Flappy Astronaut

While astronauts are kept pretty busy while on the ISS, they still need to grab a few minutes
of relaxation time every now and then. As there are two Raspberry Pis with Sense HATs up

there with them, a little game of Flappy Astronaut would be the perfect way to unwind after
a hard day's work in zero gravity.

In this activity you will create a Flappy Bird clone using your Raspberry Pi and a Sense HAT,
along with some Python code. Flappy Astronaut uses the accelerometer in the Sense HAT
to control the astronaut, by shaking the Raspberry Pi.

Setting up the Sense HAT

1. To begin with you'll need to open IDLE3 by clicking on the Main Menu, Programming
and selecting Python 3.

2. Now create a new text file to write your code in File>New File .

3. You're going to need to import some modules from the sense_hat package to get

going, so write the following three lines into your text file that will enable access to the
Sense HAT and clear the LED matrix.

from sense_hat import SenseHat
sense = SenseHat()
sense.clear()

Page 1/18

Drawing the columns

1. You can start by drawing the columns that will scroll across the LED matrix. You're
going to use some loops in this game, so you'll need a way to bring the loops to a
close. To achieve this, you can use a global variable called game_over tokeep

track of whether the game is being played or has ended.

GLOBALS
game_over = False

2. To begin with, you will make a vertical line of LEDs that scroll across the screen. This
can be produced using a function called draw_column . The function will need to

be able to change the game_over variable, so within the function you need to set it
as a global variable.

def draw_column():
global game_over

3. The column is going to start on the far right of the matrix. If you look a the diagram
below, you can see that this means it will have a position on the x axis of 7.

4. Set the starting position of the column, inthe draw_column function.

def draw_column():
global game_over
X =17

5. Now you need to illuminate the last column of LEDs, pause for a little bit, turn off the
column of LEDs and then illuminate the next column along, by reducing the value of
X by one. This can all be done withina while loop, which keeps looping until the

value of x gets to 0 or the game is over.

def draw_column():

global game_over

X =7

while x >= 0 and not game_over:

6. The column of LEDs is going to be red, and to switch them off, they're going to be
changed to black. You need to specify these variables in your ##Globals section.

Page 2/18

##Globals
game_over = False
RED = (255,0,0)
BLACK = (0,0,0)

7. Toilluminate all the pixels in a given column, you could write something like
sense.set_pixel(x,0,RED) eighttimes, changingthe 0to 1, then 2, then 3,
etc. However, this is simplertodoina for loop.

def draw_column():

global game_over

x =17

while x >= 0 and not game_over:
for led in range(8):
sense.set_pixel(x, led,RED)

8. You can test out your new function, to make sure a line of LEDs are being switched
on. Save your file as flappy.py and then press F5 to run it. Nothing will happen at first,

because you haven't called the function, so just switch over into the Python Shell and
type draw_column()

Page 3/18

Moving the columns

1. Next we want to switch all those LEDs off and decrease the variable x by one, then
let the loop carry on around. Another for loop can be easily used to turn off all the
LEDs.

def draw_column():
global game_over
X =17
while x >= 0 and not game_over:
for led in range(8):
sense.set_pixel(x, led,RED)
for led in range(8):
sense.set_pixel(x, led, BLACK)
X —=1

2. You can test this function out if you want, but you won't see much. The LEDs will
switch on then off, so quickly that there'll be nothing to see. You need to ensure there
is a pause between the LEDs lighting up and then turning off again. At the top of your
file, import the time module

from time import sleep
3. Then add a sleep interval between switching the LEDs on an off again.

def draw_column():
global game_over
X =17
while x >= 0 and not game_over:
for led in range(8):
sense.set_pixel(x, led,RED)
sleep(0.5)
for led in range(8):
sense.set_pixel(x, led,BLACK)
x —=1

4. Save your code and then press F5 to run it. Type draw_column() inthe Python
shell to see it working.

Page 4/18

Splitting the columns.

The game would be a little tricky if each column is a solid wall of LEDs, so you need to add
a gap into the column. It would be a little too easy if the gap was always in the same place,
so you'll need some randomness to its placement.

1. Add a line near the top of your file to get the randint function from random . This
will generate random integers for you.

from random import randint

2. You'll need the program to get a random integer between 1 and 6 (inclusive) and then
place a gap in the line of pixels centred about that value. Don't forget, adding a gap in
the column just means that you are turning off a few pixels.

def draw_column():
global game_over
X =17

gap = randint(1,6)

Page 5/18

while x >= 0 and not game_over:

for led in range(8):
sense.set_pixel(x, led,RED)
sense.set_pixel(x,gap,BLACK)
sense.set_pixel(x,gap-1,BLACK)
sense.set_pixel(x,gap+1,BLACK)
sleep(0.5)

for i in range(8):
sense.set_pixel(x,i,BLACK)

x —=1

3. Save and run your code, then type draw_column() intothe interpreter, to check

that everything is working.

