diff --git a/10_Dimensionality_Reduction/t_SNE/Wine.csv b/10_Dimensionality_Reduction/t_SNE/Wine.csv new file mode 100644 index 0000000..579a256 --- /dev/null +++ b/10_Dimensionality_Reduction/t_SNE/Wine.csv @@ -0,0 +1,179 @@ +Alcohol,Malic_Acid,Ash,Ash_Alcanity,Magnesium,Total_Phenols,Flavanoids,Nonflavanoid_Phenols,Proanthocyanins,Color_Intensity,Hue,OD280,Proline,Customer_Segment +14.23,1.71,2.43,15.6,127,2.8,3.06,0.28,2.29,5.64,1.04,3.92,1065,1 +13.2,1.78,2.14,11.2,100,2.65,2.76,0.26,1.28,4.38,1.05,3.4,1050,1 +13.16,2.36,2.67,18.6,101,2.8,3.24,0.3,2.81,5.68,1.03,3.17,1185,1 +14.37,1.95,2.5,16.8,113,3.85,3.49,0.24,2.18,7.8,0.86,3.45,1480,1 +13.24,2.59,2.87,21,118,2.8,2.69,0.39,1.82,4.32,1.04,2.93,735,1 +14.2,1.76,2.45,15.2,112,3.27,3.39,0.34,1.97,6.75,1.05,2.85,1450,1 +14.39,1.87,2.45,14.6,96,2.5,2.52,0.3,1.98,5.25,1.02,3.58,1290,1 +14.06,2.15,2.61,17.6,121,2.6,2.51,0.31,1.25,5.05,1.06,3.58,1295,1 +14.83,1.64,2.17,14,97,2.8,2.98,0.29,1.98,5.2,1.08,2.85,1045,1 +13.86,1.35,2.27,16,98,2.98,3.15,0.22,1.85,7.22,1.01,3.55,1045,1 +14.1,2.16,2.3,18,105,2.95,3.32,0.22,2.38,5.75,1.25,3.17,1510,1 +14.12,1.48,2.32,16.8,95,2.2,2.43,0.26,1.57,5,1.17,2.82,1280,1 +13.75,1.73,2.41,16,89,2.6,2.76,0.29,1.81,5.6,1.15,2.9,1320,1 +14.75,1.73,2.39,11.4,91,3.1,3.69,0.43,2.81,5.4,1.25,2.73,1150,1 +14.38,1.87,2.38,12,102,3.3,3.64,0.29,2.96,7.5,1.2,3,1547,1 +13.63,1.81,2.7,17.2,112,2.85,2.91,0.3,1.46,7.3,1.28,2.88,1310,1 +14.3,1.92,2.72,20,120,2.8,3.14,0.33,1.97,6.2,1.07,2.65,1280,1 +13.83,1.57,2.62,20,115,2.95,3.4,0.4,1.72,6.6,1.13,2.57,1130,1 +14.19,1.59,2.48,16.5,108,3.3,3.93,0.32,1.86,8.7,1.23,2.82,1680,1 +13.64,3.1,2.56,15.2,116,2.7,3.03,0.17,1.66,5.1,0.96,3.36,845,1 +14.06,1.63,2.28,16,126,3,3.17,0.24,2.1,5.65,1.09,3.71,780,1 +12.93,3.8,2.65,18.6,102,2.41,2.41,0.25,1.98,4.5,1.03,3.52,770,1 +13.71,1.86,2.36,16.6,101,2.61,2.88,0.27,1.69,3.8,1.11,4,1035,1 +12.85,1.6,2.52,17.8,95,2.48,2.37,0.26,1.46,3.93,1.09,3.63,1015,1 +13.5,1.81,2.61,20,96,2.53,2.61,0.28,1.66,3.52,1.12,3.82,845,1 +13.05,2.05,3.22,25,124,2.63,2.68,0.47,1.92,3.58,1.13,3.2,830,1 +13.39,1.77,2.62,16.1,93,2.85,2.94,0.34,1.45,4.8,0.92,3.22,1195,1 +13.3,1.72,2.14,17,94,2.4,2.19,0.27,1.35,3.95,1.02,2.77,1285,1 +13.87,1.9,2.8,19.4,107,2.95,2.97,0.37,1.76,4.5,1.25,3.4,915,1 +14.02,1.68,2.21,16,96,2.65,2.33,0.26,1.98,4.7,1.04,3.59,1035,1 +13.73,1.5,2.7,22.5,101,3,3.25,0.29,2.38,5.7,1.19,2.71,1285,1 +13.58,1.66,2.36,19.1,106,2.86,3.19,0.22,1.95,6.9,1.09,2.88,1515,1 +13.68,1.83,2.36,17.2,104,2.42,2.69,0.42,1.97,3.84,1.23,2.87,990,1 +13.76,1.53,2.7,19.5,132,2.95,2.74,0.5,1.35,5.4,1.25,3,1235,1 +13.51,1.8,2.65,19,110,2.35,2.53,0.29,1.54,4.2,1.1,2.87,1095,1 +13.48,1.81,2.41,20.5,100,2.7,2.98,0.26,1.86,5.1,1.04,3.47,920,1 +13.28,1.64,2.84,15.5,110,2.6,2.68,0.34,1.36,4.6,1.09,2.78,880,1 +13.05,1.65,2.55,18,98,2.45,2.43,0.29,1.44,4.25,1.12,2.51,1105,1 +13.07,1.5,2.1,15.5,98,2.4,2.64,0.28,1.37,3.7,1.18,2.69,1020,1 +14.22,3.99,2.51,13.2,128,3,3.04,0.2,2.08,5.1,0.89,3.53,760,1 +13.56,1.71,2.31,16.2,117,3.15,3.29,0.34,2.34,6.13,0.95,3.38,795,1 +13.41,3.84,2.12,18.8,90,2.45,2.68,0.27,1.48,4.28,0.91,3,1035,1 +13.88,1.89,2.59,15,101,3.25,3.56,0.17,1.7,5.43,0.88,3.56,1095,1 +13.24,3.98,2.29,17.5,103,2.64,2.63,0.32,1.66,4.36,0.82,3,680,1 +13.05,1.77,2.1,17,107,3,3,0.28,2.03,5.04,0.88,3.35,885,1 +14.21,4.04,2.44,18.9,111,2.85,2.65,0.3,1.25,5.24,0.87,3.33,1080,1 +14.38,3.59,2.28,16,102,3.25,3.17,0.27,2.19,4.9,1.04,3.44,1065,1 +13.9,1.68,2.12,16,101,3.1,3.39,0.21,2.14,6.1,0.91,3.33,985,1 +14.1,2.02,2.4,18.8,103,2.75,2.92,0.32,2.38,6.2,1.07,2.75,1060,1 +13.94,1.73,2.27,17.4,108,2.88,3.54,0.32,2.08,8.9,1.12,3.1,1260,1 +13.05,1.73,2.04,12.4,92,2.72,3.27,0.17,2.91,7.2,1.12,2.91,1150,1 +13.83,1.65,2.6,17.2,94,2.45,2.99,0.22,2.29,5.6,1.24,3.37,1265,1 +13.82,1.75,2.42,14,111,3.88,3.74,0.32,1.87,7.05,1.01,3.26,1190,1 +13.77,1.9,2.68,17.1,115,3,2.79,0.39,1.68,6.3,1.13,2.93,1375,1 +13.74,1.67,2.25,16.4,118,2.6,2.9,0.21,1.62,5.85,0.92,3.2,1060,1 +13.56,1.73,2.46,20.5,116,2.96,2.78,0.2,2.45,6.25,0.98,3.03,1120,1 +14.22,1.7,2.3,16.3,118,3.2,3,0.26,2.03,6.38,0.94,3.31,970,1 +13.29,1.97,2.68,16.8,102,3,3.23,0.31,1.66,6,1.07,2.84,1270,1 +13.72,1.43,2.5,16.7,108,3.4,3.67,0.19,2.04,6.8,0.89,2.87,1285,1 +12.37,0.94,1.36,10.6,88,1.98,0.57,0.28,0.42,1.95,1.05,1.82,520,2 +12.33,1.1,2.28,16,101,2.05,1.09,0.63,0.41,3.27,1.25,1.67,680,2 +12.64,1.36,2.02,16.8,100,2.02,1.41,0.53,0.62,5.75,0.98,1.59,450,2 +13.67,1.25,1.92,18,94,2.1,1.79,0.32,0.73,3.8,1.23,2.46,630,2 +12.37,1.13,2.16,19,87,3.5,3.1,0.19,1.87,4.45,1.22,2.87,420,2 +12.17,1.45,2.53,19,104,1.89,1.75,0.45,1.03,2.95,1.45,2.23,355,2 +12.37,1.21,2.56,18.1,98,2.42,2.65,0.37,2.08,4.6,1.19,2.3,678,2 +13.11,1.01,1.7,15,78,2.98,3.18,0.26,2.28,5.3,1.12,3.18,502,2 +12.37,1.17,1.92,19.6,78,2.11,2,0.27,1.04,4.68,1.12,3.48,510,2 +13.34,0.94,2.36,17,110,2.53,1.3,0.55,0.42,3.17,1.02,1.93,750,2 +12.21,1.19,1.75,16.8,151,1.85,1.28,0.14,2.5,2.85,1.28,3.07,718,2 +12.29,1.61,2.21,20.4,103,1.1,1.02,0.37,1.46,3.05,0.906,1.82,870,2 +13.86,1.51,2.67,25,86,2.95,2.86,0.21,1.87,3.38,1.36,3.16,410,2 +13.49,1.66,2.24,24,87,1.88,1.84,0.27,1.03,3.74,0.98,2.78,472,2 +12.99,1.67,2.6,30,139,3.3,2.89,0.21,1.96,3.35,1.31,3.5,985,2 +11.96,1.09,2.3,21,101,3.38,2.14,0.13,1.65,3.21,0.99,3.13,886,2 +11.66,1.88,1.92,16,97,1.61,1.57,0.34,1.15,3.8,1.23,2.14,428,2 +13.03,0.9,1.71,16,86,1.95,2.03,0.24,1.46,4.6,1.19,2.48,392,2 +11.84,2.89,2.23,18,112,1.72,1.32,0.43,0.95,2.65,0.96,2.52,500,2 +12.33,0.99,1.95,14.8,136,1.9,1.85,0.35,2.76,3.4,1.06,2.31,750,2 +12.7,3.87,2.4,23,101,2.83,2.55,0.43,1.95,2.57,1.19,3.13,463,2 +12,0.92,2,19,86,2.42,2.26,0.3,1.43,2.5,1.38,3.12,278,2 +12.72,1.81,2.2,18.8,86,2.2,2.53,0.26,1.77,3.9,1.16,3.14,714,2 +12.08,1.13,2.51,24,78,2,1.58,0.4,1.4,2.2,1.31,2.72,630,2 +13.05,3.86,2.32,22.5,85,1.65,1.59,0.61,1.62,4.8,0.84,2.01,515,2 +11.84,0.89,2.58,18,94,2.2,2.21,0.22,2.35,3.05,0.79,3.08,520,2 +12.67,0.98,2.24,18,99,2.2,1.94,0.3,1.46,2.62,1.23,3.16,450,2 +12.16,1.61,2.31,22.8,90,1.78,1.69,0.43,1.56,2.45,1.33,2.26,495,2 +11.65,1.67,2.62,26,88,1.92,1.61,0.4,1.34,2.6,1.36,3.21,562,2 +11.64,2.06,2.46,21.6,84,1.95,1.69,0.48,1.35,2.8,1,2.75,680,2 +12.08,1.33,2.3,23.6,70,2.2,1.59,0.42,1.38,1.74,1.07,3.21,625,2 +12.08,1.83,2.32,18.5,81,1.6,1.5,0.52,1.64,2.4,1.08,2.27,480,2 +12,1.51,2.42,22,86,1.45,1.25,0.5,1.63,3.6,1.05,2.65,450,2 +12.69,1.53,2.26,20.7,80,1.38,1.46,0.58,1.62,3.05,0.96,2.06,495,2 +12.29,2.83,2.22,18,88,2.45,2.25,0.25,1.99,2.15,1.15,3.3,290,2 +11.62,1.99,2.28,18,98,3.02,2.26,0.17,1.35,3.25,1.16,2.96,345,2 +12.47,1.52,2.2,19,162,2.5,2.27,0.32,3.28,2.6,1.16,2.63,937,2 +11.81,2.12,2.74,21.5,134,1.6,0.99,0.14,1.56,2.5,0.95,2.26,625,2 +12.29,1.41,1.98,16,85,2.55,2.5,0.29,1.77,2.9,1.23,2.74,428,2 +12.37,1.07,2.1,18.5,88,3.52,3.75,0.24,1.95,4.5,1.04,2.77,660,2 +12.29,3.17,2.21,18,88,2.85,2.99,0.45,2.81,2.3,1.42,2.83,406,2 +12.08,2.08,1.7,17.5,97,2.23,2.17,0.26,1.4,3.3,1.27,2.96,710,2 +12.6,1.34,1.9,18.5,88,1.45,1.36,0.29,1.35,2.45,1.04,2.77,562,2 +12.34,2.45,2.46,21,98,2.56,2.11,0.34,1.31,2.8,0.8,3.38,438,2 +11.82,1.72,1.88,19.5,86,2.5,1.64,0.37,1.42,2.06,0.94,2.44,415,2 +12.51,1.73,1.98,20.5,85,2.2,1.92,0.32,1.48,2.94,1.04,3.57,672,2 +12.42,2.55,2.27,22,90,1.68,1.84,0.66,1.42,2.7,0.86,3.3,315,2 +12.25,1.73,2.12,19,80,1.65,2.03,0.37,1.63,3.4,1,3.17,510,2 +12.72,1.75,2.28,22.5,84,1.38,1.76,0.48,1.63,3.3,0.88,2.42,488,2 +12.22,1.29,1.94,19,92,2.36,2.04,0.39,2.08,2.7,0.86,3.02,312,2 +11.61,1.35,2.7,20,94,2.74,2.92,0.29,2.49,2.65,0.96,3.26,680,2 +11.46,3.74,1.82,19.5,107,3.18,2.58,0.24,3.58,2.9,0.75,2.81,562,2 +12.52,2.43,2.17,21,88,2.55,2.27,0.26,1.22,2,0.9,2.78,325,2 +11.76,2.68,2.92,20,103,1.75,2.03,0.6,1.05,3.8,1.23,2.5,607,2 +11.41,0.74,2.5,21,88,2.48,2.01,0.42,1.44,3.08,1.1,2.31,434,2 +12.08,1.39,2.5,22.5,84,2.56,2.29,0.43,1.04,2.9,0.93,3.19,385,2 +11.03,1.51,2.2,21.5,85,2.46,2.17,0.52,2.01,1.9,1.71,2.87,407,2 +11.82,1.47,1.99,20.8,86,1.98,1.6,0.3,1.53,1.95,0.95,3.33,495,2 +12.42,1.61,2.19,22.5,108,2,2.09,0.34,1.61,2.06,1.06,2.96,345,2 +12.77,3.43,1.98,16,80,1.63,1.25,0.43,0.83,3.4,0.7,2.12,372,2 +12,3.43,2,19,87,2,1.64,0.37,1.87,1.28,0.93,3.05,564,2 +11.45,2.4,2.42,20,96,2.9,2.79,0.32,1.83,3.25,0.8,3.39,625,2 +11.56,2.05,3.23,28.5,119,3.18,5.08,0.47,1.87,6,0.93,3.69,465,2 +12.42,4.43,2.73,26.5,102,2.2,2.13,0.43,1.71,2.08,0.92,3.12,365,2 +13.05,5.8,2.13,21.5,86,2.62,2.65,0.3,2.01,2.6,0.73,3.1,380,2 +11.87,4.31,2.39,21,82,2.86,3.03,0.21,2.91,2.8,0.75,3.64,380,2 +12.07,2.16,2.17,21,85,2.6,2.65,0.37,1.35,2.76,0.86,3.28,378,2 +12.43,1.53,2.29,21.5,86,2.74,3.15,0.39,1.77,3.94,0.69,2.84,352,2 +11.79,2.13,2.78,28.5,92,2.13,2.24,0.58,1.76,3,0.97,2.44,466,2 +12.37,1.63,2.3,24.5,88,2.22,2.45,0.4,1.9,2.12,0.89,2.78,342,2 +12.04,4.3,2.38,22,80,2.1,1.75,0.42,1.35,2.6,0.79,2.57,580,2 +12.86,1.35,2.32,18,122,1.51,1.25,0.21,0.94,4.1,0.76,1.29,630,3 +12.88,2.99,2.4,20,104,1.3,1.22,0.24,0.83,5.4,0.74,1.42,530,3 +12.81,2.31,2.4,24,98,1.15,1.09,0.27,0.83,5.7,0.66,1.36,560,3 +12.7,3.55,2.36,21.5,106,1.7,1.2,0.17,0.84,5,0.78,1.29,600,3 +12.51,1.24,2.25,17.5,85,2,0.58,0.6,1.25,5.45,0.75,1.51,650,3 +12.6,2.46,2.2,18.5,94,1.62,0.66,0.63,0.94,7.1,0.73,1.58,695,3 +12.25,4.72,2.54,21,89,1.38,0.47,0.53,0.8,3.85,0.75,1.27,720,3 +12.53,5.51,2.64,25,96,1.79,0.6,0.63,1.1,5,0.82,1.69,515,3 +13.49,3.59,2.19,19.5,88,1.62,0.48,0.58,0.88,5.7,0.81,1.82,580,3 +12.84,2.96,2.61,24,101,2.32,0.6,0.53,0.81,4.92,0.89,2.15,590,3 +12.93,2.81,2.7,21,96,1.54,0.5,0.53,0.75,4.6,0.77,2.31,600,3 +13.36,2.56,2.35,20,89,1.4,0.5,0.37,0.64,5.6,0.7,2.47,780,3 +13.52,3.17,2.72,23.5,97,1.55,0.52,0.5,0.55,4.35,0.89,2.06,520,3 +13.62,4.95,2.35,20,92,2,0.8,0.47,1.02,4.4,0.91,2.05,550,3 +12.25,3.88,2.2,18.5,112,1.38,0.78,0.29,1.14,8.21,0.65,2,855,3 +13.16,3.57,2.15,21,102,1.5,0.55,0.43,1.3,4,0.6,1.68,830,3 +13.88,5.04,2.23,20,80,0.98,0.34,0.4,0.68,4.9,0.58,1.33,415,3 +12.87,4.61,2.48,21.5,86,1.7,0.65,0.47,0.86,7.65,0.54,1.86,625,3 +13.32,3.24,2.38,21.5,92,1.93,0.76,0.45,1.25,8.42,0.55,1.62,650,3 +13.08,3.9,2.36,21.5,113,1.41,1.39,0.34,1.14,9.4,0.57,1.33,550,3 +13.5,3.12,2.62,24,123,1.4,1.57,0.22,1.25,8.6,0.59,1.3,500,3 +12.79,2.67,2.48,22,112,1.48,1.36,0.24,1.26,10.8,0.48,1.47,480,3 +13.11,1.9,2.75,25.5,116,2.2,1.28,0.26,1.56,7.1,0.61,1.33,425,3 +13.23,3.3,2.28,18.5,98,1.8,0.83,0.61,1.87,10.52,0.56,1.51,675,3 +12.58,1.29,2.1,20,103,1.48,0.58,0.53,1.4,7.6,0.58,1.55,640,3 +13.17,5.19,2.32,22,93,1.74,0.63,0.61,1.55,7.9,0.6,1.48,725,3 +13.84,4.12,2.38,19.5,89,1.8,0.83,0.48,1.56,9.01,0.57,1.64,480,3 +12.45,3.03,2.64,27,97,1.9,0.58,0.63,1.14,7.5,0.67,1.73,880,3 +14.34,1.68,2.7,25,98,2.8,1.31,0.53,2.7,13,0.57,1.96,660,3 +13.48,1.67,2.64,22.5,89,2.6,1.1,0.52,2.29,11.75,0.57,1.78,620,3 +12.36,3.83,2.38,21,88,2.3,0.92,0.5,1.04,7.65,0.56,1.58,520,3 +13.69,3.26,2.54,20,107,1.83,0.56,0.5,0.8,5.88,0.96,1.82,680,3 +12.85,3.27,2.58,22,106,1.65,0.6,0.6,0.96,5.58,0.87,2.11,570,3 +12.96,3.45,2.35,18.5,106,1.39,0.7,0.4,0.94,5.28,0.68,1.75,675,3 +13.78,2.76,2.3,22,90,1.35,0.68,0.41,1.03,9.58,0.7,1.68,615,3 +13.73,4.36,2.26,22.5,88,1.28,0.47,0.52,1.15,6.62,0.78,1.75,520,3 +13.45,3.7,2.6,23,111,1.7,0.92,0.43,1.46,10.68,0.85,1.56,695,3 +12.82,3.37,2.3,19.5,88,1.48,0.66,0.4,0.97,10.26,0.72,1.75,685,3 +13.58,2.58,2.69,24.5,105,1.55,0.84,0.39,1.54,8.66,0.74,1.8,750,3 +13.4,4.6,2.86,25,112,1.98,0.96,0.27,1.11,8.5,0.67,1.92,630,3 +12.2,3.03,2.32,19,96,1.25,0.49,0.4,0.73,5.5,0.66,1.83,510,3 +12.77,2.39,2.28,19.5,86,1.39,0.51,0.48,0.64,9.899999,0.57,1.63,470,3 +14.16,2.51,2.48,20,91,1.68,0.7,0.44,1.24,9.7,0.62,1.71,660,3 +13.71,5.65,2.45,20.5,95,1.68,0.61,0.52,1.06,7.7,0.64,1.74,740,3 +13.4,3.91,2.48,23,102,1.8,0.75,0.43,1.41,7.3,0.7,1.56,750,3 +13.27,4.28,2.26,20,120,1.59,0.69,0.43,1.35,10.2,0.59,1.56,835,3 +13.17,2.59,2.37,20,120,1.65,0.68,0.53,1.46,9.3,0.6,1.62,840,3 +14.13,4.1,2.74,24.5,96,2.05,0.76,0.56,1.35,9.2,0.61,1.6,560,3 \ No newline at end of file diff --git a/10_Dimensionality_Reduction/t_SNE/t_SNE.py b/10_Dimensionality_Reduction/t_SNE/t_SNE.py new file mode 100644 index 0000000..f39362c --- /dev/null +++ b/10_Dimensionality_Reduction/t_SNE/t_SNE.py @@ -0,0 +1,38 @@ +""" T-distributed Stochastic Neighbor Embedding (t-SNE) +""" + +# Importing the libraries +import numpy as np +import matplotlib.pyplot as plt +import pandas as pd +from sklearn.preprocessing import StandardScaler +from sklearn.manifold import TSNE + +def main(): + + # Importing the dataset + dataset = pd.read_csv('Wine.csv') + X = dataset.iloc[:, 0:13].values + y = dataset.iloc[:, 13].values + + # Feature Scaling + sc = StandardScaler() + X = sc.fit_transform(X) + # Applying t-SNE + tsne = TSNE(n_components=2) + X_tsne = tsne.fit_transform(X, y) + + # Visualising the embeddings distribution + x_axis = X_tsne[:, 0] + y_axis = X_tsne[:, 1] + + plt.figure(figsize=(20, 8)) + sc = plt.scatter(x_axis, y_axis, c = y, alpha=.4) + plt.title('t-SNE visualization') + plt.xlabel('x axis') + plt.ylabel('y axis') + plt.colorbar(sc) + plt.show() + +if __name__ == '__main__': + main() \ No newline at end of file