integer v. +// https://msdn.microsoft.com/en-us/library/bb514036(v=vs.100) +FORCE_INLINE uint32_t _mm_crc32_u8(uint32_t crc, uint8_t v) +{ +#if defined(__aarch64__) && defined(__ARM_FEATURE_CRC32) + __asm__ __volatile__("crc32cb %w[c], %w[c], %w[v]\n\t" + : [c] "+r"(crc) + : [v] "r"(v)); +#elif (__ARM_ARCH == 8) && defined(__ARM_FEATURE_CRC32) + crc = __crc32cb(crc, v); +#else + crc ^= v; + for (int bit = 0; bit < 8; bit++) { + if (crc & 1) + crc = (crc >> 1) ^ UINT32_C(0x82f63b78); + else + crc = (crc >> 1); + } +#endif + return crc; +} + +/* AES */ + +#if !defined(__ARM_FEATURE_CRYPTO) +/* clang-format off */ +#define SSE2NEON_AES_SBOX(w) \ + { \ + w(0x63), w(0x7c), w(0x77), w(0x7b), w(0xf2), w(0x6b), w(0x6f), \ + w(0xc5), w(0x30), w(0x01), w(0x67), w(0x2b), w(0xfe), w(0xd7), \ + w(0xab), w(0x76), w(0xca), w(0x82), w(0xc9), w(0x7d), w(0xfa), \ + w(0x59), w(0x47), w(0xf0), w(0xad), w(0xd4), w(0xa2), w(0xaf), \ + w(0x9c), w(0xa4), w(0x72), w(0xc0), w(0xb7), w(0xfd), w(0x93), \ + w(0x26), w(0x36), w(0x3f), w(0xf7), w(0xcc), w(0x34), w(0xa5), \ + w(0xe5), w(0xf1), w(0x71), w(0xd8), w(0x31), w(0x15), w(0x04), \ + w(0xc7), w(0x23), w(0xc3), w(0x18), w(0x96), w(0x05), w(0x9a), \ + w(0x07), w(0x12), w(0x80), w(0xe2), w(0xeb), w(0x27), w(0xb2), \ + w(0x75), w(0x09), w(0x83), w(0x2c), w(0x1a), w(0x1b), w(0x6e), \ + w(0x5a), w(0xa0), w(0x52), w(0x3b), w(0xd6), w(0xb3), w(0x29), \ + w(0xe3), w(0x2f), w(0x84), w(0x53), w(0xd1), w(0x00), w(0xed), \ + w(0x20), w(0xfc), w(0xb1), w(0x5b), w(0x6a), w(0xcb), w(0xbe), \ + w(0x39), w(0x4a), w(0x4c), w(0x58), w(0xcf), w(0xd0), w(0xef), \ + w(0xaa), w(0xfb), w(0x43), w(0x4d), w(0x33), w(0x85), w(0x45), \ + w(0xf9), w(0x02), w(0x7f), w(0x50), w(0x3c), w(0x9f), w(0xa8), \ + w(0x51), w(0xa3), w(0x40), w(0x8f), w(0x92), w(0x9d), w(0x38), \ + w(0xf5), w(0xbc), w(0xb6), w(0xda), w(0x21), w(0x10), w(0xff), \ + w(0xf3), w(0xd2), w(0xcd), w(0x0c), w(0x13), w(0xec), w(0x5f), \ + w(0x97), w(0x44), w(0x17), w(0xc4), w(0xa7), w(0x7e), w(0x3d), \ + w(0x64), w(0x5d), w(0x19), w(0x73), w(0x60), w(0x81), w(0x4f), \ + w(0xdc), w(0x22), w(0x2a), w(0x90), w(0x88), w(0x46), w(0xee), \ + w(0xb8), w(0x14), w(0xde), w(0x5e), w(0x0b), w(0xdb), w(0xe0), \ + w(0x32), w(0x3a), w(0x0a), w(0x49), w(0x06), w(0x24), w(0x5c), \ + w(0xc2), w(0xd3), w(0xac), w(0x62), w(0x91), w(0x95), w(0xe4), \ + w(0x79), w(0xe7), w(0xc8), w(0x37), w(0x6d), w(0x8d), w(0xd5), \ + w(0x4e), w(0xa9), w(0x6c), w(0x56), w(0xf4), w(0xea), w(0x65), \ + w(0x7a), w(0xae), w(0x08), w(0xba), w(0x78), w(0x25), w(0x2e), \ + w(0x1c), w(0xa6), w(0xb4), w(0xc6), w(0xe8), w(0xdd), w(0x74), \ + w(0x1f), w(0x4b), w(0xbd), w(0x8b), w(0x8a), w(0x70), w(0x3e), \ + w(0xb5), w(0x66), w(0x48), w(0x03), w(0xf6), w(0x0e), w(0x61), \ + w(0x35), w(0x57), w(0xb9), w(0x86), w(0xc1), w(0x1d), w(0x9e), \ + w(0xe1), w(0xf8), w(0x98), w(0x11), w(0x69), w(0xd9), w(0x8e), \ + w(0x94), w(0x9b), w(0x1e), w(0x87), w(0xe9), w(0xce), w(0x55), \ + w(0x28), w(0xdf), w(0x8c), w(0xa1), w(0x89), w(0x0d), w(0xbf), \ + w(0xe6), w(0x42), w(0x68), w(0x41), w(0x99), w(0x2d), w(0x0f), \ + w(0xb0), w(0x54), w(0xbb), w(0x16) \ + } +#define SSE2NEON_AES_RSBOX(w) \ + { \ + w(0x52), w(0x09), w(0x6a), w(0xd5), w(0x30), w(0x36), w(0xa5), \ + w(0x38), w(0xbf), w(0x40), w(0xa3), w(0x9e), w(0x81), w(0xf3), \ + w(0xd7), w(0xfb), w(0x7c), w(0xe3), w(0x39), w(0x82), w(0x9b), \ + w(0x2f), w(0xff), w(0x87), w(0x34), w(0x8e), w(0x43), w(0x44), \ + w(0xc4), w(0xde), w(0xe9), w(0xcb), w(0x54), w(0x7b), w(0x94), \ + w(0x32), w(0xa6), w(0xc2), w(0x23), w(0x3d), w(0xee), w(0x4c), \ + w(0x95), w(0x0b), w(0x42), w(0xfa), w(0xc3), w(0x4e), w(0x08), \ + w(0x2e), w(0xa1), w(0x66), w(0x28), w(0xd9), w(0x24), w(0xb2), \ + w(0x76), w(0x5b), w(0xa2), w(0x49), w(0x6d), w(0x8b), w(0xd1), \ + w(0x25), w(0x72), w(0xf8), w(0xf6), w(0x64), w(0x86), w(0x68), \ + w(0x98), w(0x16), w(0xd4), w(0xa4), w(0x5c), w(0xcc), w(0x5d), \ + w(0x65), w(0xb6), w(0x92), w(0x6c), w(0x70), w(0x48), w(0x50), \ + w(0xfd), w(0xed), w(0xb9), w(0xda), w(0x5e), w(0x15), w(0x46), \ + w(0x57), w(0xa7), w(0x8d), w(0x9d), w(0x84), w(0x90), w(0xd8), \ + w(0xab), w(0x00), w(0x8c), w(0xbc), w(0xd3), w(0x0a), w(0xf7), \ + w(0xe4), w(0x58), w(0x05), w(0xb8), w(0xb3), w(0x45), w(0x06), \ + w(0xd0), w(0x2c), w(0x1e), w(0x8f), w(0xca), w(0x3f), w(0x0f), \ + w(0x02), w(0xc1), w(0xaf), w(0xbd), w(0x03), w(0x01), w(0x13), \ + w(0x8a), w(0x6b), w(0x3a), w(0x91), w(0x11), w(0x41), w(0x4f), \ + w(0x67), w(0xdc), w(0xea), w(0x97), w(0xf2), w(0xcf), w(0xce), \ + w(0xf0), w(0xb4), w(0xe6), w(0x73), w(0x96), w(0xac), w(0x74), \ + w(0x22), w(0xe7), w(0xad), w(0x35), w(0x85), w(0xe2), w(0xf9), \ + w(0x37), w(0xe8), w(0x1c), w(0x75), w(0xdf), w(0x6e), w(0x47), \ + w(0xf1), w(0x1a), w(0x71), w(0x1d), w(0x29), w(0xc5), w(0x89), \ + w(0x6f), w(0xb7), w(0x62), w(0x0e), w(0xaa), w(0x18), w(0xbe), \ + w(0x1b), w(0xfc), w(0x56), w(0x3e), w(0x4b), w(0xc6), w(0xd2), \ + w(0x79), w(0x20), w(0x9a), w(0xdb), w(0xc0), w(0xfe), w(0x78), \ + w(0xcd), w(0x5a), w(0xf4), w(0x1f), w(0xdd), w(0xa8), w(0x33), \ + w(0x88), w(0x07), w(0xc7), w(0x31), w(0xb1), w(0x12), w(0x10), \ + w(0x59), w(0x27), w(0x80), w(0xec), w(0x5f), w(0x60), w(0x51), \ + w(0x7f), w(0xa9), w(0x19), w(0xb5), w(0x4a), w(0x0d), w(0x2d), \ + w(0xe5), w(0x7a), w(0x9f), w(0x93), w(0xc9), w(0x9c), w(0xef), \ + w(0xa0), w(0xe0), w(0x3b), w(0x4d), w(0xae), w(0x2a), w(0xf5), \ + w(0xb0), w(0xc8), w(0xeb), w(0xbb), w(0x3c), w(0x83), w(0x53), \ + w(0x99), w(0x61), w(0x17), w(0x2b), w(0x04), w(0x7e), w(0xba), \ + w(0x77), w(0xd6), w(0x26), w(0xe1), w(0x69), w(0x14), w(0x63), \ + w(0x55), w(0x21), w(0x0c), w(0x7d) \ + } +/* clang-format on */ + +/* X Macro trick. See https://en.wikipedia.org/wiki/X_Macro */ +#define SSE2NEON_AES_H0(x) (x) +static const uint8_t _sse2neon_sbox[256] = SSE2NEON_AES_SBOX(SSE2NEON_AES_H0); +static const uint8_t _sse2neon_rsbox[256] = SSE2NEON_AES_RSBOX(SSE2NEON_AES_H0); +#undef SSE2NEON_AES_H0 + +/* x_time function and matrix multiply function */ +#if !defined(__aarch64__) +#define SSE2NEON_XT(x) (((x) << 1) ^ ((((x) >> 7) & 1) * 0x1b)) +#define SSE2NEON_MULTIPLY(x, y) \ + (((y & 1) * x) ^ ((y >> 1 & 1) * SSE2NEON_XT(x)) ^ \ + ((y >> 2 & 1) * SSE2NEON_XT(SSE2NEON_XT(x))) ^ \ + ((y >> 3 & 1) * SSE2NEON_XT(SSE2NEON_XT(SSE2NEON_XT(x)))) ^ \ + ((y >> 4 & 1) * SSE2NEON_XT(SSE2NEON_XT(SSE2NEON_XT(SSE2NEON_XT(x)))))) +#endif + +// In the absence of crypto extensions, implement aesenc using regular neon +// intrinsics instead. See: +// https://www.workofard.com/2017/01/accelerated-aes-for-the-arm64-linux-kernel/ +// https://www.workofard.com/2017/07/ghash-for-low-end-cores/ and +// https://github.com/ColinIanKing/linux-next-mirror/blob/b5f466091e130caaf0735976648f72bd5e09aa84/crypto/aegis128-neon-inner.c#L52 +// for more information Reproduced with permission of the author. +FORCE_INLINE __m128i _mm_aesenc_si128(__m128i a, __m128i RoundKey) +{ +#if defined(__aarch64__) + static const uint8_t shift_rows[] = { + 0x0, 0x5, 0xa, 0xf, 0x4, 0x9, 0xe, 0x3, + 0x8, 0xd, 0x2, 0x7, 0xc, 0x1, 0x6, 0xb, + }; + static const uint8_t ror32by8[] = { + 0x1, 0x2, 0x3, 0x0, 0x5, 0x6, 0x7, 0x4, + 0x9, 0xa, 0xb, 0x8, 0xd, 0xe, 0xf, 0xc, + }; + + uint8x16_t v; + uint8x16_t w = vreinterpretq_u8_m128i(a); + + /* shift rows */ + w = vqtbl1q_u8(w, vld1q_u8(shift_rows)); + + /* sub bytes */ + // Here, we separate the whole 256-bytes table into 4 64-bytes tables, and + // look up each of the table. After each lookup, we load the next table + // which locates at the next 64-bytes. In the meantime, the index in the + // table would be smaller than it was, so the index parameters of + // `vqtbx4q_u8()` need to be added the same constant as the loaded tables. + v = vqtbl4q_u8(_sse2neon_vld1q_u8_x4(_sse2neon_sbox), w); + // 'w-0x40' equals to 'vsubq_u8(w, vdupq_n_u8(0x40))' + v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_sbox + 0x40), w - 0x40); + v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_sbox + 0x80), w - 0x80); + v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_sbox + 0xc0), w - 0xc0); + + /* mix columns */ + w = (v << 1) ^ (uint8x16_t) (((int8x16_t) v >> 7) & 0x1b); + w ^= (uint8x16_t) vrev32q_u16((uint16x8_t) v); + w ^= vqtbl1q_u8(v ^ w, vld1q_u8(ror32by8)); + + /* add round key */ + return vreinterpretq_m128i_u8(w) ^ RoundKey; + +#else /* ARMv7-A implementation for a table-based AES */ +#define SSE2NEON_AES_B2W(b0, b1, b2, b3) \ + (((uint32_t) (b3) << 24) | ((uint32_t) (b2) << 16) | \ + ((uint32_t) (b1) << 8) | (uint32_t) (b0)) +// muliplying 'x' by 2 in GF(2^8) +#define SSE2NEON_AES_F2(x) ((x << 1) ^ (((x >> 7) & 1) * 0x011b /* WPOLY */)) +// muliplying 'x' by 3 in GF(2^8) +#define SSE2NEON_AES_F3(x) (SSE2NEON_AES_F2(x) ^ x) +#define SSE2NEON_AES_U0(p) \ + SSE2NEON_AES_B2W(SSE2NEON_AES_F2(p), p, p, SSE2NEON_AES_F3(p)) +#define SSE2NEON_AES_U1(p) \ + SSE2NEON_AES_B2W(SSE2NEON_AES_F3(p), SSE2NEON_AES_F2(p), p, p) +#define SSE2NEON_AES_U2(p) \ + SSE2NEON_AES_B2W(p, SSE2NEON_AES_F3(p), SSE2NEON_AES_F2(p), p) +#define SSE2NEON_AES_U3(p) \ + SSE2NEON_AES_B2W(p, p, SSE2NEON_AES_F3(p), SSE2NEON_AES_F2(p)) + + // this generates a table containing every possible permutation of + // shift_rows() and sub_bytes() with mix_columns(). + static const uint32_t ALIGN_STRUCT(16) aes_table[4][256] = { + SSE2NEON_AES_SBOX(SSE2NEON_AES_U0), + SSE2NEON_AES_SBOX(SSE2NEON_AES_U1), + SSE2NEON_AES_SBOX(SSE2NEON_AES_U2), + SSE2NEON_AES_SBOX(SSE2NEON_AES_U3), + }; +#undef SSE2NEON_AES_B2W +#undef SSE2NEON_AES_F2 +#undef SSE2NEON_AES_F3 +#undef SSE2NEON_AES_U0 +#undef SSE2NEON_AES_U1 +#undef SSE2NEON_AES_U2 +#undef SSE2NEON_AES_U3 + + uint32_t x0 = _mm_cvtsi128_si32(a); // get a[31:0] + uint32_t x1 = + _mm_cvtsi128_si32(_mm_shuffle_epi32(a, 0x55)); // get a[63:32] + uint32_t x2 = + _mm_cvtsi128_si32(_mm_shuffle_epi32(a, 0xAA)); // get a[95:64] + uint32_t x3 = + _mm_cvtsi128_si32(_mm_shuffle_epi32(a, 0xFF)); // get a[127:96] + + // finish the modulo addition step in mix_columns() + __m128i out = _mm_set_epi32( + (aes_table[0][x3 & 0xff] ^ aes_table[1][(x0 >> 8) & 0xff] ^ + aes_table[2][(x1 >> 16) & 0xff] ^ aes_table[3][x2 >> 24]), + (aes_table[0][x2 & 0xff] ^ aes_table[1][(x3 >> 8) & 0xff] ^ + aes_table[2][(x0 >> 16) & 0xff] ^ aes_table[3][x1 >> 24]), + (aes_table[0][x1 & 0xff] ^ aes_table[1][(x2 >> 8) & 0xff] ^ + aes_table[2][(x3 >> 16) & 0xff] ^ aes_table[3][x0 >> 24]), + (aes_table[0][x0 & 0xff] ^ aes_table[1][(x1 >> 8) & 0xff] ^ + aes_table[2][(x2 >> 16) & 0xff] ^ aes_table[3][x3 >> 24])); + + return _mm_xor_si128(out, RoundKey); +#endif +} + +// Perform one round of an AES decryption flow on data (state) in a using the +// round key in RoundKey, and store the result in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aesdec_si128 +FORCE_INLINE __m128i _mm_aesdec_si128(__m128i a, __m128i RoundKey) +{ +#if