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1 Preface

For some time now I’ve been floating the idea of writing a book about
category theory that would be targeted at programmers. Mind you, not
computer scientists but programmers — engineers rather than scientists.
I know this sounds crazy and I am properly scared. I can’t deny that there
is a huge gap between science and engineering because I have worked on
both sides of the divide. But I’ve always felt a very strong compulsion to
explain things. I have tremendous admiration for Richard Feynman who
was the master of simple explanations. I know I’m no Feynman, but I will
try my best. I’m starting by publishing this preface — which is supposed
to motivate the reader to learn category theory — in hopes of starting a
discussion and soliciting feedback.

I will attempt, in the space of a few paragraphs, to convince you that this book is
written for you, and whatever objections you might have to learning one of the most
abstract branches of mathematics in your “copious spare time” are totally unfounded.

My optimism is based on several observations. First, category theory is a treasure
trove of extremely useful programming ideas. Haskell programmers have been tapping
this resource for a long time, and the ideas are slowly percolating into other languages,
but this process is too slow. We need to speed it up.

Second, there are many different kinds of math, and they appeal to different audiences.
You might be allergic to calculus or algebra, but it doesn’t mean you won’t enjoy
category theory. I would go as far as to argue that category theory is the kind of math
that is particularly well suited for the minds of programmers. That’s because category
theory — rather than dealing with particulars — deals with structure. It deals with
the kind of structure that makes programs composable.

Composition is at the very root of category theory — it’s part of the definition of the
category itself. And I will argue strongly that composition is the essence of program-
ming. We’ve been composing things forever, long before some great engineer came
up with the idea of a subroutine. Some time ago the principles of structural program-
ming revolutionized programming because they made blocks of code composable. Then
came object oriented programming, which is all about composing objects. Functional
programming is not only about composing functions and algebraic data structures —
it makes concurrency composable — something that’s virtually impossible with other
programming paradigms.

Third, I have a secret weapon, a butcher’s knife, with which I will butcher math to
make it more palatable to programmers. When you’re a professional mathematician,
you have to be very careful to get all your assumptions straight, qualify every statement
properly, and construct all your proofs rigorously. This makes mathematical papers
and books extremely hard to read for an outsider. I’m a physicist by training, and in
physics we made amazing advances using informal reasoning. Mathematicians laughed
at the Dirac delta function, which was made up on the spot by the great physicist
P. A. M. Dirac to solve some differential equations. They stopped laughing when
they discovered a completely new branch of calculus called distribution theory that
formalized Dirac’s insights.
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Figure 1:

Of course when using hand-waving arguments you run the risk of saying something
blatantly wrong, so I will try to make sure that there is solid mathematical theory
behind informal arguments in this book. I do have a worn-out copy of Saunders Mac
Lane’s Category Theory for the Working Mathematician on my nightstand.

Since this is category theory for programmers I will illustrate all major concepts using
computer code. You are probably aware that functional languages are closer to math
than the more popular imperative languages. They also offer more abstracting power.
So a natural temptation would be to say: You must learn Haskell before the bounty of
category theory becomes available to you. But that would imply that category theory
has no application outside of functional programming and that’s simply not true. So
I will provide a lot of C++ examples. Granted, you’ll have to overcome some ugly
syntax, the patterns might not stand out from the background of verbosity, and you
might be forced to do some copy and paste in lieu of higher abstraction, but that’s
just the lot of a C++ programmer.

But you’re not off the hook as far as Haskell is concerned. You don’t have to become
a Haskell programmer, but you need it as a language for sketching and documenting
ideas to be implemented in C++. That’s exactly how I got started with Haskell. I
found its terse syntax and powerful type system a great help in understanding and
implementing C++ templates, data structures, and algorithms. But since I can’t
expect the readers to already know Haskell, I will introduce it slowly and explain
everything as I go.

If you’re an experienced programmer, you might be asking yourself: I’ve been coding
for so long without worrying about category theory or functional methods, so what’s
changed? Surely you can’t help but notice that there’s been a steady stream of new
functional features invading imperative languages. Even Java, the bastion of object-
oriented programming, let the lambdas in C++ has recently been evolving at a frantic
pace — a new standard every few years — trying to catch up with the changing world.
All this activity is in preparation for a disruptive change or, as we physicist call it,
a phase transition. If you keep heating water, it will eventually start boiling. We
are now in the position of a frog that must decide if it should continue swimming in
increasingly hot water, or start looking for some alternatives.

One of the forces that are driving the big change is the multicore revolution. The
prevailing programming paradigm, object oriented programming, doesn’t buy you any-
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Figure 2: Ad hoc measures preventing the Beauvais cathedral from collapsing.

thing in the realm of concurrency and parallelism, and instead encourages dangerous
and buggy design. Data hiding, the basic premise of object orientation, when combined
with sharing and mutation, becomes a recipe for data races. The idea of combining a
mutex with the data it protects is nice but, unfortunately, locks don’t compose, and
lock hiding makes deadlocks more likely and harder to debug.

But even in the absence of concurrency, the growing complexity of software systems is
testing the limits of scalability of the imperative paradigm. To put it simply, side effects
are getting out of hand. Granted, functions that have side effects are often convenient
and easy to write. Their effects can in principle be encoded in their names and in the
comments. A function called SetPassword or WriteFile is obviously mutating some
state and generating side effects, and we are used to dealing with that. It’s only
when we start composing functions that have side effects on top of other functions
that have side effects, and so on, that things start getting hairy. It’s not that side
effects are inherently bad — it’s the fact that they are hidden from view that makes
them impossible to manage at larger scales. Side effects don’t scale, and imperative
programming is all about side effects.

Changes in hardware and the growing complexity of software are forcing us to rethink
the foundations of programming. Just like the builders of Europe’s great gothic cathe-
drals we’ve been honing our craft to the limits of material and structure. There is
an unfinished gothic cathedral in Beauvais, France, that stands witness to this deeply
human struggle with limitations. It was intended to beat all previous records of height
and lightness, but it suffered a series of collapses. Ad hoc measures like iron rods and
wooden supports keep it from disintegrating, but obviously a lot of things went wrong.
From a modern perspective, it’s a miracle that so many gothic structures had been suc-
cessfully completed without the help of modern material science, computer modelling,
finite element analysis, and general math and physics. I hope future generations will
be as admiring of the programming skills we’ve been displaying in building complex
operating systems, web servers, and the internet infrastructure. And, frankly, they
should, because we’ve done all this based on very flimsy theoretical foundations. We
have to fix those foundations if we want to move forward.
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Figure 3:

2 Category: The Essence of Composition
A category is an embarrassingly simple concept. A category consists of objects and
arrows that go between them. That’s why categories are so easy to represent pictorially.
An object can be drawn as a circle or a point, and an arrow… is an arrow. (Just for
variety, I will occasionally draw objects as piggies and arrows as fireworks.) But the
essence of a category is composition. Or, if you prefer, the essence of composition
is a category. Arrows compose, so if you have an arrow from object A to object B,
and another arrow from object B to object C, then there must be an arrow — their
composition — that goes from A to C.

In a category, if there is an arrow going from A to B and an arrow going from B to
C then there must also be a direct arrow from A to C that is their composition. This
diagram is not a full category because it’s missing identity morphisms (see later).

2.1 Arrows as Functions

Is this already too much abstract nonsense? Do not despair. Let’s talk concretes.
Think of arrows, which are also called morphisms, as functions. You have a function f
that takes an argument of type A and returns a B. You have another function g that
takes a B and returns a C. You can compose them by passing the result of f to g. You
have just defined a new function that takes an A and returns a C.

In math, such composition is denoted by a small circle between functions: g�f. Notice
the right to left order of composition. For some people this is confusing. You may be
familiar with the pipe notation in Unix, as in:

lsof | grep Chrome

or the chevron >> in F#, which both go from left to right. But in mathematics and
in Haskell functions compose right to left. It helps if you read g�f as “g after f.”

Let’s make this even more explicit by writing some C code. We have one function f
that takes an argument of type A and returns a value of type B:

B f(A a);
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and another:

C g(B b);

Their composition is:

C g_after_f(A a)
{

return g(f(a));
}

Here, again, you see right-to-left composition: g(f(a)); this time in C.

I wish I could tell you that there is a template in the C++ Standard Library that
takes two functions and returns their composition, but there isn’t one. So let’s try
some Haskell for a change. Here’s the declaration of a function from A to B:

f :: A -> B

Similarly:

g :: B -> C

Their composition is:

g . f

Once you see how simple things are in Haskell, the inability to express straightforward
functional concepts in C++ is a little embarrassing. In fact, Haskell will let you use
Unicode characters so you can write composition as:

g � f

You can even use Unicode double colons and arrows:

f � A → B

So here’s the first Haskell lesson: Double colon means “has the type of…” A function
type is created by inserting an arrow between two types. You compose two functions
by inserting a period between them (or a Unicode circle).
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2.2 Properties of Composition

There are two extremely important properties that the composition in any category
must satisfy.

1. Composition is associative. If you have three morphisms, f, g, and h, that can
be composed (that is, their objects match end-to-end), you don’t need parentheses to
compose them. In math notation this is expressed as:

h�(g�f) = (h�g)�f = h�g�f

In (pseudo) Haskell:

f :: A -> B
g :: B -> C
h :: C -> D
h . (g . f) == (h . g) . f == h . g . f

(I said “pseudo,” because equality is not defined for functions.)

Associativity is pretty obvious when dealing with functions, but it may be not as
obvious in other categories.

2. For every object A there is an arrow which is a unit of composition. This arrow loops
from the object to itself. Being a unit of composition means that, when composed with
any arrow that either starts at A or ends at A, respectively, it gives back the same
arrow. The unit arrow for object A is called idA (identity on A). In math notation, if
f goes from A to B then

f�idA = f

and

idB�f = f

When dealing with functions, the identity arrow is implemented as the identity function
that just returns back its argument. The implementation is the same for every type,
which means this function is universally polymorphic. In C++ we could define it as a
template:

template T id(T x) { return x; }

Of course, in C++ nothing is that simple, because you have to take into account
not only what you’re passing but also how (that is, by value, by reference, by const
reference, by move, and so on).

In Haskell, the identity function is part of the standard library (called Prelude). Here’s
its declaration and definition:
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id :: a -> a
id x = x

As you can see, polymorphic functions in Haskell are a piece of cake. In the declaration,
you just replace the type with a type variable. Here’s the trick: names of concrete
types always start with a capital letter, names of type variables start with a lowercase
letter. So here a stands for all types.

Haskell function definitions consist of the name of the function followed by formal
parameters — here just one, x. The body of the function follows the equal sign. This
terseness is often shocking to newcomers but you will quickly see that it makes perfect
sense. Function definition and function call are the bread and butter of functional
programming so their syntax is reduced to the bare minimum. Not only are there no
parentheses around the argument list but there are no commas between arguments
(you’ll see that later, when we define functions of multiple arguments).

The body of a function is always an expression — there are no statements in functions.
The result of a function is this expression — here, just x.

This concludes our second Haskell lesson.

The identity conditions can be written (again, in pseudo-Haskell) as:

f . id == f
id . f == f

You might be asking yourself the question: Why would anyone bother with the identity
function — a function that does nothing? Then again, why do we bother with the
number zero? Zero is a symbol for nothing. Ancient Romans had a number system
without a zero and they were able to build excellent roads and aqueducts, some of
which survive to this day.

Neutral values like zero or id are extremely useful when working with symbolic vari-
ables. That’s why Romans were not very good at algebra, whereas the Arabs and the
Persians, who were familiar with the concept of zero, were. So the identity function
becomes very handy as an argument to, or a return from, a higher-order function.
Higher order functions are what make symbolic manipulation of functions possible.
They are the algebra of functions.

To summarize: A category consists of objects and arrows (morphisms). Arrows can
be composed, and the composition is associative. Every object has an identity arrow
that serves as a unit under composition.

2.3 Composition is the Essence of Programming

Functional programmers have a peculiar way of approaching problems. They start by
asking very Zen-like questions. For instance, when designing an interactive program,
they would ask: What is interaction? When implementing Conway’s Game of Life,
they would probably ponder about the meaning of life. In this spirit, I’m going to
ask: What is programming? At the most basic level, programming is about telling
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the computer what to do. “Take the contents of memory address x and add it to the
contents of the register EAX.” But even when we program in assembly, the instructions
we give the computer are an expression of something more meaningful. We are solving a
non-trivial problem (if it were trivial, we wouldn’t need the help of the computer). And
how do we solve problems? We decompose bigger problems into smaller problems. If
the smaller problems are still too big, we decompose them further, and so on. Finally,
we write code that solves all the small problems. And then comes the essence of
programming: we compose those pieces of code to create solutions to larger problems.
Decomposition wouldn’t make sense if we weren’t able to put the pieces back together.

This process of hierarchical decomposition and recomposition is not imposed on us by
computers. It reflects the limitations of the human mind. Our brains can only deal
with a small number of concepts at a time. One of the most cited papers in psychology,
The Magical Number Seven, Plus or Minus Two, postulated that we can only keep 7
± 2 “chunks” of information in our minds. The details of our understanding of the
human short-term memory might be changing, but we know for sure that it’s limited.
The bottom line is that we are unable to deal with the soup of objects or the spaghetti
of code. We need structure not because well-structured programs are pleasant to look
at, but because otherwise our brains can’t process them efficiently. We often describe
some piece of code as elegant or beautiful, but what we really mean is that it’s easy
to process by our limited human minds. Elegant code creates chunks that are just
the right size and come in just the right number for our mental digestive system to
assimilate them.

So what are the right chunks for the composition of programs? Their surface area has
to increase slower than their volume. (I like this analogy because of the intuition that
the surface area of a geometric object grows with the square of its size — slower than
the volume, which grows with the cube of its size.) The surface area is the information
we need in order to compose chunks. The volume is the information we need in order
to implement them. The idea is that, once a chunk is implemented, we can forget
about the details of its implementation and concentrate on how it interacts with other
chunks. In object-oriented programming, the surface is the class declaration of the
object, or its abstract interface. In functional programming, it’s the declaration of a
function. (I’m simplifying things a bit, but that’s the gist of it.)

Category theory is extreme in the sense that it actively discourages us from looking
inside the objects. An object in category theory is an abstract nebulous entity. All
you can ever know about it is how it relates to other object — how it connects with
them using arrows. This is how internet search engines rank web sites by analyzing
incoming and outgoing links (except when they cheat). In object-oriented program-
ming, an idealized object is only visible through its abstract interface (pure surface,
no volume), with methods playing the role of arrows. The moment you have to dig
into the implementation of the object in order to understand how to compose it with
other objects, you’ve lost the advantages of your programming paradigm.

2.4 Challenges

1. Implement, as best as you can, the identity function in your favorite language
(or the second favorite, if your favorite language happens to be Haskell).
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2. Implement the composition function in your favorite language. It takes two
functions as arguments and returns a function that is their composition.

3. Write a program that tries to test that your composition function respects iden-
tity.

4. Is the world-wide web a category in any sense? Are links morphisms?
5. Is Facebook a category, with people as objects and friendships as morphisms?
6. When is a directed graph a category?

17



Figure 4:

3 Types and Functions

3.1 Who Needs Types?

There seems to be some controversy about the advantages of static vs. dynamic and
strong vs. weak typing. Let me illustrate these choices with a thought experiment.
Imagine millions of monkeys at computer keyboards happily hitting random keys,
producing programs, compiling, and running them.

With machine language, any combination of bytes produced by monkeys would be
accepted and run. But with higher level languages, we do appreciate the fact that
a compiler is able to detect lexical and grammatical errors. Lots of monkeys will go
without bananas, but the remaining programs will have a better chance of being useful.
Type checking provides yet another barrier against nonsensical programs. Moreover,
whereas in a dynamically typed language, type mismatches would be discovered at
runtime, in strongly typed statically checked languages type mismatches are discovered
at compile time, eliminating lots of incorrect programs before they have a chance to
run.

So the question is, do we want to make monkeys happy, or do we want to produce
correct programs?

The usual goal in the typing monkeys thought experiment is the production of the
complete works of Shakespeare. Having a spell checker and a grammar checker in the
loop would drastically increase the odds. The analog of a type checker would go even
further by making sure that, once Romeo is declared a human being, he doesn’t sprout
leaves or trap photons in his powerful gravitational field.

3.2 Types Are About Composability

Category theory is about composing arrows. But not any two arrows can be composed.
The target object of one arrow must be the same as the source source object of the
next arrow. In programming we pass the results on one function to another. The
program will not work if the target function is not able to correctly interpret the data
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produced by the source function. The two ends must fit for the composition to work.
The stronger the type system of the language, the better this match can be described
and mechanically verified.

The only serious argument I hear against strong static type checking is that it might
eliminate some programs that are semantically correct. In practice, this happens
extremely rarely and, in any case, every language provides some kind of a backdoor to
bypass the type system when that’s really necessary. Even Haskell has unsafeCoerce.
But such devices should by used judiciously. Franz Kafka’s character, Gregor Samsa,
breaks the type system when he metamorphoses into a giant bug, and we all know
how it ends.

Another argument I hear a lot is that dealing with types imposes too much burden on
the programmer. I could sympathize with this sentiment after having to write a few
declarations of iterators in C++ myself, except that there is a technology called type
inference that lets the compiler deduce most of the types from the context in which
they are used. In C++, you can now declare a variable auto and let the compiler
figure out its type.

In Haskell, except on rare occasions, type annotations are purely optional. Program-
mers tend to use them anyway, because they can tell a lot about the semantics of
code, and they make compilation errors easier to understand. It’s a common practice
in Haskell to start a project by designing the types. Later, type annotations drive the
implementation and become compiler-enforced comments.

Strong static typing is often used as an excuse for not testing the code. You may
sometimes hear Haskell programmers saying, “If it compiles, it must be correct.” Of
course, there is no guarantee that a type-correct program is correct in the sense of
producing the right ouput. The result of this cavalier attitude is that in several
studies Haskell didn’t come as strongly ahead of the pack in code quality as one
would expect. It seems that, in the commercial setting, the pressure to fix bugs
is applied only up to a certain quality level, which has everything to do with the
economics of software development and the tolerance of the end user, and very little
to do with the programming language or methodology. A better criterion would be
to measure how many projects fall behind schedule or are delivered with drastically
reduced functionality.

As for the argument that unit testing can replace strong typing, consider the common
refactoring practice in strongly typed languages: changing the type of an argument
of a particular function. In a strongly typed language, it’s enough to modify the
declaration of that function and then fix all the build breaks. In a weakly typed
language, the fact that a function now expects different data cannot be propagated
to call sites. Unit testing may catch some of the mismatches, but testing is almost
always a probabilistic rather than a deterministic process. Testing is a poor substitute
for proof.

3.3 What Are Types?

The simplest intuition for types is that they are sets of values. The type Bool (remem-
ber, concrete types start with a capital letter in Haskell) is a two-element set of True
and False. Type Char is a set of all Unicode characters like 'a' or 'ą'.
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Sets can be finite or infinite. The type of String, which is a synonym for a list of
Char, is an example of an infinite set.

When we declare x to be an Integer:

x :: Integer

we are saying that it’s an element of the set of integers. Integer in Haskell is an
infinite set, and it can be used to do arbitrary precision arithmetic. There is also a
finite-set Int that corresponds to machine type, just like the C++ int.

There are some subtleties that make this identification of types and sets tricky. There
are problems with polymorphic functions that involve circular definitions, and with
the fact that you can’t have a set of all sets; but as I promised, I won’t be a stickler
for math. The great thing is that there is a category of sets, which is called Set, and
we’ll just work with it. In Set, objects are sets and morphisms (arrows) are functions.

Set is a very special category, because we can actually peek inside its objects and get
a lot of intuitions from doing that. For instance, we know that an empty set has no
elements. We know that there are special one-element sets. We know that functions
map elements of one set to elements of another set. They can map two elements to one,
but not one element to two. We know that an identity function maps each element
of a set to itself, and so on. The plan is to gradually forget all this information and
instead express all those notions in purely categorical terms, that is in terms of objects
and arrows.

In the ideal world we would just say that Haskell types are sets and Haskell func-
tions are mathematical functions between sets. There is just one little problem: A
mathematical function does not execute any code — it just knows the answer. A
Haskell function has to calculate the answer. It’s not a problem if the answer can
be obtained in a finite number of steps — however big that number might be. But
there are some calculations that involve recursion, and those might never terminate.
We can’t just ban non-terminating functions from Haskell because distinguishing be-
tween terminating and non-terminating functions is undecidable — the famous halting
problem. That’s why computer scientists came up with a brilliant idea, or a major
hack, depending on your point of view, to extend every type by one more special value
called the bottom and denoted by _|_, or Unicode �. This “value” corresponds to a
non-terminating computation. So a function declared as:

f :: Bool -> Bool

may return True, False, or _|_; the latter meaning that it would never terminate.

Interestingly, once you accept the bottom as part of the type system, it is convenient to
treat every runtime error as a bottom, and even allow functions to return the bottom
explicitly. The latter is usually done using the expression undefined, as in:

f :: Bool -> Bool
f x = undefined
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This definition type checks because undefined evaluates to bottom, which is a member
of any type, including Bool. You can even write:

f :: Bool -> Bool
f = undefined

(without the x) because the bottom is also a member of the type Bool->Bool.

Functions that may return bottom are called partial, as opposed to total functions,
which return valid results for every possible argument.

Because of the bottom, you’ll see the category of Haskell types and functions referred to
as Hask rather than Set. From the theoretical point of view, this is the source of never-
ending complications, so at this point I will use my butcher’s knife and terminate this
line of reasoning. From the pragmatic point of view, it’s okay to ignore non-terminating
functions and bottoms, and treat Hask as bona fide Set (see Bibliography at the end).

3.4 Why Do We Need a Mathematical Model?

As a programmer you are intimately familiar with the syntax and grammar of your
programming language. These aspects of the language are usually described using
formal notation at the very beginning of the language spec. But the meaning, or
semantics, of the language is much harder to describe; it takes many more pages, is
rarely formal enough, and almost never complete. Hence the never ending discussions
among language lawyers, and a whole cottage industry of books dedicated to the
exegesis of the finer points of language standards.

There are formal tools for describing the semantics of a language but, because of their
complexity, they are mostly used with simplified academic languages, not real-life
programming behemoths. One such tool called operational semantics describes the
mechanics of program execution. It defines a formalized idealized interpreter. The
semantics of industrial languages, such as C++, is usually described using informal
operational reasoning, often in terms of an “abstract machine.”

The problem is that it’s very hard to prove things about programs using operational
semantics. To show a property of a program you essentially have to “run it” through
the idealized interpreter.

It doesn’t matter that programmers never perform formal proofs of correctness. We
always “think” that we write correct programs. Nobody sits at the keyboard saying,
“Oh, I’ll just throw a few lines of code and see what happens.” We think that the code
we write will perform certain actions that will produce desired results. We are usually
quite surprised when it doesn’t. That means we do reason about programs we write,
and we usually do it by running an interpreter in our heads. It’s just really hard to
keep track of all the variables. Computers are good at running programs — humans
are not! If we were, we wouldn’t need computers.

But there is an alternative. It’s called denotational semantics and it’s based on math.
In denotational semantics every programing construct is given its mathematical inter-
pretation. With that, if you want to prove a property of a program, you just prove a
mathematical theorem. You might think that theorem proving is hard, but the fact is
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that we humans have been building up mathematical methods for thousands of years,
so there is a wealth of accumulated knowledge to tap into. Also, as compared to
the kind of theorems that professional mathematicians prove, the problems that we
encounter in programming are usually quite simple, if not trivial.

Consider the definition of a factorial function in Haskell, which is a language quite
amenable to denotational semantics:

fact n = product [1..n]

The expression [1..n] is a list of integers from 1 to n. The function product multiplies
all elements of a list. That’s just like a definition of factorial taken from a math text.
Compare this with C:

int fact(int n)
{

int i;
int result = 1;
for (i = 2; i <= n; ++i)

result *= i;
return result;

}

Need I say more?

Okay, I’ll be the first to admit that this was a cheap shot! A factorial function has an
obvious mathematical denotation. An astute reader might ask: What’s the mathemat-
ical model for reading a character from the keyboard or sending a packet across the
network? For the longest time that would have been an awkward question leading to a
rather convoluted explanation. It seemed like denotational semantics wasn’t the best
fit for a considerable number of important tasks that were essential for writing useful
programs, and which could be easily tackled by operational semantics. The break-
through came from category theory. Eugenio Moggi discovered that computational
effect can be mapped to monads. This turned out to be an important observation
that not only gave denotational semantics a new lease on life and made pure func-
tional programs more usable, but also shed new light on traditional programming. I’ll
talk about monads later, when we develop more categorical tools.

One of the important advantages of having a mathematical model for programming
is that it’s possible to perform formal proofs of correctness of software. This might
not seem so important when you’re writing consumer software, but there are areas
of programming where the price of failure may be exorbitant, or where human life
is at stake. But even when writing web applications for the health system, you may
appreciate the thought that functions and algorithms from the Haskell standard library
come with proofs of correctness.

3.5 Pure and Dirty Functions

The things we call functions in C++ or any other imperative language, are not the
same things mathematicians call functions. A mathematical function is just a mapping
of values to values.
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We can implement a mathematical function in a programming language: Such a func-
tion, given an input value will calculate the output value. A function to produce a
square of a number will probably multiply the input value by itself. It will do it every
time it’s called, and it’s guaranteed to produce the same output every time it’s called
with the same input. The square of a number doesn’t change with the phases of the
Moon.

Also, calculating the square of a number should not have a side effect of dispensing a
tasty treat for your dog. A “function” that does that cannot be easily modelled as a
mathematical function.

In programming languages, functions that always produce the same result given the
same input and have no side effects are called pure functions. In a pure functional
language like Haskell all functions are pure. Because of that, it’s easier to give these
languages denotational semantics and model them using category theory. As for other
languages, it’s always possible to restrict yourself to a pure subset, or reason about
side effects separately. Later we’ll see how monads let us model all kinds of effects
using only pure functions. So we really don’t lose anything by restricting ourselves to
mathematical functions.

3.6 Examples of Types

Once you realize that types are sets, you can think of some rather exotic types. For
instance, what’s the type corresponding to an empty set? No, it’s not C++ void,
although this type is called Void in Haskell. It’s a type that’s not inhabited by any
values. You can define a function that takes Void, but you can never call it. To call it,
you would have to provide a value of the type Void, and there just aren’t any. As for
what this function can return, there are no restrictions whatsoever. It can return any
type (although it never will, because it can’t be called). In other words it’s a function
that’s polymorphic in the return type. Haskellers have a name for it:

absurd :: Void -> a

(Remember, a is a type variable that can stand for any type.) The name is not
coincidental. There is deeper interpretation of types and functions in terms of logic
called the Curry-Howard isomorphism. The type Void represents falsity, and the type
of the function absurd corresponds to the statement that from falsity follows anything,
as in the Latin adage “ex falso sequitur quodlibet.”

