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Abstract—In this paper we present a comparative analysis of two famous methods in neural networks: Multilayer Perceptron and
Support Vector Machines. We describe, experiment and compare the results of these methods with respect to their accuracy and time
complexity on a subset of the well-known MNIST handwritten digit recognition classification task. A grid search of 3-fold cross-validation
is performed to select the best fine-tuned model for each method. The performance of SVM with linear kernel was slightly better than
MLP on the holdout test set. Moreover, one hidden layer perceptron of 50 neurons surprisingly gave the best result at a high learning
rate of 0.9. This proves the complexity of error surface and shows that shaking the system with high learning rate with coincidental
good initial weight selection could lead to good models.

1 INTRODUCTION AND MOTIVATION

Over the last decades, neural computing has been a great influence
in the success of speech and image recognition. Several years ago,
it was impossible to implement a precise pattern recognition system
by computer, thus it was mostly combined with hand-crafted features
and automatic learning techniques. In this report, we will use different
neural computing techniques and build models with limited or no
human intervention to classify/predict labels of handwritten digits.
This means that, the models will rely on available data to learn and
extract features on their own for better classification accuracy rather
than hand-crafted feature engineering [11].

The recent technological advancement, low cost and powerful high
speed machines made it possible to depend on computational power to
train neural networks using back-propagation for critical image recog-
nition problems. Furthermore, advanced machine learning methods
enabled us to work with high dimensional data sets to solve complex
issues. The combination of powerful machine learning methods and the
availability of large data sets enabled scientist to improve the accuracy
of image and speech recognition. A typical critical application is opti-
cal character recognition (OCR). For example, LeNet is a commercial
system heavily employed in the USA for check recognition used in the
banking industry. This system reads several million checks per month
used by many banks across the country [11].

In this report, we will build two neural network models trained on
sub-set of MNIST training dataset and test it on a separate unseen
set of examples. The methods used for this classification task are
support vector machine (SVM) and single hidden layer perceptron
(MLP) feed-forward artificial neural network trained with momentum
and back-propagation. Additionally, we will evaluate, compare and
analyse the performance of these methods based on how accurately
they were able to predict the labels of the handwritten numbers.

2 DATASET

The data chosen for this study is a subset of samples from MNIST, a
widely used dataset to perform analysis of image recognition using
neural network methods. MNIST is collection of binary images of hand-
written digits derived from NISTs databases, Figure 1 shows examples
of MNIST images. The original NIST dataset was split into SD-3 for
training and SD-1 for testing. SD-3 contains images collected from
Census Bureau employees while SD-1 consists of images collected
from high-school students. However, MNIST was built from both SD-3
and SD-1. The dataset comprise 60000 rows of training samples and
10000 test samples from 250 writers. Moreover, the writers of the
training set and test set are different. This means that the images of
handwritten digits in the test set have completely different handwriting
styles [12].

Fig. 1. Example of MNIST handwritten digits

We randomly selected 6000 observations from the training set and
1000 observations from the test set. Images in the dataset are 28x28
pixels wide. Each image was transformed into 784 pixels, forming
784 dimensions where each point corresponds to particular pixel. The
variables are continuous values range between 0 and 255, Figure 2
below represents this transformation. Additionally, each image rep-
resent a single digit, between 0 to 9, therefore, we have 10 classes
0,1,2,3,4,5,6,7,8,9.

Fig. 2. Diagram shows a 28x28 image transformation to 784 dimensions.
Each pixel is stored in one column with values between 0 to 255

We have two separate datasets for training and testing. Also, both
datasets were already size normalised and centred in a fixed size image
and transformed into pixels. Therefore, the data was already prepared
and no data pre-processing was needed.

Since MNIST consists of 784 variables, which makes it a high-
dimensional dataset. Therefore, as initial investigation, we applied Prin-
cipal Component Analysis (PCA) and t-distributed stochastic neighbour
embedding (T-SNE) for the sole purpose of visualising the data and



study whether the projection of data into two dimensional space is
linearly separable.

