import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torch.backends.cudnn as cudnn

import torchvision
import torchvision.transforms as transforms

import os
import os, os.path, sys
import argparse
import importlib
import importlib.abc

#from models import *

learning_rate = 0.1
epsilon = 0.0314
k = 7
alpha = 0.00784
file_name = 'pgd_adversarial_training'

device = 'cuda' if torch.cuda.is_available() else 'cpu'

transform_train = transforms.Compose([
    transforms.RandomCrop(32, padding=4),
    transforms.RandomHorizontalFlip(),
    transforms.ToTensor(),
])

transform_test = transforms.Compose([
    transforms.ToTensor(),
])

train_dataset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform_train)
test_dataset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform_test)

train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=128, shuffle=True, num_workers=4)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=100, shuffle=False, num_workers=4)

class LinfPGDAttack(object):
    def __init__(self, model):
        self.model = model

    def perturb(self, x_natural, y):
        x = x_natural.detach()
        x = x + torch.zeros_like(x).uniform_(-epsilon, epsilon)
        for i in range(k):
            x.requires_grad_()
            with torch.enable_grad():
                logits = self.model(x)
                loss = F.cross_entropy(logits, y)
            grad = torch.autograd.grad(loss, [x])[0]
            x = x.detach() + alpha * torch.sign(grad.detach())
            x = torch.min(torch.max(x, x_natural - epsilon), x_natural + epsilon)
            x = torch.clamp(x, 0, 1)
        return x

def attack(x, y, model, adversary):
    model_copied = copy.deepcopy(model)
    model_copied.eval()
    adversary.model = model_copied
    adv = adversary.perturb(x, y)
    return adv




def load_project(project_dir):
    module_filename = os.path.join(project_dir, 'model.py')
    if os.path.exists(project_dir) and os.path.isdir(project_dir) and os.path.isfile(module_filename):
        print("Found valid project in '{}'.".format(project_dir))
    else:
        print("Fatal: '{}' is not a valid project directory.".format(project_dir))
        raise FileNotFoundError

    sys.path = [project_dir] + sys.path
    spec = importlib.util.spec_from_file_location("model", module_filename)
    project_module = importlib.util.module_from_spec(spec)
    spec.loader.exec_module(project_module)

    return project_module

#net = ResNet18()
torch.seed()
parser = argparse.ArgumentParser()
parser.add_argument("project_dir", metavar="project-dir", nargs="?", default=os.getcwd(),
                        help="Path to the project directory to test.")
parser.add_argument("-b", "--batch-size", type=int, default=256,
                        help="Set batch size.")
parser.add_argument("-s", "--num-samples", type=int, default=1,
                        help="Num samples for testing (required to test randomized networks).")


def train(epoch):
    print('\n[ Train epoch: %d ]' % epoch)
    net.train()
    train_loss = 0
    correct = 0
    total = 0
    for batch_idx, (inputs, targets) in enumerate(train_loader):
        inputs, targets = inputs.to(device), targets.to(device)
        optimizer.zero_grad()

        adv = adversary.perturb(inputs, targets)
        adv_outputs = net(adv)
        loss = criterion(adv_outputs, targets)
        loss.backward()

        optimizer.step()
        train_loss += loss.item()
        _, predicted = adv_outputs.max(1)

        total += targets.size(0)
        correct += predicted.eq(targets).sum().item()
        
        if batch_idx % 100 == 0:
            print('\nCurrent batch:', str(batch_idx))
            print('Current adversarial train accuracy:', str(predicted.eq(targets).sum().item() / targets.size(0)))
            print('Current adversarial train loss:', loss.item())

    print('\nTotal adversarial train accuarcy:', 100. * correct / total)
    print('Total adversarial train loss:', train_loss)

def test(epoch):
    print('\n[ Test epoch: %d ]' % epoch)
    net.eval()
    benign_loss = 0
    adv_loss = 0
    benign_correct = 0
    adv_correct = 0
    total = 0
    with torch.no_grad():
        for batch_idx, (inputs, targets) in enumerate(test_loader):
            inputs, targets = inputs.to(device), targets.to(device)
            total += targets.size(0)

            outputs = net(inputs)
            loss = criterion(outputs, targets)
            benign_loss += loss.item()

            _, predicted = outputs.max(1)
            benign_correct += predicted.eq(targets).sum().item()

            if batch_idx % 10 == 0:
                print('\nCurrent batch:', str(batch_idx))
                print('Current benign test accuracy:', str(predicted.eq(targets).sum().item() / targets.size(0)))
                print('Current benign test loss:', loss.item())

            adv = adversary.perturb(inputs, targets)
            adv_outputs = net(adv)
            loss = criterion(adv_outputs, targets)
            adv_loss += loss.item()

            _, predicted = adv_outputs.max(1)
            adv_correct += predicted.eq(targets).sum().item()

            if batch_idx % 10 == 0:
                print('Current adversarial test accuracy:', str(predicted.eq(targets).sum().item() / targets.size(0)))
                print('Current adversarial test loss:', loss.item())

    print('\nTotal benign test accuarcy:', 100. * benign_correct / total)
    print('Total adversarial test Accuarcy:', 100. * adv_correct / total)
    print('Total benign test loss:', benign_loss)
    print('Total adversarial test loss:', adv_loss)

    state = {
        'net': net.state_dict()
    }
    if not os.path.isdir('checkpoint'):
        os.mkdir('checkpoint')
    torch.save(state, './checkpoint/' + file_name)
    print('Model Saved!')

def adjust_learning_rate(optimizer, epoch):
    lr = learning_rate
    if epoch >= 100:
        lr /= 10
    if epoch >= 150:
        lr /= 10
    for param_group in optimizer.param_groups:
        param_group['lr'] = lr

if __name__ == "__main__":
    args = parser.parse_args()
    project_module = load_project(args.project_dir)
    net = project_module.Net()
    net = net.to(device)
    net.load_for_testing(project_dir=args.project_dir)


    adversary = LinfPGDAttack(net)
    criterion = nn.CrossEntropyLoss()
    optimizer = optim.SGD(net.parameters(), lr=learning_rate, momentum=0.9, weight_decay=0.0002)

    for epoch in range(0, 200):
        adjust_learning_rate(optimizer, epoch)
        train(epoch)
        test(epoch)