Next is the type that corresponds to a singleton set. It’s a type that has only one
possible value. This value just “is.” You might not immediately recognise it as such,
but that is the C++ void. Think of functions from and to this type. A function from
void can always be called. If it’s a pure function, it will always return the same result.
Here’s an example of such a function:

int f44() { return 44; }

You might think of this function as taking “nothing”, but as we’ve just seen, a func-
tion that takes “nothing” can never be called because there is no value representing

23



“nothing.” So what does this function take? Conceptually, it takes a dummy value of
which there is only one instance ever, so we don’t have to mention it explicitly. In
Haskell, however, there is a symbol for this value: an empty pair of parentheses, ().
So, by a funny coincidence (or is it a coincidence?), the call to a function of void looks
the same in C++ and in Haskell. Also, because of the Haskell’s love of terseness, the
same symbol () is used for the type, the constructor, and the only value corresponding
to a singleton set. So here’s this function in Haskell:

f44 :: () -> Integer
f44 () = 44

The first line declares that f44 takes the type (), pronounced “unit,” into the type
Integer. The second line defines f44 by pattern matching the only constructor for
unit, namely (), and producing the number 44. You call this function by providing
the unit value ():

f44 ()

Notice that every function of unit is equivalent to picking a single element from the
target type (here, picking the Integer 44). In fact you could think of f44 as a different
representation for the number 44. This is an example of how we can replace explicit
mention of elements of a set by talking about functions (arrows) instead. Functions
from unit to any type A are in one-to-one correspondence with the elements of that
set A.

What about functions with the void return type, or, in Haskell, with the unit return
type? In C++ such functions are used for side effects, but we know that these are not
real functions in the mathematical sense of the word. A pure function that returns
unit does nothing: it discards its argument.

Mathematically, a function from a set A to a singleton set maps every element of A to
the single element of that singleton set. For every A there is exactly one such function.
Here’s this function for Integer:

fInt :: Integer -> ()
fInt x = ()

You give it any integer, and it gives you back a unit. In the spirit of terseness, Haskell
lets you use the wildcard pattern, the underscore, for an argument that is discarded.
This way you don’t have to invent a name for it. So the above can be rewritten as:

fInt :: Integer -> ()
fInt _ = ()

Notice that the implementation of this function not only doesn’t depend on the value
passed to it, but it doesn’t even depend on the type of the argument.

Functions that can be implemented with the same formula for any type are called
parametrically polymorphic. You can implement a whole family of such functions
with one equation using a type parameter instead of a concrete type. What should we
call a polymorphic function from any type to unit type? Of course we’ll call it unit:
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unit :: a -> ()
unit _ = ()

In C++ you would write this function as:

template
void unit(T) {}

Next in the typology of types is a two-element set. In C++ it’s called bool and in
Haskell, predictably, Bool. The difference is that in C++ bool is a built-in type,
whereas in Haskell it can be defined as follows:

data Bool = True | False

(The way to read this definition is that Bool is either True or False.) In principle, one
should also be able to define a Boolean type in C++ as an enumeration:

enum bool {
true,
false

};

but C++ enum is secretly an integer. The C++11 “enum class” could have been
used instead, but then you would have to qualify its values with the class name, as
in bool::true and bool::false, not to mention having to include the appropriate
header in every file that uses it.

Pure functions from Bool just pick two values from the target type, one corresponding
to True and another to False.

Functions to Bool are called predicates. For instance, the Haskell library Data.Char
is full of predicates like isAlpha or isDigit. In C++ there is a similar library
that defines, among others, isalpha and isdigit, but these return an int rather
than a Boolean. The actual predicates are defined in std::ctype and have the form
ctype::is(alpha, c), ctype::is(digit, c), etc.

3.7 Challenges

1. Define a higher-order function (or a function object) memoize in your favorite
language. This function takes a pure function f as an argument and returns a
function that behaves almost exactly like f, except that it only calls the original
function once for every argument, stores the result internally, and subsequently
returns this stored result every time it’s called with the same argument. You can
tell the memoized function from the original by watching its performance. For
instance, try to memoize a function that takes a long time to evaluate. You’ll
have to wait for the result the first time you call it, but on subsequent calls,
with the same argument, you should get the result immediately.
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2. Try to memoize a function from your standard library that you normally use to
produce random numbers. Does it work?

3. Most random number generators can be initialized with a seed. Implement a
function that takes a seed, calls the random number generator with that seed,
and returns the result. Memoize that function. Does it work?

4. Which of these C++ functions are pure? Try to memoize them and observe
what happens when you call them multiple times: memoized and not.

(a) The factorial function from the example in the text.
(b) std::getchar()
(c) bool f()

{
std::cout << "Hello!" << std::endl;
return true;

}
(d) int f(int x)

{
static int y = 0;
y += x;
return y;

}

5. How many different functions are there from Bool to Bool? Can you implement
them all?

6. Draw a picture of a category whose only objects are the types Void, () (unit),
and Bool; with arrows corresponding to all possible functions between these
types. Label the arrows with the names of the functions.
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4 Categories Great and Small

You can get real appreciation for categories by studying a variety of examples. Cate-
gories come in all shapes and sizes and often pop up in unexpected places. We’ll start
with something really simple.

4.1 No Objects

The most trivial category is one with zero objects and, consequently, zero morphisms.
It’s a very sad category by itself, but it may be important in the context of other
categories, for instance, in the category of all categories (yes, there is one). If you
think that an empty set makes sense, then why not an empty category?

4.2 Simple Graphs

You can build categories just by connecting objects with arrows. You can imagine
starting with any directed graph and making it into a category by simply adding more
arrows. First, add an identity arrow at each node. Then, for any two arrows such
that the end of one coincides with the beginning of the other (in other words, any
two composable arrows), add a new arrow to serve as their composition. Every time
you add a new arrow, you have to also consider its composition with any other arrow
(except for the identity arrows) and itself. You usually end up with infinitely many
arrows, but that’s okay.

Another way of looking at this process is that you’re creating a category, which has an
object for every node in the graph, and all possible chains of composable graph edges
as morphisms. (You may even consider identity morphisms as special cases of chains
of length zero.)

Such a category is called a free category generated by a given graph. It’s an example
of a free construction, a process of completing a given structure by extending it with
a minimum number of items to satisfy its laws (here, the laws of a category). We’ll
see more examples of it in the future.

4.3 Orders

And now for something completely different! A category where a morphism is a relation
between objects: the relation of being less than or equal. Let’s check if it indeed is
a category. Do we have identity morphisms? Every object is less than or equal to
itself: check! Do we have composition? If a <= b and b <= c then a <= c: check! Is
composition associative? Check! A set with a relation like this is called a preorder, so
a preorder is indeed a category.

You can also have a stronger relation, that satisfies an additional condition that, if a
<= b and b <= a then a must be the same as b. That’s called a partial order.

Finally, you can impose the condition that any two objects are in a relation with each
other, one way or another; and that gives you a linear order or total order.
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Let’s characterize these ordered sets as categories. A preorder is a category where
there is at most one morphism going from any object a to any object b. Another name
for such a category is “thin.” A preorder is a thin category.

A set of morphisms from object a to object b in a category C is called a hom-set and
is written as C(a, b) (or, sometimes, HomC(a, b)). So every hom-set in a preorder is
either empty or a singleton. That includes the hom-set C(a, a), the set of morphisms
from a to a, which must be a singleton, containing only the identity, in any preorder.
You may, however, have cycles in a preorder. Cycles are forbidden in a partial order.

It’s very important to be able to recognize preorders, partial orders, and total orders
because of sorting. Sorting algorithms, such as quicksort, bubble sort, merge sort, etc.,
can only work correctly on total orders. Partial orders can be sorted using topological
sort.

4.4 Monoid as Set

Monoid is an embarrassingly simple but amazingly powerful concept. It’s the concept
behind basic arithmetics: Both addition and multiplication form a monoid. Monoids
are ubiquitous in programming. They show up as strings, lists, foldable data structures,
futures in concurrent programming, events in functional reactive programming, and
so on.

Traditionally, a monoid is defined as a set with a binary operation. All that’s required
from this operation is that it’s associative, and that there is one special element that
behaves like a unit with respect to it.

For instance, natural numbers with zero form a monoid under addition. Associativity
means that:

(a + b) + c = a + (b + c)

(In other words, we can skip parentheses when adding numbers.)

The neutral element is zero, because:

0 + a = a

and

a + 0 = a

The second equation is redundant, because addition is commutative (a + b = b +
a), but commutativity is not part of the definition of a monoid. For instance, string
concatenation is not commutative and yet it forms a monoid. The neutral element for
string concatenation, by the way, is an empty string, which can be attached to either
side of a string without changing it.

In Haskell we can define a type class for monoids — a type for which there is a neutral
element called mempty and a binary operation called mappend:
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class Monoid m where
mempty :: m
mappend :: m -> m -> m

The type signature for a two-argument function, m->m->m, might look strange at first,
but it will make perfect sense after we talk about currying. You may interpret a
signature with multiple arrows in two basic ways: as a function of multiple arguments,
with the rightmost type being the return type; or as a function of one argument (the
leftmost one), returning a function. The latter interpretation may be emphasized by
adding parentheses (which are redundant, because the arrow is right-associative), as
in: m->(m->m). We’ll come back to this interpretation in a moment.

Notice that, in Haskell, there is no way to express the monoidal properties of mempty
and mappend (i.e., the fact that mempty is neutral and that mappend is associative). It’s
the responsibility of the programmer to make sure they are satisfied.

Haskell classes are not as intrusive as C++ classes. When you’re defining a new type,
you don’t have to specify its class up front. You are free to procrastinate and declare
a given type to be an instance of some class much later. As an example, let’s declare
String to be a monoid by providing the implementation of mempty and mappend (this
is, in fact, done for you in the standard Prelude):

instance Monoid String where
mempty = ""
mappend = (++)

Here, we have reused the list concatenation operator (++), because a String is just a
list of characters.

A word about Haskell syntax: Any infix operator can be turned into a two-argument
function by surrounding it with parentheses. Given two strings, you can concatenate
them by inserting ++ between them:

"Hello " ++ "world!"

or by passing them as two arguments to the parenthesized (++):

(++) "Hello " "world!"

Notice that arguments to a function are not separated by commas or surrounded by
parentheses. (This is probably the hardest thing to get used to when learning Haskell.)

It’s worth emphasizing that Haskell lets you express equality of functions, as in:

mappend = (++)

Conceptually, this is different than expressing the equality of values produced by func-
tions, as in:
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mappend s1 s2 = (++) s1 s2

The former translates into equality of morphisms in the category Hask (or Set, if
we ignore bottoms, which is the name for never-ending calculations). Such equations
are not only more succinct, but can often be generalized to other categories. The
latter is called extensional equality, and states the fact that for any two input strings,
the outputs of mappend and (++) are the same. Since the values of arguments are
sometimes called points (as in: the value of f at point x), this is called point-wise
equality. Function equality without specifying the arguments is described as point-
free. (Incidentally, point-free equations often involve composition of functions, which
is symbolized by a point, so this might be a little confusing to the beginner.)

The closest one can get to declaring a monoid in C++ would be to use the (proposed)
syntax for concepts.

template
T mempty = delete;

template
T mappend(T, T) = delete;

template
concept bool Monoid = requires (M m) {
{ mempty } -> M;
{ mappend(m, m); } -> M;

};

The first definition uses a value template (also proposed). A polymorphic value is a
family of values — a different value for every type.

The keyword delete means that there is no default value defined: It will have to be
specified on a case-by-case basis. Similarly, there is no default for mappend.

The concept Monoid is a predicate (hence the bool type) that tests whether there exist
appropriate definitions of mempty and mappend for a given type M.

An instantiation of the Monoid concept can be accomplished by providing appropriate
specializations and overloads:

template<>
std::string mempty = {""};

std::string mappend(std::string s1, std::string s2) {
return s1 + s2;

}

4.5 Monoid as Category

That was the “familiar” definition of the monoid in terms of elements of a set. But
as you know, in category theory we try to get away from sets and their elements, and
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Figure 5:

instead talk about objects and morphisms. So let’s change our perspective a bit and
think of the application of the binary operator as “moving” or “shifting” things around
the set.

For instance, there is the operation of adding 5 to every natural number. It maps 0 to
5, 1 to 6, 2 to 7, and so on. That’s a function defined on the set of natural numbers.
That’s good: we have a function and a set. In general, for any number n there is a
function of adding n — the “adder” of n.

How do adders compose? The composition of the function that adds 5 with the
function that adds 7 is a function that adds 12. So the composition of adders can be
made equivalent to the rules of addition. That’s good too: we can replace addition
with function composition.

But wait, there’s more: There is also the adder for the neutral element, zero. Adding
zero doesn’t move things around, so it’s the identity function in the set of natural
numbers.

Instead of giving you the traditional rules of addition, I could as well give you the rules
of composing adders, without any loss of information. Notice that the composition of
adders is associative, because the composition of functions is associative; and we have
the zero adder corresponding to the identity function.

An astute reader might have noticed that the mapping from integers to adders follows
from the second interpretation of the type signature of mappend as m->(m->m). It tells
us that mappend maps an element of a monoid set to a function acting on that set.

Now I want you to forget that you are dealing with the set of natural numbers and
just think of it as a single object, a blob with a bunch of morphisms — the adders. A
monoid is a single object category. In fact the name monoid comes from Greek mono,
which means single. Every monoid can be described as a single object category with
a set of morphisms that follow appropriate rules of composition.

String concatenation is an interesting case, because we have a choice of defining right
appenders and left appenders (or prependers, if you will). The composition tables of
the two models are a mirror reverse of each other. You can easily convince yourself
that appending “bar” after “foo” corresponds to prepending “foo” after prepending
“bar”.
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Figure 6: Monoid hom-set seen as morphisms and as points in a set

You might ask the question whether every categorical monoid — a one-object cate-
gory — defines a unique set-with-binary-operator monoid. It turns out that we can
always extract a set from a single-object category. This set is the set of morphisms
— the adders in our example. In other words, we have the hom-set M(m, m) of the
single object m in the category M. We can easily define a binary operator in this set:
The monoidal product of two set-elements is the element corresponding to the com-
position of the corresponding morphisms. If you give me two elements of M(m, m)
corresponding to f and g, their product will correspond to the composition g�f. The
composition always exists, because the source and the target for these morphisms are
the same object. And it’s associative by the rules of category. The identity morphism
is the neutral element of this product. So we can always recover a set monoid from a
category monoid. For all intents and purposes they are one and the same.

There is just one little nit for mathematicians to pick: morphisms don’t have to form
a set. In the world of categories there are things larger than sets. A category in which
morphisms between any two objects form a set is called locally small. As promised, I
will be mostly ignoring such subtleties, but I thought I should mention them for the
record.

A lot of interesting phenomena in category theory have their root in the fact that
elements of a hom-set can be seen both as morphisms, which follow the rules of com-
position, and as points in a set. Here, composition of morphisms in M translates into
monoidal product in the set M(m, m).
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4.7 Challenges

1. Generate a free category from:

(a) A graph with one node and no edges
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(b) A graph with one node and one (directed) edge (hint: this edge can be
composed with itself)

(c) A graph with two nodes and a single arrow between them
(d) A graph with a single node and 26 arrows marked with the letters of the

alphabet: a, b, c … z.

2. What kind of order is this?

(a) A set of sets with the inclusion relation: A is included in B if every element
of A is also an element of B.

(b) C++ types with the following subtyping relation: T1 is a subtype of T2 if
a pointer to T1 can be passed to a function that expects a pointer to T2
without triggering a compilation error.

3. Considering that Bool is a set of two values True and False, show that it forms
two (set-theoretical) monoids with respect to, respectively, operator && (AND)
and || (OR).

4. Represent the Bool monoid with the AND operator as a category: List the
morphisms and their rules of composition.

5. Represent addition modulo 3 as a monoid category.
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5 Kleisli Categories

5.1 Composition of Logs

You’ve seen how to model types and pure functions as a category. I also mentioned
that there is a way to model side effects, or non-pure functions, in category theory.
Let’s have a look at one such example: functions that log or trace their execution.
Something that, in an imperative language, would likely be implemented by mutating
some global state, as in:

string logger;

bool negate(bool b) {
logger += "Not so! ";
return !b;

}

You know that this is not a pure function, because its memoized version would fail to
produce a log. This function has side effects.

In modern programming, we try to stay away from global mutable state as much as
possible — if only because of the complications of concurrency. And you would never
put code like this in a library.

Fortunately for us, it’s possible to make this function pure. You just have to pass
the log explicitly, in and out. Let’s do that by adding a string argument, and pairing
regular output with a string that contains the updated log:

pair<bool, string> negate(bool b, string logger) {
return make_pair(!b, logger + "Not so! ");

}

This function is pure, it has no side effects, it returns the same pair every time it’s called
with the same arguments, and it can be memoized if necessary. However, considering
the cumulative nature of the log, you’d have to memoize all possible histories that can
lead to a given call. There would be a separate memo entry for:

negate(true, "It was the best of times. ");

and

negate(true, "It was the worst of times. ");

and so on.

It’s also not a very good interface for a library function. The callers are free to ignore
the string in the return type, so that’s not a huge burden; but they are forced to pass
a string as input, which might be inconvenient.
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Is there a way to do the same thing less intrusively? Is there a way to separate
concerns? In this simple example, the main purpose of the function negate is to turn
one Boolean into another. The logging is secondary. Granted, the message that is
logged is specific to the function, but the task of aggregating the messages into one
continuous log is a separate concern. We still want the function to produce a string,
but we’d like to unburden it from producing a log. So here’s the compromise solution:

pair<bool, string> negate(bool b) {
return make_pair(!b, "Not so! ");

}

The idea is that the log will be aggregated between function calls.

To see how this can be done, let’s switch to a slightly more realistic example. We have
one function from string to string that turns lower case characters to upper case:

string toUpper(string s) {
string result;
int (*toupperp)(int) = &toupper; // toupper is overloaded
transform(begin(s), end(s), back_inserter(result), toupperp);
return result;

}

and another that splits a string into a vector of strings, breaking it on whitespace
boundaries:

vector<string> toWords(string s) {
return words(s);

}

The actual work is done in the auxiliary function words:

vector<string> words(string s) {
vector<string> result{""};
for (auto i = begin(s); i != end(s); ++i)
{

if (isspace(*i))
result.push_back("");

else
result.back() += *i;

}
return result;

}

We want to modify the functions toUpper and toWords so that they piggyback a
message string on top of their regular return values.

We will “embellish” the return values of these functions. Let’s do it in a generic way
by defining a template Writer that encapsulates a pair whose first component is a
value of arbitrary type A and the second component is a string:
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Figure 7:

template<class A>
using Writer = pair<A, string>;

Here are the embellished functions:

Writer<string> toUpper(string s) {
string result;
int (*toupperp)(int) = &toupper;
transform(begin(s), end(s), back_inserter(result), toupperp);
return make_pair(result, "toUpper ");

}

Writer<vector<string>> toWords(string s) {
return make_pair(words(s), "toWords ");

}

We want to compose these two functions into another embellished function that up-
percases a string and splits it into words, all the while producing a log of those actions.
Here’s how we may do it:

Writer<vector<string>> process(string s) {
auto p1 = toUpper(s);
auto p2 = toWords(p1.first);
return make_pair(p2.first, p1.second + p2.second);

}

We have accomplished our goal: The aggregation of the log is no longer the concern of
the individual functions. They produce their own messages, which are then, externally,
concatenated into a larger log.

Now imagine a whole program written in this style. It’s a nightmare of repetitive,
error-prone code. But we are programmers. We know how to deal with repetitive
code: we abstract it! This is, however, not your run of the mill abstraction — we have
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to abstract function composition itself. But composition is the essence of category
theory, so before we write more code, let’s analyze the problem from the categorical
point of view.

5.2 The Writer Category

The idea of embellishing the return types of a bunch of functions in order to piggyback
some additional functionality turns out to be very fruitful. We’ll see many more
examples of it. The starting point is our regular category of types and functions.
We’ll leave the types as objects, but redefine our morphisms to be the embellished
functions.

For instance, suppose that we want to embellish the function isEven that goes from
int to bool. We turn it into a morphism that is represented by an embellished function.
The important point is that this morphism is still considered an arrow between the
objects int and bool, even though the embellished function returns a pair:

pair<bool, string> isEven(int n) {
return make_pair(n % 2 == 0, "isEven ");

}

By the laws of a category, we should be able to compose this morphism with another
morphism that goes from the object bool to whatever. In particular, we should be
able to compose it with our earlier negate:

pair<bool, string> negate(bool b) {
return make_pair(!b, "Not so! ");

}

Obviously, we cannot compose these two morphisms the same way we compose regular
functions, because of the input/output mismatch. Their composition should look more
like this:

pair<bool, string> isOdd(int n) {
pair<bool, string> p1 = isEven(n);
pair<bool, string> p2 = negate(p1.first);
return make_pair(p2.first, p1.second + p2.second);

}

So here’s the recipe for the composition of two morphisms in this new category we are
constructing:

1. Execute the embellished function corresponding to the first morphism
2. Extract the first component of the result pair and pass it to the embellished

function corresponding to the second morphism
3. Concatenate the second component (the string) of of the first result and the

second component (the string) of the second result
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4. Return a new pair combining the first component of the final result with the
concatenated string.

If we want to abstract this composition as a higher order function in C++, we have
to use a template parameterized by three types corresponding to three objects in our
category. It should take two embellished functions that are composable according to
our rules, and return a third embellished function:

template<class A, class B, class C>
function<Writer<C>(A)> compose(function<Writer<B>(A)> m1,

function<Writer<C>(B)> m2)
{

return [m1, m2](A x) {
auto p1 = m1(x);
auto p2 = m2(p1.first);
return make_pair(p2.first, p1.second + p2.second);

};
}

Now we can go back to our earlier example and implement the composition of toUpper
and toWords using this new template:

Writer<vector<string>> process(string s) {
return compose<string, string, vector<string>>(toUpper, toWords)(s);

}

There is still a lot of noise with the passing of types to the compose template. This can
be avoided as long as you have a C++14-compliant compiler that supports generalized
lambda functions with return type deduction (credit for this code goes to Eric Niebler):

auto const compose = [](auto m1, auto m2) {
return [m1, m2](auto x) {

auto p1 = m1(x);
auto p2 = m2(p1.first);
return make_pair(p2.first, p1.second + p2.second);

};
};

In this new definition, the implementation of process simplifies to:

Writer<vector<string>> process(string s){
return compose(toUpper, toWords)(s);

}

But we are not finished yet. We have defined composition in our new category, but
what are the identity morphisms? These are not our regular identity functions! They
have to be morphisms from type A back to type A, which means they are embellished
functions of the form:
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Writer<A> identity(A);

They have to behave like units with respect to composition. If you look at our definition
of composition, you’ll see that an identity morphism should pass its argument without
change, and only contribute an empty string to the log:

template<class A>
Writer<A> identity(A x) {

return make_pair(x, "");
}

You can easily convince yourself that the category we have just defined is indeed a
legitimate category. In particular, our composition is trivially associative. If you follow
what’s happening with the first component of each pair, it’s just a regular function
composition, which is associative. The second components are being concatenated,
and concatenation is also associative.

An astute reader may notice that it would be easy to generalize this construction to
any monoid, not just the string monoid. We would use mappend inside compose and
mempty inside identity (in place of + and ""). There really is no reason to limit
ourselves to logging just strings. A good library writer should be able to identify the
bare minimum of constraints that make the library work — here the logging library’s
only requirement is that the log have monoidal properties.

5.3 Writer in Haskell

The same thing in Haskell is a little more terse, and we also get a lot more help from
the compiler. Let’s start by defining the Writer type:

type Writer a = (a, String)

Here I’m just defining a type alias, an equivalent of a typedef (or using) in C++.
The type Writer is parameterized by a type variable a and is equivalent to a pair of a
and String. The syntax for pairs is minimal: just two items in parentheses, separated
by a comma.

Our morphisms are functions from an arbitrary type to some Writer type:

a -> Writer b

We’ll declare the composition as a funny infix operator, sometimes called the “fish”:

(>=>) :: (a -> Writer b) -> (b -> Writer c) -> (a -> Writer c)

It’s a function of two arguments, each being a function on its own, and returning a
function. The first argument is of the type (a->Writer b), the second is (b->Writer
c), and the result is (a->Writer c).

Here’s the definition of this infix operator — the two arguments m1 and m2 appearing
on either side of the fishy symbol:
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m1 >=> m2 = \x ->
let (y, s1) = m1 x

(z, s2) = m2 y
in (z, s1 ++ s2)

The result is a lambda function of one argument x. The lambda is written as a
backslash — think of it as the Greek letter � with an amputated leg.

The let expression lets you declare auxiliary variables. Here the result of the call to
m1 is pattern matched to a pair of variables (y, s1); and the result of the call to m2,
with the argument y from the first pattern, is matched to (z, s2).

It is common in Haskell to pattern match pairs, rather than use accessors, as we did
in C++. Other than that there is a pretty straightforward correspondence between
the two implementations.

The overall value of the let expression is specified in its in clause: here it’s a pair
whose first component is z and the second component is the concatenation of two
strings, s1++s2.

I will also define the identity morphism for our category, but for reasons that will
become clear much later, I will call it return.

return :: a -> Writer a
return x = (x, "")

For completeness, let’s have the Haskell versions of the embellished functions upCase
and toWords:

upCase :: String -> Writer String
upCase s = (map toUpper s, "upCase ")

toWords :: String -> Writer [String]
toWords s = (words s, "toWords ")

The function map corresponds to the C++ transform. It applies the character function
toUpper to the string s. The auxiliary function words is defined in the standard
Prelude library.

Finally, the composition of the two functions is accomplished with the help of the fish
operator:

process :: String -> Writer [String]
process = upCase >=> toWords
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5.4 Kleisli Categories

You might have guessed that I haven’t invented this category on the spot. It’s an
example of the so called Kleisli category — a category based on a monad. We are not
ready to discuss monads yet, but I wanted to give you a taste of what they can do. For
our limited purposes, a Kleisli category has, as objects, the types of the underlying
programming language. Morphisms from type A to type B are functions that go
from A to a type derived from B using the particular embellishment. Each Kleisli
category defines its own way of composing such morphisms, as well as the identity
morphisms with respect to that composition. (Later we’ll see that the imprecise term
“embellishment” corresponds to the notion of an endofunctor in a category.)