PCA: is a statistical method for dimension reduction. It uses an
orthogonal transformation to change a set of input variables into uncor-
related principal components. The number of principal components is
less than or equal to the number of dimensions/variables. PCA tries to
preserve as much information as possible by placing the component
with the highest variance as the first principle component followed
by the components with the highest possible variance (in a descen-
dant order). PCA is employed to find patterns in the data and identify
similarities, thus it can be used for exploratory data analysis [17].

T-SNE: is a machine learning algorithms for dimensionality reduc-
tion. T-SNE is a nonlinear dimension reduction technique used to
convert high dimensional data and visualise it into a two or three dimen-
sional space. It classifies objects based on dimensional points, similar
data points are modelled by the surrounding data point, and otherwise
it uses distant points to model objects [13].

Fig. 3. Top: PCA projection into two dimensional space showing that
data points are not linearly separable. Bottom: t-SNE projection and
non-linear separation of data point.

Figure 3 top, shows that when PCA was applied, the projected data
points appear to be not linearly separable, and many classes are overlap-
ping, apart from digit 0 and digit 1 which are clearly distinguishable in
PCA. Therefore, t-SNE was employed on the data point to support the
nonlinear dimensionality reductions and visualise the projection into
two dimensional space Figure 3 bottom. T-SNE figure revealed that it
is possible to draw a separation boundaries after dimension reduction.
It also shows that same digits have similarities and thus clustered to-
gether. For example zeros represented by red dots are grouped together

and ones shown in orange forms different groups etc. This suggests
that dataset is linearly separable in the high dimensional space since
t-SNE tries to maintain the high dimensional distance mapping.Thus,
we expect SVM with linear kernel to give decent results.

METHODS

This section will introduce the two neural network models, SVM and
MLP, used in this report to predict the labels of each image. We will
discuss advantages and disadvantages of each model along with the
optimised hyper-parameters chosen for each one. We hypothesise that
SVM should give better results than MLP, however it will take more
computational time.

2.1 MLP

First method used in classification of MNIST digits is Feed-forward
Neural Network, also known as Multi-Layer Perceptron. MLP maps
input data to a set of targets through interconnected nodes with weighted
links, example presented in the Figure 4. The weights represents the
probability of neuron been triggered by an activation function e.g.
sigmoid. Adding hidden layers between input and output layer gives
the flexibility of estimating complex target function [4].

It has been proven that even a single hidden layer with sigmoid
activation function is capable of predicting any target function, thus
making MLP a very powerful technique [18]. Multi-layer perceptron
perform exceptionally well at learning features without the need of
feeding the features manually. However, it can easily over-fit and it
is often recommended to do early stopping to avoid it [3]. Moreover,
feed-forward networks are a black box with no interpretability and
requires fine tuning of several hyper-parameters (eg: Hidden Layer
Size, Number of layers, learning rate, momentum, epochs, activation
function, initial set of weights, weight regularization etc)

Fig. 4. MLP example with single hidden layer

2.1.1 Architecture and Parameter for training

A Feed-forward network with single hidden layer is trained using back-
propagation algorithm with momentum but it can still converge at local
minima instead of finding a global minima [3]. Batch mode is used
for updating the weights after passing through the whole training set.
The optimization is based on cross entropy error and the effectiveness
is known by monitoring the misclassifaction error.Activation function
for hidden layer is tansig and a softmax output layer. The following
stopping criteria is used in training:

• The maximum number of epochs (as specified in grid search) is
reached.

• Validation error increased more than 6 times consecutively since
the last drop.
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2.1.2 Evaluation: Grid Search, cross-entropy, 3-fold cross-
validation and Accuracy

The following set of hyper-parameters are tested to find the best model:

• Number of layers: 1

• Number of hidden neurons: 25 50 100 200

• Epochs: 100 300 700

• Learning rate: 0.01 0.9

• Momentum: 0.1, 0.9

2.2 SVM
The second classification methods employed is SVM. It is a popular
supervised learning technique used for classification and regression [7].
The main objective of SVM is to find the perfect linear decision line
that separate classes in high-dimensional space in such a way that the
gap, margin hyperplane, between classes is maximised. The maximum
margin hyperplane offers good generalisation by choosing the right
parameters which also make it more robust even with bias in the data.
SVM maps each point in the training examples to either one of the
binary class output, and this can be achieved with a relatively small
subset of training data [2].

