# # Configuration file for n3fit # ############################################################ description: NNPDF3.1 NNLO DIS only in basis which diagonalises experimental covmat with l2 regularizer ############################################################ # frac: training fraction # ewk: apply ewk k-factors # sys: systematics treatment (see systypes) dataset_inputs: # Fixed target DIS - { dataset: NMCPD, frac: 0.5 } - { dataset: NMC, frac: 0.5 } - { dataset: SLACP, frac: 0.5} - { dataset: SLACD, frac: 0.5} - { dataset: BCDMSP, frac: 0.5} - { dataset: BCDMSD, frac: 0.5} - { dataset: CHORUSNU, frac: 0.5} - { dataset: CHORUSNB, frac: 0.5} - { dataset: NTVNUDMN, frac: 0.5} - { dataset: NTVNBDMN, frac: 0.5} # EMC F2C data # - { dataset: EMCF2C, frac: 1.0} # HERA data - { dataset: HERACOMBNCEM , frac: 0.5} - { dataset: HERACOMBNCEP460, frac: 0.5} - { dataset: HERACOMBNCEP575, frac: 0.5} - { dataset: HERACOMBNCEP820, frac: 0.5} - { dataset: HERACOMBNCEP920, frac: 0.5} - { dataset: HERACOMBCCEM , frac: 0.5} - { dataset: HERACOMBCCEP , frac: 0.5} # Combined HERA charm production cross-sections - { dataset: HERAF2CHARM, frac: 0.5} # F2bottom data - { dataset: H1HERAF2B, frac: 1.0} - { dataset: ZEUSHERAF2B, frac: 1.0} ############################################################ datacuts: t0pdfset : NNPDF40_nnlo_as_01180 # PDF set to generate t0 covmat q2min : 3.49 # Q2 minimum w2min : 12.5 # W2 minimum combocuts : NNPDF31 # NNPDF3.0 final kin. cuts jetptcut_tev : 0 # jet pt cut for tevatron jetptcut_lhc : 0 # jet pt cut for lhc wptcut_lhc : 30.0 # Minimum pT for W pT diff distributions jetycut_tev : 1e30 # jet rap. cut for tevatron jetycut_lhc : 1e30 # jet rap. cut for lhc dymasscut_min: 0 # dy inv.mass. min cut dymasscut_max: 1e30 # dy inv.mass. max cut jetcfactcut : 1e30 # jet cfact. cut ############################################################ theory: theoryid: 162 # database id sampling: separate_multiplicative: true ############################################################ trvlseed: 1 nnseed: 2 mcseed: 3 save: False load: False genrep : True # true = generate MC replicas, false = use real data diagonal_basis: True parameters: # This defines the parameter dictionary that is passed to the Model Trainer nodes_per_layer: [35, 25, 8] activation_per_layer: ['tanh', 'tanh', 'linear'] initializer: 'glorot_normal' optimizer: learning_rate: 1.0 optimizer_name: 'Adadelta' epochs: 4000 positivity: multiplier: 1.09 initial: 10.0 stopping_patience: 0.30 # percentage of the number of epochs layer_type: 'dense' dropout: 0.0 regularizer: l1_l2 regularizer_args: {l1: 0.0, l2: 1.0} fitting: # NN23(QED) = sng=0,g=1,v=2,t3=3,ds=4,sp=5,sm=6,(pht=7) # EVOL(QED) = sng=0,g=1,v=2,v3=3,v8=4,t3=5,t8=6,(pht=7) # EVOLS(QED)= sng=0,g=1,v=2,v8=4,t3=4,t8=5,ds=6,(pht=7) # FLVR(QED) = g=0, u=1, ubar=2, d=3, dbar=4, s=5, sbar=6, (pht=7) savepseudodata: False fitbasis: NN31IC # EVOL (7), EVOLQED (8), etc. basis: # remeber to change the name of PDF accordingly with fitbasis # smallx, largex: preprocessing ranges - { fl: sng, smallx: [1.04,1.20], largex: [1.45,2.64] } - { fl: g, smallx: [0.82,1.31], largex: [0.20,6.17] } - { fl: v, smallx: [0.51,0.71], largex: [1.24,2.80] } - { fl: v3, smallx: [0.23,0.63], largex: [1.02,3.14] } - { fl: v8, smallx: [0.53,0.75], largex: [0.70,3.31] } - { fl: t3, smallx: [-0.45,1.41], largex: [1.78,3.21] } - { fl: t8, smallx: [0.49,1.32], largex: [1.42,3.13] } - { fl: cp, smallx: [-0.07,1.13], largex: [1.73,7.37] } ############################################################ positivity: posdatasets: - { dataset: POSF2U, maxlambda: 1e6 } # Positivity Lagrange Multiplier - { dataset: POSF2DW, maxlambda: 1e6 } - { dataset: POSF2S, maxlambda: 1e6 } - { dataset: POSFLL, maxlambda: 1e6 } - { dataset: POSDYU, maxlambda: 1e10 } - { dataset: POSDYD, maxlambda: 1e10 } - { dataset: POSDYS, maxlambda: 1e10 } ############################################################ debug: False parallel_models: True same_trvl_per_replica: False