countrycode
standardizes country names, converts them into ~40 different coding schemes, and assigns region descriptors. Scroll down for more details or visit the countrycode CRAN page
If you use countrycode
in your research, we would be very grateful if you could cite our paper:
Arel-Bundock, Vincent, Nils Enevoldsen, and CJ Yetman, (2018). countrycode: An R package to convert country names and country codes. Journal of Open Source Software, 3(28), 848, https://doi.org/10.21105/joss.00848
- Why
countrycode
? - Installation
- Supported codes
countrycode
- Convert of a single name or code
- Vectors and data.frames
- Flags
- Country names in 600+ different languages and formats
custom_dict
: American statescustom_dict
: theISOcodes
packagedestination
: Fallback codesnomatch
: Fill in missing codes manuallycustom_match
: Override default valueswarn
: Silence warnings
countryname
: Convert country names from any language- Custom conversion functions and "crosswalks"
- Contributions
Different data sources use different coding schemes to represent countries (e.g. CoW or ISO). This poses two main problems: (1) some of these coding schemes are less than intuitive, and (2) merging these data requires converting from one coding scheme to another, or from long country names to a coding scheme.
The countrycode
function can convert to and from 40+ different country coding schemes, and to 600+ variants of country names in different languages and formats. It uses regular expressions to convert long country names (e.g. Sri Lanka) into any of those coding schemes or country names. It can create new variables with various regional groupings.
From the R console, type:
install.packages("countrycode")
To install the latest development version, you can use the remotes
package:
library(remotes)
install_github('vincentarelbundock/countrycode')
To get an up-to-date list of supported country codes, install the package and type ?codelist
. These include:
- 600+ variants of country names in different languages and formats.
- AR5
- Continent and region identifiers.
- Correlates of War (numeric and character)
- European Central Bank
- EUROCONTROL - The European Organisation for the Safety of Air Navigation
- Eurostat
- Federal Information Processing Standard (FIPS)
- Food and Agriculture Organization of the United Nations
- Global Administrative Unit Layers (GAUL)
- Geopolitical Entities, Names and Codes (GENC)
- Gleditsch & Ward (numeric and character)
- International Civil Aviation Organization
- International Monetary Fund
- International Olympic Committee
- ISO (2/3-character and numeric)
- Polity IV
- United Nations
- United Nations Procurement Division
- Varieties of Democracy
- World Bank
- World Values Survey
- Unicode symbols (flags)
Load library:
library(countrycode)
Convert single country codes:
# ISO to Correlates of War
countrycode('DZA', origin = 'iso3c', destination = 'cown')
[1] 615
# English to ISO
countrycode('Albania', origin = 'country.name', destination = 'iso3c')
[1] "ALB"
# German or Italian to Arabic
countrycode(c('Algerien', 'Albanien'), origin = 'country.name.de', destination = 'un.name.ar')
[1] "الجزائر" "ألبانيا"
countrycode(c('Moldavia', 'Stati Uniti'), origin = 'country.name.it', destination = 'un.name.ar')
[1] "ﺞﻤﻫﻭﺮﻳﺓ ﻡﻮﻟﺩﻮﻓﺍ" "ﺎﻟﻭﻼﻳﺎﺗ ﺎﻠﻤﺘﺣﺩﺓ ﺍﻸﻣﺮﻴﻜﻳﺓ"
> cowcodes <- c("ALG", "ALB", "UKG", "CAN", "USA")
> countrycode(cowcodes, origin = "cowc", destination = "iso3c")
[1] "DZA" "ALB" "GBR" "CAN" "USA"
Generate vectors and 2 data frames without a common id (i.e. can't merge the 2 df):
> isocodes <- c(12,8,826,124,840)
> var1 <- sample(1:500,5)
> var2 <- sample(1:500,5)
> df1 <- data.frame(cowcodes,var1)
> df2 <- data.frame(isocodes,var2)
Inspect the data:
> df1
cowcodes var1
1 ALG 71
2 ALB 427
3 UKG 180
4 CAN 21
5 USA 383
> df2
isocodes var2