SVM can be applied in cases where the data is linearly separable
(hard margin) or non-linearly separable (soft margin). Kernel represen-
tation defines an implicit non-linear transformation, and works with
inner product instead of full feature vector space. The kernel projects
the input data into a higher dimensional space which in turn allows the
classes to be separated. Using kernel, adds more flexibility for SVM in
terms of the form of threshold for good separation [1]. Moreover, SVM
is guaranteed to find a global minimum through multiple passes, due to
the fact that it is defined by convex optimisation [7].

Although SVM is a powerful classification technique, it has many
disadvantages. A common drawback is that training on a large dataset
is computationally expensive. Also, with more noise in the dataset,
SVM does not perform well i.e. output class overlaps [1].

SVM by nature is a binary classifier, however, MNIST is a multi-
class domain, therefore a one-versus-one classifier was used and the
data point will be classified based on the majority vote of all classifiers
[15]. Before training an SVM model we would also centralize the
data around its mean and scale to unit standard deviation. It is a
recommended approach to avoid a dimension with large range being
considered more significant that features having smaller ranges [10].

2.2.1 Evaluation: misclassification error
The following set of hyper-parameters are tested to find the best model:

• Kernel: Linear , Radial basis function

• Box Constraint: 0.05 0.075 0.1 0.5

• Kernel Scale:1 7.5 10 15

Cross validation result based on classification error and accuracy is
used to shortlist the best model which is then used for predicting the
test set labels.

2.3 Autoencoder
We further attempted to improve the accuracy of the best SVM model
by applying sparse autoencoder on the original training dataset. The
approximated output of the autoencoder is than used as input for SVM
model. It is an unsupervised learning technique which tries to learn the
important features by applying constraint on the network. In our case,
restriction is applied to the number of neurons in the hidden layer with
Sparsity regularization factor of 4. Network has to predict the same
number of output nodes as input nodes using only 100 neurons in the
hidden layer as shown in Figure 5. [16].

• Number of layers: 1

Fig. 5. Sparse Autoencoder Structure

• Number of hidden neurons: 100

• Weight regularization: 0.004

• Sparsity Regularization: 4

• Sparsity Proportion: 0.15

• Maximum Epochs: 10

Instead of performing a grid search for selecting the optimal Autoen-
coder hyperparameters, the default setting shown above are used with
the training set to learn the structure in the data.

3 RESULTS, ANALYSIS AND EVALUATION

In order to find the optimal parameters, we used grid search on the
training set and based on the results the best model was selected. The
model will be used to evaluate the set of unseen example in the test set.

3.1 Gird Search

A combination of 48 different parameters set were tested to find the
best hyper-parameters for MLP. The results of the grid search shows
that, increasing the number of epochs and number of neurons in the
hidden layer consistently increased the accuracy with small learning
rate and momentum values Table 1. Unlike a small value momentum,
a very high value makes it inconsistent and difficult for the model to
learn properly since it is resistant to local minimum [8].

For the learning rate, with a high value of 0.9, the combination of
50 neurons in the hidden layer, with 700 epochs, and 0.1 momentum
surprisingly gave the best results with 5.33 percent classification error.
Further analysis showed that the training actually terminated with 6
Epochs Figure:6 Left, because random initial weights coincidentally
gave a good result and training stopped after six consecutive increases
in the validation error satisfying our early stopping criteria mentioned
in 2.1.1 . A large learning rate shakes the model in an attempt to find
the global minimum. Although we have different models with different
number of neurons, it was interesting to notice that the best model was
produced by only 50 neurons in the hidden layer Table 2.

During the analysis, we noticed that, on one hand, using a small
number of epochs and neurons in the training resulted in an under-fitted
model. On the other hand, a large number of epochs and neurons
resulted in an over-fitted model. Therefore, early stopping criteria was
used to avoid over-fitting and produce the best results.

