
A practical, low computing cost method for

vibration compensation in positioning

mechanisms such as those found in CNCs and 3d

printers

Milan Cosnefroy, M.Mus.

August 21, 2018

1 Problem definition

1.1 Ringing artifacts

When using 3d printers at high speeds, an artefact known as ”ringing” becomes
a major element in low print quality; it is due to vibration of the print head
about its intended position relative to the build plate after abrupt accelerations,
and shows up as a wavy surface, mainly after right or acute angles in the tool
path.
This document describes a method which intends to avoid such artefacts, and
brings other advantages.
Previous techniques have been mathematically complex and computationally
intensive, requiring pre-processing of the G-Code on a personal computer; this
new approach has the huge advantage of bringing almost no overhead, which will
allow implementation even on machines controlled by 8-bit microcontrollers.

1.2 Mechanical considerations

1.2.1 Cartesian-type machines

Each axis is assumed to be independant from the others, as is the case with
most ”Cartesian” type machines. The algorithm described here is intended for
such machines and may or may not help with similar problems in coreXY, delta,
SCARA, and other constructions.

1.2.2 Axis modelisation

Effective motion along each axis will be assumed to be analogous to that of a
load attached using a spring to a point following the ideal tool path.

1

1.3 Correction scope

1.3.1 Fixed-acceleration and per-junction ∆v motion control scheme

Most consumer 3d printers use a motion control scheme where the velocities
at segment extremities are chosen in order not to exceed a certain amount of
instantaneous speed difference - often called ”jerk”, but not related to the third-
order derivative of position - and use a fixed-rate acceleration at the beginning
and end of each segment, to try and attain the desired print speed in the middle
portion if the segment is long enough.
This paper assumes we are working with machines which use this type of motion
control.

1.3.2 ”Jerk” compensation only

This paper mostly deals with the correction of vibrations induced by ”jerk”,
although a new approach to acceleration will be described further on.

1.3.3 Correction approach

My early empirical approach suggested a solution exists by replacing each seg-
ment junction by an additional path segment (and therefore two junctions) of
appropriate length and target velocity, i.e. cutting corners; we will now analyt-
ically determine said length and velocity.

2 Mathematical analysis

2.1 Variables and parameters

Fixed parameters will be represented using upper-case characters, variables us-
ing lower-case. A subscript i indicates component along axis i.

2.1.1 Spring-attached load model

m : load mass
k : spring constant

2.1.2 Speed vectors

~V1 : target speed vector at end of previous segment.
~Vc : target speed vector for added (corrective) segment.
~V2 : target speed vector at beginning of next segment.
∆~V : speed vector difference between previous and next segment.
∆~V1 : speed vector difference between previous and corrective segment.
∆~V2 : speed vector difference between corrective and next segment.

2.1.3 Motion relative to point along corrective segment

~x(t), ~v(t),~a(t) : position, speed and acceleration relative to a point following the
planned path.
t : time elapsed since start of corrective segment.
T : time at end of corrective segment.

2

2.2 Differential equation

2.2.1 General solution form

mai + kxi = 0

By defining K = k
m , we can rewrite the equation as:

ai +Kixi = 0

Which solves to:

xi(t) = c1 · cos(
√
Ki · t) + c2 · sin(

√
Ki · t)

From which we can derive

vi(t) =
√
Ki(−c1 · sin(

√
Ki · t) + c2 · cos(

√
Ki · t)

2.2.2 Constant determination using initial conditions

xi(0) = c1 · cos(0) + c2 · sin(0) = c1

At t = 0, there is by definition no deviation from the path yet; therefore:

c1 = 0

Let’s move on to c2, using vi(t):

vi(0) =
√
Ki · c2 · cos(

√
Ki · 0)

vi(0) =
√
Ki · c2

c2 =
vi(0)√
Ki

vi(0) = −∆V1,i

c2 = −∆V1,i√
Ki

Therefore:

xi(t) = −∆V1,i√
Ki

· sin(
√
Ki · t)

vi(t) = −∆V1,i · cos(
√
Ki · t)

ai(t) =
√
K ·∆V1,i · sin(

√
Ki · t)

3

2.2.3 Full solution using conditions at t = T

We want the effective path to join with the ideal path where the corrective
segment joins the next tool path segment; therefore:

xi(Ti) = 0

sin(
√
Ki · Ti) = 0

√
Ki · Ti = 0 mod π

We also want the effective speed to be equal to the target speed when beginning
the next segment.

vi(Ti) = ∆V2,i

vi(Ti) = ∆Vi −∆V1,i

−∆V1,i · cos(
√
Ki · Ti) = ∆Vi −∆V1,i

∆V1,i · (1− cos(
√
Ki · Ti)) = ∆Vi

∆V1,i =
∆Vi

1− cos(
√
Ki · Ti)

We already know that
√
Ki · Ti = 0 mod π;

However ∆V1,i is not defined for
√
Ki · Ti = 0 mod 2π, which leaves us with:√

Ki · Ti = π mod 2π

We are not interested in letting the tool head oscillate before settling down;
therefore, we will use the first possible value:√

Ki · Ti = π

(Ti =
π√
Ki

)

Which leads us to:

∆V1,i =
∆Vi

1− cos(
√
Ki · Ti)

=
∆Vi

2

∆V2,i = ∆Vi −∆V1,i =
∆Vi

2

∆V1,i = ∆V2,i =
∆Vi

2

Vc,i =
V1,i + V2,i

2

4

We will now compute the location of the points at which the corrected path
breaks away from and re-joins the initial path.