The particular monad that I used as the basis of the category in this post is called the
writer monad and it’s used for logging or tracing the execution of functions. It’s also
an example of a more general mechanism for embedding effects in pure computations.
You’ve seen previously that we could model programming-language types and functions
in the category of sets (disregarding bottoms, as usual). Here we have extended this
model to a slightly different category, a category where morphisms are represented by
embellished functions, and their composition does more than just pass the output of
one function to the input of another. We have one more degree of freedom to play
with: the composition itself. It turns out that this is exactly the degree of freedom
which makes it possible to give simple denotational semantics to programs that in
imperative languages are traditionally implemented using side effects.

5.5 Challenge

A function that is not defined for all possible values of its argument is called a partial
function. It’s not really a function in the mathematical sense, so it doesn’t fit the
standard categorical mold. It can, however, be represented by a function that returns
an embellished type optional:

template<class A> class optional {
bool _isValid;
A _value;

public:
optional() : _isValid(false) {}
optional(A v) : _isValid(true), _value(v) {}
bool isValid() const { return _isValid; }
A value() const { return _value; }

};

As an example, here’s the implementation of the embellished function safe_root:

optional<double> safe_root(double x) {
if (x >= 0) return optional<double>{sqrt(x)};
else return optional<double>{};

}
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Here’s the challenge:

1. Construct the Kleisli category for partial functions (define composition and iden-
tity).

2. Implement the embellished function safe_reciprocal that returns a valid re-
ciprocal of its argument, if it’s different from zero.

3. Compose safe_root and safe_reciprocal to implement safe_root_reciprocal
that calculates sqrt(1/x) whenever possible.
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6 Products and Coproducts

6.1 Follow the Arrows

The Ancient Greek playwright Euripides once said: “Every man is like the company
he is wont to keep.” We are defined by our relationships. Nowhere is this more true
than in category theory. If we want to single out a particular object in a category,
we can only do this by describing its pattern of relationships with other objects (and
itself). These relationships are defined by morphisms.

There is a common construction in category theory called the universal construction
for defining objects in terms of their relationships. One way of doing this is to pick a
pattern, a particular shape constructed from objects and morphisms, and look for all
its occurrences in the category. If it’s a common enough pattern, and the category is
large, chances are you’ll have lots and lots of hits. The trick is to establish some kind
of ranking among those hits, and pick what could be considered the best fit.

This process is reminiscent of the way we do web searches. A query is like a pattern. A
very general query will give you large recall: lots of hits. Some may be relevant, others
not. To eliminate irrelevant hits, you refine your query. That increases its precision.
Finally, the search engine will rank the hits and, hopefully, the one result that you’re
interested in will be at the top of the list.

6.2 Initial Object

The simplest shape is a single object. Obviously, there are as many instances of this
shape as there are objects in a given category. That’s a lot to choose from. We need to
establish some kind of ranking and try to find the object that tops this hierarchy. The
only means at our disposal are morphisms. If you think of morphisms as arrows, then
it’s possible that there is an overall net flow of arrows from one end of the category to
another. This is true in ordered categories, for instance in partial orders. We could
generalize that notion of object precedence by saying that object a is “more initial”
than object b if there is an arrow (a morphism) going from a to b. We would then
define the initial object as one that has arrows going to all other objects. Obviously
there is no guarantee that such an object exists, and that’s okay. A bigger problem is
that there may be too many such objects: The recall is good, but precision is lacking.
The solution is to take a hint from ordered categories — they allow at most one arrow
between any two objects: there is only one way of being less-than or equal-to another
object. Which leads us to this definition of the initial object:

The initial object is the object that has one and only one morphism going to any
object in the category.

However, even that doesn’t guarantee the uniqueness of the initial object (if one exists).
But it guarantees the next best thing: uniqueness up to isomorphism. Isomorphisms
are very important in category theory, so I’ll talk about them shortly. For now, let’s
just agree that uniqueness up to isomorphism justifies the use of “the” in the definition
of the initial object.

43



Figure 8:

Here are some examples: The initial object in a partially ordered set (often called a
poset) is its least element. Some posets don’t have an initial object — like the set of
all integers, positive and negative, with less-than-or-equal relation for morphisms.

In the category of sets and functions, the initial object is the empty set. Remember,
an empty set corresponds to the Haskell type Void (there is no corresponding type
in C++) and the unique polymorphic function from Void to any other type is called
absurd:

absurd :: Void -> a

It’s this family of morphisms that makes Void the initial object in the category of
types.

6.3 Terminal Object

Let’s continue with the single-object pattern, but let’s change the way we rank the
objects. We’ll say that object a is “more terminal” than object b if there is a morphism
going from b to a (notice the reversal of direction). We’ll be looking for an object
that’s more terminal than any other object in the category. Again, we will insist on
uniqueness:

The terminal object is the object with one and only one morphism coming to it from
any object in the category.

And again, the terminal object is unique, up to isomorphism, which I will show shortly.
But first let’s look at some examples. In a poset, the terminal object, if it exists, is
the biggest object. In the category of sets, the terminal object is a singleton. We’ve
already talked about singletons — they correspond to the void type in C++ and the
unit type () in Haskell. It’s a type that has only one value — implicit in C++ and
explicit in Haskell, denoted by (). We’ve also established that there is one and only
one pure function from any type to the unit type:

unit :: a -> ()
unit _ = ()
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Figure 9:

so all the conditions for the terminal object are satisfied.

Notice that in this example the uniqueness condition is crucial, because there are other
sets (actually, all of them, except for the empty set) that have incoming morphisms
from every set. For instance, there is a Boolean-valued function (a predicate) defined
for every type:

yes :: a -> Bool
yes _ = True

But Bool is not a terminal object. There is at least one more Bool-valued function
from every type:

no :: a -> Bool
no _ = False

Insisting on uniqueness gives us just the right precision to narrow down the definition
of the terminal object to just one type.

6.4 Duality

You can’t help but to notice the symmetry between the way we defined the initial
object and the terminal object. The only difference between the two was the direction
of morphisms. It turns out that for any category C we can define the opposite category
Cop just by reversing all the arrows. The opposite category automatically satisfies
all the requirements of a category, as long as we simultaneously redefine composition.
If original morphisms f::a->b and g::b->c composed to h::a->c with h=g�f, then
the reversed morphisms fop::b->a and gop::c->b will compose to hop::c->a with
hop=fop�gop. And reversing the identity arrows is a (pun alert!) no-op.

Duality is a very important property of categories because it doubles the productivity
of every mathematician working in category theory. For every construction you come
up with, there is its opposite; and for every theorem you prove, you get one for
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free. The constructions in the opposite category are often prefixed with “co”, so you
have products and coproducts, monads and comonads, cones and cocones, limits and
colimits, and so on. There are no cocomonads though, because reversing the arrows
twice gets us back to the original state.

It follows then that a terminal object is the initial object in the opposite category.

6.5 Isomorphisms

As programmers, we are well aware that defining equality is a nontrivial task. What
does it mean for two objects to be equal? Do they have to occupy the same location in
memory (pointer equality)? Or is it enough that the values of all their components are
equal? Are two complex numbers equal if one is expressed as the real and imaginary
part, and the other as modulus and angle? You’d think that mathematicians would
have figured out the meaning of equality, but they haven’t. They have the same
problem of multiple competing definitions for equality. There is the propositional
equality, intensional equality, extensional equality, and equality as a path in homotopy
type theory. And then there are the weaker notions of isomorphism, and even weaker
of equivalence.

The intuition is that isomorphic objects look the same — they have the same shape.
It means that every part of one object corresponds to some part of another object in a
one-to-one mapping. As far as our instruments can tell, the two objects are a perfect
copy of each other. Mathematically it means that there is a mapping from object a
to object b, and there is a mapping from object b back to object a, and they are the
inverse of each other. In category theory we replace mappings with morphisms. An
isomorphism is an invertible morphism; or a pair of morphisms, one being the inverse
of the other.

We understand the inverse in terms of composition and identity: Morphism g is the
inverse of morphism f if their composition is the identity morphism. These are actually
two equations because there are two ways of composing two morphisms:

f . g = id
g . f = id

When I said that the initial (terminal) object was unique up to isomorphism, I meant
that any two initial (terminal) objects are isomorphic. That’s actually easy to see.
Let’s suppose that we have two initial objects i1 and i2. Since i1 is initial, there is
a unique morphism f from i1 to i2. By the same token, since i2 is initial, there is a
unique morphism g from i2 to i1. What’s the composition of these two morphisms?

The composition g�f must be a morphism from i1 to i1. But i1 is initial so there can
only be one morphism going from i1 to i1. Since we are in a category, we know that
there is an identity morphism from i1 to i1, and since there is room for only one, that
must be it. Therefore g�f is equal to identity. Similarly, f�g must be equal to identity,
because there can be only one morphism from i2 back to i2. This proves that f and g
must be the inverse of each other. Therefore any two initial objects are isomorphic.

Notice that in this proof we used the uniqueness of the morphism from the initial
object to itself. Without that we couldn’t prove the “up to isomorphism” part. But
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Figure 10: All morphisms in this diagram are unique

why do we need the uniqueness of f and g? Because not only is the initial object
unique up to isomorphism, it is unique up to unique isomorphism. In principle, there
could be more than one isomorphism between two objects, but that’s not the case here.
This “uniqueness up to unique isomorphism” is the important property of all universal
constructions.

6.6 Products

The next universal construction is that of a product. We know what a cartesian
product of two sets is: it’s a set of pairs. But what’s the pattern that connects the
product set with its constituent sets? If we can figure that out, we’ll be able to
generalize it to other categories.

All we can say is that there are two functions, the projections, from the product to
each of the constituents. In Haskell, these two functions are called fst and snd and
they pick, respectively, the first and the second component of a pair:

fst :: (a, b) -> a
fst (x, y) = x

snd :: (a, b) -> b
snd (x, y) = y

Here, the functions are defined by pattern matching their arguments: the pattern that
matches any pair is (x, y), and it extracts its components into variables x and y.

These definitions can be simplified even further with the use of wildcards:

fst (x, _) = x
snd (_, y) = y

In C++, we would use template functions, for instance:
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Figure 11:

Figure 12:

template<class A, class B>
A fst(pair<A, B> const & p) {

return p.first;
}

Equipped with this seemingly very limited knowledge, let’s try to define a pattern of
objects and morphisms in the category of sets that will lead us to the construction of a
product of two sets, a and b. This pattern consists of an object c and two morphisms
p and q connecting it to a and b, respectively:

p :: c -> a
q :: c -> b

All cs that fit this pattern will be considered candidates for the product. There may
be lots of them.

For instance, let’s pick, as our constituents, two Haskell types, Int and Bool, and get
a sampling of candidates for their product.

Here’s one: Int. Can Int be considered a candidate for the product of Int and Bool?
Yes, it can — and here are its projections:
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Figure 13:

p :: Int -> Int
p x = x

q :: Int -> Bool
q _ = True

That’s pretty lame, but it matches the criteria.

Here’s another one: (Int, Int, Bool). It’s a tuple of three elements, or a triple.
Here are two morphisms that make it a legitimate candidate (we are using pattern
matching on triples):

p :: (Int, Int, Bool) -> Int
p (x, _, _) = x

q :: (Int, Int, Bool) -> Bool
q (_, _, b) = b

You may have noticed that while our first candidate was too small — it only covered
the Int dimension of the product; the second was too big — it spuriously duplicated
the Int dimension.

But we haven’t explored yet the other part of the universal construction: the ranking.
We want to be able to compare two instances of our pattern. We want to compare
one candidate object c and its two projections p and q with another candidate object
c’ and its two projections p’ and q’. We would like to say that c is “better” than
c’ if there is a morphism m from c’ to c — but that’s too weak. We also want its
projections to be “better,” or “more universal,” than the projections of c’. What it
means is that the projections p’ and q’ can be reconstructed from p and q using m:

p’ = p . m
q’ = q . m
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Figure 14:

Another way of looking at these equation is that m factorizes p’ and q’. Just pretend
that these equations are in natural numbers, and the dot is multiplication: m is a
common factor shared by p’ and q’.

Just to build some intuitions, let me show you that the pair (Int, Bool) with the two
canonical projections, fst and snd is indeed better than the two candidates I presented
before.

The mapping m for the first candidate is:

m :: Int -> (Int, Bool)
m x = (x, True)

Indeed, the two projections, p and q can be reconstructed as:

p x = fst (m x) = x
q x = snd (m x) = True

The m for the second example is similarly uniquely determined:

m (x, _, b) = (x, b)

We were able to show that (Int, Bool) is better than either of the two candidates.
Let’s see why the opposite is not true. Could we find some m' that would help us
reconstruct fst and snd from p and q?

fst = p . m’
snd = q . m’

In our first example, q always returned True and we know that there are pairs whose
second component is False. We can’t reconstruct snd from q.

The second example is different: we retain enough information after running either p
or q, but there is more than one way to factorize fst and snd. Because both p and
q ignore the second component of the triple, our m’ can put anything in it. We can
have:
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m’ (x, b) = (x, x, b)

or

m’ (x, b) = (x, 42, b)

and so on.

Putting it all together, given any type c with two projections p and q, there is a unique
m from c to the cartesian product (a, b) that factorizes them. In fact, it just combines
p and q into a pair.

m :: c -> (a, b)
m x = (p x, q x)

That makes the cartesian product (a, b) our best match, which means that this
universal construction works in the category of sets. It picks the product of any two
sets.

Now let’s forget about sets and define a product of two objects in any category using
the same universal construction. Such product doesn’t always exist, but when it does,
it is unique up to a unique isomorphism.

A product of two objects a and b is the object c equipped with two projections such
that for any other object c’ equipped with two projections there is a unique morphism
m from c’ to c that factorizes those projections.

A (higher order) function that produces the factorizing function m from two candidates
is sometimes called the factorizer. In our case, it would be the function:

factorizer :: (c -> a) -> (c -> b) -> (c -> (a, b))
factorizer p q = \x -> (p x, q x)

6.7 Coproduct

Like every construction in category theory, the product has a dual, which is called the
coproduct. When we reverse the arrows in the product pattern, we end up with an
object c equipped with two injections, i and j: morphisms from a and b to c.

i :: a -> c
j :: b -> c

The ranking is also inverted: object c is “better” than object c’ that is equipped
with the injections i’ and j’ if there is a morphism m from c to c’ that factorizes the
injections:

i' = m . i
j' = m . j

51



Figure 15:

Figure 16:

The “best” such object, one with a unique morphism connecting it to any other pattern,
is called a coproduct and, if it exists, is unique up to unique isomorphism.

A coproduct of two objects a and b is the object c equipped with two injections such
that for any other object c’ equipped with two injections there is a unique morphism
m from c to c’ that factorizes those injections.

In the category of sets, the coproduct is the disjoint union of two sets. An element
of the disjoint union of a and b is either an element of a or an element of b. If the
two sets overlap, the disjoint union contains two copies of the common part. You can
think of an element of a disjoint union as being tagged with an identifier that specifies
its origin.

For a programmer, it’s easier to understand a coproduct in terms of types: it’s a
tagged union of two types. C++ supports unions, but they are not tagged. It means
that in your program you have to somehow keep track which member of the union is
valid. To create a tagged union, you have to define a tag — an enumeration — and
combine it with the union. For instance, a tagged union of an int and a char const
* could be implemented as:

struct Contact {
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enum { isPhone, isEmail } tag;
union { int phoneNum; char const * emailAddr; };

};

The two injections can either be implemented as constructors or as functions. For
instance, here’s the first injection as a function PhoneNum:

Contact PhoneNum(int n) {
Contact c;
c.tag = isPhone;
c.phoneNum = n;
return c;

}

It injects an integer into Contact.

A tagged union is also called a variant, and there is a very general implementation of
a variant in the boost library, boost::variant.

In Haskell, you can combine any data types into a tagged union by separating data
constructors with a vertical bar. The Contact example translates into the declaration:

data Contact = PhoneNum Int | EmailAddr String

Here, PhoneNum and EmailAddr serve both as constructors (injections), and as tags
for pattern matching (more about this later). For instance, this is how you would
construct a contact using a phone number:

helpdesk :: Contact;
helpdesk = PhoneNum 2222222

Unlike the canonical implementation of the product that is built into Haskell as the
primitive pair, the canonical implementation of the coproduct is a data type called
Either, which is defined in the standard Prelude as:

Either a b = Left a | Right b

It is parameterized by two types, a and b and has two constructors: Left that takes
a value of type a, and Right that takes a value of type b.

Just as we’ve defined the factorizer for a product, we can define one for the coproduct.
Given a candidate type c and two candidate injections i and j, the factorizer for
Either produces the factoring function:

factorizer :: (a -> c) -> (b -> c) -> Either a b -> c
factorizer i j (Left a) = i a
factorizer i j (Right b) = j b
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6.8 Asymmetry

We’ve seen two set of dual definitions: The definition of a terminal object can be
obtained from the definition of the initial object by reversing the direction of arrows;
in a similar way, the definition of the coproduct can be obtained from that of the
product. Yet in the category of sets the initial object is very different from the final
object, and coproduct is very different from product. We’ll see later that product
behaves like multiplication, with the terminal object playing the role of one; whereas
coproduct behaves more like the sum, with the initial object playing the role of zero.
In particular, for finite sets, the size of the product is the product of the sizes of
individual sets, and the size of the coproduct is the sum of the sizes.

This shows that the category of sets is not symmetric with respect to the inversion of
arrows.

Notice that while the empty set has a unique morphism to any set (the absurd func-
tion), it has no morphisms coming back. The singleton set has a unique morphism
coming to it from any set, but it also has outgoing morphisms to every set (except for
the empty one). As we’ve seen before, these outgoing morphisms from the terminal
object play a very important role of picking elements of other sets (the empty set has
no elements, so there’s nothing to pick).

It’s the relationship of the singleton set to the product that sets it apart from the
coproduct. Consider using the singleton set, represented by the unit type (), as yet
another — vastly inferior — candidate for the product pattern. Equip it with two
projections p and q: functions from the singleton to each of the constituent sets. Each
selects a concrete element from either set. Because the product is universal, there is
also a (unique) morphism m from our candidate, the singleton, to the product. This
morphism selects an element from the product set — it selects a concrete pair. It also
factorizes the two projections:

p = fst . m
q = snd . m

When acting on the singleton value (), the only element of the singleton set, these
two equations become:

p () = fst (m ())
q () = snd (m ())

Since m () is the element of the product picked by m, these equations tell use that the
element picked by p from the first set, p (), is the first component of the pair picked
by m. Similarly, q () is equal to the second component. This is in total agreement
with our understanding that elements of the product are pairs of elements from the
constituent sets.

There is no such simple interpretation of the coproduct. We could try the singleton
set as a candidate for a coproduct, in an attempt to extract the elements from it, but
there we would have two injections going into it rather than two projections coming
out of it. They’d tell us nothing about their sources (in fact, we’ve seen that they
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ignore the input parameter). Neither would the unique morphism from the coproduct
to our singleton. The category of sets just looks very different when seen from the
direction of the initial object than it does when seen from the terminal end.

This is not an intrinsic property of sets, it’s a property of functions, which we use as
morphisms in Set. Functions are, in general, asymmetric. Let me explain.

A function must be defined for every element of its domain set (in programming, we
call it a total function), but it doesn’t have to cover the whole codomain. We’ve seen
some extreme cases of it: functions from a singleton set — functions that select just
a single element in the codomain. (Actually, functions from an empty set are the
real extremes.) When the size of the domain is much smaller than the size of the
codomain, we often think of such functions as embedding the domain in the codomain.
For instance, we can think of a function from a singleton set as embedding its single
element in the codomain. I call them embedding functions, but mathematicians prefer
to give a name to the opposite: functions that tightly fill their codomains are called
surjective or onto.

The other source of asymmetry is that functions are allowed to map many elements
of the domain set into one element of the codomain. They can collapse them. The
extreme case are functions that map whole sets into a singleton. You’ve seen the poly-
morphic unit function that does just that. The collapsing can only be compounded by
composition. A composition of two collapsing functions is even more collapsing than
the individual functions. Mathematicians have a name for non-collapsing functions:
they call them injective or one-to-one

Of course there are some functions that are neither embedding nor collapsing. They
are called bijections and they are truly symmetric, because they are invertible. In the
category of sets, an isomorphism is the same as a bijection.

6.9 Challenges

1. Show that the terminal object is unique up to unique isomorphism.
2. What is a product of two objects in a poset? Hint: Use the universal construc-

tion.
3. What is a coproduct of two objects in a poset?
4. Implement the equivalent of Haskell Either as a generic type in your favorite

language (other than Haskell).
5. Show that Either is a “better” coproduct than int equipped with two injections:

int i(int n) { return n; }
int j(bool b) { return b? 0: 1; }

Hint: Define a function

int m(Either const & e);

that factorizes i and j.
6. Continuing the previous problem: How would you argue that int with the two

injections i and j cannot be “better” than Either?
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7. Still continuing: What about these injections?

int i(int n) {
if (n < 0) return n;
return n + 2;

}
int j(bool b) { return b? 0: 1; }

8. Come up with an inferior candidate for a coproduct of int and bool that cannot
be better than Either because it allows multiple acceptable morphisms from it
to Either.

6.10 Bibliography

1. The Catsters, Products and Coproducts video.

6.11 Acknowledments

I’m grateful to Gershom Bazerman for reviewing this post before publication and for
stimulating discussions.

56

https://www.youtube.com/watch?v=upCSDIO9pjc


Figure 17:

7 Simple Algebraic Data Types
We’ve seen two basic ways of combining types: using a product and a coproduct. It
turns out that a lot of data structures in everyday programming can be built using
just these two mechanisms. This fact has important practical consequences. Many
properties of data structures are composable. For instance, if you know how to compare
values of basic types for equality, and you know how to generalize these comparisons to
product and coproduct types, you can automate the derivation of equality operators
for composite types. In Haskell you can automatically derive equality, comparison,
conversion to and from string, and more, for a large subset of composite types.

Let’s have a closer look at product and sum types as they appear in programming.

7.1 Product Types

The canonical implementation of a product of two types in a programming language
is a pair. In Haskell, a pair is a primitive type constructor; in C++ it’s a relatively
complex template defined in the Standard Library.

Pairs are not strictly commutative: a pair (Int, Bool) cannot be substituted for a
pair (Bool, Int), even though they carry the same information. They are, however,
commutative up to isomorphism — the isomorphism being given by the swap function
(which is its own inverse):

swap :: (a, b) -> (b, a)
swap (x, y) = (y, x)

You can think of the two pairs as simply using a different format for storing the same
data. It’s just like big endian vs. little endian.

You can combine an arbitrary number of types into a product by nesting pairs inside
pairs, but there is an easier way: nested pairs are equivalent to tuples. It’s the
consequence of the fact that different ways of nesting pairs are isomorphic. If you
want to combine three types in a product, a, b, and c, in this order, you can do it in
two ways:
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((a, b), c)

or

(a, (b, c))

These types are different — you can’t pass one to a function that expects the other
— but their elements are in one-to-one correspondence. There is a function that maps
one to another:

alpha :: ((a, b), c) -> (a, (b, c))
alpha ((x, y), z) = (x, (y, z))

and this function is invertible:

alpha_inv :: (a, (b, c)) -> ((a, b), c)
alpha_inv (x, (y, z)) = ((x, y), z)

so it’s an isomorphism. These are just different ways of repackaging the same data.

You can interpret the creation of a product type as a binary operation on types. From
that perspective, the above isomorphism looks very much like the associativity law
we’ve seen in monoids:

(a * b) * c = a * (b * c)

Except that, in the monoid case, the two ways of composing products were equal,
whereas here they are only equal “up to isomorphism.”

If we can live with isomorphisms, and don’t insist on strict equality, we can go even
further and show that the unit type, (), is the unit of the product the same way 1 is
the unit of multiplication. Indeed, the pairing of a value of some type a with a unit
doesn’t add any information. The type:

(a, ())

is isomorphic to a. Here’s the isomorphism:

rho :: (a, ()) -> a
rho (x, ()) = x

rho_inv :: a -> (a, ())
rho_inv x = (x, ())
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These observations can be formalized by saying that Set (the category of sets) is a
monoidal category. It’s a category that’s also a monoid, in the sense that you can
multiply objects (here, take their cartesian product). I’ll talk more about monoidal
categories, and give the full definition in the future.

There is a more general way of defining product types in Haskell — especially, as we’ll
see soon, when they are combined with sum types. It uses named constructors with
multiple arguments. A pair, for instance, can be defined alternatively as:

data Pair a b = P a b

Here, Pair a b is the name of the type paremeterized by two other types, a and b;
and P is the name of the data constructor. You define a pair type by passing two
types to the Pair type constructor. You construct a pair value by passing two values
of appropriate types to the constructor P. For instance, let’s define a value stmt as a
pair of String and Bool:

stmt :: Pair String Bool
stmt = P "This statements is" False

The first line is the type declaration. It uses the type constructor Pair, with String
and Bool replacing a and the b in the generic definition of Pair. The second line
defines the actual value by passing a concrete string and a concrete Boolean to the
data constructor P. Type constructors are used to construct types; data constructors,
to construct values.

Since the name spaces for type and data constructors are separate in Haskell, you will
often see the same name used for both, as in:

data Pair a b = Pair a b

And if you squint hard enough, you may even view the built-in pair type as a variation
on this kind of declaration, where the name Pair is replaced with the binary operator
(,). In fact you can use (,) just like any other named constructor and create pairs
using prefix notation:

stmt = (,) "This statement is" False

Similarly, you can use (,,) to create triples, and so on.

Instead of using generic pairs or tuples, you can also define specific named product
types, as in:

data Stmt = Stmt String Bool
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which is just a product of String and Bool, but it’s given its own name and constructor.
The advantage of this style of declaration is that you may define many types that
have the same content but different meaning and functionality, and which cannot be
substituted for each other.

Programming with tuples and multi-argument constructors can get messy and error
prone — keeping track of which component represents what. It’s often preferable to
give names to components. A product type with named fields is called a record in
Haskell, and a struct in C.