A limitation of MLP is that, there are so many different combinations
of parameters, function, and methods that can be employed to find the
best model. Unfortunately, we were able to test with relatively small
set of combinations that were mentioned in the previous section.
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Fig. 6. Left: The figure is for best Feedforward model with 700 Epochs,50
neurons in hidden layer,Learning rate 0.9 and Momentum 0.1 but Early
Stopping Criteria finished training at 6 epochs. Right:The next figure is
of Feedforward net trained with 700 Epochs, 50 neurons in hidden layer,
Learning rate 0.01 and momentum 0.1

Hidden Size 100 Epochs 300 Epochs 700 Epochs

25 0.566 0.334 0.202
50 0.427 0.306 0.178
75 0.398 0.222 0.153
100 0.306 0.192 0.135

Table 1. MLP Grid Search showing Error Rate with Learning rate set at
0.01 and Momentum at 0.1

Hidden Size 100 Epochs 300 Epochs 700 Epochs

25 0.693 0.374 0.442
50 0.115 0.817 0.533
75 0.183 0.902 0.259
100 0.927 0.701 0.911

Table 2. MLP Grid Search showing Error Rate with Learning rate set at
0.9 and Momentum at 0.1

Box Constraint 1 KS 7.5 KS 10 KS 15 KS

0.05 0.089 0.089 0.099 0.119
0.075 0.091 0.086 0.093 0.106
0.1 0.085 0.083 0.089 0.101
0.5 0.087 0.085 0.080 0.083

Table 3. SVM misclassification error with linear kernel, Box Constraint
against Kernel Scale (KS). Lowest error achieved using kernel scale 10
and box constraint 0.5

Box Constraint 1 KS 7.5 KS 10 KS 15 KS

0.05 0.888 0.852 0.714 0.334
0.075 0.888 0.857 0.672 0.312
0.1 0.888 0.851 0.618 0.289
0.5 0.888 0.662 0.385 0.179

Table 4. SVM misclassifcation error with Radial basis function(RBF)
shown using Box Constraint against Kernel Scale (KS). Lowest error
achieved with RBF kernel using Kernel scale 15 and Box constraint of
0.5.

Unlike MLP, SVM is a non-parametric methods and grid search of
two parameters was performed, i.e. box constraint and kernel scale.
The kernels that were tested are linear and radial basis function (RBF).

1

SVM was more computationally expensive in comparison to MLP
as we hypothesised. Additionally, training the SVM model using RBF
was at least twice the computational time compared to the linear kernel.
However, in LeCun (1998) paper on MNIST dataset, reported that
RBF kernel yield to the best performance. On contrary, our linear
SVM proved to be very efficient on both training and test [5, 14] and
produced the best result using a small subset of MNIST. This could
suggest that RBF requires a larger data set for better performance or
detailed exploration in the grid search.

The parameters set for the best SVM model were: 0.5 box constraint,
linear kernel function and 10 kernel scale. The lowest error achieve in
SVM using RBF was 17.9 percent compared to 8 percent using linear
kernel. It is worth mentioning, that the largest error achieved by the
linear kernel 11.8 percent was better than the lowest error achieved
by RFB kernel Table 3 & Table 4. In both cases, we reached the best
accuracy using the highest box constraint value in our grid search.
These results are logical because higher box constraint value leads to
a strict separation of data by increasing the cost of misclassifying the
object [6].

3.2 Autoencoder

The trained autoencoder was not validated, since it is an unsupervised
learning technique that was only referred for feature extraction. The
weights were also plotted to see what the auto-encoder has learnt but
the features do not seem recognisable by human eye as shown in Figure
8 , actual images are shown in Figure 7 for comparison.

Fig. 7. Actual handwwritten images with labels on Top

4 TEST SET EVALUATION

In order to find the best generalised model, we selected the optimised
models with the lowest error during the training. These models will be
tested on the holdout examples and the performances will be compared.

The final model MLP gave an error of 9.5 percent on test set. Al-
though, the user must be aware that training the same net again with
random weights would give high variation in error rate. Only a particu-
lar set of initial random weights gave such exceptional accuracy with
50 neurons.