defined(__aarch64__) + static const uint8_t inv_shift_rows[] = { + 0x0, 0xd, 0xa, 0x7, 0x4, 0x1, 0xe, 0xb, + 0x8, 0x5, 0x2, 0xf, 0xc, 0x9, 0x6, 0x3, + }; + static const uint8_t ror32by8[] = { + 0x1, 0x2, 0x3, 0x0, 0x5, 0x6, 0x7, 0x4, + 0x9, 0xa, 0xb, 0x8, 0xd, 0xe, 0xf, 0xc, + }; + + uint8x16_t v; + uint8x16_t w = vreinterpretq_u8_m128i(a); + + // inverse shift rows + w = vqtbl1q_u8(w, vld1q_u8(inv_shift_rows)); + + // inverse sub bytes + v = vqtbl4q_u8(_sse2neon_vld1q_u8_x4(_sse2neon_rsbox), w); + v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_rsbox + 0x40), w - 0x40); + v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_rsbox + 0x80), w - 0x80); + v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_rsbox + 0xc0), w - 0xc0); + + // inverse mix columns + // muliplying 'v' by 4 in GF(2^8) + w = (v << 1) ^ (uint8x16_t) (((int8x16_t) v >> 7) & 0x1b); + w = (w << 1) ^ (uint8x16_t) (((int8x16_t) w >> 7) & 0x1b); + v ^= w; + v ^= (uint8x16_t) vrev32q_u16((uint16x8_t) w); + + w = (v << 1) ^ (uint8x16_t) (((int8x16_t) v >> 7) & + 0x1b); // muliplying 'v' by 2 in GF(2^8) + w ^= (uint8x16_t) vrev32q_u16((uint16x8_t) v); + w ^= vqtbl1q_u8(v ^ w, vld1q_u8(ror32by8)); + + // add round key + return vreinterpretq_m128i_u8(w) ^ RoundKey; + +#else /* ARMv7-A NEON implementation */ + /* FIXME: optimized for NEON */ + uint8_t i, e, f, g, h, v[4][4]; + uint8_t *_a = (uint8_t *) &a; + for (i = 0; i < 16; ++i) { + v[((i / 4) + (i % 4)) % 4][i % 4] = _sse2neon_rsbox[_a[i]]; + } + + // inverse mix columns + for (i = 0; i < 4; ++i) { + e = v[i][0]; + f = v[i][1]; + g = v[i][2]; + h = v[i][3]; + + v[i][0] = SSE2NEON_MULTIPLY(e, 0x0e) ^ SSE2NEON_MULTIPLY(f, 0x0b) ^ + SSE2NEON_MULTIPLY(g, 0x0d) ^ SSE2NEON_MULTIPLY(h, 0x09); + v[i][1] = SSE2NEON_MULTIPLY(e, 0x09) ^ SSE2NEON_MULTIPLY(f, 0x0e) ^ + SSE2NEON_MULTIPLY(g, 0x0b) ^ SSE2NEON_MULTIPLY(h, 0x0d); + v[i][2] = SSE2NEON_MULTIPLY(e, 0x0d) ^ SSE2NEON_MULTIPLY(f, 0x09) ^ + SSE2NEON_MULTIPLY(g, 0x0e) ^ SSE2NEON_MULTIPLY(h, 0x0b); + v[i][3] = SSE2NEON_MULTIPLY(e, 0x0b) ^ SSE2NEON_MULTIPLY(f, 0x0d) ^ + SSE2NEON_MULTIPLY(g, 0x09) ^ SSE2NEON_MULTIPLY(h, 0x0e); + } + + return vreinterpretq_m128i_u8(vld1q_u8((uint8_t *) v)) ^ RoundKey; +#endif +} + +// Perform the last round of an AES encryption flow on data (state) in a using +// the round key in RoundKey, and store the result in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aesenclast_si128 +FORCE_INLINE __m128i _mm_aesenclast_si128(__m128i a, __m128i RoundKey) +{ +#if defined(__aarch64__) + static const uint8_t shift_rows[] = { + 0x0, 0x5, 0xa, 0xf, 0x4, 0x9, 0xe, 0x3, + 0x8, 0xd, 0x2, 0x7, 0xc, 0x1, 0x6, 0xb, + }; + + uint8x16_t v; + uint8x16_t w = vreinterpretq_u8_m128i(a); + + // shift rows + w = vqtbl1q_u8(w, vld1q_u8(shift_rows)); + + // sub bytes + v = vqtbl4q_u8(_sse2neon_vld1q_u8_x4(_sse2neon_sbox), w); + v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_sbox + 0x40), w - 0x40); + v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_sbox + 0x80), w - 0x80); + v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_sbox + 0xc0), w - 0xc0); + + // add round key + return vreinterpretq_m128i_u8(v) ^ RoundKey; + +#else /* ARMv7-A implementation */ + uint8_t v[16] = { + _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 0)], + _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 5)], + _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 10)], + _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 15)], + _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 4)], + _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 9)], + _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 14)], + _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 3)], + _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 8)], + _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 13)], + _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 2)], + _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 7)], + _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 12)], + _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 1)], + _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 6)], + _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 11)], + }; + + return vreinterpretq_m128i_u8(vld1q_u8(v)) ^ RoundKey; +#endif +} + +// Perform the last round of an AES decryption flow on data (state) in a using +// the round key in RoundKey, and store the result in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aesdeclast_si128 +FORCE_INLINE __m128i _mm_aesdeclast_si128(__m128i a, __m128i RoundKey) +{ +#if defined(__aarch64__) + static const uint8_t inv_shift_rows[] = { + 0x0, 0xd, 0xa, 0x7, 0x4, 0x1, 0xe, 0xb, + 0x8, 0x5, 0x2, 0xf, 0xc, 0x9, 0x6, 0x3, + }; + + uint8x16_t v; + uint8x16_t w = vreinterpretq_u8_m128i(a); + + // inverse shift rows + w = vqtbl1q_u8(w, vld1q_u8(inv_shift_rows)); + + // inverse sub bytes + v = vqtbl4q_u8(_sse2neon_vld1q_u8_x4(_sse2neon_rsbox), w); + v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_rsbox + 0x40), w - 0x40); + v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_rsbox + 0x80), w - 0x80); + v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_rsbox + 0xc0), w - 0xc0); + + // add round key + return vreinterpretq_m128i_u8(v) ^ RoundKey; + +#else /* ARMv7-A NEON implementation */ + /* FIXME: optimized for NEON */ + uint8_t v[4][4]; + uint8_t *_a = (uint8_t *) &a; + for (int i = 0; i < 16; ++i) { + v[((i / 4) + (i % 4)) % 4][i % 4] = _sse2neon_rsbox[_a[i]]; + } + + return vreinterpretq_m128i_u8(vld1q_u8((uint8_t *) v)) ^ RoundKey; +#endif +} + +// Perform the InvMixColumns transformation on a and store the result in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aesimc_si128 +FORCE_INLINE __m128i _mm_aesimc_si128(__m128i a) +{ +#if defined(__aarch64__) + static const uint8_t ror32by8[] = { + 0x1, 0x2, 0x3, 0x0, 0x5, 0x6, 0x7, 0x4, + 0x9, 0xa, 0xb, 0x8, 0xd, 0xe, 0xf, 0xc, + }; + uint8x16_t v = vreinterpretq_u8_m128i(a); + uint8x16_t w; + + // multiplying 'v' by 4 in GF(2^8) + w = (v << 1) ^ (uint8x16_t) (((int8x16_t) v >> 7) & 0x1b); + w = (w << 1) ^ (uint8x16_t) (((int8x16_t) w >> 7) & 0x1b); + v ^= w; + v ^= (uint8x16_t) vrev32q_u16((uint16x8_t) w); + + // multiplying 'v' by 2 in GF(2^8) + w = (v << 1) ^ (uint8x16_t) (((int8x16_t) v >> 7) & 0x1b); + w ^= (uint8x16_t) vrev32q_u16((uint16x8_t) v); + w ^= vqtbl1q_u8(v ^ w, vld1q_u8(ror32by8)); + return vreinterpretq_m128i_u8(w); + +#else /* ARMv7-A NEON implementation */ + uint8_t i, e, f, g, h, v[4][4]; + vst1q_u8((uint8_t *) v, vreinterpretq_u8_m128i(a)); + for (i = 0; i < 4; ++i) { + e = v[i][0]; + f = v[i][1]; + g = v[i][2]; + h = v[i][3]; + + v[i][0] = SSE2NEON_MULTIPLY(e, 0x0e) ^ SSE2NEON_MULTIPLY(f, 0x0b) ^ + SSE2NEON_MULTIPLY(g, 0x0d) ^ SSE2NEON_MULTIPLY(h, 0x09); + v[i][1] = SSE2NEON_MULTIPLY(e, 0x09) ^ SSE2NEON_MULTIPLY(f, 0x0e) ^ + SSE2NEON_MULTIPLY(g, 0x0b) ^ SSE2NEON_MULTIPLY(h, 0x0d); + v[i][2] = SSE2NEON_MULTIPLY(e, 0x0d) ^ SSE2NEON_MULTIPLY(f, 0x09) ^ + SSE2NEON_MULTIPLY(g, 0x0e) ^ SSE2NEON_MULTIPLY(h, 0x0b); + v[i][3] = SSE2NEON_MULTIPLY(e, 0x0b) ^ SSE2NEON_MULTIPLY(f, 0x0d) ^ + SSE2NEON_MULTIPLY(g, 0x09) ^ SSE2NEON_MULTIPLY(h, 0x0e); + } + + return