diff --git a/src/pinefarm/external/nnlojet/nnpdf_interface.py b/src/pinefarm/external/nnlojet/nnpdf_interface.py index e918c07..ee75a96 100755 --- a/src/pinefarm/external/nnlojet/nnpdf_interface.py +++ b/src/pinefarm/external/nnlojet/nnpdf_interface.py @@ -125,7 +125,12 @@ def select_selectors(experiment, process): The experiment defines the cuts to be applied to each variable. The process defines the name of the variables in NNLOJET """ - cuts = {"rapidity": (None, None), "pt": (20.0, None), "inv_mass": (None, None), "mt": (None, None)} + cuts = { + "rapidity": (None, None), + "pt": (20.0, None), + "inv_mass": (None, None), + "mt": (None, None), + } variables = {"rapidity": [], "pt": [], "inv_mass": [], "mt": []} @@ -267,9 +272,10 @@ def generate_pinecard_from_nnpdf(nnpdf_dataset, scale="mz", output_path="."): for i, val in enumerate(unique_m2): idx = kin_df["M2"]["mid"] == val tmp = _1d_histogram(kin_df[idx], another_v) + tmp["name"] = f"{another_v}_bin_{i}" tmp["extra_selectors"] = [ { - "observable": m_name, + "observable": f"{m_name}", "min": probable_bounds[i], "max": probable_bounds[i + 1], } @@ -279,7 +285,9 @@ def generate_pinecard_from_nnpdf(nnpdf_dataset, scale="mz", output_path="."): # inclusive cross section, just create a big enough histogram histograms = [{"observable": "y", "bins": [-10.0, 10.0], "name": "tot"}] else: - raise NotImplementedError("3D distributions not implemented or process not recognized") + raise NotImplementedError( + "3D distributions not implemented or process not recognized" + ) is_normalized = metadata.theory.operation.lower() == "ratio" if is_normalized: