/* Source: https://en.wikipedia.org/wiki/Exponentiation_by_squaring Complexity: O(d^3 log n) where: d is the dimension of the square matrix n is the power the matrix is raised to */ const Identity = (n) => { // Input: n: int // Output: res: Identity matrix of size n x n // Complexity: O(n^2) const res = [] for (let i = 0; i < n; i++) { res[i] = [] for (let j = 0; j < n; j++) { res[i][j] = i === j ? 1 : 0 } } return res } const MatMult = (matrixA, matrixB) => { // Input: matrixA: 2D Array of Numbers of size n x n // matrixB: 2D Array of Numbers of size n x n // Output: matrixA x matrixB: 2D Array of Numbers of size n x n // Complexity: O(n^3) const n = matrixA.length const matrixC = [] for (let i = 0; i < n; i++) { matrixC[i] = [] for (let j = 0; j < n; j++) { matrixC[i][j] = 0 } } for (let i = 0; i < n; i++) { for (let j = 0; j < n; j++) { for (let k = 0; k < n; k++) { matrixC[i][j] += matrixA[i][k] * matrixB[k][j] } } } return matrixC } export const MatrixExponentiationRecursive = (mat, m) => { // Input: mat: 2D Array of Numbers of size n x n // Output: mat^n: 2D Array of Numbers of size n x n // Complexity: O(n^3 log m) if (m === 0) { // return identity matrix of size n x n return Identity(mat.length) } else if (m % 2 === 1) { // tmp = mat ^ m-1 const tmp = MatrixExponentiationRecursive(mat, m - 1) /// return tmp * mat = (mat ^ m-1) * mat = mat ^ m return MatMult(tmp, mat) } else { // tmp = mat ^ m/2 const tmp = MatrixExponentiationRecursive(mat, m >> 1) // return tmp * tmp = (mat ^ m/2) ^ 2 = mat ^ m return MatMult(tmp, tmp) } } // const mat = [[1, 0, 2], [2, 1, 0], [0, 2, 1]] // // mat ^ 0 = [ [ 1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ] // MatrixExponentiationRecursive(mat, 0) // // mat ^ 1 = [ [ 1, 0, 2 ], [ 2, 1, 0 ], [ 0, 2, 1 ] ] // MatrixExponentiationRecursive(mat, 1) // // mat ^ 2 = [ [ 1, 4, 4 ], [ 4, 1, 4 ], [ 4, 4, 1 ] ] // MatrixExponentiationRecursive(mat, 2) // // mat ^ 5 = [ [ 1, 4, 4 ], [ 4, 1, 4 ], [ 4, 4, 1 ] ] // MatrixExponentiationRecursive(mat, 5)