Page 6/18

Multiple Columns

1. Now that you have a single column scrolling across the matrix, you'll want keep them
coming. This can be achieved witha while loop. Add this code to the bottom of

your script.

while not game_over:
draw_column()
sleep(2)

Threading

Now we have a single column scrolling across the matrix, but what if we wanted to display
more than one column at a time? It would be possible to alter the draw_column function

to produce more than one column, but it is easier to have the same function called several
times.

The problem is that, at the moment, the program has to wait for a function to finish before it
can be called again. It is possible to overcome this problem by using threading.

Threading allows you to call a function in a way that doesn't block the rest of your program,
meaning thatthe draw_column() function can be called several times in a row.

1. First you'll needthe Thread function. At the top of your program, add in a line to
import it.

from sense_hat import SenseHat
from time import sleep

from random import randint
from threading import Thread

2. Now you can turn the function call in the while loop into a threaded function call,
that will be called every two seconds

while not game_over:
column = Thread(target=draw_column)
column.start()
sleep(2)

Page 7/18

3. The problem is that now you have this while loop blocking the program, and there is
still a lot to do, such as getting some user input and moving the flappy astronaut itself
up and down. The solution is to place the while loop into a function, and have it

called as another thread. Add it to a function first:

def draw_columns():

while not game_over:
column = Thread(target=draw_column)
column.start()
sleep(2)

4. Then call it as a threaded function.

columns = Thread(target=draw_columns)
columns.start()

':Jnmlﬁ[

Page 8/18

5. Your entire code should so far look like this.

from sense_hat import SenseHat
from time import sleep

from random import randint
from threading import Thread

sense = SenseHat()
sense.clear()

##Globals
game_over = False
RED = (255,0,0)
BLACK = (0,0,0)

def draw_column():
global game_over
X =7
gap = randint(1,6)
while x >= 0 and not game_over:
for led in range(8):
sense.set_pixel(x, led,RED)
sense.set_pixel(x,gap, BLACK)
sense.set_pixel(x,gap-1,BLACK)
sense.set_pixel(x,gap+1,BLACK)
sleep(0.5)
for i in range(8):
sense.set_pixel(x,i,BLACK)
X —=1

def draw_columns():

while not game_over:
column = Thread(target=draw_column)
column.start()
sleep(2)

columns = Thread(target=draw_columns)
columns.start()

6. Save (Ctrl+s) and run (F5) your program to make sure that it works.

Page 9/18

Adding the flappy astronaut

1. The flappy astronaut will always sit horizontally on the 4th column of LEDs (position 3),
but its vertical (y) values will have to change. This can be set as a global variable. As
the astronaut can either be moving up or down, you can also set a global speed
variable with 1 indicating that it is moving down and -1 indicating that it is moving

up. A nice blue colour would suit the astronaut as well.

##Globals
game_over = False
RED = (255,0,0)
BLACK = (0,0,0)
BLUE = (0,0,255)
y = 4

speed = +1

2. You can start just by illuminating a single LED, by adding a new while loop to the
bottom of your script.

while not game_over:
sense.set_pixel(3,y,BLUE)

3. Then make it fall:

while not game_over:
sense.set_pixel(3,y,BLUE)
sleep(0.1)
sense.set_pixel(3,y,BLACK)
y += speed

Page 10/18

4. When you run this, your program will crash, because y eventually reaches a value of
8, and that is off the matrix. It's simple to fix this though.

while not game_over:

sense.set_pixel(3,y,BLUE)
sleep(0.1)
sense.set_pixel(3,y,BLACK)
y += speed

ify>7:

y =7

elif y < 0:

y =0

Catching user input

1. The astronaut needs to move upwards when the Raspberry Pi and Sense HAT are
shaken. To do this you'll need to catch the accelerometer readings from the Sense
HAT. To do this you can make another threaded function. Add this after the

draw_columns function.

def get_shake():
global speed
while not game_over:

2. The next step is to read the data from the accelerometer, and then round each of the
values. The accelerometer detects changes in velocity (speed) in three directions: x, v,
and z.

def get_shake():
global speed
while not game_over:
accel = sense.get_accelerometer_raw()
X = round(accel['x"'])
y = round(accel['y'])
z round(accell'z'])

Page 11/18

3. If the Raspberry Pi and Sense HAT are motionless and sitting flat on a surface then

the

values should be:

x will be 0
y will be 0
z will be 1

4. Note that z has a value of 1 because it is reading the gravitational pull of the Earth. If
these values change (because the Pi is being shaken), then you want the speed of the
astronaut to change. A simple conditional will do this.

def get_shake():
global speed
while not game_over:

accel = sense.get_accelerometer_raw()
x = round(accel['x"'])
y = round(accel['y'])

z = round(accell['z'])

if x '= 0 ory =0 or z !'=1:
speed = -1

else:

speed = +1

5. Then make this function threaded, by adding these two lines.

shake = Thread(target=get_shake)
shake.start()

6. Save and run your code, and shake the Raspberry Pi (carefully) to see the astronaut
move up and then down.

Page 12/18

7. Your script should so far look like this:

from sense_hat import SenseHat
from time import sleep

from random import randint
from threading import Thread

sense = SenseHat()
sense.clear()

