-
Notifications
You must be signed in to change notification settings - Fork 17
/
bypass_nrp.py
155 lines (127 loc) · 4.9 KB
/
bypass_nrp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
''''
An example of how to by pass NRP. Solution to this problem is dynamic infernce as discussed in the paper.
Dynamic inference is achieved by perturbing the incoming sample with random noise.
'''
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import torchvision
import torchvision.utils as vutils
from torchvision.utils import save_image, make_grid
import os, imageio
import numpy as np
import argparse
from networks import *
parser = argparse.ArgumentParser(description='By Pass NRP')
parser.add_argument('--test_dir', default= 'val/')
parser.add_argument('--batch_size', type=int, default=50, help='Batch size for evaluation')
parser.add_argument('--model_type', type=str, default= 'res152', help ='incv3, res152')
parser.add_argument('--eps', type=int, default= 16, help ='pertrbation budget')
parser.add_argument('--purifier', type=str, default= 'NRP', help ='NPR, NRP_resG')
args = parser.parse_args()
print(args)
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
# Setup-Data
data_transform = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
])
mean = [0.485, 0.456, 0.406]
std = [0.229, 0.224, 0.225]
def normalize(t):
t[:, 0, :, :] = (t[:, 0, :, :] - mean[0])/std[0]
t[:, 1, :, :] = (t[:, 1, :, :] - mean[1])/std[1]
t[:, 2, :, :] = (t[:, 2, :, :] - mean[2])/std[2]
return t
test_dir = args.test_dir
test_set = datasets.ImageFolder(test_dir, data_transform)
test_size = len(test_set)
test_loader = torch.utils.data.DataLoader(test_set,batch_size=args.batch_size, shuffle=False, num_workers=4, pin_memory=True)
# Load Purifier
if args.purifier == 'NRP':
netG = NRP(3,3,64,23)
netG.load_state_dict(torch.load('pretrained_purifiers/NRP.pth'))
if args.purifier == 'NRP_resG':
netG = NRP_resG(3, 3, 64, 23)
netG.load_state_dict(torch.load('pretrained_purifiers/NRP_resG.pth'))
netG = netG.to(device)
netG.eval()
netG = torch.nn.DataParallel(netG)
# Load Backbone model
model = torchvision.models.resnet152(pretrained=True)
model = model.to(device)
model.eval()
model = torch.nn.DataParallel(model)
# Loss Criteria
criterion = nn.CrossEntropyLoss()
eps = args.eps / 255
iters = 10
step = 2/255
counter = 0
current_class = None
current_class_files = None
big_img = []
sourcedir = args.test_dir
targetdir = '{}_{}'.format(args.model_type, args.eps)
all_classes = sorted(os.listdir(sourcedir))
# Generate labels
# Courtesy of: https://github.com/carlini/breaking_efficient_defenses/blob/master/test.py
def get_labs(y):
l = np.zeros((len(y),1000))
for i in range(len(y)):
r = np.random.random_integers(0,999)
while r == np.argmax(y[i]):
r = np.random.random_integers(0,999)
l[i,r] = 1
return l
out = 0
for i, (img, label) in enumerate(test_loader):
img = img.to(device)
label = label.to(device)
# Random Target labels
new_label = torch.from_numpy(get_labs(label.detach().cpu().numpy()).argmax(axis=-1)).to(device)
adv = img.detach()
adv.requires_grad = True
for j in range(iters):
adv1 = netG(adv)
adv1 = torch.clamp(adv1, 0.0, 1.0)
output = model(normalize(adv1))
loss = criterion(output, new_label)
loss.backward()
adv.data = adv.data - step * adv.grad.sign()
adv.data = torch.min(torch.max(adv.data, img - eps), img + eps)
adv.data.clamp_(0.0, 1.0)
adv.grad.data.zero_()
print((adv-img).max().item()*255)
# Courtesy of: https://github.com/rgeirhos/Stylized-ImageNet/blob/master/code/preprocess_imagenet.py
for img_index in range(adv.size()[0]):
source_class = all_classes[label[img_index]]
source_classdir = os.path.join(sourcedir, source_class)
assert os.path.exists(source_classdir)
target_classdir = os.path.join(targetdir, source_class)
if not os.path.exists(target_classdir):
os.makedirs(target_classdir)
if source_class != current_class:
# moving on to new class:
# start counter (=index) by 0, update list of files
# for this new class
counter = 0
current_class_files = sorted(os.listdir(source_classdir))
current_class = source_class
target_img_path = os.path.join(target_classdir,
current_class_files[counter]).replace(".JPEG", ".png")
# if size_error == 1:
# big_img.append(target_img_path)
adv_to_save = np.transpose(adv[img_index, :, :, :].detach().cpu().numpy(), (1, 2, 0))*255
imageio.imwrite(target_img_path, adv_to_save.astype(np.uint8))
# save_image(tensor=adv[img_index, :, :, :],
# filename=target_img_path)
counter += 1
#
# del(img)
# del(adv)
# del(adv1)
print('Number of Images Processed:', (i + 1) * args.batch_size)