forked from NVIDIA/NVFlare
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add missing client api test jobs (NVIDIA#2535)
- Loading branch information
1 parent
de454b4
commit dc5ef27
Showing
16 changed files
with
695 additions
and
2 deletions.
There are no files selected for viewing
77 changes: 77 additions & 0 deletions
77
tests/integration_test/data/jobs/decorator/app/config/config_fed_client.conf
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,77 @@ | ||
{ | ||
format_version = 2 | ||
app_script = "cifar10_structured_fl.py" | ||
app_config = "" | ||
executors = [ | ||
{ | ||
tasks = [ | ||
"train" | ||
] | ||
executor { | ||
path = "nvflare.app_opt.pt.client_api_launcher_executor.PTClientAPILauncherExecutor" | ||
args { | ||
launcher_id = "launcher" | ||
pipe_id = "pipe" | ||
heartbeat_timeout = 60 | ||
params_exchange_format = "pytorch" | ||
params_transfer_type = "DIFF" | ||
train_with_evaluation = true | ||
} | ||
} | ||
} | ||
] | ||
task_data_filters = [] | ||
task_result_filters = [] | ||
components = [ | ||
{ | ||
id = "launcher" | ||
path = "nvflare.app_common.launchers.subprocess_launcher.SubprocessLauncher" | ||
args { | ||
script = "python3 -u custom/{app_script} {app_config} " | ||
launch_once = true | ||
} | ||
} | ||
{ | ||
id = "pipe" | ||
path = "nvflare.fuel.utils.pipe.cell_pipe.CellPipe" | ||
args { | ||
mode = "PASSIVE" | ||
site_name = "{SITE_NAME}" | ||
token = "{JOB_ID}" | ||
root_url = "{ROOT_URL}" | ||
secure_mode = "{SECURE_MODE}" | ||
workspace_dir = "{WORKSPACE}" | ||
} | ||
} | ||
{ | ||
id = "metrics_pipe" | ||
path = "nvflare.fuel.utils.pipe.cell_pipe.CellPipe" | ||
args { | ||
mode = "PASSIVE" | ||
site_name = "{SITE_NAME}" | ||
token = "{JOB_ID}" | ||
root_url = "{ROOT_URL}" | ||
secure_mode = "{SECURE_MODE}" | ||
workspace_dir = "{WORKSPACE}" | ||
} | ||
} | ||
{ | ||
id = "metric_relay" | ||
path = "nvflare.app_common.widgets.metric_relay.MetricRelay" | ||
args { | ||
pipe_id = "metrics_pipe" | ||
event_type = "fed.analytix_log_stats" | ||
read_interval = 0.1 | ||
} | ||
} | ||
{ | ||
id = "config_preparer" | ||
path = "nvflare.app_common.widgets.external_configurator.ExternalConfigurator" | ||
args { | ||
component_ids = [ | ||
"metric_relay" | ||
] | ||
} | ||
} | ||
] | ||
} |
62 changes: 62 additions & 0 deletions
62
tests/integration_test/data/jobs/decorator/app/config/config_fed_server.conf
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,62 @@ | ||
{ | ||
format_version = 2 | ||
task_data_filters = [] | ||
task_result_filters = [] | ||
model_class_path = "net.Net" | ||
workflows = [ | ||
{ | ||
id = "scatter_and_gather" | ||
path = "nvflare.app_common.workflows.scatter_and_gather.ScatterAndGather" | ||
args { | ||
min_clients = 2 | ||
num_rounds = 2 | ||
start_round = 0 | ||
wait_time_after_min_received = 0 | ||
aggregator_id = "aggregator" | ||
persistor_id = "persistor" | ||
shareable_generator_id = "shareable_generator" | ||
train_task_name = "train" | ||
train_timeout = 0 | ||
} | ||
} | ||
] | ||
components = [ | ||
{ | ||
id = "persistor" | ||
path = "nvflare.app_opt.pt.file_model_persistor.PTFileModelPersistor" | ||
args { | ||
model { | ||
path = "{model_class_path}" | ||
} | ||
} | ||
} | ||
{ | ||
id = "shareable_generator" | ||