1 12 238
2 8 329
3 826 463
4 124 437
5 840 26
Create a common variable with the iso3c code in each data frame, merge the data, and create a country identifier:
> df1$iso3c <- countrycode(df1$cowcodes, origin = "cowc", destination = "iso3c")
> df2$iso3c <- countrycode(df2$isocodes, origin = "iso3n", destination = "iso3c")
> df3 <- merge(df1,df2,id="iso3c")
> df3$country <- countrycode(df3$iso3c, origin = "iso3c", destination = "country.name")
> df3
iso3c cowcodes var1 isocodes var2 country
1 ALB ALB 113 8 245 ALBANIA
2 CAN CAN 373 124 197 CANADA
3 DZA ALG 254 12 295 ALGERIA
4 GBR UKG 351 826 57 UNITED KINGDOM
5 USA USA 241 840 85 UNITED STATES
countrycode
can convert country names and codes to unicode flags. For example, we can use the gt
package to draw a table with countries and their corresponding flags:
library(gt)
library(countrycode)
Countries <- c('Canada', 'Germany', 'Thailand', 'Algeria', 'Eritrea')
Flags <- countrycode(Countries, 'country.name', 'unicode.symbol')
dat <- data.frame(Countries, Flags)
gt(dat)
Which produces this file:
Note that embedding unicode characters in R
graphics is possible, but it can be tricky. If your output looks like \U0001f1e6\U0001f1f6
, then you could try feeding it to this function: utf8::utf8_print()
. That should cover a lot of cases without dipping into the complexity of graphics devices. As a rule of thumb, if your output looks like □□□□
(boxes), things tend to get more complicated. In that case, you'll have to think about different output devices, file viewers, and/or file formats (e.g., 'SVG' or 'HTML').
Since inserting unicode symbols into R
graphics is not a countrycode
-specific issue, we won't be able to offer any more support than this. Good luck!
The Unicode organisation hosts the CLDR project, which publishes many variants of country names. For each language/culture locale, there is a full set of names, plus possible 'alt-short' or 'alt-variant' variations of specific country names.
> countrycode('United States of America', origin = 'country.name', destination = 'cldr.name.en')
> [1] "United States"
> countrycode('United States of America', origin = 'country.name', destination = 'cldr.short.en')
> [1] "US"
To see a full list of country name variants available, inspect this data.frame:
> head(countrycode::cldr_examples)
Code Example
1 cldr.name.af Franse Suidelike Gebiede
2 cldr.name.agq TF
3 cldr.name.ak TF
4 cldr.name.am የፈረንሳይ ደቡባዊ ግዛቶች
5 cldr.name.ar الأقاليم الجنوبية الفرنسية
6 cldr.name.ar_ly الأقاليم الجنوبية الفرنسية
Since version 0.19, countrycode accepts user-supplied dictionaries via the custom_dict
argument. These dictionaries will override the built-in country code dictionary. For example, the countrycode Github repository includes a dictionary of regexes and abbreviations to work with US state names.
Load the library and download the custom dictionary data.frame:
library(countrycode)
url = "https://raw.githubusercontent.com/vincentarelbundock/countrycode/master/data/custom_dictionaries/us_states.csv"
state_dict = read.csv(url, stringsAsFactors=FALSE)
Convert:
countrycode('State of Alabama',
origin = 'state',
destination = 'abbreviation',
custom_dict = state_dict,
origin_regex = TRUE)
[1] "AL"
countrycode(c('MI', 'OH', 'Bad'), 'abbreviation', 'state', custom_dict=state_dict)
[1] "Michigan" "Ohio" NA
Note that if you use a custom dictionary with country codes, you could easily merge it into the countrycode::codelist
or countrycode::codelist_panel
to gain access to all other codes.
countrycode
already supports ISO4217 (currencies) and ISO3166 (country codes). The ISOcodes
package supplies other codes, including ISO15924 (language writing systems), ISO639 (languages), and ISO8859 (computer character encodings). Users can convert those codes using countrycode
's custom_dict
argument.