vreinterpretq_m128i_u8(vld1q_u8((uint8_t *) v)); +#endif +} + +// Emits the Advanced Encryption Standard (AES) instruction aeskeygenassist. +// This instruction generates a round key for AES encryption. See +// https://kazakov.life/2017/11/01/cryptocurrency-mining-on-ios-devices/ +// for details. +// +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aeskeygenassist_si128 +FORCE_INLINE __m128i _mm_aeskeygenassist_si128(__m128i a, const int rcon) +{ +#if defined(__aarch64__) + uint8x16_t _a = vreinterpretq_u8_m128i(a); + uint8x16_t v = vqtbl4q_u8(_sse2neon_vld1q_u8_x4(_sse2neon_sbox), _a); + v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_sbox + 0x40), _a - 0x40); + v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_sbox + 0x80), _a - 0x80); + v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_sbox + 0xc0), _a - 0xc0); + + uint32x4_t select_mask = {0xffffffff, 0x0, 0xffffffff, 0x0}; + uint64x2_t v_mask = vshrq_n_u64(vreinterpretq_u64_u8(v), 32); + uint32x4_t x = vbslq_u32(select_mask, vreinterpretq_u32_u64(v_mask), + vreinterpretq_u32_u8(v)); + uint32x4_t ror_x = vorrq_u32(vshrq_n_u32(x, 8), vshlq_n_u32(x, 24)); + uint32x4_t ror_xor_x = veorq_u32(ror_x, vdupq_n_u32(rcon)); + + return vreinterpretq_m128i_u32(vbslq_u32(select_mask, x, ror_xor_x)); + +#else /* ARMv7-A NEON implementation */ + uint32_t X1 = _mm_cvtsi128_si32(_mm_shuffle_epi32(a, 0x55)); + uint32_t X3 = _mm_cvtsi128_si32(_mm_shuffle_epi32(a, 0xFF)); + for (int i = 0; i < 4; ++i) { + ((uint8_t *) &X1)[i] = _sse2neon_sbox[((uint8_t *) &X1)[i]]; + ((uint8_t *) &X3)[i] = _sse2neon_sbox[((uint8_t *) &X3)[i]]; + } + return _mm_set_epi32(((X3 >> 8) | (X3 << 24)) ^ rcon, X3, + ((X1 >> 8) | (X1 << 24)) ^ rcon, X1); +#endif +} +#undef SSE2NEON_AES_SBOX +#undef SSE2NEON_AES_RSBOX + +#if defined(__aarch64__) +#undef SSE2NEON_XT +#undef SSE2NEON_MULTIPLY +#endif + +#else /* __ARM_FEATURE_CRYPTO */ +// Implements equivalent of 'aesenc' by combining AESE (with an empty key) and +// AESMC and then manually applying the real key as an xor operation. This +// unfortunately means an additional xor op; the compiler should be able to +// optimize this away for repeated calls however. See +// https://blog.michaelbrase.com/2018/05/08/emulating-x86-aes-intrinsics-on-armv8-a +// for more details. +FORCE_INLINE __m128i _mm_aesenc_si128(__m128i a, __m128i b) +{ + return vreinterpretq_m128i_u8( + vaesmcq_u8(vaeseq_u8(vreinterpretq_u8_m128i(a), vdupq_n_u8(0))) ^ + vreinterpretq_u8_m128i(b)); +} + +// Perform one round of an AES decryption flow on data (state) in a using the +// round key in RoundKey, and store the result in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aesdec_si128 +FORCE_INLINE __m128i _mm_aesdec_si128(__m128i a, __m128i RoundKey) +{ + return vreinterpretq_m128i_u8(veorq_u8( + vaesimcq_u8(vaesdq_u8(vreinterpretq_u8_m128i(a), vdupq_n_u8(0))), + vreinterpretq_u8_m128i(RoundKey))); +} + +// Perform the last round of an AES encryption flow on data (state) in a using +// the round key in RoundKey, and store the result in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aesenclast_si128 +FORCE_INLINE __m128i _mm_aesenclast_si128(__m128i a, __m128i RoundKey) +{ + return _mm_xor_si128(vreinterpretq_m128i_u8(vaeseq_u8( + vreinterpretq_u8_m128i(a), vdupq_n_u8(0))), + RoundKey); +} + +// Perform the last round of an AES decryption flow on data (state) in a using +// the round key in RoundKey, and store the result in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aesdeclast_si128 +FORCE_INLINE __m128i _mm_aesdeclast_si128(__m128i a, __m128i RoundKey) +{ + return