Figure 9 right, shows the misclassified examples using MLP model.
It shows that the most misclassified class was class 8 with 20 wrong
predictions and the least misclassified class was class one. Overall, out

1Note: The error shown in the table with respect to the number of epochs is
the maximum Number of epochs allowed. However, training can stop if other
stopping criteria is satisfied as mentioned in 2.1.1
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Fig. 8. Features learnt by Autoencoder, labels shown on top of each
image

Fig. 9. left to right. This figure shows both SVM and MLP misclassified
points on the test set

of 1000 examples only 95 were misclassified, therefore, this model is
very well generalised with a reasonable accuracy.

For the SVM final model, the results were slightly better and more
consistent than MLP with an error of 8.233 percent. This model with
linear kernel, box constraint of 0.5, and kernel scale of 10 is well
generalised on the test set. Again, running SVM using linear kernel
showed the best results just like during training. Variation of the initial
settings i.e. box constraint and kernel scale had little effect on the
error. Also, an advantage of SVM is that, it generates good results even
without domain knowledge.

SVM outperformed MLP on the holdout test and thus was that model
used for classifying the output from the autoencoder. Both the test set
and training set were preprocessed by passing the input through the
autoencoder. The reconstructed training set was used for training the
SVM model with exactly the same parameters that had the best cross
validation result. The reconstructed test set was then classified using
the SVM model with an error of 21 percent.

5 CONCLUSION

In this study we attempted two neural computing methods to classify
MNIST handwritten images. The results of both SVM and MLP were
very competitive in terms of accuracy. During the training, MLP per-
formed better than SVM, however, SVM outperformed MLP on the test
set. Although SVM is considered a piece of art algorithm in classifica-
tion tasks, it works by multiplying the inner product which was proven
to be more computationally efficient. Nonetheless, it was evident in our
experiment that SVM took more time during training than MLP, 25.19
and 8.15 seconds respectively (using the best models). But, on the test
set SVM was faster than MLP, 1.12 and 2.42 seconds respectively.

Comparing SVM and MLP in terms of setup, SVM was very simple

and fast to setup and work with. In MNIST, it can work even without a
kernel transformation, as in our case using linear kernel and produce
relatively good results. As for MLP, it was frustrating to work with
as it needs more domain knowledge and parameter tuning. Setting up
these parameters in a way to find the best optimised set of values for
the network is very complex.

Reflecting our results on the domain, SVM and MLP were able to
predict the labels correctly with an accuracy above 90 percent. However,
SVM showed worst performance in predicting number 9 (misclassified
12 times) followed by number 5 (misclassified 10 times). As for MLP,
the most misclassified numbers were 8, 5, and 9 where they were
misclassified 20, 15 and 13 times respectively. The reason behind
MLPs poor performance in comparison with SVM is that, MLP is a
non-linear function thus it is better for non-linear models. It was shown
earlier in this report, in the Dataset section, that the labels were linearly
separable when projected on two dimensional space, this was shown in
Figure 3 bottom. Also, MLP could have more than one local minimum
due to the non-convex loss function associated with the hidden layers.

We expected the autoencoder to increase the accuracy, although the
error almost doubled. The features learnt by the autoencoder as shown
in Figure8 seem similar for each digit if observed by the naked eye.
This could suggest co-adaptation,that all neurons in hidden layer have
picked the same feature instead of a different one [9]. Fine tuning or
using more training samples might have increased the accuracy as many
literatures by Yann Le Cunn have reported an accuracy of more than
95 percent using the whole MNIST training set [12].

A suggested further work to improve the accuracy of these model is
to use Restricted Boltzmann Machine (RBM) instead of the autoencoder.
RBM is a generative model, as oppose to autoencoder which favours
some data vectors over other. Thus, RBM, after training the model, can
generate new samples from the learnt probability distribution. RBM
is also more flexible and feature rich. The idea behind RBM is very
similar to the autoencoder. We train the model by passing the training
sample through input units, propagate the data forward towards the
hidden unit. The hidden unit becomes the feature vector instead of the
raw data. We then use this vector as input to train the classifiers, SVM
and MLP.
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