##Globals
game_over = False
RED = (255,0,0)
BLACK = (0,0,0)
BLUE = (0,0,255)
y =4

speed = +1

def draw_column():
global game_over
X =17
gap = randint(2,6)
while x >= 0 and not game_over:
for led in range(8):
sense.set_pixel(x, led,RED)
sense.set_pixel(x,gap,BLACK)
sense.set_pixel(x,gap-1,BLACK)
sense.set_pixel(x,gap+1,BLACK)
sleep(0.5)
for i in range(8):
sense.set_pixel(x,i,BLACK)
X —=1

def draw_columns():

while not game_over:
column = Thread(target=draw_column)
column.start()
sleep(2)

def get_shake():
global speed
while not game_over:
accel = sense.get_accelerometer_raw()

Page 13/18

X = round(accel['x"'])
y = round(accel['y'])
z = round(accel['z"'])

sleep(0.01)

if x '=0 ory !'=0 or z '= 1:
speed -1

else:

speed = +1

columns = Thread(target=draw_columns)
columns.start()

shake = Thread(target=get_shake)
shake.start()

while not game_over:
sense.set_pixel(3,y,BLUE)
sleep(0.1)
sense.set_pixel(3,y,BLACK)
y += speed
ify>7:
y =7
if y < 0:
y =0

Detecting a collision

1. To finish off, you need the game to end if the flappy astronaut collides with the wall.
Or, to put it another way, you want the game to continue playing, as long as the flappy
astronaut makes it though the gap in the column.

2. A simple function can be provided the X position of the columns and the position of
the gap, to determine if the astronaut makes it though.

def collision(x,gap):

Page 14/18

3. Ifthe x value of the column is 3, then the column and astronaut have the same
horizontal position.

def collision(x,gap):
if x ==

4. Then if the y position of the astronaut is between gap-1 and gap+1 ,the
astronaut has made it through the gap.

def collision(x,gap):
if x ==
if y <gap -1 or y > gap +1:
return True
return False

5. This function can be called inside the draw_column to see if the game needs to be

ended or not.

def draw_column():
global game_over
X =7
gap = randint(2,6)
while x > @ and not game_over:
for led in range(8):
sense.set_pixel(x, led,RED)
sense.set_pixel(x,gap, BLACK)
sense.set_pixel(x,gap-1,BLACK)
sense.set_pixel(x,gap+1,BLACK)
sleep(0.5)
for i in range(8):
sense.set_pixel(x,i,BLACK)
if collision(x,gap):
game_over = True
x —=1

6. Test your game to see if it's working.

Page 15/18

Finishing off

1. To finish off you need to make sure that the two threads have actually ended. You can
also leave a message for the player.

shake.join()
columns.join()

sense.show_message("You Lose", text_colour=(255,0,0))
2. Have a play with your game. Your full code should look like this:

from sense_hat import SenseHat
from time import sleep

from random import randint
from threading import Thread

sense = SenseHat()
sense.clear()

##Globals
game_over = False
RED = (255,0,0)
BLACK = (0,0,0)
BLUE = (0,0,255)
y = 4

speed = +1

def draw_column():

global game_over

X =17

gap = randint(2,6)

while x >= 0 and not game_over:
for led in range(8):

sense.set_pixel(x, led,RED)

sense.set_pixel(x,gap,BLACK)
sense.set_pixel(x,gap-1,BLACK)
sense.set_pixel(x,gap+1,BLACK)
sleep(0.5)
for i in range(8):

Page 16/18

sense.set_pixel(x,i,BLACK)
if collision(x,gap):
game_over = True
x —=1

def draw_columns():

while not game_over:
column = Thread(target=draw_column)
column.start()
sleep(2)

def get_shake():
global speed
while not game_over:
accel = sense.get_accelerometer_raw()
X = round(accell['x"'])
y = round(accell['y'])
z = round(accel['z'])
sleep(0.01)
if x '=0 ory '=0 or z !'= 1:
speed = -1
else:
speed = +1

def collision(x,gap):
if x ==
if y < gap -1 or y > gap +1:
return True
return False

columns = Thread(target=draw_columns)
columns.start()

shake = Thread(target=get_shake)
shake.start()

while not game_over:
sense.set_pixel(3,y,BLUE)
sleep(0.1)
sense.set_pixel(3,y,BLACK)
y += speed

Page 17/18

ify>7:
y =7
ify<®o
y =0

shake.join()
columns.join()

sense.show_message("You Lose", text_colour=(255,0,0))

What Next?

1. Can you play around with the variable values to make the game easier or more
difficult?

2. Can you keep a score so that each time a column is successfully negotiated, the
score increases by one point?

3. Can you think of other ways of controlling the astronaut? Maybe you could use the
joystick or the humidity sensor?

Credits

This resource was created by the Raspberry Pi Foundation, "Flappy Astronaut"
https://www.raspberrypi.org/learning/flappy-astronaut/

Page 18/18