~Vc =
~V1 + ~V2

2

Let’s name A, B and C respectively the first point of the correction segment,
the common point of the original path segments, and the second point of the
correction segment.

~AB + ~BC = T ~VAB =
T

2
· (~V1 + ~V2) =

T

2
· (~VAB + ~VBC)

Taking the components along ~AB and ~BC, this gives us:

~AB =
T

2
~V1

~BC =
T

2
~V2

Therefore:

A = B − T

2
~V1

C = B +
T

2
~V2

We have now determined the locations of the exit and re-entry points, as well
as the corrective segment velocity, such that the effective tool path does not
depart from the ideal path outside of the small corrective segment which spans
each angle in the original path.

2.2.4 Kx 6= Ky: multiple departure/re-entry points

3 Solution analysis

Let’s re-write

xi(t) = − ∆Vi

2
√
Ki

· sin(
√
Ki · t)

vi(t) = −∆Vi
2
· cos(

√
Ki · t)

ai(t) =

√
Ki

2
·∆Vi · sin(

√
Ki · t)

3.1 Experimental determination of Ki from uncompen-
sated print

We can get the maximal displacement by halving the peak-to-peak difference
measured on an uncompensated print, and deriving a formula for Ki from the
equation for xi(t).
Note that there is an additional factor of 2, as the above formula corresponds to
the displacement when only half of ∆Vi has been applied (at junction between

5

previous and corrective segment), while without compensation it is fully applied
at the junction between previous and next segment.

ε = 2 · xmax,i = 2 · |∆Vi|
2
√
Ki√

Ki =
|∆Vi|
ε

Ki =

(
∆Vi
ε

)2

A more precise estimate of Ki can be derived using a test print at high acceler-
ation and very low ”jerk”; see ”An attempt at acceleration compensation”.

3.2 Effective acceleration

3.2.1 Peak acceleration

amax,i =

√
Ki

2
· |∆Vi|

3.2.2 Average acceleration

aavg,i =
|∆Vi|
Ti

=

√
Ki · |∆Vi|

π

3.3 Allowable ∆v relative to target acceleration

∆Vmax,i =
2 · amax,i√

Ki

Please note that the effective per-junction speed difference equals half of this
value, as this corresponds to the overall speed difference per added segment /
per original junction.

3.4 Cornering speed - TODO: proof

3.4.1 This sort of looks like it should work...

veff,i(t) = Vc,i + vi(t)

Let’s consider t = T
2 .

vcorner,i = Vc,i + (...) · sin(π/2) = Vc,i

In the case of a 90 deg angle, at print speed Vtest:

vcorner,i =
Vtest

2

||~vcorner|| =
Vtest√

2

It would seem that

||~vcorner|| = Vtest · cos

(
θ

2

)

6

3.4.2 Almost proper math

Let’s assume here V1 = V2 = Vprint, and define V (t) = ||~veff,i||.

~veff,i =

3.5 Error

Let ~ξ(t) be the vector between the point common to both original segments and
the effective corrected tool position.

ξi(t) = −Ti
2
V1,i + Vc,i · t+ xi(t)

= −Ti
2
V1,i +

V1,i + V2,i
2

· t− ∆Vi

2
√
Ki

· sin(
√
Ki · t)

= −Ti
2
V1,i +

V1,i + V2,i
2

· t− V2,i − V1,i
2
√
Ki

· sin(
√
Ki · t)

=
1

2

[(
t+

1√
Ki

·
(

sin
(√

Ki · t
)
− π

))
· V1,i +

(
t− 1√

Ki

· sin
(√

Ki · t
))
· V2,i

]
The maximal positioning error ε is equal to the distance between the initial
junction point and the closest point of the corrected path, i.e. the minimal
value of ||ξ(t)||.
t = T

2 seems like a reasonable estimate of when this value is attained; in any
case:

ε ≤
∣∣∣∣∣∣∣∣ξ(T2)

∣∣∣∣∣∣∣∣
Let’s first work with ξi(T/2) :

ξi

(
Ti
2

)
=

1

2

[(
−Ti +

Ti
2

+
sin
(
π
2

)
√
Ki

)
V1,i +

(
Ti
2
−

sin
(
π
2

)
√
Ki

)
V2,i

]

=
1

2

[(
−Ti

2
+

1√
Ki

)
V1,i

(
+
Ti
2
− 1√

Ki

)
V2,i

]
=
π − 2

4
· ∆Vi√

Ki

While the following notation is questionable, it works as all Ti

2 ’s coincide.

∣∣∣∣∣∣∣∣~ξ(T2
)∣∣∣∣∣∣∣∣ =

π − 2

4
·

√√√√(∆Vx√
Kx

)2

+

(
∆Vy√
Ky

)2

ε ≤ π − 2

4
·

√√√√(∆Vmax,x√
Kx

)2

+

(
∆Vmax,y√

Ky

)2

7

4 ”Jerk” compensation algorithm

4.1 Marlin case study

4.2 Sample correction pre-processor

5 An attempt at acceleration compensation

6 An alternative to traditional firmware accel-
eration

8