path = "nvflare.app_common.shareablegenerators.full_model_shareable_generator.FullModelShareableGenerator" | ||
args {} | ||
} | ||
{ | ||
id = "aggregator" | ||
path = "nvflare.app_common.aggregators.intime_accumulate_model_aggregator.InTimeAccumulateWeightedAggregator" | ||
args { | ||
expected_data_kind = "WEIGHT_DIFF" | ||
} | ||
} | ||
{ | ||
id = "model_selector" | ||
path = "nvflare.app_common.widgets.intime_model_selector.IntimeModelSelector" | ||
args { | ||
key_metric = "accuracy" | ||
} | ||
} | ||
{ | ||
id = "receiver" | ||
path = "nvflare.app_opt.tracking.tb.tb_receiver.TBAnalyticsReceiver" | ||
args { | ||
events = [ | ||
"fed.analytix_log_stats" | ||
] | ||
} | ||
} | ||
] | ||
} |
139 changes: 139 additions & 0 deletions
139
tests/integration_test/data/jobs/decorator/app/custom/cifar10_structured_fl.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,139 @@ | ||
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import torch | ||
import torch.nn as nn | ||
import torch.optim as optim | ||
import torchvision | ||
import torchvision.transforms as transforms | ||
from net import Net | ||
|
||
# (1) import nvflare client API | ||
import nvflare.client as flare | ||
|
||
# (optional) set a fix place so we don't need to download everytime | ||
DATASET_PATH = "/tmp/nvflare/data" | ||
# (optional) We change to use GPU to speed things up. | ||
# if you want to use CPU, change DEVICE="cpu" | ||
DEVICE = "cuda:0" | ||
PATH = "./cifar_net.pth" | ||
|
||
|
||
def main(): | ||
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) | ||
|
||
batch_size = 4 | ||
|
||
trainset = torchvision.datasets.CIFAR10(root=DATASET_PATH, train=True, download=True, transform=transform) | ||
trainloader = torch.utils.data.DataLoader(trainset, batch_size=batch_size, shuffle=True, num_workers=2) | ||
|
||
testset = torchvision.datasets.CIFAR10(root=DATASET_PATH, train=False, download=True, transform=transform) | ||
testloader = torch.utils.data.DataLoader(testset, batch_size=batch_size, shuffle=False, num_workers=2) | ||
|
||
net = Net() | ||
|
||
# (2) initializes NVFlare client API | ||
flare.init() | ||
|
||
# (3) decorates with flare.train and load model from the first argument | ||
# wraps training logic into a method | ||
@flare.train | ||
def train(input_model=None, total_epochs=2, lr=0.001): | ||
net.load_state_dict(input_model.params) | ||
|
||
criterion = nn.CrossEntropyLoss() | ||
optimizer = optim.SGD(net.parameters(), lr=lr, momentum=0.9) | ||
|
||
# (optional) use GPU to speed things up | ||
net.to(DEVICE) | ||
# (optional) calculate total steps | ||
steps = total_epochs * len(trainloader) | ||
|
||
for epoch in range(total_epochs): # loop over the dataset multiple times | ||
|
||
running_loss = 0.0 | ||
for i, data in enumerate(trainloader, 0): | ||
# get the inputs; data is a list of [inputs, labels] | ||
# (optional) use GPU to speed things up | ||
inputs, labels = data[0].to(DEVICE), data[1].to(DEVICE) | ||
|
||
# zero the parameter gradients | ||
optimizer.zero_grad() | ||
|
||
# forward + backward + optimize | ||
outputs = net(inputs) | ||
loss = criterion(outputs, labels) | ||
loss.backward() | ||
optimizer.step() | ||
|
||
# print statistics | ||
running_loss += loss.item() | ||