For example, the ISOcodes::ISO_639_2
dataframe includes 4 columns: Alpha_3_B
, Alpha_3_T
, Alpha_2
, and Name
. We can convert language names like this:
> countrycode('abk', 'Alpha_3_B', 'Name', custom_dict = ISOcodes::ISO_639_2)
[1] "Abkhazian"
The ISOcodes::ISO_8859
dataset is a 3-dimensional array where the second dimension represents the character encoding. We take the subset of ISO_8859_1
codes and convert the dict to a dataframe for use in countrycode
's custom_dict
argument:
library(ISOcodes)
dict <- ISOcodes::ISO_8859[, 'ISO_8859_1', ]
dict <- data.frame(dict)
The resulting dataframe has 3 columns: Code
, Name
, Character
. We convert the code 0x00fd
like this:
> countrycode("0x00fd", "Code", "Name", custom_dict = dict)
[1] "LATIN SMALL LETTER Y WITH ACUTE"
> countrycode("0x00fd", "Code", "Character", custom_dict = dict)
[1] "ý"
Some destination codes not cover all the relevant countries. For example, "SRB" is included in the iso3c
code but not in the cowc
code. Some users may want to use cowc
but to fill in missing entries with iso3c
codes. We can do this by feeding a vector of code names to the destination
argument. countrycode
will then try one after the other.
For example,
x <- c("Algeria", "Serbia")
countrycode(x, "country.name", "cowc")
#> Warning in countrycode_convert(sourcevar = sourcevar, origin = origin, destination = dest, : Some values were not matched unambiguously: Serbia
#> [1] "ALG" NA
countrycode(x, "country.name", "iso3c")
#> [1] "DZA" "SRB"
countrycode(x, "country.name", c("cowc", "iso3c"))
#> Warning in countrycode_convert(sourcevar = sourcevar, origin = origin, destination = dest, : Some values were not matched unambiguously: Serbia
#> [1] "ALG" "SRB"
Use the nomatch
argument to specify the value that countrycode
inserts where no match was found:
> countrycode(c('DZA', 'USA', '???'), origin = 'iso3c', destination = 'country.name', nomatch = 'BAD CODE')
> [1] "Algeria" "United States" "BAD CODE"
> countrycode(c('Canada', 'Fake country'), origin = 'country.name', destination = 'iso3c', nomatch = 'BAD')
> [1] "CAN" "BAD"
Since version 0.19, countrycode
accepts a user supplied named vector of custom
matches via the custom_match
argument. Any match pairs in the custom_match
vector will supercede the default results of the command. This allows the user
to convert to an available country code and make minor post-edits all at once.
The names of the named vector are used as the origin code, and the values of the
named vector are used as the destination code.
For example, Eurostat uses a modified version of iso2c, with Greece (EL instead
of GR) and the UK (UK instead of GB) being the only differences. Getting a proper
result converting to Eurostat is easy to achieve using the iso2c
destination
and the new custom_match
argument. (Note: since version 0.19, countrycode
also includes a eurostat
origin/destination code, so while this is a good
example, doing so for Eurostat is not necessary)
example: convert from country name to Eurostat code
library(countrycode)
country_names <- c('Greece', 'United Kingdom', 'Germany', 'France')
custom_match <- c(Greece = 'EL', `United Kingdom` = 'UK')
countrycode(country_names,
origin = 'country.name',
destination = 'iso2c',
custom_match = custom_match)
example: convert from Eurostat code to country name
library(eurostat)
library(countrycode)
df <- eurostat::get_eurostat("nama_10_lp_ulc")
custom_match <- c(EL = 'Greece', UK = 'United Kingdom')
countrycode(df$geo, origin = 'iso2c', destination = 'country.name', custom_match = custom_match)
Use warn = TRUE
to print out a list of source elements for which no match was found. When the source vector are long country names that need to be matched using regular expressions, there is always a risk that multiple regex will match a given string. When this is the case, countrycode
assigns a value arbitrarily, but the warn
argument allows the user to print a list of all strings that were matched many times.
The function countryname
tries to convert country names from any language. For example:
> library(countrycode)
> x <- c('ジンバブエ', 'Afeganistãu', 'Barbadas', 'Sverige', 'UK',
+ 'il-Georgia tan-Nofsinhar u l-Gżejjer Sandwich tan-Nofsinhar')
> countryname(x)
[1] "Zimbabwe" "Afghanistan" "Barbados" "Sweden" "UK"
"South Georgia & South Sandwich Islands"
> countryname(x, 'iso3c')
[1] "ZWE" "AFG" "BRB" "SWE" "GBR" "SGS"
It is easy to to create alternative functions with different default arguments and/or dictionaries. For example, we can create:
name_to_iso3c
function that sets new defaults for theorigin
anddestination
arguments, and automatically converts country names to iso3cstatecode
function to convert US state codes using a custom dictionary by default, that we download from the internet.