vreinterpretq_m128i_u8( + vaesdq_u8(vreinterpretq_u8_m128i(a), vdupq_n_u8(0))) ^ + vreinterpretq_u8_m128i(RoundKey); +} + +// Perform the InvMixColumns transformation on a and store the result in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aesimc_si128 +FORCE_INLINE __m128i _mm_aesimc_si128(__m128i a) +{ + return vreinterpretq_m128i_u8(vaesimcq_u8(a)); +} + +// Assist in expanding the AES cipher key by computing steps towards generating +// a round key for encryption cipher using data from a and an 8-bit round +// constant specified in imm8, and store the result in dst." +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aeskeygenassist_si128 +FORCE_INLINE __m128i _mm_aeskeygenassist_si128(__m128i a, const int rcon) +{ + // AESE does ShiftRows and SubBytes on A + uint8x16_t u8 = vaeseq_u8(vreinterpretq_u8_m128i(a), vdupq_n_u8(0)); + + uint8x16_t dest = { + // Undo ShiftRows step from AESE and extract X1 and X3 + u8[0x4], u8[0x1], u8[0xE], u8[0xB], // SubBytes(X1) + u8[0x1], u8[0xE], u8[0xB], u8[0x4], // ROT(SubBytes(X1)) + u8[0xC], u8[0x9], u8[0x6], u8[0x3], // SubBytes(X3) + u8[0x9], u8[0x6], u8[0x3], u8[0xC], // ROT(SubBytes(X3)) + }; + uint32x4_t r = {0, (unsigned) rcon, 0, (unsigned) rcon}; + return vreinterpretq_m128i_u8(dest) ^ vreinterpretq_m128i_u32(r); +} +#endif + +/* Others */ + +// Perform a carry-less multiplication of two 64-bit integers, selected from a +// and b according to imm8, and store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_clmulepi64_si128 +FORCE_INLINE __m128i _mm_clmulepi64_si128(__m128i _a, __m128i _b, const int imm) +{ + uint64x2_t a = vreinterpretq_u64_m128i(_a); + uint64x2_t b = vreinterpretq_u64_m128i(_b); + switch (imm & 0x11) { + case 0x00: + return vreinterpretq_m128i_u64( + _sse2neon_vmull_p64(vget_low_u64(a), vget_low_u64(b))); + case 0x01: + return vreinterpretq_m128i_u64( + _sse2neon_vmull_p64(vget_high_u64(a), vget_low_u64(b))); + case 0x10: + return vreinterpretq_m128i_u64( + _sse2neon_vmull_p64(vget_low_u64(a), vget_high_u64(b))); + case 0x11: + return vreinterpretq_m128i_u64( + _sse2neon_vmull_p64(vget_high_u64(a), vget_high_u64(b))); + default: + abort(); + } +} + +FORCE_INLINE unsigned int _sse2neon_mm_get_denormals_zero_mode() +{ + union { + fpcr_bitfield field; +#if defined(__aarch64__) + uint64_t value; +#else + uint32_t value; +#endif + } r; + +#if defined(__aarch64__) + __asm__ __volatile__("mrs %0, FPCR" : "=r"(r.value)); /* read */ +#else + __asm__ __volatile__("vmrs %0, FPSCR" : "=r"(r.value)); /* read */ +#endif + + return r.field.bit24 ? _MM_DENORMALS_ZERO_ON : _MM_DENORMALS_ZERO_OFF; +} + +// Count the number of bits set to 1 in unsigned 32-bit integer a, and +// return that count in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_popcnt_u32 +FORCE_INLINE int _mm_popcnt_u32(unsigned int a) +{ +#if defined(__aarch64__) +#if __has_builtin(__builtin_popcount) + return __builtin_popcount(a); +#else + return (int) vaddlv_u8(vcnt_u8(vcreate_u8((uint64_t) a))); +#endif +#else + uint32_t count = 0; + uint8x8_t input_val, count8x8_val; + uint16x4_t count16x4_val; + uint32x2_t count32x2_val; + + input_val = vld1_u8((uint8_t *) &a); + count8x8_val = vcnt_u8(input_val); + count16x4_val = vpaddl_u8(count8x8_val); + count32x2_val = vpaddl_u16(count16x4_val); + + vst1_u32(&count, count32x2_val); + return count; +#endif +} + +// Count the number of bits set to 1 in unsigned 64-bit integer a, and +// return that count in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_popcnt_u64 +FORCE_INLINE int64_t _mm_popcnt_u64(uint64_t a) +{ +#if defined(__aarch64__) +#if __has_builtin(__builtin_popcountll) + return __builtin_popcountll(a); +#else + return (int64_t) vaddlv_u8(vcnt_u8(vcreate_u8(a))); +#endif +#else + uint64_t count = 0; + uint8x8_t input_val, count8x8_val; + uint16x4_t count16x4_val; + uint32x2_t count32x2_val; + uint64x1_t count64x1_val; + + input_val = vld1_u8((uint8_t *) &a); + count8x8_val = vcnt_u8(input_val); + count16x4_val = vpaddl_u8(count8x8_val); + count32x2_val = vpaddl_u16(count16x4_val); + count64x1_val = vpaddl_u32(count32x2_val); + vst1_u64(&count, count64x1_val); + return count; +#endif +} + +FORCE_INLINE void _sse2neon_mm_set_denormals_zero_mode(unsigned int flag) +{ + // AArch32 Advanced SIMD arithmetic always uses the Flush-to-zero setting, + // regardless of the value of the FZ bit. + union { + fpcr_bitfield field; +#if defined(__aarch64__) + uint64_t value; +#else + uint32_t value; +#endif + } r; + +#if defined(__aarch64__) + __asm__ __volatile__("mrs %0, FPCR" : "=r"(r.value)); /* read */ +#else + __asm__ __volatile__("vmrs %0, FPSCR" : "=r"(r.value)); /* read */ +#endif + + r.field.bit24 = (flag & _MM_DENORMALS_ZERO_MASK) == _MM_DENORMALS_ZERO_ON; + +#if defined(__aarch64__) + __asm__ __volatile__("msr FPCR, %0" ::"r"(r)); /* write */ +#else + __asm__ __volatile__("vmsr FPSCR, %0" ::"r"(r)); /* write */ +#endif +} + +// Return the current 64-bit value of the processor's time-stamp counter. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=rdtsc + +FORCE_INLINE uint64_t _rdtsc(void) +{ +#if defined(__aarch64__) + uint64_t val; + + /* According to ARM DDI 0487F.c, from Armv8.0 to Armv8.5 inclusive, the + * system counter is at least 56 bits wide; from Armv8.6, the counter + * must be 64 bits wide. So the system counter could be less than 64 + * bits wide and it is attributed with the flag 'cap_user_time_short' + * is true. + */ + __asm__ __volatile__("mrs %0, cntvct_el0" : "=r"(val)); + + return val; +#else + uint32_t pmccntr, pmuseren, pmcntenset; + // Read the user mode Performance Monitoring Unit (PMU) + // User Enable Register (PMUSERENR) access permissions. + __asm__ __volatile__("mrc p15, 0, %0, c9, c14, 0" : "=r"(pmuseren)); + if (pmuseren & 1) { // Allows reading PMUSERENR for user mode code. + __asm__ __volatile__("mrc p15, 0, %0, c9, c12, 1" : "=r"(pmcntenset)); + if (pmcntenset & 0x80000000UL) { // Is it counting? + __asm__ __volatile__("mrc p15, 0, %0, c9, c13, 0" : "=r"(pmccntr)); + // The counter is set up to count every 64th cycle + return (uint64_t) (pmccntr) << 6; + } + } + + // Fallback to syscall as we can't enable PMUSERENR in user mode. + struct timeval tv; + gettimeofday(&tv, NULL); + return (uint64_t) (tv.tv_sec) * 1000000 + tv.tv_usec; +#endif +} + +#if defined(__GNUC__) || defined(__clang__) +#pragma pop_macro("ALIGN_STRUCT") +#pragma pop_macro("FORCE_INLINE") +#endif + +#if defined(__GNUC__) && !defined(__clang__) +#pragma GCC pop_options +#endif + +#endif diff --git a/src/util/system.h b/src/util/system.h index 4dadb84..cdae40b 100644 --- a/src/util/system.h +++ b/src/util/system.h @@ -21,6 +21,14 @@ Author: Benjamin Buchfink #ifndef SYSTEM_H_ #define SYSTEM_H_ +#ifdef __aarch64__ +bool check_SSSE3() +{ + return false; +} + +#else + #ifdef _WIN32 #define cpuid(info,x) __cpuidex(info,x,0) #else @@ -48,4 +56,5 @@ bool check_SSSE3() return false; } +#endif /* __aarch64__ */ #endif /* SYSTEM_H_ */ diff --git a/src/util/util.h b/src/util/util.h index ca1f833..7e7054b 100644 --- a/src/util/util.h +++ b/src/util/util.h @@ -51,6 +51,10 @@ Author: Benjamin Buchfink #include #endif +#ifdef __aarch64__ +#include "sse2neon.h" +#endif + #include #include #include