if i % 2000 == 1999: # print every 2000 mini-batches | ||
print(f"[{epoch + 1}, {i + 1:5d}] loss: {running_loss / 2000:.3f}") | ||
running_loss = 0.0 | ||
|
||
print("Finished Training") | ||
|
||
torch.save(net.state_dict(), PATH) | ||
|
||
# (4) construct trained FL model | ||
output_model = flare.FLModel(params=net.cpu().state_dict(), meta={"NUM_STEPS_CURRENT_ROUND": steps}) | ||
return output_model | ||
|
||
# (5) decorates with flare.evaluate and load model from the first argument | ||
@flare.evaluate | ||
def fl_evaluate(input_model=None): | ||
return evaluate(input_weights=input_model.params) | ||
|
||
# wraps evaluate logic into a method | ||
def evaluate(input_weights): | ||
net.load_state_dict(input_weights) | ||
# (optional) use GPU to speed things up | ||
net.to(DEVICE) | ||
|
||
correct = 0 | ||
total = 0 | ||
# since we're not training, we don't need to calculate the gradients for our outputs | ||
with torch.no_grad(): | ||
for data in testloader: | ||
# (optional) use GPU to speed things up | ||
images, labels = data[0].to(DEVICE), data[1].to(DEVICE) | ||
# calculate outputs by running images through the network | ||
outputs = net(images) | ||
# the class with the highest energy is what we choose as prediction | ||
_, predicted = torch.max(outputs.data, 1) | ||
total += labels.size(0) | ||
correct += (predicted == labels).sum().item() | ||
|
||
# return evaluation metrics | ||
return 100 * correct // total | ||
|
||
while flare.is_running(): | ||
# (6) receives FLModel from NVFlare | ||
input_model = flare.receive() | ||
print(f"current_round={input_model.current_round}") | ||
|
||
# (7) call fl_evaluate method before training | ||
# to evaluate on the received/aggregated model | ||
global_metric = fl_evaluate(input_model) | ||
print(f"Accuracy of the global model on the 10000 test images: {global_metric} %") | ||
# call train method | ||
train(input_model, total_epochs=2, lr=0.001) | ||
# call evaluate method | ||
metric = evaluate(input_weights=torch.load(PATH)) | ||
print(f"Accuracy of the trained model on the 10000 test images: {metric} %") | ||
|
||
|
||
if __name__ == "__main__": | ||
main() |
37 changes: 37 additions & 0 deletions
37
tests/integration_test/data/jobs/decorator/app/custom/net.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,37 @@ | ||
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import torch | ||
import torch.nn as nn | ||
import torch.nn.functional as F | ||
|
||
|
||
class Net(nn.Module): | ||
def __init__(self): | ||
super().__init__() | ||
self.conv1 = nn.Conv2d(3, 6, 5) | ||
self.pool = nn.MaxPool2d(2, 2) | ||
self.conv2 = nn.Conv2d(6, 16, 5) | ||
self.fc1 = nn.Linear(16 * 5 * 5, 120) | ||
self.fc2 = nn.Linear(120, 84) | ||
self.fc3 = nn.Linear(84, 10) | ||
|
||
def forward(self, x): | ||
x = self.pool(F.relu(self.conv1(x))) | ||
x = self.pool(F.relu(self.conv2(x))) | ||
x = torch.flatten(x, 1) # flatten all dimensions except batch | ||
x = F.relu(self.fc1(x)) | ||
x = F.relu(self.fc2(x)) | ||
x = self.fc3(x) | ||
return x |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,11 @@ | ||
{ | ||
name = "decorator" | ||
resource_spec {} | ||
deploy_map { | ||
app = [ | ||
"@ALL" | ||
] | ||
} | ||
min_clients = 2 | ||
mandatory_clients = [] | ||
} |
Oops, something went wrong.