#################################
# new function: name_to_iso3c #
#################################
# Custom defaults
name_to_iso3c <- function(sourcevar,
origin = "country.name",
destination = "iso3c",
...) {
countrycode(sourcevar, origin = origin, destination = destination, ...)
}
name_to_iso3c(c("Algeria", "Canada"))
#> [1] "DZA" "CAN"
#############################
# new function: statecode #
#############################
# Download dictionary
state_dict <- "https://raw.githubusercontent.com/vincentarelbundock/countrycode/main/data/custom_dictionaries/us_states.csv"
state_dict <- read.csv(state_dict)
# Identify regular expression origin codes
attr(state_dict, "origin_regex") <- "state.regex"
# Define a custom conversion function
statecode <- function(sourcevar,
origin = "state.regex",
destination = "abbreviation",
custom_dict = state_dict,
...) {
countrycode(sourcevar,
origin = origin,
destination = destination,
custom_dict = custom_dict,
...)
}
# Voilà!
x <- c("Alabama", "New Mexico")
statecode(x, "state.regex", "abbreviation")
#> [1] "AL" "NM"
x <- c("AL", "NM", "VT")
statecode(x, "abbreviation", "state")
#> [1] "Alabama" "New Mexico" "Vermont"
New country codes are created by two files:
dictionary/get_*.R
is anR
script which can scrape the code from an original online source (e.g.,get_world_bank.R
). This scripts only side effect is that it writes a CSV file to thedictionary
folder.dictionary/data_*.csv
is a CSV file with 1 column calledcountry
, which includes the English country name, and 1 or more columns named after the codes you want to add (e.g.,iso3c
,un.name.en
,continent
).
After creating those two files, you should:
- Run
dictionary/build.R
- If the code is a valid origin code (i.e., no two countries share the same code), add it to the
valid_origin
vector inR/countrycode.R
- Add the new code name to the documentation in
R/codelist.R
- Build the documentation using the devtools package:
devtools::document()
- Add a bullet point to
NEWS.md
file.
If you need help with any of these steps, or if you just want to submit a CSV file, feel free to open an issue on Github or write an email to Vincent. I'll be happy to help you out!
The countrycode
repository holds several custom dictionaries: https://github.com/vincentarelbundock/countrycode/tree/master/data/custom_dictionaries
To add your own custom dictionary, please make sure that:
- You save a comma-separated CSV file that looks something like data/custom_dictionaries/us_states.csv
- The custom dictionary has a unique purpose (not overlapping with existing custom dictionaries)
- It uses UTF-8 encoding and conforms to RFC 4180 CSV standard (e.g. comma-delimited, etc.).
R
commands to produce such a file are shown below.
- /blank fields are blank, not the string 'NA' (not RFC 4180, but important here because of Namibia)
- It has concise, sensible, valid (in the R data frame sense) column header names
Using base write.csv:
write.csv(custom_dict, 'custom_dict.csv', quote = TRUE, na = '',
row.names = FALSE, qmethod = 'double', fileEncoding = 'UTF-8')
Using readr
:
readr::write_csv(custom_dict, 'custom_dict.csv', na = '')
When using custom dictionaries, it is often useful to give "meta" information to countrycode
so that it knows how to use certain codes. To do this, we can set attributes of the dictionary. In this example, we download a dictionary of US state codes. Then, we identify a column of regular expressions using the origin_regex
attribute, and we identify the valid origin codes using the origin_valid
attribute.
state_dict <- "https://raw.githubusercontent.com/vincentarelbundock/countrycode/main/data/custom_dictionaries/us_states.csv"
state_dict <- read.csv(state_dict)
attr(state_dict, "origin_regex") <- "state.regex"
attr(state_dict, "origin_valid") <- c("state.regex", "abbreviation")
countrycode("Alabama", "state.regex", "abbreviation", custom_dict = state_dict)
> [1] "AL"
countrycode("AL", "abbreviation", "state", custom_dict = state_dict)
> [1] "Alabama"
countrycode("Alabama", "state", "abbreviation", custom_dict = state_dict)
> Error in countrycode("Alabama", "state", "abbreviation", custom_dict = state_dict) :
> Origin code not supported by countrycode or present in the user-supplied custom_dict.