7.1.1 Records

Let’s have a look at a simple example. We want to describe chemical elements by
combining two strings, name and symbol; and an integer, the atomic number; into
one data structure. We can use a tuple (String, String, Int) and remember which
component represents what. We would extract components by pattern matching, as
in this function that checks if the symbol of the element is the prefix of its name (as
in He being the prefix of Helium):

startsWithSymbol :: (String, String, Int) -> Bool
startsWithSymbol (name, symbol, _) = isPrefixOf symbol name

This code is error prone, and is hard to read and maintain. It’s much better to define
a record:

data Element = Element { name :: String
, symbol :: String
, atomicNumber :: Int }

The two representations are isomorphic, as witnessed by these two conversion functions,
which are the inverse of each other:

tupleToElem :: (String, String, Int) -> Element
tupleToElem (n, s, a) = Element { name = n

, symbol = s
, atomicNumber = a }

elemToTuple :: Element -> (String, String, Int)
elemToTuple e = (name e, symbol e, atomicNumber e)

Notice that the names of record fields also serve as functions to access these fields.
For instance, atomicNumber e retrieves the atomicNumber field from e. We use
atomicNumber as a function of the type:

atomicNumber :: Element -> Int
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With the record syntax for Element, our function startsWithSymbol becomes more
readable:

startsWithSymbol :: Element -> Bool
startsWithSymbol e = isPrefixOf (symbol e) (name e)

We could even use the Haskell trick of turning the function isPrefixOf into an infix
operator by surrounding it with backquotes, and make it read almost like a sentence:

startsWithSymbol e = symbol e `isPrefixOf` name e

The parentheses could be omitted in this case, because an infix operator has lower
precedence than a function call.

7.2 Sum Types

Just as the product in the category of sets gives rise to product types, the coproduct
gives rise to sum types. The canonical implementation of a sum type in Haskell is:

data Either a b = Left a | Right b

And like pairs, Eithers are commutative (up to isomorphism), can be nested, and the
nesting order is irrelevant (up to isomorphism). So we can, for instance, define a sum
equivalent of a triple:

data OneOfThree a b c = Sinistral a | Medial b | Dextral c

and so on.

It turns out that Set is also a (symmetric) monoidal category with respect to coproduct.
The role of the binary operation is played by the disjoint sum, and the role of the unit
element is played by the initial object. In terms of types, we have Either as the
monoidal operator and Void, the uninhabited type, as its neutral element. You can
think of Either as plus, and Void as zero. Indeed, adding Void to a sum type doesn’t
change its content. For instance:

Either a Void

is isomorphic to a. That’s because there is no way to construct a Right version of this
type — there isn’t a value of type Void. The only inhabitants of Either a Void are
constructed using the Left constructors and they simply encapsulate a value of type
a. So, symbolically, a + 0 = a.

Sum types are pretty common in Haskell, but their C++ equivalents, unions or vari-
ants, are much less common. There are several reasons for that.

First of all, the simplest sum types are just enumerations and are implemented using
enum in C++. The equivalent of the Haskell sum type:
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data Color = Red | Green | Blue

is the C++:

enum { Red, Green, Blue };

An even simpler sum type:

data Bool = True | False

is the primitive bool in C++.

Simple sum types that encode the presence or absence of a value are variously imple-
mented in C++ using special tricks and “impossible” values, like empty strings, nega-
tive numbers, null pointers, etc. This kind of optionality, if deliberate, is expressed in
Haskell using the Maybe type:

data Maybe a = Nothing | Just a

The Maybe type is a sum of two types. You can see this if you separate the two
constructors into individual types. The first one would look like this:

data NothingType = Nothing

It’s an enumeration with one value called Nothing. In other words, it’s a singleton,
which is equivalent to the unit type (). The second part:

data JustType a = Just a

is just an encapsulation of the type a. We could have encoded Maybe as:

data Maybe a = Either () a

More complex sum types are often faked in C++ using pointers. A pointer can be
either null, or point to a value of specific type. For instance, a Haskell list type, which
can be defined as a (recursive) sum type:

List a = Nil | Cons a (List a)

can be translated to C++ using the null pointer trick to implement the empty list:
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template<class A>
class List {

Node<A> * _head;
public:

List() : _head(nullptr) {} // Nil
List(A a, List<A> l) // Cons
: _head(new Node<A>(a, l))

{}
};

Notice that the two Haskell constructors Nil and Cons are translated into two over-
loaded List constructors with analogous arguments (none, for Nil; and a value and
a list for Cons). The List class doesn’t need a tag to distinguish between the two
components of the sum type. Instead it uses the special nullptr value for _head to
encode Nil.

The main difference, though, between Haskell and C++ types is that Haskell data
structures are immutable. If you create an object using one particular constructor,
the object will forever remember which constructor was used and what arguments
were passed to it. So a Maybe object that was created as Just "energy" will never
turn into Nothing. Similarly, an empty list will forever be empty, and a list of three
elements will always have the same three elements.

It’s this immutability that makes construction reversible. Given an object, you can
always disassemble it down to parts that were used in its construction. This deconstruc-
tion is done with pattern matching and it reuses constructors as patterns. Constructor
arguments, if any, are replaced with variables (or other patterns).

The List data type has two constructors, so the deconstruction of an arbitrary List
uses two patterns corresponding to those constructors. One matches the empty Nil
list, and the other a Cons-constructed list. For instance, here’s the definition of a
simple function on Lists:

maybeTail :: List a -> Maybe (List a)
maybeTail Nil = Nothing
maybeTail (Cons _ t) = Just t

The first part of the definition of maybeTail uses the Nil constructor as pattern and
returns Nothing. The second part uses the Cons constructor as pattern. It replaces
the first constructor argument with a wildcard, because we are not interested in it.
The second argument to Cons is bound to the variable t (I will call these things
variables even though, strictly speaking, they never vary: once bound to an expression,
a variable never changes). The return value is Just t. Now, depending on how your
List was created, it will match one of the clauses. If it was created using Cons, the
two arguments that were passed to it will be retrieved (and the first discarded).

Even more elaborate sum types are implemented in C++ using polymorphic class
hierarchies. A family of classes with a common ancestor may be understood as one
variant type, in which the vtable serves as a hidden tag. What in Haskell would be
done by pattern matching on the constructor, and by calling specialized code, in C++
is accomplished by dispatching a call to a virtual function based on the vtable pointer.

63



You will rarely see union used as a sum type in C++ because of severe limitations on
what can go into a union. You can’t even put a std::string into a union because it
has a copy constructor.

7.3 Algebra of Types

Taken separately, product and sum types can be used to define a variety of useful data
structures, but the real strength comes from combining the two. Once again we are
invoking the power of composition.

Let’s summarize what we’ve discovered so far. We’ve seen two commutative monoidal
structures underlying the type system: We have the sum types with Void as the neutral
element, and the product types with the unit type, (), as the neutral element. We’d
like to think of them as analogous to addition and multiplication. In this analogy,
Void would correspond to zero, and unit, (), to one.

Let’s see how far we can stretch this analogy. For instance, does multiplication by
zero give zero? In other words, is a product type with one component being Void
isomorphic to Void? For example, is it possible to create a pair of, say Int and Void?

To create a pair you need two values. Although you can easily come up with an
integer, there is no value of type Void. Therefore, for any type a, the type (a, Void)
is uninhabited — has no values — and is therefore equivalent to Void. In other words,
a*0 = 0.

Another thing that links addition and multiplication is the distributive property:

a * (b + c) = a * b + a * c

Does it also hold for product and sum types? Yes, it does — up to isomorphisms, as
usual. The left hand side corresponds to the type:

(a, Either b c)

and the right hand side corresponds to the type:

Either (a, b) (a, c)

Here’s the function that converts them one way:

prodToSum :: (a, Either b c) -> Either (a, b) (a, c)
prodToSum (x, e) =

case e of
Left y -> Left (x, y)
Right z -> Right (x, z)

and here’s one that goes the other way:
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sumToProd :: Either (a, b) (a, c) -> (a, Either b c)
sumToProd e =

case e of
Left (x, y) -> (x, Left y)
Right (x, z) -> (x, Right z)

The case of statement is used for pattern matching inside functions. Each pattern
is followed by an arrow and the expression to be evaluated when the pattern matches.
For instance, if you call prodToSum with the value:

prod1 :: (Int, Either String Float)
prod1 = (2, Left "Hi!")

the e in case e of will be equal to Left "Hi!". It will match the pattern Left y,
substituting "Hi!" for y. Since the x has already been matched to 2, the result of the
case of clause, and the whole function, will be Left (2, "Hi!"), as expected.

I’m not going to prove that these two functions are the inverse of each other, but if
you think about it, they must be! They are just trivially re-packing the contents of
the two data structures. It’s the same data, only different format.

Mathematicians have a name for such two intertwined monoids: it’s called a semiring.
It’s not a full ring, because we can’t define subtraction of types. That’s why a semiring
is sometimes called a rig, which is a pun on “ring without an n” (negative). But barring
that, we can get a lot of mileage from translating statements about, say, natural
numbers, which form a ring, to statements about types. Here’s a translation table
with some entries of interest:

Numbers Types

0 Void
1 ()
a + b Either a b = Left a | Right b
a * b (a, b) or Pair a b = Pair a b
2 = 1 + 1 data Bool = True | False
1 + a data Maybe = Nothing | Just a

The list type is quite interesting, because it’s defined as a solution to an equation. The
type we are defining appears on both sides of the equation:

List a = Nil | Cons a (List a)

If we do our usual substitutions, and also replace List a with x, we get the equation:

x = 1 + a * x

We can’t solve it using traditional algebraic methods because we can’t subtract or
divide types. But we can try a series of substitutions, where we keep replacing x on
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the right hand side with (1 + a*x), and use the distributive property. This leads to
the following series:

x = 1 + a*x
x = 1 + a*(1 + a*x) = 1 + a + a*a*x
x = 1 + a + a*a*(1 + a*x) = 1 + a + a*a + a*a*a*x
...
x = 1 + a + a*a + a*a*a + a*a*a*a...

We end up with an infinite sum of products (tuples), which can be interpreted as: A
list is either empty, 1; or a singleton, a; or a pair, a*a; or a triple, a*a*a; etc… Well,
that’s exactly what a list is — a string of as!

There’s much more to lists than that, and we’ll come back to them and other recursive
data structures after we learn about functors and fixed points.

Solving equations with symbolic variables — that’s algebra! It’s what gives these types
their name: algebraic data types.

Finally, I should mention one very important interpretation of the algebra of types.
Notice that a product of two types a and b must contain both a value of type a and a
value of type b, which means both types must be inhabited. A sum of two types, on
the other hand, contains either a value of type a or a value of type b, so it’s enough if
one of them is inhabited. Logical and and or also form a semiring, and it too can be
mapped into type theory:

Logic Types

false Void
true ()
a || b Either a b = Left a | Right b
a && b (a, b)

This analogy goes deeper, and is the basis of the Curry-Howard isomorphism between
logic and type theory. We’ll come back to it when we talk about function types.

7.4 Challenges

1. Show the isomorphism between Maybe a and Either () a.
2. Here’s a sum type defined in Haskell:

data Shape = Circle Float
| Rect Float Float

When we want to define a function like area that acts on a Shape, we do it by
pattern matching on the two constructors:

area :: Shape -> Float
area (Circle r) = pi * r * r
area (Rect d h) = d * h
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Implement Shape in C++ or Java as an interface and create two classes: Circle
and Rect. Implement area as a virtual function.

3. Continuing with the previous example: We can easily add a new function circ
that calculates the circumference of a Shape. We can do it without touching the
definition of Shape:

circ :: Shape -> Float
circ (Circle r) = 2.0 * pi * r
circ (Rect d h) = 2.0 * (d + h)

Add circ to your C++ or Java implementation. What parts of the original
code did you have to touch?

4. Continuing further: Add a new shape, Square, to Shape and make all the nec-
essary updates. What code did you have to touch in Haskell vs. C++ or Java?
(Even if you’re not a Haskell programmer, the modifications should be pretty
obvious.)

5. Show that a + a = 2 * a holds for types (up to isomorphism). Remember that
2 corresponds to Bool, according to our translation table.

7.4.1 Acknowledments

Thanks go to Gershom Bazerman for reviewing this post and helpful comments.
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Figure 18:

8 Functors
At the risk of sounding like a broken record, I will say this about functors: A functor
is a very simple but powerful idea. Category theory is just full of those simple but
powerful ideas. A functor is a mapping between categories. Given two categories, C
and D, a functor F maps objects in C to objects in D — it’s a function on objects. If a
is an object in C, we’ll write its image in D as F a (no parentheses). But a category is
not just objects — it’s objects and morphisms that connect them. A functor also maps
morphisms — it’s a function on morphisms. But it doesn’t map morphisms willy-nilly
— it preserves connections. So if a morphism f in C connects object a to object b,

f :: a -> b

the image of f in D, F f, will connect the image of a to the image of b:

F f :: F a -> F b

(This is a mixture of mathematical and Haskell notation that hopefully makes sense
by now. I won’t use parentheses when applying functors to objects or morphisms.)

As you can see, a functor preserves the structure of a category: what’s connected in
one category will be connected in the other category. But there’s something more
to the structure of a category: there’s also the composition of morphisms. If h is a
composition of f and g:

h = g . f

we want its image under F to be a composition of the images of f and g:

F h = F g . F f

Finally, we want all identity morphisms in C to be mapped to identity morphisms in
D:
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Figure 19:

Figure 20:

F ida = idF a

Here, ida is the identity at the object a, and idF a the identity at F a.

Note that these conditions make functors much more restrictive than regular functions.
Functors must preserve the structure of a category. If you picture a category as a
collection of objects held together by a network of morphisms, a functor is not allowed
to introduce any tears into this fabric. It may smash objects together, it may glue
multiple morphisms into one, but it may never break things apart. This no-tearing
constraint is similar to the continuity condition you might know from calculus. In this
sense functors are “continuous” (although there exists an even more restrictive notion
of continuity for functors). Just like functions, functors may do both collapsing and
embedding. The embedding aspect is more prominent when the source category is
much smaller than the target category. In the extreme, the source can be the trivial
singleton category — a category with one object and one morphism (the identity). A
functor from the singleton category to any other category simply selects an object in
that category. This is fully analogous to the property of morphisms from singleton
sets selecting elements in target sets. The maximally collapsing functor is called the
constant functor Δc. It maps every object in the source category to one selected
object c in the target category. It also maps every morphism in the source category to
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the identity morphism idc. It acts like a black hole, compacting everything into one
singularity. We’ll see more of this functor when we discuss limits and colimits.

8.1 Functors in Programming

Let’s get down to earth and talk about programming. We have our category of types
and functions. We can talk about functors that map this category into itself — such
functors are called endofunctors. So what’s an endofunctor in the category of types?
First of all, it maps types to types. We’ve seen examples of such mappings, maybe
without realizing that they were just that. I’m talking about definitions of types that
were parameterized by other types. Let’s see a few examples.

8.1.1 The Maybe Functor

The definition of Maybe is a mapping from type a to type Maybe a:

data Maybe a = Nothing | Just a

Here’s an important subtlety: Maybe itself is not a type, it’s a type constructor. You
have to give it a type argument, like Int or Bool, in order to turn it into a type. Maybe
without any argument represents a function on types. But can we turn Maybe into a
functor? (From now on, when I speak of functors in the context of programming, I will
almost always mean endofunctors.) A functor is not only a mapping of objects (here,
types) but also a mapping of morphisms (here, functions). For any function from a to
b:

f :: a -> b

we would like to produce a function from Maybe a to Maybe b. To define such a
function, we’ll have two cases to consider, corresponding to the two constructors of
Maybe. The Nothing case is simple: we’ll just return Nothing back. And if the
argument is Just, we’ll apply the function f to its contents. So the image of f under
Maybe is the function:

f’ :: Maybe a -> Maybe b
f’ Nothing = Nothing
f’ (Just x) = Just (f x)

(By the way, in Haskell you can use apostrophes in variables names, which is very
handy in cases like these.) In Haskell, we implement the morphism-mapping part of
a functor as a higher order function called fmap. In the case of Maybe, it has the
following signature:

fmap :: (a -> b) -> (Maybe a -> Maybe b)
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Figure 21:

We often say that fmap lifts a function. The lifted function acts on Maybe values. As
usual, because of currying, this signature may be interpreted in two ways: as a function
of one argument — which itself is a function (a->b) — returning a function (Maybe
a -> Maybe b); or as a function of two arguments returning Maybe b:

fmap :: (a -> b) -> Maybe a -> Maybe b

Based on our previous discussion, this is how we implement fmap for Maybe:

fmap _ Nothing = Nothing
fmap f (Just x) = Just (f x)

To show that the type constructor Maybe together with the function fmap form a
functor, we have to prove that fmap preserves identity and composition. These are
called “the functor laws,” but they simply ensure the preservation of the structure of
the category.

8.1.2 Equational Reasoning

To prove the functor laws, I will use equational reasoning, which is a common proof
technique in Haskell. It takes advantage of the fact that Haskell functions are defined
as equalities: the left hand side equals the right hand side. You can always substitute
one for another, possibly renaming variables to avoid name conflicts. Think of this as
either inlining a function, or the other way around, refactoring an expression into a
function. Let’s take the identity function as an example:

id x = x

If you see, for instance, id y in some expression, you can replace it with y (inlining).
Further, if you see id applied to an expression, say id (y + 2), you can replace it with
the expression itself (y + 2). And this substitution works both ways: you can replace
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any expression e with id e (refactoring). If a function is defined by pattern matching,
you can use each sub-definition independently. For instance, given the above definition
of fmap you can replace fmap f Nothing with Nothing, or the other way around. Let’s
see how this works in practice. Let’s start with the preservation of identity:

fmap id = id

There are two cases to consider: Nothing and Just. Here’s the first case (I’m using
Haskell pseudo-code to transform the left hand side to the right hand side):

fmap id Nothing
= { definition of fmap }
Nothing

= { definition of id }
id Nothing

Notice that in the last step I used the definition of id backwards. I replaced the ex-
pression Nothing with id Nothing. In practice, you carry out such proofs by “burning
the candle at both ends,” until you hit the same expression in the middle — here it
was Nothing. The second case is also easy:

fmap id (Just x)
= { definition of fmap }
Just (id x)

= { definition of id }
Just x

= { definition of id }
id (Just x)

Now, lets show that fmap preserves composition:

fmap (g . f) = fmap g . fmap f

First the Nothing case:

fmap (g . f) Nothing
= { definition of fmap }
Nothing

= { definition of fmap }
fmap g Nothing

= { definition of fmap }
fmap g (fmap f Nothing)

And then the Just case:
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fmap (g . f) (Just x)
= { definition of fmap }
Just ((g . f) x)

= { definition of composition }
Just (g (f x))

= { definition of fmap }
fmap g (Just (f x))

= { definition of fmap }
fmap g (fmap f (Just x))

= { definition of composition }
(fmap g . fmap f) (Just x)

It’s worth stressing that equational reasoning doesn’t work for C++ style “functions”
with side effects. Consider this code:

int square(int x) {
return x * x;

}

int counter() {
static int c = 0;
return c++;

}

double y = square(counter());

Using equational reasoning, you would be able to inline square to get:

double y = counter() * counter();

This is definitely not a valid transformation, and it will not produce the same result.
Despite that, the C++ compiler will try to use equational reasoning if you implement
square as a macro, with disastrous results.

8.1.3 Optional

Functors are easily expressed in Haskell, but they can be defined in any language that
supports generic programming and higher-order functions. Let’s consider the C++
analog of Maybe, the template type optional. Here’s a sketch of the implementation
(the actual implementation is much more complex, dealing with various ways the
argument may be passed, with copy semantics, and with the resource management
issues characteristic of C++):

template<class T>
class optional {

bool _isValid; // the tag
T _v;
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public:
optional() : _isValid(false) {} // Nothing
optional(T x) : _isValid(true) , _v(x) {} // Just
bool isValid() const { return _isValid; }
T val() const { return _v; }

};

This template provides one part of the definition of a functor: the mapping of types.
It maps any type T to a new type optional<T>. Let’s define its action on functions:

template<class A, class B>
std::function<optional<B>(optional<A>)>
fmap(std::function<B(A)> f)
{

return [f](optional<A> opt) {
if (!opt.isValid())

return optional<B>{};
else

return optional<B>{ f(opt.val()) };
};

}

This is a higher order function, taking a function as an argument and returning a
function. Here’s the uncurried version of it:

template<class A, class B>
optional<B> fmap(std::function<B(A)> f, optional<A> opt) {

if (!opt.isValid())
return optional<B>{};

else
return optional<B>{ f(opt.val()) };

}

There is also an option of making fmap a template method of optional. This embar-
rassment of choices makes abstracting the functor pattern in C++ a problem. Should
functor be an interface to inherit from (unfortunately, you can’t have template virtual
functions)? Should it be a curried or an uncurried free template function? Can the
C++ compiler correctly infer the missing types, or should they be specified explicitly?
Consider a situation where the input function f takes an int to a bool. How will the
compiler figure out the type of g:

auto g = fmap(f);

especially if, in the future, there are multiple functors overloading fmap? (We’ll see
more functors soon.)
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8.1.4 Typeclasses

So how does Haskell deal with abstracting the functor? It uses the typeclass mech-
anism. A typeclass defines a family of types that support a common interface. For
instance, the class of objects that support equality is defined as follows:

class Eq a where
(==) :: a -> a -> Bool

This definition states that type a is of the class Eq if it supports the operator (==) that
takes two arguments of type a and returns a Bool. If you want to tell Haskell that a
particular type is Eq, you have to declare it an instance of this class and provide the
implementation of (==). For example, given the definition of a 2D Point (a product
type of two Floats):

data Point = Pt Float Float

you can define the equality of points:

instance Eq Point where
(Pt x y) == (Pt x' y') = x == x' && y == y'

Here I used the operator (==) (the one I’m defining) in the infix position between the
two patterns (Pt x y) and (Pt x' y'). The body of the function follows the single
equal sign. Once Point is declared an instance of Eq, you can directly compare points
for equality. Notice that, unlike in C++ or Java, you don’t have to specify the Eq class
(or interface) when defining Point — you can do it later in client code. Typeclasses are
also Haskell’s only mechanism for overloading functions (and operators). We will need
that for overloading fmap for different functors. There is one complication, though: a
functor is not defined as a type but as a mapping of types, a type constructor. We
need a typeclass that’s not a family of types, as was the case with Eq, but a family
of type constructors. Fortunately a Haskell typeclass works with type constructors as
well as with types. So here’s the definition of the Functor class:

class Functor f where
fmap :: (a -> b) -> f a -> f b

It stipulates that f is a Functor if there exists a function fmap with the specified type
signature. The lowercase f is a type variable, similar to type variables a and b. The
compiler, however, is able to deduce that it represents a type constructor rather than
a type by looking at its usage: acting on other types, as in f a and f b. Accordingly,
when declaring an instance of Functor, you have to give it a type constructor, as is
the case with Maybe:

instance Functor Maybe where
fmap _ Nothing = Nothing
fmap f (Just x) = Just (f x)

By the way, the Functor class, as well as its instance definitions for a lot of simple
data types, including Maybe, are part of the standard Prelude library.
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8.1.5 Functor in C++

Can we try the same approach in C++? A type constructor corresponds to a template
class, like optional, so by analogy, we would parameterize fmap with a template
template parameter F. This is the syntax for it:

template<template<class> F, class A, class B>
F<B> fmap(std::function<B(A)>, F<A>);

We would like to be able to specialize this template for different functors. Unfortu-
nately, there is a prohibition against partial specialization of template functions in
C++. You can’t write:

template<class A, class B>
optional<B> fmap<optional>(std::function<B(A)> f, optional<A> opt)

Instead, we have to fall back on function overloading, which brings us back to the
original definition of the uncurried fmap:

template<class A, class B>
optional<B> fmap(std::function<B(A)> f, optional<A> opt)
{

if (!opt.isValid())
return optional<B>{};

else
return optional<B>{ f(opt.val()) };

}

This definition works, but only because the second argument of fmap selects the over-
load. It totally ignores the more generic definition of fmap.

8.1.6 The List Functor

To get some intuition as to the role of functors in programming, we need to look at
more examples. Any type that is parameterized by another type is a candidate for a
functor. Generic containers are parameterized by the type of the elements they store,
so let’s look at a very simple container, the list:

data List a = Nil | Cons a (List a)

We have the type constructor List, which is a mapping from any type a to the type
List a. To show that List is a functor we have to define the lifting of functions:
Given a function a->b define a function List a -> List b:

fmap :: (a -> b) -> (List a -> List b)
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A function acting on List a must consider two cases corresponding to the two list
constructors. The Nil case is trivial — just return Nil — there isn’t much you can
do with an empty list. The Cons case is a bit tricky, because it involves recursion. So
let’s step back for a moment and consider what we are trying to do. We have a list
of a, a function f that turns a to b, and we want to generate a list of b. The obvious
thing is to use f to turn each element of the list from a to b. How do we do this in
practice, given that a (non-empty) list is defined as the Cons of a head and a tail? We
apply f to the head and apply the lifted (fmapped) f to the tail. This is a recursive
definition, because we are defining lifted f in terms of lifted f:

fmap f (Cons x t) = Cons (f x) (fmap f t)

Notice that, on the right hand side, fmap f is applied to a list that’s shorter than
the list for which we are defining it — it’s applied to its tail. We recurse towards
shorter and shorter lists, so we are bound to eventually reach the empty list, or Nil.
But as we’ve decided earlier, fmap f acting on Nil returns Nil, thus terminating the
recursion. To get the final result, we combine the new head (f x) with the new tail
(fmap f t) using the Cons constructor. Putting it all together, here’s the instance
declaration for the list functor:

instance Functor List where
fmap _ Nil = Nil
fmap f (Cons x t) = Cons (f x) (fmap f t)

If you are more comfortable with C++, consider the case of a std::vector, which
could be considered the most generic C++ container. The implementation of fmap for
std::vector is just a thin encapsulation of std::transform:

template<class A, class B>
std::vector<B> fmap(std::function<B(A)> f, std::vector<A> v)
{

std::vector<B> w;
std::transform( std::begin(v)

, std::end(v)
, std::back_inserter(w)
, f);

return w;
}

We can use it, for instance, to square the elements of a sequence of numbers:

std::vector<int> v{ 1, 2, 3, 4 };
auto w = fmap([](int i) { return i*i; }, v);
std::copy( std::begin(w)

, std::end(w)
, std::ostream_iterator(std::cout, ", "));
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Most C++ containers are functors by virtue of implementing iterators that can be
passed to std::transform, which is the more primitive cousin of fmap. Unfortunately,
the simplicity of a functor is lost under the usual clutter of iterators and temporaries
(see the implementation of fmap above). I’m happy to say that the new proposed C++
range library makes the functorial nature of ranges much more pronounced.

8.1.7 The Reader Functor

Now that you might have developed some intuitions — for instance, functors being
some kind of containers — let me show you an example which at first sight looks very
different. Consider a mapping of type a to the type of a function returning a. We
haven’t really talked about function types in depth — the full categorical treatment
is coming — but we have some understanding of those as programmers. In Haskell, a
function type is constructed using the arrow type constructor (->) which takes two
types: the argument type and the result type. You’ve already seen it in infix form,
a->b, but it can equally well be used in prefix form, when parenthesized:

(->) a b

Just like with regular functions, type functions of more than one argument can be
partially applied. So when we provide just one type argument to the arrow, it still
expects another one. That’s why:

(->) a

is a type constructor. It needs one more type b to produce a complete type a->b. As
it stands, it defines a whole family of type constructors parameterized by a. Let’s see
if this is also a family of functors. Dealing with two type parameters can get a bit
confusing, so let’s do some renaming. Let’s call the argument type r and the result
type a, in line with our previous functor definitions. So our type constructor takes any
type a and maps it into the type r->a. To show that it’s a functor, we want to lift
a function a->b to a function that takes r->a and returns r->b. These are the types
that are formed using the type constructor (->) r acting on, respectively, a and b.
Here’s the type signature of fmap applied to this case:

fmap :: (a -> b) -> (r -> a) -> (r -> b)

We have to solve the following puzzle: given a function f::a->b and a function g::r->a,
create a function r->b. There is only one way we can compose the two functions, and
the result is exactly what we need. So here’s the implementation of our fmap:

instance Functor ((->) r) where
fmap f g = f . g

It just works! If you like terse notation, this definition can be reduced further by
noticing that composition can be rewritten in prefix form:
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fmap f g = (.) f g

and the arguments can be omitted to yield a direct equality of two functions:

fmap = (.)

This combination of the type constructor (->) r with the above implementation of
fmap is called the reader functor.

8.2 Functors as Containers

We’ve seen some examples of functors in programming languages that define general-
purpose containers, or at least objects that contain some value of the type they are
parameterized over. The reader functor seems to be an outlier, because we don’t think
of functions as data. But we’ve seen that pure functions can be memoized, and function
execution can be turned into table lookup. Tables are data. Conversely, because of
Haskell’s laziness, a traditional container, like a list, may actually be implemented as
a function. Consider, for instance, an infinite list of natural numbers, which can be
compactly defined as:

nats :: [Integer]
nats = [1..]

In the first line, a pair of square brackets is the Haskell’s built-in type constructor for
lists. In the second line, square brackets are used to create a list literal. Obviously,
an infinite list like this cannot be stored in memory. The compiler implements it as a
function that generates Integers on demand. Haskell effectively blurs the distinction
between data and code. A list could be considered a function, and a function could be
considered a table that maps arguments to results. The latter can even be practical
if the domain of the function is finite and not too large. It would not be practical,
however, to implement strlen as table lookup, because there are infinitely many
different strings. As programmers, we don’t like infinities, but in category theory you
learn to eat infinities for breakfast. Whether it’s a set of all strings or a collection
of all possible states of the Universe, past, present, and future — we can deal with
it! So I like to think of the functor object (an object of the type generated by an
endofunctor) as containing a value or values of the type over which it is parameterized,
even if these values are not physically present there. One example of a functor is a
C++ std::future, which may at some point contain a value, but it’s not guaranteed
it will; and if you want to access it, you may block waiting for another thread to finish
execution. Another example is a Haskell IO object, which may contain user input,
or the future versions of our Universe with “Hello World!” displayed on the monitor.
According to this interpretation, a functor object is something that may contain a
value or values of the type it’s parameterized upon. Or it may contain a recipe for
generating those values. We are not at all concerned about being able to access the
values — that’s totally optional, and outside of the scope of the functor. All we are
interested in is to be able to manipulate those values using functions. If the values can
be accessed, then we should be able to see the results of this manipulation. If they
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can’t, then all we care about is that the manipulations compose correctly and that
the manipulation with an identity function doesn’t change anything. Just to show you
how much we don’t care about being able to access the values inside a functor object,
here’s a type constructor that ignores completely its argument a:

data Const c a = Const c

The Const type constructor takes two types, c and a. Just like we did with the arrow
constructor, we are going to partially apply it to create a functor. The data constructor
(also called Const) takes just one value of type c. It has no dependence on a. The
type of fmap for this type constructor is:

fmap :: (a -> b) -> Const c a -> Const c b

Because the functor ignores its type argument, the implementation of fmap is free to
ignore its function argument — the function has nothing to act upon:

instance Functor (Const c) where
fmap _ (Const v) = Const v

This might be a little clearer in C++ (I never thought I would utter those words!),
where there is a stronger distinction between type arguments — which are compile-
time — and values, which are run-time:

template<class C, class A>
struct Const {

Const(C v) : _v(v) {}
C _v;

};

The C++ implementation of fmap also ignores the function argument and essentially
re-casts the Const argument without changing its value:

template<class C, class A, class B>
Const<C, B> fmap(std::function<B(A)> f, Const<C, A> c) {

return Const<C, B>{c._v};
}

Despite its weirdness, the Const functor plays an important role in many constructions.
In category theory, it’s a special case of the Δc functor I mentioned earlier — the endo-
functor case of a black hole. We’ll be seeing more of it it in the future.
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8.3 Functor Composition

It’s not hard to convince yourself that functors between categories compose, just like
functions between sets compose. A composition of two functors, when acting on ob-
jects, is just the composition of their respective object mappings; and similarly when
acting on morphisms. After jumping through two functors, identity morphisms end
up as identity morphisms, and compositions of morphisms finish up as compositions
of morphisms. There’s really nothing much to it. In particular, it’s easy to compose
endofunctors. Remember the function maybeTail? I’ll rewrite it using the Haskell’s
built in implementation of lists:

maybeTail :: [a] -> Maybe [a]
maybeTail [] = Nothing
maybeTail (x:xs) = Just xs

(The empty list constructor that we used to call Nil is replaced with the empty pair
of square brackets []. The Cons constructor is replaced with the infix operator :
(colon).) The result of maybeTail is of a type that’s a composition of two functors,
Maybe and [], acting on a. Each of these functors is equipped with its own version of
fmap, but what if we want to apply some function f to the contents of the composite:
a Maybe list? We have to break through two layers of functors. We can use fmap
to break through the outer Maybe. But we can’t just send f inside Maybe because f
doesn’t work on lists. We have to send (fmap f) to operate on the inner list. For
instance, let’s see how we can square the elements of a Maybe list of integers:

square x = x * x

mis :: Maybe [Int]
mis = Just [1, 2, 3]

mis2 = fmap (fmap square) mis

The compiler, after analyzing the types, will figure out that, for the outer fmap, it
should use the implementation from the Maybe instance, and for the inner one, the list
functor implementation. It may not be immediately obvious that the above code may
be rewritten as:

mis2 = (fmap . fmap) square mis

But remember that fmap may be considered a function of just one argument:

fmap :: (a -> b) -> (f a -> f b)

In our case, the second fmap in (fmap . fmap) takes as its argument:

square :: Int -> Int
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and returns a function of the type:

[Int] -> [Int]

The first fmap then takes that function and returns a function:

Maybe [Int] -> Maybe [Int]

Finally, that function is applied to mis. So the composition of two functors is a functor
whose fmap is the composition of the corresponding fmaps. Going back to category
theory: It’s pretty obvious that functor composition is associative (the mapping of
objects is associative, and the mapping of morphisms is associative). And there is also
a trivial identity functor in every category: it maps every object to itself, and every
morphism to itself. So functors have all the same properties as morphisms in some
category. But what category would that be? It would have to be a category in which
objects are categories and morphisms are functors. It’s a category of categories. But
a category of all categories would have to include itself, and we would get into the
same kinds of paradoxes that made the set of all sets impossible. There is, however,
a category of all small categories called Cat (which is big, so it can’t be a member of
itself). A small category is one in which objects form a set, as opposed to something
larger than a set. Mind you, in category theory, even an infinite uncountable set
is considered “small.” I thought I’d mention these things because I find it pretty
amazing that we can recognize the same structures repeating themselves at many
levels of abstraction. We’ll see later that functors form categories as well.

8.4 Challenges

1. Can we turn the Maybe type constructor into a functor by defining:

fmap _ _ = Nothing

which ignores both of its arguments? (Hint: Check the functor laws.)
2. Prove functor laws for the reader functor. Hint: it’s really simple.
3. Implement the reader functor in your second favorite language (the first being

Haskell, of course).
4. Prove the functor laws for the list functor. Assume that the laws are true for

the tail part of the list you’re applying it to (in other words, use induction).
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Figure 22:

9 Functoriality

Now that you know what a functor is, and have seen a few examples, let’s see how we
can build larger functors from smaller ones. In particular it’s interesting to see which
type constructors (which correspond to mappings between objects in a category) can
be extended to functors (which include mappings between morphisms).

9.1 Bifunctors

Since functors are morphisms in Cat (the category of categories), a lot of intuitions
about morphisms — and functions in particular — apply to functors as well. For
instance, just like you can have a function of two arguments, you can have a functor
of two arguments, or a bifunctor. On objects, a bifunctor maps every pair of objects,
one from category C, and one from category D, to an object in category E. Notice that
this is just saying that it’s a mapping from a cartesian product of categories C×D to
E.

That’s pretty straightforward. But functoriality means that a bifunctor has to map
morphisms as well. This time, though, it must map a pair of morphisms, one from C
and one from D, to a morphism in E.

Again, a pair of morphisms is just a single morphism in the product category C×D. We
define a morphism in a cartesian product of categories as a pair of morphisms which
goes from one pair of objects to another pair of objects. These pairs of morphisms can
be composed in the obvious way:

(f, g) � (f', g') = (f � f', g � g')

The composition is associative and it has an identity — a pair of identity morphisms
(id, id). So a cartesian product of categories is indeed a category.

But an easier way to think about bifunctors is that they are functors in both arguments.
So instead of translating functorial laws — associativity and identity preservation —
from functors to bifunctors, it’s enough to check them separately for each argument. If
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Figure 23: bimap

you have a mapping from a pair of categories to a third category, and you prove that it
is functorial in each argument separately (i.e., keeping the other argument constant),
then the mapping is automatically a bifunctor. By functorial I mean that it acts on
morphisms like an honest functor.

Let’s define a bifunctor in Haskell. In this case all three categories are the same:
the category of Haskell types. A bifunctor is a type constructor that takes two type
arguments. Here’s the definition of the Bifunctor typeclass taken directly from the
library Control.Bifunctor:

class Bifunctor f where
bimap :: (a -> c) -> (b -> d) -> f a b -> f c d
bimap g h = first g . second h
first :: (a -> c) -> f a b -> f c b
first g = bimap g id
second :: (b -> d) -> f a b -> f a d
second = bimap id

The type variable f represents the bifunctor. You can see that in all type signatures
it’s always applied to two type arguments. The first type signature defines bimap: a
mapping of two functions at once. The result is a lifted function, (f a b -> f c d),
operating on types generated by the bifunctor’s type constructor. There is a default
implementation of bimap in terms of first and second, which shows that it’s enough
to have functoriality in each argument separately to be able to define a bifunctor.
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Figure 24:

The two other type signatures, first and second, are the two fmaps witnessing the
functoriality of f in the first and the second argument, respectively.

The typeclass definition provides default implementations for both of them in terms
of bimap.

When declaring an instance of Bifunctor, you have a choice of either implementing
bimap and accepting the defaults for first and second, or implementing both first
and second and accepting the default for bimap (of course, you may implement all
three of them, but then it’s up to you to make sure they are related to each other in
this manner).

9.2 Product and Coproduct Bifunctors

An important example of a bifunctor is the categorical product — a product of two
objects that is defined by a universal construction. If the product exists for any pair
of objects, the mapping from those objects to the product is bifunctorial. This is
true in general, and in Haskell in particular. Here’s the Bifunctor instance for a pair
constructor — the simplest product type:

instance Bifunctor (,) where
bimap f g (x, y) = (f x, g y)

There isn’t much choice: bimap simply applies the first function to the first component,
and the second function to the second component of a pair. The code pretty much
writes itself, given the types:

bimap :: (a -> c) -> (b -> d) -> (a, b) -> (c, d)

The action of the bifunctor here is to make pairs of types, for instance:

(,) a b = (a, b)
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By duality, a coproduct, if it’s defined for every pair of objects in a category, is also
a bifunctor. In Haskell, this is exemplified by the Either type constructor being an
instance of Bifunctor:

instance Bifunctor Either where
bimap f _ (Left x) = Left (f x)
bimap _ g (Right y) = Right (g y)

This code also writes itself.

Now, remember when we talked about monoidal categories? A monoidal category
defines a binary operator acting on objects, together with a unit object. I mentioned
that Set is a monoidal category with respect to cartesian product, with the singleton
set as a unit. And it’s also a monoidal category with respect to disjoint union, with
the empty set as a unit. What I haven’t mentioned is that one of the requirements
for a monoidal category is that the binary operator be a bifunctor. This is a very
important requirement — we want the monoidal product to be compatible with the
structure of the category, which is defined by morphisms. We are now one step closer
to the full definition of a monoidal category (we still need to learn about naturality,
before we can get there).

9.3 Functorial Algebraic Data Types

We’ve seen several examples of parameterized data types that turned out to be functors
— we were able to define fmap for them. Complex data types are constructed from
simpler data types. In particular, algebraic data types (ADTs) are created using sums
and products. We have just seen that sums and products are functorial. We also know
that functors compose. So if we can show that the basic building blocks of ADTs are
functorial, we’ll know that parameterized ADTs are functorial too.

So what are the building blocks of parameterized algebraic data types? First, there are
the items that have no dependency on the type parameter of the functor, like Nothing
in Maybe, or Nil in List. They are equivalent to the Const functor. Remember, the
Const functor ignores its type parameter (really, the second type parameter, which is
the one of interest to us, the first one being kept constant).

Then there are the elements that simply encapsulate the type parameter itself, like
Just in Maybe. They are equivalent to the identity functor. I mentioned the identity
functor previously, as the identity morphism in Cat, but didn’t give its definition in
Haskell. Here it is:

data Identity a = Identity a

instance Functor Identity where
fmap f (Identity x) = Identity (f x)

You can think of Identity as the simplest possible container that always stores just
one (immutable) value of type a.
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Everything else in algebraic data structures is constructed from these two primitives
using products and sums.

With this new knowledge, let’s have a fresh look at the Maybe type constructor:

data Maybe a = Nothing | Just a

It’s a sum of two types, and we now know that the sum is functorial. The first part,
Nothing can be represented as a Const () acting on a (the first type parameter of
Const is set to unit — later we’ll see more interesting uses of Const). The second part
is just a different name for the identity functor. We could have defined Maybe, up to
isomorphism, as:

type Maybe a = Either (Const () a) (Identity a)

So Maybe is the composition of the bifunctor Either with two functors, Const () and
Identity. (Const is really a bifunctor, but here we always use it partially applied.)

We’ve already seen that a composition of functors is a functor — we can easily con-
vince ourselves that the same is true of bifunctors. All we need is to figure out how
a composition of a bifunctor with two functors works on morphisms. Given two mor-
phisms, we simply lift one with one functor and the other with the other functor. We
then lift the resulting pair of lifted morphisms with the bifunctor.

We can express this composition in Haskell. Let’s define a data type that is parame-
terized by a bifunctor bf (it’s a type variable that is a type constructor that takes two
types as arguments), two functors fu and gu (type constructors that take one type
variable each), and two regular types a and b. We apply fu to a and gu to b, and then
apply bf to the resulting two types:

newtype BiComp bf fu gu a b = BiComp (bf (fu a) (gu b))

That’s the composition on objects, or types. Notice how in Haskell we apply type
constructors to types, just like we apply functions to arguments. The syntax is the
same.

If you’re getting a little lost, try applying BiComp to Either, Const (), Identity, a,
and b, in this order. You will recover our bare-bone version of Maybe b (a is ignored).

The new data type BiComp is a bifunctor in a and b, but only if bf is itself a Bifunctor
and fu and gu are Functors. The compiler must know that there will be a definition
of bimap available for bf, and definitions of fmap for fu and gu. In Haskell, this
is expressed as a precondition in the instance declaration: a set of class constraints
followed by a double arrow:

instance (Bifunctor bf, Functor fu, Functor gu) =>
Bifunctor (BiComp bf fu gu) where
bimap f1 f2 (BiComp x) = BiComp ((bimap (fmap f1) (fmap f2)) x)
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The implementation of bimap for BiComp is given in terms of bimap for bf and the two
fmaps for fu and gu. The compiler automatically infers all the types and picks the
correct overloaded functions whenever BiComp is used.

The x in the definition of bimap has the type:

bf (fu a) (gu b)

which is quite a mouthful. The outer bimap breaks through the outer bf layer, and
the two fmaps dig under fu and gu, respectively. If the types of f1 and f2 are:

f1 :: a -> a'
f2 :: b -> b'

then the final result is of the type bf (fu a') (gu b'):

bimap (fu a -> fu a') -> (gu b -> gu b')
-> bf (fu a) (gu b) -> bf (fu a') (gu b')

If you like jigsaw puzzles, these kinds of type manipulations can provide hours of
entertainment.

So it turns out that we didn’t have to prove that Maybe was a functor — this fact
followed from the way it was constructed as a sum of two functorial primitives.

A perceptive reader might ask the question: If the derivation of the Functor instance
for algebraic data types is so mechanical, can’t it be automated and performed by the
compiler? Indeed, it can, and it is. You need to enable a particular Haskell extension
by including this line at the top of your source file:

{-# LANGUAGE DeriveFunctor #-}

and then add deriving Functor to your data structure:

data Maybe a = Nothing | Just a
deriving Functor

and the corresponding fmap will be implemented for you.

The regularity of algebraic data structures makes it possible to derive instances not only
of Functor but of several other type classes, including the Eq type class I mentioned
before. There is also the option of teaching the compiler to derive instances of your
own typeclasses, but that’s a bit more advanced. The idea though is the same: You
provide the behavior for the basic building blocks and sums and products, and let the
compiler figure out the rest.
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9.4 Functors in C++

If you are a C++ programmer, you obviously are on your own as far as implementing
functors goes. However, you should be able to recognize some types of algebraic data
structures in C++. If such a data structure is made into a generic template, you
should be able to quickly implement fmap for it.

Let’s have a look at a tree data structure, which we would define in Haskell as a
recursive sum type:

data Tree a = Leaf a | Node (Tree a) (Tree a)
deriving Functor

As I mentioned before, one way of implementing sum types in C++ is through class
hierarchies. It would be natural, in an object-oriented language, to implement fmap
as a virtual function of the base class Functor and then override it in all subclasses.
Unfortunately this is impossible because fmap is a template, parameterized not only
by the type of the object it’s acting upon (the this pointer) but also by the return
type of the function that’s been applied to it. Virtual functions cannot be templatized
in C++. We’ll implement fmap as a generic free function, and we’ll replace pattern
matching with dynamic_cast.

The base class must define at least one virtual function in order to support dynamic
casting, so we’ll make the destructor virtual (which is a good idea in any case):

template<class T>
struct Tree {

virtual ~Tree() {};
};

The Leaf is just an Identity functor in disguise:

template<class T>
struct Leaf : public Tree<T> {

T _label;
Leaf(T l) : _label(l) {}

};

The Node is a product type:

template<class T>
struct Node : public Tree<T> {

Tree<T> * _left;
Tree<T> * _right;
Node(Tree<T> * l, Tree<T> * r) : _left(l), _right(r) {}

};
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When implementing fmap we take advantage of dynamic dispatching on the type of
the Tree. The Leaf case applies the Identity version of fmap, and the Node case is
treated like a bifunctor composed with two copies of the Tree functor. As a C++
programmer, you’re probably not used to analyzing code in these terms, but it’s a
good exercise in categorical thinking.

template<class A, class B>
Tree<B> * fmap(std::function<B(A)> f, Tree<A> * t)
{

Leaf<A> * pl = dynamic_cast <Leaf<A>*>(t);
if (pl)

return new Leaf<B>(f (pl->_label));
Node<A> * pn = dynamic_cast<Node<A>*>(t);
if (pn)

return new Node<B>( fmap<A>(f, pn->_left)
, fmap<A>(f, pn->_right));

return nullptr;
}

For simplicity, I decided to ignore memory and resource management issues, but in
production code you would probably use smart pointers (unique or shared, depending
on your policy).

Compare it with the Haskell implementation of fmap:

instance Functor Tree where
fmap f (Leaf a) = Leaf (f a)
fmap f (Node t t') = Node (fmap f t) (fmap f t')

This implementation can also be automatically derived by the compiler.

9.5 The Writer Functor

I promised that I would come back to the Kleisli category I described earlier. Mor-
phisms in that category were represented as “embellished” functions returning the
Writer data structure.

type Writer a = (a, String)

I said that the embellishment was somehow related to endofunctors. And, indeed, the
Writer type constructor is functorial in a. We don’t even have to implement fmap for
it, because it’s just a simple product type.

But what’s the relation between a Kleisli category and a functor — in general? A
Kleisli category, being a category, defines composition and identity. Let’ me remind
you that the composition is given by the fish operator:
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(>=>) :: (a -> Writer b) -> (b -> Writer c) -> (a -> Writer c)
m1 >=> m2 = \x ->

let (y, s1) = m1 x
(z, s2) = m2 y

in (z, s1 ++ s2)

and the identity morphism by a function called return:

return :: a -> Writer a
return x = (x, "")

It turns out that, if you look at the types of these two functions long enough (and I
mean, long enough), you can find a way to combine them to produce a function with
the right type signature to serve as fmap. Like this:

fmap f = id >=> (\x -> return (f x))

Here, the fish operator combines two functions: one of them is the familiar id, and the
other is a lambda that applies return to the result of acting with f on the lambda’s
argument. The hardest part to wrap your brain around is probably the use of id. Isn’t
the argument to the fish operator supposed to be a function that takes a “normal” type
and returns an embellished type? Well, not really. Nobody says that a in a -> Writer
b must be a “normal” type. It’s a type variable, so it can be anything, in particular it
can be an embellished type, like Writer b.

So id will take Writer a and turn it into Writer a. The fish operator will fish out the
value of a and pass it as x to the lambda. There, f will turn it into a b and return will
embellish it, making it Writer b. Putting it all together, we end up with a function
that takes Writer a and returns Writer b, exactly what fmap is supposed to produce.

Notice that this argument is very general: you can replace Writer with any type
constructor. As long as it supports a fish operator and return, you can define fmap
as well. So the embellishment in the Kleisli category is always a functor. (Not every
functor, though, gives rise to a Kleisli category.)

You might wonder if the fmap we have just defined is the same fmap the compiler
would have derived for us with deriving Functor. Interestingly enough, it is. This
is due to the way Haskell implements polymorphic functions. It’s called parametric
polymorphism, and it’s a source of so called theorems for free. One of those theorems
says that, if there is an implementation of fmap for a given type constructor, one that
preserves identity, then it must be unique.

9.6 Covariant and Contravariant Functors

Now that we’ve reviewed the writer functor, let’s go back to the reader functor. It was
based on the partially applied function-arrow type constructor:

(->) r
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We can rewrite it as a type synonym:

type Reader r a = r -> a

for which the Functor instance, as we’ve seen before, reads:

instance Functor (Reader r) where
fmap f g = f . g

But just like the pair type constructor, or the Either type constructor, the function
type constructor takes two type arguments. The pair and Either were functorial in
both arguments — they were bifunctors. Is the function constructor a bifunctor too?

Let’s try to make it functorial in the first argument. We’ll start with a type synonym
— it’s just like the Reader but with the arguments flipped:

type Op r a = a -> r

This time we fix the return type, r, and vary the argument type, a. Let’s see if we can
somehow match the types in order to implement fmap, which would have the following
type signature:

fmap :: (a -> b) -> (a -> r) -> (b -> r)

With just two functions taking a and returning, respectively, b and r, there is simply
no way to build a function taking b and returning r! It would be different if we could
somehow invert the first function, so that it took b and returned a instead. We can’t
invert an arbitrary function, but we can go to the opposite category.

A short recap: For every category C there is a dual category Cop. It’s a category with
the same objects as C, but with all the arrows reversed.

Consider a functor that goes between Cop and some other category D:
F :: Cop → D
Such a functor maps a morphism fop :: a → b in Cop to the morphism F fop :: F a →
F b in D. But the morphism fop secretly corresponds to some morphism f :: b → a in
the original category C. Notice the inversion.

Now, F is a regular functor, but there is another mapping we can define based on F,
which is not a functor — let’s call it G. It’s a mapping from C to D. It maps objects
the same way F does, but when it comes to mapping morphisms, it reverses them. It
takes a morphism f :: b → a in C, maps it first to the opposite morphism fop :: a →
b and then uses the functor F on it, to get F fop :: F a → F b.

Considering that F a is the same as G a and F b is the same as G b, the whole trip
can be described as:
G f :: (b → a) → (G a → G b)
It’s a “functor with a twist.” A mapping of categories that inverts the direction of
morphisms in this manner is called a contravariant functor. Notice that a contravariant
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Figure 25:

functor is just a regular functor from the opposite category. The regular functors, by
the way — the kind we’ve been studying thus far — are called covariant functors.

Here’s the typeclass defining a contravariant functor (really, a contravariant
endofunctor) in Haskell:

class Contravariant f where
contramap :: (b -> a) -> (f a -> f b)

Our type constructor Op is an instance of it:

instance Contravariant (Op r) where
-- (b -> a) -> Op r a -> Op r b
contramap f g = g . f

Notice that the function f inserts itself before (that is, to the right of) the contents of
Op — the function g.

The definition of contramap for Op may be made even terser, if you notice that it’s
just the function composition operator with the arguments flipped. There is a special
function for flipping arguments, called flip:

flip :: (a -> b -> c) -> (b -> a -> c)
flip f y x = f x y

With it, we get:

contramap = flip (.)
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Figure 26: dimap

9.7 Profunctors

We’ve seen that the function-arrow operator is contravariant in its first argument and
covariant in the second. Is there a name for such a beast? It turns out that, if the
target category is Set, such a beast is called a profunctor. Because a contravariant
functor is equivalent to a covariant functor from the opposite category, a profunctor
is defined as:
Cop × D → Set

Since, to first approximation, Haskell types are sets, we apply the name Profunctor
to a type constructor p of two arguments, which is contra-functorial in the first argu-
ment and functorial in the second. Here’s the appropriate typeclass taken from the
Data.Profunctor library:

class Profunctor p where
dimap :: (a -> b) -> (c -> d) -> p b c -> p a d
dimap f g = lmap f . rmap g
lmap :: (a -> b) -> p b c -> p a c
lmap f = dimap f id
rmap :: (b -> c) -> p a b -> p a c
rmap = dimap id

All three functions come with default implementations. Just like with Bifunctor,
when declaring an instance of Profunctor, you have a choice of either implementing
dimap and accepting the defaults for lmap and rmap, or implementing both lmap and
rmap and accepting the default for dimap.

Now we can assert that the function-arrow operator is an instance of a Profunctor:

instance Profunctor (->) where
dimap ab cd bc = cd . bc . ab
lmap = flip (.)
rmap = (.)

Profunctors have their application in the Haskell lens library. We’ll see them again
when we talk about ends and coends.
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9.8 Challenges

1. Show that the data type:

data Pair a b = Pair a b

is a bifunctor. For additional credit implement all three methods of Bifunctor
and use equational reasoning to show that these definitions are compatible with
the default implementations whenever they can be applied.

2. Show the isomorphism between the standard definition of Maybe and this desug-
aring:

type Maybe' a = Either (Const () a) (Identity a)

Hint: Define two mappings between the two implementations. For additional
credit, show that they are the inverse of each other using equational reasoning.

3. Let’s try another data structure. I call it a PreList because it’s a precursor to
a List. It replaces recursion with a type parameter b.

data PreList a b = Nil | Cons a b

You could recover our earlier definition of a List by recursively applying PreList
to itself (we’ll see how it’s done when we talk about fixed points).
Show that PreList is an instance of Bifunctor.

4. Show that the following data types define bifunctors in a and b:

data K2 c a b = K2 c

data Fst a b = Fst a

data Snd a b = Snd b

For additional credit, check your solutions agains Conor McBride’s paper Clowns
to the Left of me, Jokers to the Right.

5. Define a bifunctor in a language other than Haskell. Implement bimap for a
generic pair in that language.

6. Should std::map be considered a bifunctor or a profunctor in the two template
arguments Key and T? How would you redesign this data type to make it so?

9.9 Acknowledgment

As usual, big thanks go to Gershom Bazerman for reviewing this article.

95

http://strictlypositive.org/CJ.pdf
http://strictlypositive.org/CJ.pdf


Figure 27: Hom-set in Set is just a set

Figure 28: Hom-set in category C is an external set

10 Function Types

So far I’ve been glossing over the meaning of function types. A function type is different
from other types.

Take Integer, for instance: It’s just a set of integers. Bool is a two element set. But
a function type a->b is more than that: it’s a set of morphisms between objects a and
b. A set of morphisms between two objects in any category is called a hom-set. It
just so happens that in the category Set every hom-set is itself an object in the same
category —because it is, after all, a set.

The same is not true of other categories where hom-sets are external to a category.
They are even called external hom-sets.

It’s the self-referential nature of the category Set that makes function types special.
But there is a way, at least in some categories, to construct objects that represent
hom-sets. Such objects are called internal hom-sets.
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Figure 29: In Set we can pick a function f from a set of functions z and we can
pick an argument x from the set (type) a. We get an element f x in the set
(type) b.

10.1 Universal Construction

Let’s forget for a moment that function types are sets and try to construct a function
type, or more generally, an internal hom-set, from scratch. As usual, we’ll take our
cues from the Set category, but carefully avoid using any properties of sets, so that
the construction will automatically work for other categories.

A function type may be considered a composite type because of its relationship to
the argument type and the result type. We’ve already seen the constructions of com-
posite types — those that involved relationships between objects. We used universal
constructions to define a product type and a coproduct types. We can use the same
trick to define a function type. We will need a pattern that involves three objects: the
function type that we are constructing, the argument type, and the result type.

The obvious pattern that connects these three types is called function application or
evaluation. Given a candidate for a function type, let’s call it z (notice that, if we are
not in the category Set, this is just an object like any other object), and the argument
type a (an object), the application maps this pair to the result type b (an object). We
have three objects, two of them fixed (the ones representing the argument type and
the result type).

We also have the application, which is a mapping. How do we incorporate this mapping
into our pattern? If we were allowed to look inside objects, we could pair a function
f (an element of z) with an argument x (an element of a) and map it to f x (the
application of f to x, which is an element of b).

But instead of dealing with individual pairs (f, x), we can as well talk about the
whole product of the function type z and the argument type a. The product z×a is an
object, and we can pick, as our application morphism, an arrow g from that object to
b. In Set, g would be the function that maps every pair (f, x) to f x.

So that’s the pattern: a product of two objects z and a connected to another object b
by a morphism g.

Is this pattern specific enough to single out the function type using a universal con-
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Figure 30: A pattern of objects and morphisms that is the starting point of the
universal construction

Figure 31: Establishing a ranking between candidates for the function object

struction? Not in every category. But in the categories of interest to us it is. And
another question: Would it be possible to define a function object without first defin-
ing a product? There are categories in which there is no product, or there isn’t a
product for all pairs of objects. The answer is no: there is no function type, if there is
no product type. We’ll come back to this later when we talk about exponentials.

Let’s review the universal construction. We start with a pattern of objects and mor-
phisms. That’s our imprecise query, and it usually yields lots and lots of hits. In
particular, in Set, pretty much everything is connected to everything. We can take
any object z, form its product with a, and there’s going to be a function from it to b
(except when b is an empty set).

That’s when we apply our secret weapon: ranking. This is usually done by requiring
that there be a unique mapping between candidate objects — a mapping that somehow
factorizes our construction. In our case, we’ll decree that z together with the morphism
g from z×a to b is better than some other z' with its own application g', if and only
if there is a unique mapping h from z' to z such that the application of g' factors
through the application of g. (Hint: Read this sentence while looking at the picture.)

Now here’s the tricky part, and the main reason I postponed this particular universal
construction till now. Given the morphism h :: z'-> z, we want to close the diagram
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Figure 32: The definition of the universal function object. This is the same
diagram as above, but now the object a�b is universal.

that has both z' and z crossed with a. What we really need, given the mapping h from
z' to z, is a mapping from z'×a to z×a. And now, after discussing the functoriality
of the product, we know how to do it. Because the product itself is a functor (more
precisely an endo-bi-functor), it’s possible to lift pairs of morphisms. In other words,
we can define not only products of objects but also products of morphisms.

Since we are not touching the second component of the product z'×a, we will lift the
pair of morphisms (h, id), where id is an identity on a.

So, here’s how we can factor one application, g, out of another application g':

g' = g � (h × id)

The key here is the action of the product on morphisms.

The third part of the universal construction is selecting the object that is universally
the best. Let’s call this object a�b (think of this as a symbolic name for one object,
not to be confused with a Haskell typeclass constraint — I’ll discuss different ways
of naming it later). This object comes with its own application — a morphism from
(a�b)×a to b — which we will call eval. The object a�b is the best if any other
candidate for a function object can be uniquely mapped to it in such a way that its
application morphism g factorizes through eval. This object is better than any other
object according to our ranking.

Formally:
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A function object from a to b is an object a�b together with the morphism

eval :: ((a�b) × a) -> b

such that for any other object z with a morphism

g :: z × a -> b

there is a unique morphism

h :: z -> (a�b)

that factors g through eval:

g = eval � (h × id)

Of course, there is no guarantee that such an object a�b exists for any pair of objects
a and b in a given category. But it always does in Set. Moreover, in Set, this object
is isomorphic to the hom-set Set(a, b).

This is why, in Haskell, we interpret the function type a->b as the categorical function
object a�b.

10.2 Currying

Let’s have a second look at all the candidates for the function object. This time,
however, let’s think of the morphism g as a function of two variables, z and a.

g :: z × a -> b

Being a morphism from a product comes as close as it gets to being a function of two
variables. In particular, in Set, g is a function from pairs of values, one from the set
z and one from the set a.

On the other hand, the universal property tells us that for each such g there is a unique
morphism h that maps z to a function object a�b.

h :: z -> (a�b)

In Set, this just means that h is a function that takes one variable of type z and
returns a function from a to b. That makes h a higher order function. Therefore the
universal construction establishes a one-to-one correspondence between functions of
two variables and functions of one variable returning functions. This correspondence
is called currying, and h is called the curried version of g.

This correspondence is one-to-one, because given any g there is a unique h, and given
any h you can always recreate the two-argument function g using the formula:
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g = eval � (h × id)

The function g can be called the uncurried version of h.

Currying is essentially built into the syntax of Haskell. A function returning a function:

a -> (b -> c)

is often thought of as a function of two variables. That’s how we read the un-
parenthesized signature:

a -> b -> c

This interpretation is apparent in the way we define multi-argument functions. For
instance:

catstr :: String -> String -> String
catstr s s’ = s ++ s’

The same function can be written as a one-argument function returning a function —
a lambda:

catstr’ s = \s’ -> s ++ s’

These two definitions are equivalent, and either can be partially applied to just one
argument, producing a one-argument function, as in:

greet :: String -> String
greet = catstr “Hello “

Strictly speaking, a function of two variables is one that takes a pair (a product type):

(a, b) -> c

It’s trivial to convert between the two representations, and the two (higher-order)
functions that do it are called, unsurprisingly, curry and uncurry:

curry :: ((a, b)->c) -> (a->b->c)
curry f a b = f (a, b)

and

uncurry :: (a->b->c) -> ((a, b)->c)
uncurry f (a, b) = f a b
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Notice that curry is the factorizer for the universal construction of the function object.
This is especially apparent if it’s rewritten in this form:

factorizer :: ((a, b)->c) -> (a->(b->c))
factorizer g = \a -> (\b -> g (a, b))

(As a reminder: A factorizer produces the factorizing function from a candidate.)

In non-functional languages, like C++, currying is possible but nontrivial. You can
think of multi-argument functions in C++ as corresponding to Haskell functions tak-
ing tuples (although, to confuse things even more, in C++ you can define functions
that take an explicit std::tuple, as well as variadic functions, and functions taking
initializer lists).

You can partially apply a C++ function using the template std::bind. For instance,
given a function of two strings:

std::string catstr(std::string s1, std::string s2) {
return s1 + s2;

}

you can define a function of one string:

using namespace std::placeholders;

auto greet = std::bind(catstr, "Hello ", _1);
std::cout << greet("Haskell Curry");

Scala, which is more functional than C++ or Java, falls somewhere in between. If
you anticipate that the function you’re defining will be partially applied, you define it
with multiple argument lists:

def catstr(s1: String)(s2: String) = s1 + s2

Of course that requires some amount of foresight or prescience on the part of a library
writer.

10.3 Exponentials

In mathematical literature, the function object, or the internal hom-object between
two objects a and b, is often called the exponential and denoted by ba. Notice that
the argument type is in the exponent. This notation might seem strange at first, but
it makes perfect sense if you think of the relationship between functions and products.
We’ve already seen that we have to use the product in the universal construction of
the internal hom-object, but the connection goes deeper than that.

This is best seen when you consider functions between finite types — types that have
a finite number of values, like Bool, Char, or even Int or Double. Such functions, at
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least in principle, can be fully memoized or turned into data structures to be looked
up. And this is the essence of the equivalence between functions, which are morphisms,
and function types, which are objects.

For instance a (pure) function from Bool is completely specified by a pair of values:
one corresponding to False, and one corresponding to True. The set of all possible
functions from Bool to, say, Int is the set of all pairs of Ints. This is the same as the
product Int × Int or, being a little creative with notation, Int2.

For another example, let’s look at the C++ type char, which contains 256 values
(Haskell Char is larger, because Haskell uses Unicode). There are several functions in
the part of the C++ Standard Library that are usually implemented using lookups.
Functions like isupper or isspace are implemented using tables, which are equivalent
to tuples of 256 Boolean values. A tuple is a product type, so we are dealing with
products of 256 Booleans: bool × bool × bool × ... × bool. We know from arith-
metics that an iterated product defines a power. If you “multiply” bool by itself 256
(or char) times, you get bool to the power of char, or boolchar.

How many values are there in the type defined as 256-tuples of bool? Exactly 2256.
This is also the number of different functions from char to bool, each function cor-
responding to a unique 256-tuple. You can similarly calculate that the number of
functions from bool to char is 2562, and so on. The exponential notation for function
types makes perfect sense in these cases.

We probably wouldn’t want to fully memoize a function from int or double. But
the equivalence between functions and data types, if not always practical, is there.
There are also infinite types, for instance lists, strings, or trees. Eager memoization
of functions from those types would require infinite storage. But Haskell is a lazy
language, so the boundary between lazily evaluated (infinite) data structures and
functions is fuzzy. This function vs. data duality explains the identification of Haskell’s
function type with the categorical exponential object — which corresponds more to
our idea of data.

10.4 Cartesian Closed Categories

Although I will continue using the category of sets as a model for types and functions,
it’s worth mentioning that there is a larger family of categories that can be used for
that purpose. These categories are called cartesian closed, and Set is just one example
of such a category.

A cartesian closed category must contain:

1. The terminal object,
2. A product of any pair of objects, and
3. An exponential for any pair of objects.

If you consider an exponential as an iterated product (possibly infinitely many times),
then you can think of a cartesian closed category as one supporting products of an
arbitrary arity. In particular, the terminal object can be thought of as a product of
zero objects — or the zero-th power of an object.
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What’s interesting about cartesian closed categories from the perspective of computer
science is that they provide models for the simply typed lambda calculus, which forms
the basis of all typed programming languages.

The terminal object and the product have their duals: the initial object and the
coproduct. A cartesian closed category that also supports those two, and in which
product can be distributed over coproduct

a × (b + c) = a × b + a × c
(b + c) × a = b × a + c × a

is called a bicartesian closed category. We’ll see in the next section that bicartesian
closed categories, of which Set is a prime example, have some interesting properties.

10.5 Exponentials and Algebraic Data Types

The interpretation of function types as exponentials fits very well into the scheme of
algebraic data types. It turns out that all the basic identities from high-school algebra
relating numbers zero and one, sums, products, and exponentials hold pretty much
unchanged in any bicartesian closed category theory for, respectively, initial and final
objects, coproducts, products, and exponentials. We don’t have the tools yet to prove
them (such as adjunctions or the Yoneda lemma), but I’ll list them here nevertheless
as a source of valuable intuitions.

10.5.1 Zeroth Power

a0 = 1

In the categorical interpretation, we replace 0 with the initial object, 1 with the final
object, and equality with isomorphism. The exponential is the internal hom-object.
This particular exponential represents the set of morphisms going from the initial
object to an arbitrary object a. By the definition of the initial object, there is exactly
one such morphism, so the hom-set C(0, a) is a singleton set. A singleton set is the
terminal object in Set, so this identity trivially works in Set. What we are saying is
that it works in any bicartesian closed category.

In Haskell, we replace 0 with Void; 1 with the unit type (); and the exponential
with function type. The claim is that the set of functions from Void to any type a is
equivalent to the unit type — which is a singleton. In other words, there is only one
function Void->a. We’ve seen this function before: it’s called absurd.

This is a little bit tricky, for two reasons. One is that in Haskell we don’t really have
uninhabited types — every type contains the “result of a never ending calculation,” or
the bottom. The second reason is that all implementations of absurd are equivalent
because, no matter what they do, nobody can ever execute them. There is no value
that can be passed to absurd. (And if you manage to pass it a never ending calculation,
it will never return!)
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10.5.2 Powers of One

1a = 1

This identity, when interpreted in Set, restates the definition of the terminal object:
There is a unique morphism from any object to the terminal object. In general, the
internal hom-object from a to the terminal object is isomorphic to the terminal object
itself.

In Haskell, there is only one function from any type a to unit. We’ve seen this function
before — it’s called unit. You can also think of it as the function const partially
applied to ().

10.5.3 First Power

a1 = a

This is a restatement of the observation that morphisms from the terminal object can
be used to pick “elements” of the object a. The set of such morphisms is isomorphic
to the object itself. In Set, and in Haskell, the isomorphism is between elements of
the set a and functions that pick those elements, ()->a.

10.5.4 Exponentials of Sums

ab+c = ab × ac

Categorically, this says that the exponential from a coproduct of two objects is isomor-
phic to a product of two exponentials. In Haskell, this algebraic identity has a very
practical, interpretation. It tells us that a function from a sum of two types is equiva-
lent to a pair of functions from individual types. This is just the case analysis that we
use when defining functions on sums. Instead of writing one function definition with
a case statement, we usually split it into two (or more) functions dealing with each
type constructor separately. For instance, take a function from the sum type (Either
Int Double):

f :: Either Int Double -> String

It may be defined as a pair of functions from, respectively, Int and Double:

f (Left n) = if n < 0 then "Negative int" else "Positive int"
f (Right x) = if x < 0.0 then "Negative double" else "Positive double"

Here, n is an Int and x is a Double.
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10.5.5 Exponentials of Exponentials

(ab)c = ab×c

This is just a way of expressing currying purely in terms of exponential objects. A func-
tion returning a function is equivalent to a function from a product (a two-argument
function).

10.5.6 Exponentials over Products

(a × b)c = ac × bc

In Haskell: A function returning a pair is equivalent to a pair of functions, each
producing one element of the pair.

It’s pretty incredible how those simple high-school algebraic identities can be lifted to
category theory and have practical application in functional programming.

10.6 Curry-Howard Isomorphism

I have already mentioned the correspondence between logic and algebraic data types.
The Void type and the unit type () correspond to false and true. Product types and
sum types correspond to logical conjunction � (AND) and disjunction � (OR). In this
scheme, the function type we have just defined corresponds to logical implication �. In
other words, the type a->b can be read as “if a then b.”

According to the Curry-Howard isomorphism, every type can be interpreted as a propo-
sition — a statement or a judgment that may be true or false. Such a proposition is
considered true if the type is inhabited and false if it isn’t. In particular, a logical
implication is true if the function type corresponding to it is inhabited, which means
that there exists a function of that type. An implementation of a function is therefore
a proof of a theorem. Writing programs is equivalent to proving theorems. Let’s see
a few examples.

Let’s take the function eval we have introduced in the definition of the function object.
Its signature is:

eval :: ((a -> b), a) -> b

It takes a pair consisting of a function and its argument and produces a result of the
appropriate type. It’s the Haskell implementation of the morphism:

eval :: (a�b) × a -> b

which defines the function type a�b (or the exponential object ba). Let’s translate this
signature to a logical predicate using the Curry-Howard isomorphism:
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((a � b) � a) � b

Here’s how you can read this statement: If it’s true that b follows from a, and a is true,
then b must be true. This makes perfect intuitive sense and has been known since
antiquity as modus ponens. We can prove this theorem by implementing the function:

eval :: ((a -> b), a) -> b
eval (f, x) = f x

If you give me a pair consisting of a function f taking a and returning b, and a concrete
value x of type a, I can produce a concrete value of type b by simply applying the
function f to x. By implementing this function I have just shown that the type ((a
-> b), a) -> b is inhabited. Therefore modus ponens is true in our logic.

How about a predicate that is blatantly false? For instance: if a or b is true then a
must be true.

a � b � a

This is obviously wrong because you can chose an a that is false and a b that is true,
and that’s a counter-example.

Mapping this predicate into a function signature using the Curry-Howard isomorphism,
we get:

Either a b -> a

Try as you may, you can’t implement this function — you can’t produce a value of
type a if you are called with the Right value. (Remember, we are talking about pure
functions.)

Finally, we come to the meaning of the absurd function:

absurd :: Void -> a

Considering that Void translates into false, we get:

false � a

Anything follows from falsehood (ex falso quodlibet). Here’s one possible proof (imple-
mentation) of this statement (function) in Haskell:

absurd (Void a) = absurd a

where Void is defined as:
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newtype Void = Void Void

As always, the type Void is tricky. This definition makes it impossible to construct
a value because in order to construct one, you would need to provide one. Therefore,
the function absurd can never be called.

These are all interesting examples, but is there a practical side to Curry-Howard
isomorphism? Probably not in everyday programming. But there are programming
languages like Agda or Coq, which take advantage of the Curry-Howard isomorphism
to prove theorems.

Computers are not only helping mathematicians do their work — they are revolution-
izing the very foundations of mathematics. The latest hot research topic in that area
is called Homotopy Type Theory, and is an outgrowth of type theory. It’s full of
Booleans, integers, products and coproducts, function types, and so on. And, as if to
dispel any doubts, the theory is being formulated in Coq and Agda. Computers are
revolutionizing the world in more than one way.
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Figure 33:

Figure 34:

11 Natural Transformations

We talked about functors as mappings between categories that preserve their structure.
A functor “embeds” one category in another. It may collapse multiple things into one,
but it never breaks connections. One way of thinking about it is that with a functor
we are modeling one category inside another. The source category serves as a model,
a blueprint, for some structure that’s part of the target category.

There may be many ways of embedding one category in another. Sometimes they are
equivalent, sometimes very different. One may collapse the whole source category into
one object, another may map every object to a different object and every morphism
to a different morphism. The same blueprint may be realized in many different ways.
Natural transformations help us compare these realizations. They are mappings of
functors — special mappings that preserve their functorial nature.

Consider two functors F and G between categories C and D. If you focus on just one
object a in C, it is mapped to two objects: F a and G a. A mapping of functors should
therefore map F a to G a.

Notice that F a and G a are objects in the same category D. Mappings between objects
in the same category should not go against the grain of the category. We don’t want to
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Figure 35:

make artificial connections between objects. So it’s natural to use existing connections,
namely morphisms. A natural transformation is a selection of morphisms: for every
object a, it picks one morphism from F a to G a. If we call the natural transformation
�, this morphism is called the component of � at a, or �a.

�a :: F a -> G a

Keep in mind that a is an object in C while �a is a morphism in D.

If, for some a, there is no morphism between F a and G a in D, there can be no natural
transformation between F and G.

Of course that’s only half of the story, because functors not only map objects, they map
morphisms as well. So what does a natural transformation do with those mappings? It
turns out that the mapping of morphisms is fixed — under any natural transformation
between F and G, F f must be transformed into G f. What’s more, the mapping of
morphisms by the two functors drastically restricts the choices we have in defining a
natural transformation that’s compatible with it. Consider a morphism f between two
objects a and b in C. It’s mapped to two morphisms, F f and G f in D:

F f :: F a -> F b
G f :: G a -> G b

The natural transformation � provides two additional morphisms that complete the
diagram in D:

�a :: F a -> G a
�b :: F b -> G b

Now we have two ways of getting from F a to G b. To make sure that they are equal,
we must impose the naturality condition that holds for any f:

G f � �a = �b � F f
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Figure 36:

Figure 37:

The naturality condition is a pretty stringent requirement. For instance, if the mor-
phism F f is invertible, naturality determines �b in terms of �a. It transports �a along
f:

�b = (G f) � �a � (F f)-1

If there is more than one invertible morphism between two objects, all these transports
have to agree. In general, though, morphisms are not invertible; but you can see that
the existence of natural transformations between two functors is far from guaranteed.
So the scarcity or the abundance of functors that are related by natural transformations
may tell you a lot about the structure of categories between which they operate. We’ll
see some examples of that when we talk about limits and the Yoneda lemma.

Looking at a natural transformation component-wise, one may say that it maps objects
to morphisms. Because of the naturality condition, one may also say that it maps
morphisms to commuting squares — there is one commuting naturality square in D
for every morphism in C.

This property of natural transformations comes in very handy in a lot of categorical
constructions, which often include commuting diagrams. With a judicious choice of
functors, a lot of these commutativity conditions may be transformed into naturality
conditions. We’ll see examples of that when we get to limits, colimits, and adjunctions.

Finally, natural transformations may be used to define isomorphisms of functors. Say-
ing that two functors are naturally isomorphic is almost like saying they are the same.
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Natural isomorphism is defined as a natural transformation whose components are all
isomorphisms (invertible morphisms).

11.1 Polymorphic Functions

We talked about the role of functors (or, more specifically, endofunctors) in program-
ming. They correspond to type constructors that map types to types. They also map
functions to functions, and this mapping is implemented by a higher order function
fmap (or transform, then, and the like in C++).

To construct a natural transformation we start with an object, here a type, a. One
functor, F, maps it to the type F a. Another functor, G, maps it to G a. The component
of a natural transformation alpha at a is a function from F a to G a. In pseudo-Haskell:

alphaa :: F a -> G a

A natural transformation is a polymorphic function that is defined for all types a:

alpha :: forall a . F a -> G a

The forall a is optional in Haskell (and in fact requires turning on the language
extension ExplicitForAll). Normally, you would write it like this:

alpha :: F a -> G a

Keep in mind that it’s really a family of functions parameterized by a. This is another
example of the terseness of the Haskell syntax. A similar construct in C++ would be
slightly more verbose:

template<class A> G<A> alpha(F<A>);

There is a more profound difference between Haskell’s polymorphic functions and
C++ generic functions, and it’s reflected in the way these functions are implemented
and type-checked. In Haskell, a polymorphic function must be defined uniformly
for all types. One formula must work across all types. This is called parametric
polymorphism.

C++, on the other hand, supports by default ad hoc polymorphism, which means that
a template doesn’t have to be well-defined for all types. Whether a template will work
for a given type is decided at instantiation time, where a concrete type is substituted
for the type parameter. Type checking is deferred, which unfortunately often leads to
incomprehensible error messages.

In C++, there is also a mechanism for function overloading and template specialization,
which allows different definitions of the same function for different types. In Haskell
this functionality is provided by type classes and type families.

Haskell’s parametric polymorphism has an unexpected consequence: any polymorphic
function of the type:
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alpha :: F a -> G a

where F and G are functors, automatically satisfies the naturality condition. Here it is
in categorical notation (f is a function f::a->b):

G f � �a = �b � F f

In Haskell, the action of a functor G on a morphism f is implemented using fmap. I’ll
first write it in pseudo-Haskell, with explicit type annotations:

fmapG f . alphaa = alphab . fmapF f

Because of type inference, these annotations are not necessary, and the following equa-
tion holds:

fmap f . alpha = alpha . fmap f

This is still not real Haskell — function equality is not expressible in code — but it’s
an identity that can be used by the programmer in equational reasoning; or by the
compiler, to implement optimizations.

The reason why the naturality condition is automatic in Haskell has to do with “the-
orems for free.” Parametric polymorphism, which is used to define natural transfor-
mations in Haskell, imposes very strong limitations on the implementation — one
formula for all types. These limitations translate into equational theorems about such
functions. In the case of functions that transform functors, free theorems are the nat-
urality conditions. [You may read more about free theorems in my blog Parametricity:
Money for Nothing and Theorems for Free.]

One way of thinking about functors in Haskell that I mentioned earlier is to consider
them generalized containers. We can continue this analogy and consider natural trans-
formations to be recipes for repackaging the contents of one container into another
container. We are not touching the items themselves: we don’t modify them, and we
don’t create new ones. We are just copying (some of) them, sometimes multiple times,
into a new container.

The naturality condition becomes the statement that it doesn’t matter whether we
modify the items first, through the application of fmap, and repackage later; or repack-
age first, and then modify the items in the new container, with its own implementation
of fmap. These two actions, repackaging and fmapping, are orthogonal. “One moves
the eggs, the other boils them.”

Let’s see a few examples of natural transformations in Haskell. The first is between
the list functor, and the Maybe functor. It returns the head of the list, but only if the
list is non-empty:

safeHead :: [a] -> Maybe a
safeHead [] = Nothing
safeHead (x:xs) = Just x
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It’s a function polymorphic in a. It works for any type a, with no limitations, so it
is an example of parametric polymorphism. Therefore it is a natural transformation
between the two functors. But just to convince ourselves, let’s verify the naturality
condition.

fmap f . safeHead = safeHead . fmap f

We have two cases to consider; an empty list:

fmap f (safeHead []) = fmap f Nothing = Nothing

safeHead (fmap f []) = safeHead [] = Nothing

and a non-empty list:

fmap f (safeHead (x:xs)) = fmap f (Just x) = Just (f x)

safeHead (fmap f (x:xs)) = safeHead (f x : fmap f xs) = Just (f x)

I used the implementation of fmap for lists:

fmap f [] = []
fmap f (x:xs) = f x : fmap f xs

and for Maybe:

fmap f Nothing = Nothing
fmap f (Just x) = Just (f x)

An interesting case is when one of the functors is the trivial Const functor. A natural
transformation from or to a Const functor looks just like a function that’s either
polymorphic in its return type or in its argument type.

For instance, length can be thought of as a natural transformation from the list functor
to the Const Int functor:

length :: [a] -> Const Int a
length [] = Const 0
length (x:xs) = Const (1 + unConst (length xs))

Here, unConst is used to peel off the Const constructor:

unConst :: Const c a -> c
unConst (Const x) = x
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Of course, in practice length is defined as:

length :: [a] -> Int

which effectively hides the fact that it’s a natural transformation.

Finding a parametrically polymorphic function from a Const functor is a little harder,
since it would require the creation of a value from nothing. The best we can do is:

scam :: Const Int a -> Maybe a
scam (Const x) = Nothing

Another common functor that we’ve seen already, and which will play an important
role in the Yoneda lemma, is the Reader functor. I will rewrite its definition as a
newtype:

newtype Reader e a = Reader (e -> a)

It is parameterized by two types, but is (covariantly) functorial only in the second one:

instance Functor (Reader e) where
fmap f (Reader g) = Reader (\x -> f (g x))

For every type e, you can define a family of natural transformations from Reader e
to any other functor f. We’ll see later that the members of this family are always in
one to one correspondence with the elements of f e (the Yoneda lemma).

For instance, consider the somewhat trivial unit type () with one element (). The
functor Reader () takes any type a and maps it into a function type ()->a. These
are just all the functions that pick a single element from the set a. There are as many
of these as there are elements in a. Now let’s consider natural transformations from
this functor to the Maybe functor:

alpha :: Reader () a -> Maybe a

There are only two of these, dumb and obvious:

dumb (Reader _) = Nothing

and

obvious (Reader g) = Just (g ())

(The only thing you can do with g is to apply it to the unit value ().)

And, indeed, as predicted by the Yoneda lemma, these correspond to the two elements
of the Maybe () type, which are Nothing and Just (). We’ll come back to the Yoneda
lemma later — this was just a little teaser.
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11.2 Beyond Naturality

A parametrically polymorphic function between two functors (including the edge case
of the Const functor) is always a natural transformation. Since all standard algebraic
data types are functors, any polymorphic function between such types is a natural
transformation.

We also have function types at our disposal, and those are functorial in their return
type. We can use them to build functors (like the Reader functor) and define natural
transformations that are higher-order functions.

However, function types are not covariant in the argument type. They are contravari-
ant. Of course contravariant functors are equivalent to covariant functors from the
opposite category. Polymorphic functions between two contravariant functors are still
natural transformations in the categorical sense, except that they work on functors
from the opposite category to Haskell types.

You might remember the example of a contravariant functor we’ve looked at before:

newtype Op r a = Op (a -> r)

This functor is contravariant in a:

instance Contravariant (Op r) where
contramap f (Op g) = Op (g . f)

We can write a polymorphic function from, say, Op Bool to Op String:

predToStr (Op f) = Op (\x -> if f x then "T" else "F")

But since the two functors are not covariant, this is not a natural transformation
in Hask. However, because they are both contravariant, they satisfy the “opposite”
naturality condition:

contramap f . predToStr = predToStr . contramap f

Notice that the function f must go in the opposite direction than what you’d use with
fmap, because of the signature of contramap:

contramap :: (b -> a) -> (Op Bool a -> Op Bool b)

Are there any type constructors that are not functors, whether covariant or contravari-
ant? Here’s one example:

a -> a
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This is not a functor because the same type a is used both in the negative (contravari-
ant) and positive (covariant) position. You can’t implement fmap or contramap for
this type. Therefore a function of the signature:

(a -> a) -> f a

where f is an arbitrary functor, cannot be a natural transformation. Interestingly,
there is a generalization of natural transformations, called dinatural transformations,
that deals with such cases. We’ll get to them when we discuss ends.

11.3 Functor Category

Now that we have mappings between functors — natural transformations — it’s only
natural to ask the question whether functors form a category. And indeed they do!
There is one category of functors for each pair of categories, C and D. Objects in
this category are functors from C to D, and morphisms are natural transformations
between those functors.

We have to define composition of two natural transformations, but that’s quite easy.
The components of natural transformations are morphisms, and we know how to com-
pose morphisms.

Indeed, let’s take a natural transformation � from functor F to G. Its component at
object a is some morphism:

�a :: F a -> G a

We’d like to compose � with �, which is a natural transformation from functor G to H.
The component of � at a is a morphism:

�a :: G a -> H a

These morphisms are composable and their composition is another morphism:

�a � �a :: F a -> H a

We will use this morphism as the component of the natural transformation � � � — the
composition of two natural transformations � after �:

(� � �)a = �a � �a

One (long) look at a diagram convinces us that the result of this composition is indeed
a natural transformation from F to H:

H f � (� � �)a = (� � �)b � F f
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Figure 38:

Figure 39:

Composition of natural transformations is associative, because their components,
which are regular morphisms, are associative with respect to their composition.

Finally, for each functor F there is an identity natural transformation 1F whose com-
ponents are the identity morphisms:

idF a :: F a -> F a

So, indeed, functors form a category.

A word about notation. Following Saunders Mac Lane I use the dot for the kind of
natural transformation composition I have just described. The problem is that there
are two ways of composing natural transformations. This one is called the vertical
composition, because the functors are usually stacked up vertically in the diagrams
that describe it. Vertical composition is important in defining the functor category.
I’ll explain horizontal composition shortly.

The functor category between categories C and D is written as Fun(C, D), or [C, D],
or sometimes as DC. This last notation suggests that a functor category itself might be
considered a function object (an exponential) in some other category. Is this indeed
the case?
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Figure 40:

Figure 41:

Let’s have a look at the hierarchy of abstractions that we’ve been building so far. We
started with a category, which is a collection of objects and morphisms. Categories
themselves (or, strictly speaking small categories, whose objects form sets) are them-
selves objects in a higher-level category Cat. Morphisms in that category are functors.
A Hom-set in Cat is a set of functors. For instance Cat(C, D) is a set of functors
between two categories C and D.

A functor category [C, D] is also a set of functors between two categories (plus natural
transformations as morphisms). Its objects are the same as the members of Cat(C,
D). Moreover, a functor category, being a category, must itself be an object of Cat
(it so happens that the functor category between two small categories is itself small).
We have a relationship between a Hom-set in a category and an object in the same
category. The situation is exactly like the exponential object that we’ve seen in the
last section. Let’s see how we can construct the latter in Cat.

As you may remember, in order to construct an exponential, we need to first define
a product. In Cat, this turns out to be relatively easy, because small categories are
sets of objects, and we know how to define cartesian products of sets. So an object
in a product category C × D is just a pair of objects, (c, d), one from C and one
from D. Similarly, a morphism between two such pairs, (c, d) and (c', d'), is a
pair of morphisms, (f, g), where f :: c -> c' and g :: d -> d'. These pairs of
morphisms compose component-wise, and there is always an identity pair that is just a
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Figure 42:

pair of identity morphisms. To make the long story short, Cat is a full-blown cartesian
closed category in which there is an exponential object DC for any pair of categories.
And by “object” in Cat I mean a category, so DC is a category, which we can identify
with the functor category between C and D.

11.4 2-Categories

With that out of the way, let’s have a closer look at Cat. By definition, any Hom-set
in Cat is a set of functors. But, as we have seen, functors between two objects have
a richer structure than just a set. They form a category, with natural transforma-
tions acting as morphisms. Since functors are considered morphisms in Cat, natural
transformations are morphisms between morphisms.

This richer structure is an example of a 2-category, a generalization of a category
where, besides objects and morphisms (which might be called 1-morphisms in this
context), there are also 2-morphisms, which are morphisms between morphisms.

In the case of Cat seen as a 2-category we have:

• Objects: (Small) categories
• 1-morphisms: Functors between categories
• 2-morphisms: Natural transformations between functors.

Instead of a Hom-set between two categories C and D, we have a Hom-category —
the functor category DC. We have regular functor composition: a functor F from DC

composes with a functor G from ED to give G � F from EC. But we also have com-
position inside each Hom-category — vertical composition of natural transformations,
or 2-morphisms, between functors.

With two kinds of composition in a 2-category, the question arises: How do they
interact with each other?

Let’s pick two functors, or 1-morphisms, in Cat:

F :: C -> D
G :: D -> E
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Figure 43:

Figure 44:

and their composition:

G � F :: C -> E

Suppose we have two natural transformations, � and �, that act, respectively, on func-
tors F and G:

� :: F -> F'
� :: G -> G'

Notice that we cannot apply vertical composition to this pair, because the target of
� is different from the source of �. In fact they are members of two different functor
categories: D C and E D. We can, however, apply composition to the functors F’ and
G’, because the target of F’ is the source of G’ — it’s the category D. What’s the
relation between the functors G’� F’ and G � F?

Having � and � at our disposal, can we define a natural transformation from G � F to
G’� F’? Let me sketch the construction.

As usual, we start with an object a in C. Its image splits into two objects in D: F a
and F'a. There is also a morphism, a component of �, connecting these two objects:

�a :: F a -> F'a
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When going from D to E, these two objects split further into four objects:

G (F a), G'(F a), G (F'a), G'(F'a)

We also have four morphisms forming a square. Two of these morphisms are the
components of the natural transformation �:

�F a :: G (F a) -> G'(F a)
�F'a :: G (F'a) -> G'(F'a)

The other two are the images of �a under the two functors (functors map morphisms):

G �a :: G (F a) -> G (F'a)
G'�a :: G'(F a) -> G'(F'a)

That’s a lot of morphisms. Our goal is to find a morphism that goes from G (F a) to
G'(F'a), a candidate for the component of a natural transformation connecting the
two functors G � F and G’� F’. In fact there’s not one but two paths we can take from
G (F a) to G'(F'a):

G'�a � �F a
�F'a � G �a

Luckily for us, they are equal, because the square we have formed turns out to be the
naturality square for �.

We have just defined a component of a natural transformation from G � F to G’� F’.
The proof of naturality for this transformation is pretty straightforward, provided you
have enough patience.

We call this natural transformation the horizontal composition of � and �:

� � � :: G � F -> G'� F'

Again, following Mac Lane I use the small circle for horizontal composition, although
you may also encounter star in its place.

Here’s a categorical rule of thumb: Every time you have composition, you should look
for a category. We have vertical composition of natural transformations, and it’s part
of the functor category. But what about the horizontal composition? What category
does that live in?

The way to figure this out is to look at Cat sideways. Look at natural transformations
not as arrows between functors but as arrows between categories. A natural transfor-
mation sits between two categories, the ones that are connected by the functors it
transforms. We can think of it as connecting these two categories.

122



Figure 45:

Let’s focus on two objects of Cat — categories C and D. There is a set of natural
transformations that go between functors that connect C to D. These natural trans-
formations are our new arrows from C to D. By the same token, there are natural
transformations going between functors that connect D to E, which we can treat as
new arrows going from D to E. Horizontal composition is the composition of these
arrows.

We also have an identity arrow going from C to C. It’s the identity natural trans-
formation that maps the identity functor on C to itself. Notice that the identity for
horizontal composition is also the identity for vertical composition, but not vice versa.

Finally, the two compositions satisfy the interchange law:

(�' � �') � (� � �) = (�' � �) � (�' � �)

I will quote Saunders Mac Lane here: The reader may enjoy writing down the evident
diagrams needed to prove this fact.

There is one more piece of notation that might come in handy in the future. In
this new sideways interpretation of Cat there are two ways of getting from object
to object: using a functor or using a natural transformation. We can, however, re-
interpret the functor arrow as a special kind of natural transformation: the identity
natural transformation acting on this functor. So you’ll often see this notation:

F � �

where F is a functor from D to E, and � is a natural transformation between two functors
going from C to D. Since you can’t compose a functor with a natural transformation,
this is interpreted as a horizontal composition of the identity natural transformation
1F after �.

Similarly:

� � F

is a horizontal composition of � after 1F.
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11.5 Conclusion

This concludes the first part of the book. We’ve learned the basic vocabulary of
category theory. You may think of objects and categories as nouns; and morphisms,
functors, and natural transformations as verbs. Morphisms connect objects, functors
connect categories, natural transformations connect functors.

But we’ve also seen that, what appears as an action at one level of abstraction, becomes
an object at the next level. A set of morphisms turns into a function object. As an
object, it can be a source or a target of another morphism. That’s the idea behind
higher order functions.

A functor maps objects to objects, so we can use it as a type constructor, or a para-
metric type. A functor also maps morphisms, so it is a higher order function — fmap.
There are some simple functors, like Const, product, and coproduct, that can be used
to generate a large variety of algebraic data types. Function types are also functorial,
both covariant and contravariant, and can be used to extend algebraic data types.

Functors may be looked upon as objects in the functor category. As such, they become
sources and targets of morphisms: natural transformations. A natural transformation
is a special type of polymorphic function.

11.6 Challenges

1. Define a natural transformation from the Maybe functor to the list functor. Prove
the naturality condition for it.

2. Define at least two different natural transformations between Reader () and
the list functor. How many different lists of () are there?

3. Continue the previous exercise with Reader Bool and Maybe.
4. Show that horizontal composition of natural transformation satisfies the natu-

rality condition (hint: use components). It’s a good exercise in diagram chasing.
5. Write a short essay about how you may enjoy writing down the evident diagrams

needed to prove the interchange law.
6. Create a few test cases for the opposite naturality condition of transformations

between different Op functors. Here’s one choice:

op :: Op Bool Int
op = Op (\x -> x > 0)

and

f :: String -> Int
f x = read x
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12 Declarative Programming

12.1 Introduction to Part II

In the first part of the book I argued that both category theory and programming
are about composability. In programming, you keep decomposing a problem until you
reach the level of detail that you can deal with, solve each subproblem in turn, and
re-compose the solutions bottom-up. There are, roughly speaking, two ways of doing
it: by telling the computer what to do, or by telling it how to do it. One is called
declarative and the other imperative.

You can see this even at the most basic level. Composition itself may be defined
declaratively; as in, h is a composite of g after f:

h = g . f

or imperatively; as in, call f first, remember the result of that call, then call g with
the result:

h x = let y = f x
in g y

The imperative version of a program is usually described as a sequence of actions
ordered in time. In particular, the call to g cannot happen before the execution of f
completes. At least, that’s the conceptual picture — in a lazy language, with call-by-
need argument passing, the actual execution may proceed differently.

In fact, depending on the cleverness of the compiler, there may be little or no difference
between how declarative and imperative code is executed. But the two methodologies
differ, sometimes drastically, in the way we approach problem solving and in the
maintainability and testability of the resulting code.

The main question is: when faced with a problem, do we always have the choice
between a declarative and imperative approaches to solving it? And, if there is a
declarative solution, can it always be translated into computer code? The answer to
this question is far from obvious and, if we could find it, we would probably revolu-
tionize our understanding of the universe.

Let me elaborate. There is a similar duality in physics, which either points at some
deep underlying principle, or tells us something about how our minds work. Richard
Feynman mentions this duality as an inspiration in his own work on quantum electro-
dynamics.

There are two forms of expressing most laws of physics. One uses local, or infinitesimal,
considerations. We look at the state of a system around a small neighborhood, and
predict how it will evolve within the next instant of time. This is usually expressed
using differential equations that have to be integrated, or summed up, over a period
of time.

Notice how this approach resembles imperative thinking: we reach the final solution
by following a sequence of small steps, each depending on the result of the previous
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Figure 46:

one. In fact, computer simulations of physical systems are routinely implemented by
turning differential equations into difference equations and iterating them. This is how
spaceships are animated in the asteroids game. At each time step, the position of a
spaceship is changed by adding a small increment, which is calculated by multiplying
its velocity by the time delta. The velocity, in turn, is changed by a small increment
proportional to acceleration, which is given by force divided by mass.

These are the direct encodings of the differential equations corresponding to Newton’s
laws of motion:

F = m dv/dt
v = dx/dt

Similar methods may be applied to more complex problems, like the propagation of
electromagnetic fields using Maxwell’s equations, or even the behavior of quarks and
gluons inside a proton using lattice QCD (quantum chromodynamics).

This local thinking combined with discretization of space and time that is encouraged
by the use of digital computers found its extreme expression in the heroic attempt
by Stephen Wolfram to reduce the complexity of the whole universe to a system of
cellular automata.

The other approach is global. We look at the initial and the final state of the system,
and calculate a trajectory that connects them by minimizing a certain functional. The
simplest example is the Fermat’s principle of least time. It states that light rays
propagate along paths that minimize their flight time. In particular, in the absence of
reflecting or refracting objects, a light ray from point A to point B will take the shortest
path, which is a straight line. But light propagates slower in dense (transparent)
materials, like water or glass. So if you pick the starting point in the air, and the
ending point under water, it’s more advantageous for light to travel longer in the air
and then take a shortcut through water. The path of minimum time makes the ray
refract at the boundary of air and water, resulting in Snell’s law of refraction:

sin �1 / sin �2 = v1 / v2
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Figure 47:

Figure 48:

where v1 is the speed of light in the air and v2 is the speed of light in the water.

All of classical mechanics can be derived from the principle of least action. The
action can be calculated for any trajectory by integrating the Lagrangian, which is the
difference between kinetic and potential energy (notice: it’s the difference, not the sum
— the sum would be the total energy). When you fire a mortar to hit a given target,
the projectile will first go up, where the potential energy due to gravity is higher, and
spend some time there racking up negative contribution to the action. It will also slow
down at the top of the parabola, to minimize kinetic energy. Then it will speed up to
go quickly through the area of low potential energy.

Feynman’s greatest contribution was to realize that the principle of least action can be
generalized to quantum mechanics. There, again, the problem is formulated in terms
of initial state and final state. The Feynman path integral between those states is used
to calculate the probability of transition.

The point is that there is a curious unexplained duality in the way we can describe
the laws of physics. We can use the local picture, in which things happen sequentially
and in small increments. Or we can use the global picture, where we declare the initial
and final conditions, and everything in between just follows.

The global approach can be also used in programming, for instance when implementing
ray tracing. We declare the position of the eye and the positions of light sources, and
figure out the paths that the light rays may take to connect them. We don’t explicitly
minimize the time of flight for each ray, but we do use Snell’s law and the geometry
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Figure 49:

of reflection to the same effect.

The biggest difference between the local and the global approach is in their treatment
of space and, more importantly, time. The local approach embraces the immediate
gratification of here and now, whereas the global approach takes a long-term static
view, as if the future had been preordained, and we were only analyzing the properties
of some eternal universe.

Nowhere is it better illustrated than in the Functional Reactive Programming approach
to user interaction. Instead of writing separate handlers for every possible user action,
all having access to some shared mutable state, FRP treats external events as an
infinite list, and applies a series of transformations to it. Conceptually, the list of
all our future actions is there, available as the input data to our program. From
a program’s perspective there’s no difference between the list of digits of �, a list
of pseudo-random numbers, or a list of mouse positions coming through computer
hardware. In each case, if you want to get the nth item, you have to first go through
the first n-1 items. When applied to temporal events, we call this property causality.

So what does it have to do with category theory? I will argue that category theory
encourages a global approach and therefore supports declarative programming. First
of all, unlike calculus, it has no built-in notion of distance, or neighborhood, or time.
All we have is abstract objects and abstract connections between them. If you can get
from A to B through a series of steps, you can also get there in one leap. Moreover,
the major tool of category theory is the universal construction, which is the epitome
of a global approach. We’ve seen it in action, for instance, in the definition of the
categorical product. It was done by specifying its properties — a very declarative
approach. It’s an object equipped with two projections, and it’s the best such object
— it optimizes a certain property: the property of factorizing the projections of other
such objects.

Compare this with Fermat’s principle of minimum time, or the principle of least action.

Conversely, contrast this with the traditional definition of a cartesian product, which
is much more imperative. You describe how to create an element of the product by
picking one element from one set and another element from another set. It’s a recipe
for creating a pair. And there’s another for disassembling a pair.
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Figure 50:

In almost every programming language, including functional languages like Haskell,
product types, coproduct types, and function types are built in, rather than being
defined by universal constructions; although there have been attempts at creating
categorical programming languages (see, e.g., Tatsuya Hagino’s thesis).

Whether used directly or not, categorical definitions justify pre-existing programming
constructs, and give rise to new ones. Most importantly, category theory provides a
meta-language for reasoning about computer programs at a declarative level. It also
encourages reasoning about problem specification before it is cast into code.

12.2 Acknowledgments
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Figure 52:

13 Limits and Colimits

It seems like in category theory everything is related to everything and everything
can be viewed from many angles. Take for instance the universal construction of the
product. Now that we know more about functors and natural transformations, can we
simplify and, possibly, generalize it? Let us try.

The construction of a product starts with the selection of two objects a and b, whose
product we want to construct. But what does it mean to select objects? Can we
rephrase this action in more categorical terms? Two objects form a pattern — a
very simple pattern. We can abstract this pattern into a category — a very simple
category, but a category nevertheless. It’s a category that we’ll call 2. It contains
just two objects, 1 and 2, and no morphisms other than the two obligatory identities.
Now we can rephrase the selection of two objects in C as the act of defining a functor
D from the category 2 to C. A functor maps objects to objects, so its image is just
two objects (or it could be one, if the functor collapses objects, which is fine too). It
also maps morphisms — in this case it simply maps identity morphisms to identity
morphisms.

What’s great about this approach is that it builds on categorical notions, eschewing the
imprecise descriptions like “selecting objects,” taken straight from the hunter-gatherer
lexicon of our ancestors. And, incidentally, it is also easily generalized, because nothing
can stop us from using categories more complex than 2 to define our patterns.

But let’s continue. The next step in the definition of a product is the selection of the
candidate object c. Here again, we could rephrase the selection in terms of a functor
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Figure 53:

Figure 54:

from a singleton category. And indeed, if we were using Kan extensions, that would
be the right thing to do. But since we are not ready for Kan extensions yet, there is
another trick we can use: a constant functor Δ from the same category 2 to C. The
selection of c in C can be done with Δc. Remember, Δc maps all objects into c and
all morphisms into idc.

Now we have two functors, Δc and D going between 2 and C so it’s only natural to
ask about natural transformations between them. Since there are only two objects in
2, a natural transformation will have two components. Object 1 in 2 is mapped to c
by Δc and to a by D. So the component of a natural transformation between Δc and
D at 1 is a morphism from c to a. We can call it p. Similarly, the second component
is a morphism q from c to b — the image of the object 2 in 2 under D. But these
are exactly like the two projections we used in our original definition of the product.
So instead of talking about selecting objects and projections, we can just talk about
picking functors and natural transformations. It so happens that in this simple case
the naturality condition for our transformation is trivially satisfied, because there are
no morphisms (other than the identities) in 2.

A generalization of this construction to categories other than 2 — ones that, for
instance, contain non-trivial morphisms — will impose naturality conditions on the
transformation between Δc and D. We call such transformation a cone, because the
image of Δ is the apex of a cone/pyramid whose sides are formed by the components
of the natural transformation. The image of D forms the base of the cone.

In general, to build a cone, we start with a category I that defines the pattern. It’s a
small, often finite category. We pick a functor D from I to C and call it (or its image)
a diagram. We pick some c in C as the apex of our cone. We use it to define the
constant functor Δc from I to C. A natural transformation from Δc to D is then our
cone. For a finite I it’s just a bunch of morphisms connecting c to the diagram: the
image of I under D.

Naturality requires that all triangles (the walls of the pyramid) in this diagram com-
mute. Indeed, take any morphism f in I. The functor D maps it to a morphism D f in
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Figure 56:

C, a morphism that forms the base of some triangle. The constant functor Δc maps
f to the identity morphism on c. Δ squishes the two ends of the morphism into one
object, and the naturality square becomes a commuting triangle. The two arms of this
triangle are the components of the natural transformation.

So that’s one cone. What we are interested in is the universal cone — just like we
picked a universal object for our definition of a product.

There are many ways to go about it. For instance, we may define a category of cones
based on a given functor D. Objects in that category are cones. Not every object c in
C can be an apex of a cone, though, because there may be no natural transformation
between Δc and D.

To make it a category, we also have to define morphisms between cones. These would
be fully determined by morphisms between their apexes. But not just any morphism
will do. Remember that, in our construction of the product, we imposed the condition
that the morphisms between candidate objects (the apexes) must be common factors
for the projections. For instance:

p' = p . m
q' = q . m

This condition translates, in the general case, to the condition that the triangles whose
one side is the factorizing morphism all commute.

We’ll take those factorizing morphisms as the morphisms in our category of cones. It’s
easy to check that those morphisms indeed compose, and that the identity morphism
is a factorizing morphism as well. Cones therefore form a category.

Now we can define the universal cone as the terminal object in the category of cones.
The definition of the terminal object states that there is a unique morphism from any
other object to that object. In our case it means that there is a unique factorizing
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Figure 57:

Figure 58: The commuting triangle connecting two cones, with the factorizing
morphism h (here, the lower cone is the universal one, with Lim D as its apex).

morphism from the apex of any other cone to the apex of the universal cone. We call
this universal cone the limit of the diagram D, Lim D (in the literature, you’ll often
see a left arrow pointing towards I under the Lim sign). Often, as a shorthand, we call
the apex of this cone the limit (or the limit object).

The intuition is that the limit embodies the properties of the whole diagram in a single
object. For instance, the limit of our two-object diagram is the product of two objects.
The product (together with the two projections) contains the information about both
objects. And being universal means that it has no extraneous junk.

13.1 Limit as a Natural Isomorphism

There is still something unsatisfying about this definition of a limit. I mean, it’s
workable, but we still have this commutativity condition for the triangles that are
linking any two cones. It would be so much more elegant if we could replace it with
some naturality condition. But how?

We are no longer dealing with one cone but with a whole collection (in fact, a category)
of cones. If the limit exists (and — let’s make it clear — there’s no guarantee of that),
one of those cones is the universal cone. For every other cone we have a unique
factorizing morphism that maps its apex, let’s call it c, to the apex of the universal
cone, which we named Lim D. (In fact, I can skip the word “other,” because the identity
morphism maps the universal cone to itself and it trivially factorizes through itself.)
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Figure 59:

Let me repeat the important part: given any cone, there is a unique morphism of a
special kind. We have a mapping of cones to special morphisms, and it’s a one-to-one
mapping.

This special morphism is a member of the hom-set C(c, Lim D). The other members
of this hom-set are less fortunate, in the sense that they don’t factorize the mapping
of cones. What we want is to be able to pick, for each c, one morphism from the
set C(c, Lim D) — a morphism that satisfies the particular commutativity condition.
Does that sound like defining a natural transformation? It most certainly does!

But what are the functors that are related by this transformation?

One functor is the mapping of c to the set C(c, Lim D). It’s a functor from C to Set
— it maps objects to sets. In fact it’s a contravariant functor. Here’s how we define
its action on morphisms: Let’s take a morphism f from c' to c:

f :: c' -> c

Our functor maps c' to the set C(c', Lim D). To define the action of this functor on f
(in other words, to lift f), we have to define the corresponding mapping between C(c,
Lim D) and C(c', Lim D). So let’s pick one element u of C(c, Lim D) and see if we
can map it to some element of C(c', Lim D). An element of a hom-set is a morphism,
so we have:

u :: c -> Lim D

We can precompose u with f to get:

u . f :: c' -> Lim D

And that’s an element of C(c', Lim D)— so indeed, we have found a mapping of
morphisms:

contramap :: (c' -> c) -> (c -> Lim D) -> (c' -> Lim D)
contramap f u = u . f
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Notice the inversion in the order of c and c' characteristic of a contravariant functor.

To define a natural transformation, we need another functor that’s also a mapping from
C to Set. But this time we’ll consider a set of cones. Cones are just natural trans-
formations, so we are looking at the set of natural transformations Nat(Δc, D). The
mapping from c to this particular set of natural transformations is a (contravariant)
functor. How can we show that? Again, let’s define its action on a morphism:

f :: c' -> c

The lifting of f should be a mapping of natural transformations between two functors
that go from I to C :

Nat(Δc, D) -> Nat(Δc', D)

How do we map natural transformations? Every natural transformation is a selection
of morphisms — its components — one morphism per element of I. A component of
some � (a member of Nat(Δc, D)) at a (an object in I) is a morphism:

�a :: Δca -> D a

or, using the definition of the constant functor Δ,

�a :: c -> D a

Given f and �, we have to construct a �, a member of Nat(Δc', D). Its component at
a should be a morphism:

�a :: c' -> D a

We can easily get the latter from the former by precomposing it with f:

�a = �a . f

It’s relatively easy to show that those components indeed add up to a natural
transformation.

Given our morphism f, we have thus built a mapping between two natural transfor-
mations, component-wise. This mapping defines contramap for the functor:

c -> Nat(Δc, D)
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What I have just done is to show you that we have two (contravariant) functors from
C to Set. I haven’t made any assumptions — these functors always exist.

Incidentally, the first of these functors plays an important role in category theory,
and we’ll see it again when we talk about Yoneda’s lemma. There is a name for
contravariant functors from any category C to Set: they are called “presheaves.” This
one is called a representable presheaf. The second functor is also a presheaf.

Now that we have two functors, we can talk about natural transformations between
them. So without further ado, here’s the conclusion: A functor D from I to C has a
limit Lim D if and only if there is a natural isomorphism between the two functors I
have just defined:

C(c, Lim D) � Nat(Δc, D)

Let me remind you what a natural isomorphism is. It’s a natural transformation whose
every component is an isomorphism, that is to say an invertible morphism.

I’m not going to go through the proof of this statement. The procedure is pretty
straightforward if not tedious. When dealing with natural transformations, you usually
focus on components, which are morphisms. In this case, since the target of both
functors is Set, the components of the natural isomorphism will be functions. These
are higher order functions, because they go from the hom-set to the set of natural
transformations. Again, you can analyze a function by considering what it does to
its argument: here the argument will be a morphism — a member of C(c, Lim D) —
and the result will be a natural transformation — a member of Nat(Δc, D), or what
we have called a cone. This natural transformation, in turn, has its own components,
which are morphisms. So it’s morphisms all the way down, and if you can keep track
of them, you can prove the statement.

The most important result is that the naturality condition for this isomorphism is
exactly the commutativity condition for the mapping of cones.

As a preview of coming attractions, let me mention that the set Nat(Δc, D) can be
thought of as a hom-set in the functor category; so our natural isomorphism relates
two hom-sets, which points at an even more general relationship called an adjunction.

13.2 Examples of Limits

We’ve seen that the categorical product is a limit of a diagram generated by a simple
category we called 2.
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There is an even simpler example of a limit: the terminal object. The first impulse
would be to think of a singleton category as leading to a terminal object, but the
truth is even starker than that: the terminal object is a limit generated by an empty
category. A functor from an empty category selects no object, so a cone shrinks to just
the apex. The universal cone is the lone apex that has a unique morphism coming to
it from any other apex. You will recognize this as the definition of the terminal object.

The next interesting limit is called the equalizer. It’s a limit generated by a two-element
category with two parallel morphisms going between them (and, as always, the identity
morphisms). This category selects a diagram in C consisting of two objects, a and b,
and two morphisms:

f :: a -> b
g :: a -> b

To build a cone over this diagram, we have to add the apex, c and two projections:

p :: c -> a
q :: c -> b

We have two triangles that must commute:

q = f . p
q = g . p

This tells us that q is uniquely determined by one of these equations, say, q = f . p,
and we can omit it from the picture. So we are left with just one condition:

f . p = g . p

The way to think about it is that, if we restrict our attention to Set, the image of the
function p selects a subset of a. When restricted to this subset, the functions f and g
are equal.

For instance, take a to be the two-dimensional plane parameterized by coordinates x
and y. Take b to be the real line, and take:
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f (x, y) = 2 * y + x
g (x, y) = y - x

The equalizer for these two functions is the set of real numbers (the apex, c) and the
function:

p t = (t, (-2) * t)

Notice that (p t) defines a straight line in the two-dimensional plane. Along this line,
the two functions are equal.

Of course, there are other sets c' and functions p' that may lead to the equality:

f . p' = g . p'

but they all uniquely factor out through p. For instance, we can take the singleton set
() as c' and the function:

p'() = (0, 0)

It’s a good cone, because f (0, 0) = g (0, 0). But it’s not universal, because of the
unique factorization through h:

p' = p . h

with

h () = 0

An equalizer can thus be used to solve equations of the type f x = g x. But it’s
much more general, because it’s defined in terms of objects and morphisms rather
than algebraically.

An even more general idea of solving an equation is embodied in another limit —
the pullback. Here, we still have two morphisms that we want to equate, but this
time their domains are different. We start with a three-object category of the shape:
1->2<-3. The diagram corresponding to this category consists of three objects, a, b,
and c, and two morphisms:
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Figure 64:

f :: a -> b
g :: c -> b

This diagram is often called a cospan.

A cone built on top of this diagram consists of the apex, d, and three morphisms:

p :: d -> a
q :: d -> c
r :: d -> b

Commutativity conditions tell us that r is completely determined by the other mor-
phisms, and can be omitted from the picture. So we are only left with the following
condition:

g . q = f . p

A pullback is a universal cone of this shape.

Again, if you narrow your focus down to sets, you can think of the object d as consisting
of pairs of elements from a and c for which f acting on the first component is equal
to g acting on the second component. If this is still too general, consider the special
case in which g is a constant function, say g _ = 1.23 (assuming that b is a set of
real numbers). Then you are really solving the equation:

f x = 1.23
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In this case, the choice of c is irrelevant (as long as it’s not an empty set), so we
can take it to be a singleton set. The set a could, for instance, be the set of three-
dimensional vectors, and f the vector length. Then the pullback is the set of pairs (v,
()), where v is a vector of length 1.23 (a solution to the equation sqrt (x2+y2+z2)
= 1.23), and () is the dummy element of the singleton set.

But pullbacks have more general applications, also in programming. For instance, con-
sider C++ classes as a category in which morphism are arrows that connect subclasses
to superclasses. We’ll consider inheritance a transitive property, so if C inherits from
B and B inherits from A then we’ll say that C inherits from A (after all, you can pass a
pointer to C where a pointer to A is expected). Also, we’ll assume that C inherits from
C, so we have the identity arrow for every class. This way subclassing is aligned with
subtyping. C++ also supports multiple inheritance, so you can construct a diamond
inheritance diagram with two classes B and C inheriting from A, and a fourth class
D multiply inheriting from B and C. Normally, D would get two copies of A, which is
rarely desirable; but you can use virtual inheritance to have just one copy of A in D.

What would it mean to have D be a pullback in this diagram? It would mean that
any class E that multiply inherits from B and C is also a subclass of D. This is not
directly expressible in C++, where subtyping is nominal (the C++ compiler wouldn’t
infer this kind of class relationship — it would require “duck typing”). But we could
go outside of the subtyping relationship and instead ask whether a cast from E to D
would be safe or not. This cast would be safe if D were the bare-bone combination of
B and C, with no additional data and no overriding of methods. And, of course, there
would be no pullback if there is a name conflict between some methods of B and C.

There’s also a more advanced use of a pullback in type inference. There is often a
need to unify types of two expressions. For instance, suppose that the compiler wants
to infer the type of a function:

twice f x = f (f x)

It will assign preliminary types to all variables and sub-expressions. In particular, it
will assign:

f :: t0
x :: t1
f x :: t2
f (f x) :: t3
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Figure 66: Cocone with a factorizing morphism h connecting two apexes.

from which it will deduce that:

twice :: t0 -> t1 -> t3

It will also come up with a set of constraints resulting from the rules of function
application:

t0 = t1 -> t2 -- because f is applied to x
t0 = t2 -> t3 -- because f is applied to (f x)

These constraints have to be unified by finding a set of types (or type variables) that,
when substituted for the unknown types in both expressions, produce the same type.
One such substitution is:

t1 = t2 = t3 = Int
twice :: (Int -> Int) -> Int -> Int

but, obviously, it’s not the most general one. The most general substitution is obtained
using a pullback. I won’t go into the details, because they are beyond the scope of
this book, but you can convince yourself that the result should be:

twice :: (t -> t) -> t -> t

with t a free type variable.

13.3 Colimits

Just like all constructions in category theory, limits have their dual image in opposite
categories. When you invert the direction of all arrows in a cone, you get a co-cone,
and the universal one of those is called a colimit. Notice that the inversion also affects
the factorizing morphism, which now flows from the universal co-cone to any other
co-cone.

A typical example of a colimit is a coproduct, which corresponds to the diagram
generated by 2, the category we’ve used in the definition of the product.
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Figure 67:

Figure 68:

Both the product and the coproduct embody the essence of a pair of objects, each in
a different way.

Just like the terminal object was a limit, so the initial object is a colimit corresponding
to the diagram based on an empty category.

The dual of the pullback is called the pushout. It’s based on a diagram called a span,
generated by the category 1<-2->3.

13.4 Continuity

I said previously that functors come close to the idea of continuous mappings of cat-
egories, in the sense that they never break existing connections (morphisms). The
actual definition of a continuous functor F from a category C to C’ includes the re-
quirement that the functor preserve limits. Every diagram D in C can be mapped to
a diagram F � D in C’ by simply composing two functors. The continuity condition
for F states that, if the diagram D has a limit Lim D, then the diagram F � D also has
a limit, and it is equal to F (Lim D).

Notice that, because functors map morphisms to morphisms, and compositions to
compositions, an image of a cone is always a cone. A commuting triangle is always
mapped to a commuting triangle (functors preserve composition). The same is true
for the factorizing morphisms: the image of a factorizing morphism is also a factor-
izing morphism. So every functor is almost continuous. What may go wrong is the
uniqueness condition. The factorizing morphism in C’ might not be unique. There
may also be other “better cones” in C’ that were not available in C.

A hom-functor is an example of a continuous functor. Recall that the hom-functor,
C(a, b), is contravariant in the first variable and covariant in the second. In other
words, it’s a functor:
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Cop × C -> Set

When its second argument is fixed, the hom-set functor (which becomes the repre-
sentable presheaf) maps colimits in C to limits in Set; and when its first argument is
fixed, it maps limits to limits.

In Haskell, a hom-functor is the mapping of any two types to a function type, so it’s
just a parameterized function type. When we fix the second parameter, let’s say to
String, we get the contravariant functor:

newtype ToString a = ToString (a -> String)
instance Contravariant ToString where

contramap f (ToString g) = ToString (g . f)

Continuity means that when ToString is applied to a colimit, for instance a coproduct
Either b c, it will produce a limit; in this case a product of two function types:

ToString (Either b c) ~ (b -> String, c -> String)

Indeed, any function of Either b c is implemented as a case statement with the two
cases being serviced by a pair of functions.

Similarly, when we fix the first argument of the hom-set, we get the familiar reader
functor. Its continuity means that, for instance, any function returning a product is
equivalent to a product of functions; in particular:

r -> (a, b) ~ (r -> a, r -> b)

I know what you’re thinking: You don’t need category theory to figure these things
out. And you’re right! Still, I find it amazing that such results can be derived from
first principles with no recourse to bits and bytes, processor architectures, compiler
technologies, or even lambda calculus.

If you’re curious where the names “limit” and “continuity” come from, they are a
generalization of the corresponding notions from calculus. In calculus limits and con-
tinuity are defined in terms of open neighborhoods. Open sets, which define topology,
form a category (a poset).

13.5 Challenges

1. How would you describe a pushout in the category of C++ classes?
2. Show that the limit of the identity functor Id :: C -> C is the initial object.
3. Subsets of a given set form a category. A morphism in that category is defined

to be an arrow connecting two sets if the first is the subset of the second. What
is a pullback of two sets in such a category? What’s a pushout? What are the
initial and terminal objects?

4. Can you guess what a coequalizer is?
5. Show that, in a category with a terminal object, a pullback towards the terminal

object is a product.
6. Similarly, show that a pushout from an initial object (if one exists) is the co-

product.
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Figure 69:

14 Free Monoids

Monoids are an important concept in both category theory and in programming. Cate-
gories correspond to strongly typed languages, monoids to untyped languages. That’s
because in a monoid you can compose any two arrows, just as in an untyped language
you can compose any two functions (of course, you may end up with a runtime error
when you execute your program).

We’ve seen that a monoid may be described as a category with a single object, where
all logic is encoded in the rules of morphism composition. This categorical model is
fully equivalent to the more traditional set-theoretical definition of a monoid, where we
“multiply” two elements of a set to get a third element. This process of “multiplication”
can be further dissected into first forming a pair of elements and then identifying this
pair with an existing element — their “product.”

What happens when we forgo the second part of multiplication — the identification of
pairs with existing elements? We can, for instance, start with an arbitrary set, form
all possible pairs of elements, and call them new elements. Then we’ll pair these new
elements with all possible elements, and so on. This is a chain reaction — we’ll keep
adding new elements forever. The result, an infinite set, will be almost a monoid. But
a monoid also needs a unit element and the law of associativity. No problem, we can
add a special unit element and identify some of the pairs — just enough to support
the unit and associativity laws.

Let’s see how this works in a simple example. Let’s start with a set of two elements,
{a, b}. We’ll call them the generators of the free monoid. First, we’ll add a special
element e to serve as the unit. Next we’ll add all the pairs of elements and call them
“products”. The product of a and b will be the pair (a, b). The product of b and a
will be the pair (b, a), the product of a with a will be (a, a), the product of b with
b will be (b, b). We can also form pairs with e, like (a, e), (e, b), etc., but we’ll
identify them with a, b, etc. So in this round we’ll only add (a, a), (a, b) and (b,
a) and (b, b), and end up with the set {e, a, b, (a, a), (a, b), (b, a), (b,
b)}.

In the next round we’ll keep adding elements like: (a, (a, b)), ((a, b), a), etc. At
this point we’ll have to make sure that associativity holds, so we’ll identify (a, (b,
a)) with ((a, b), a), etc. In other words, we won’t be needing internal parentheses.
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You can guess what the final result of this process will be: we’ll create all possible
lists of as and bs. In fact, if we represent e as an empty list, we can see that our
“multiplication” is nothing but list concatenation.

This kind of construction, in which you keep generating all possible combinations of
elements, and perform the minimum number of identifications — just enough to uphold
the laws — is called a free construction. What we have just done is to construct a free
monoid from the set of generators {a, b}.

14.1 Free Monoid in Haskell

A two-element set in Haskell is equivalent to the type Bool, and the free monoid
generated by this set is equivalent to the type [Bool] (list of Bool). (I am deliberately
ignoring problems with infinite lists.)

A monoid in Haskell is defined by the type class:

class Monoid m where
mempty :: m
mappend :: m -> m -> m

This just says that every Monoid must have a neutral element, which is called mempty,
and a binary function (multiplication) called mappend. The unit and associativity laws
cannot be expressed in Haskell and must be verified by the programmer every time a
monoid is instantiated.

The fact that a list of any type forms a monoid is described by this instance definition:

instance Monoid [a] where
mempty = []
mappend = (++)

It states that an empty list [] is the unit element, and list concatenation (++) is the
binary operation.

As we have seen, a list of type a corresponds to a free monoid with the set a serving
as generators. The set of natural numbers with multiplication is not a free monoid,
because we identify lots of products. Compare for instance:

2 * 3 = 6
[2] ++ [3] = [2, 3] // not the same as [6]

That was easy, but the question is, can we perform this free construction in category
theory, where we are not allowed to look inside objects? We’ll use our workhorse: the
universal construction.

The second interesting question is, can any monoid be obtained from some free monoid
by identifying more than the minimum number of elements required by the laws? I’ll
show you that this follows directly from the universal construction.
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14.2 Free Monoid Universal Construction

If you recall our previous experiences with universal constructions, you might notice
that it’s not so much about constructing something as about selecting an object that
best fits a given pattern. So if we want to use the universal construction to “construct”
a free monoid, we have to consider a whole bunch of monoids from which to pick one.
We need a whole category of monoids to chose from. But do monoids form a category?

Let’s first look at monoids as sets equipped with additional structure defined by unit
and multiplication. We’ll pick as morphisms those functions that preserve the monoidal
structure. Such structure-preserving functions are called homomorphisms. A monoid
homomorphism must map the product of two elements to the product of the mapping
of the two elements:

h (a * b) = h a * h b

and it must map unit to unit.
For instance, consider a homomorphism from lists of integers to integers. If we map
[2] to 2 and [3] to 3, we have to map [2, 3] to 6, because concatenation

[2] ++ [3] = [2, 3]

becomes multiplication

2 * 3 = 6

Now let’s forget about the internal structure of individual monoids, and only look at
them as objects with corresponding morphisms. You get a category Mon of monoids.

Okay, maybe before we forget about internal structure, let us notice an important
property. Every object of Mon can be trivially mapped to a set. It’s just the set
of its elements. This set is called the underlying set. In fact, not only can we map
objects of Mon to sets, but we can also map morphisms of Mon (homomorphisms)
to functions. Again, this seems sort of trivial, but it will become useful soon. This
mapping of objects and morphisms from Mon to Set is in fact a functor. Since
this functor “forgets” the monoidal structure — once we are inside a plain set, we
no longer distinguish the unit element or care about multiplication — it’s called a
forgetful functor. Forgetful functors come up regularly in category theory.

We now have two different views of Mon. We can treat it just like any other category
with objects and morphisms. In that view, we don’t see the internal structure of
monoids. All we can say about a particular object in Mon is that it connects to itself
and to other objects through morphisms. The “multiplication” table of morphisms —
the composition rules — are derived from the other view: monoids-as-sets. By going to
category theory we haven’t lost this view completely — we can still access it through
our forgetful functor.

To apply the universal construction, we need to define a special property that would
let us search through the category of monoids and pick the best candidate for a free
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Figure 70:

monoid. But a free monoid is defined by its generators. Different choices of generators
produce different free monoids (a list of Bool is not the same as a list of Int). Our
construction must start with a set of generators. So we’re back to sets!

That’s where the forgetful functor comes into play. We can use it to X-ray our monoids.
We can identify the generators in the X-ray images of those blobs. Here’s how it works:

We start with a set of generators, x. That’s a set in Set.

The pattern we are going to match consists of a monoid m — an object of Mon —
and a function p in Set:

p :: x -> U m

where U is our forgetful functor from Mon to Set. This is a weird heterogeneous
pattern — half in Mon and half in Set.

The idea is that the function p will identify the set of generators inside the X-ray
image of m. It doesn’t matter that functions may be lousy at identifying points inside
sets (they may collapse them). It will all be sorted out by the universal construction,
which will pick the best representative of this pattern.

We also have to define the ranking among candidates. Suppose we have another
candidate: a monoid n and a function that identifies the generators in its X-ray image:

q :: x -> U n

We’ll say that m is better than n if there is a morphism of monoids (that’s a structure-
preserving homomorphism):

h :: m -> n

whose image under U (remember, U is a functor, so it maps morphisms to functions)
factorizes through p:
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Figure 71:

q = U h . p

If you think of p as selecting the generators in m; and q as selecting “the same” gen-
erators in n; then you can think of h as mapping these generators between the two
monoids. Remember that h, by definition, preserves the monoidal structure. It means
that a product of two generators in one monoid will be mapped to a product of the
corresponding two generators in the second monoid, and so on.

This ranking may be used to find the best candidate — the free monoid. Here’s the
definition:

We’ll say that m (together with the function p) is the free monoid with the generators
x if and only if there is a unique morphism h from m to any other monoid n (together
with the function q) that satisfies the above factorization property.

Incidentally, this answers our second question. The function U h is the one that has
the power to collapse multiple elements of U m to a single element of U n. This collapse
corresponds to identifying some elements of the free monoid. Therefore any monoid
with generators x can be obtained from the free monoid based on x by identifying
some of the elements. The free monoid is the one where only the bare minimum of
identifications have been made.

We’ll come back to free monoids when we talk about adjunctions.

14.3 Challenges

1. You might think (as I did, originally) that the requirement that a homomorphism
of monoids preserve the unit is redundant. After all, we know that for all a

h a * h e = h (a * e) = h a

So h e acts like a right unit (and, by analogy, as a left unit). The problem is that
h a, for all a might only cover a sub-monoid of the target monoid. There may
be a “true” unit outside of the image of h. Show that an isomorphism between
monoids that preserves multiplication must automatically preserve unit.
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2. Consider a monoid homomorphism from lists of integers with concatenation to
integers with multiplication. What is the image of the empty list []? Assume
that all singleton lists are mapped to the integers they contain, that is [3] is
mapped to 3, etc. What’s the image of [1, 2, 3, 4]? How many different
lists map to the integer 12? Is there any other homomorphism between the two
monoids?

3. What is the free monoid generated by a one-element set? Can you see what it’s
isomorphic to?
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15 Representable Functors
It’s about time we had a little talk about sets. Mathematicians have a love/hate
relationship with set theory. It’s the assembly language of mathematics — at least it
used to be. Category theory tries to step away from set theory, to some extent. For
instance, it’s a known fact that the set of all sets doesn’t exist, but the category of
all sets, Set, does. So that’s good. On the other hand, we assume that morphisms
between any two objects in a category form a set. We even called it a hom-set. To be
fair, there is a branch of category theory where morphisms don’t form sets. Instead
they are objects in another category. Those categories that use hom-objects rather
than hom-sets, are called enriched categories. In what follows, though, we’ll stick to
categories with good old-fashioned hom-sets.

A set is the closest thing to a featureless blob you can get outside of categorical objects.
A set has elements, but you can’t say much about these elements. If you have a finite
set, you can count the elements. You can kind of count the elements of an inifinite set
using cardinal numbers. The set of natural numbers, for instance, is smaller than the
set of real numbers, even though both are infinite. But, maybe surprisingly, a set of
rational numbers is the same size as the set of natural numbers.

Other than that, all the information about sets can be encoded in functions between
them — especially the invertible ones called isomorphisms. For all intents and pur-
poses isomorphic sets are identical. Before I summon the wrath of foundational math-
ematicians, let me explain that the distinction between equality and isomorphism is
of fundamental importance. In fact it is one of the main concerns of the latest branch
of mathematics, the Homotopy Type Theory (HoTT). I’m mentioning HoTT because
it’s a pure mathematical theory that takes inspiration from computation, and one of
its main proponents, Vladimir Voevodsky, had a major epiphany while studying the
Coq theorem prover. The interaction between mathematics and programming goes
both ways.

The important lesson about sets is that it’s okay to compare sets of unlike elements.
For instance, we can say that a given set of natural transformations is isomorphic
to some set of morphisms, because a set is just a set. Isomorphism in this case just
means that for every natural transformation from one set there is a unique morphism
from the other set and vice versa. They can be paired against each other. You can’t
compare apples with oranges, if they are objects from different categories, but you
can compare sets of apples against sets of oranges. Often transforming a categorical
problem into a set-theoretical problem gives us the necessary insight or even lets us
prove valuable theorems.

15.1 The Hom Functor

Every category comes equipped with a canonical family of mappings to Set. Those
mappings are in fact functors, so they preserve the structure of the category. Let’s
build one such mapping.

Let’s fix one object a in C and pick another object x also in C. The hom-set C(a, x)
is a set, an object in Set. When we vary x, keeping a fixed, C(a, x) will also vary in
Set. Thus we have a mapping from x to Set.
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Figure 72:

If we want to stress the fact that we are considering the hom-set as a mapping in its
second argument, we use the notation:

C(a, -)

with the dash serving as the placeholder for the argument.

This mapping of objects is easily extended to the mapping of morphisms. Let’s take
a morphism f in C between two arbitrary objects x and y. The object x is mapped
to the set C(a, x), and the object y is mapped to C(a, y), under the mapping we
have just defined. If this mapping is to be a functor, f must be mapped to a function
between the two sets:

C(a, x) -> C(a, y)

Let’s define this function point-wise, that is for each argument separately. For the
argument we should pick an arbitrary element of C(a, x) — let’s call it h. Morphisms
are composable, if they match end to end. It so happens that the target of h matches
the source of f, so their composition:

f � h :: a -> y

is a morphism going from a to y. It is therefore a member of C(a, y).

We have just found our function from C(a, x) to C(a, y), which can serve as the
image of f. If there is no danger of confusion, we’ll write this lifted function as:

C(a, f)

and its action on a morphism h as:

C(a, f) h = f � h
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Figure 73:

Since this construction works in any category, it must also work in the category of
Haskell types. In Haskell, the hom-functor is better known as the Reader functor:

type Reader a x = a -> x

instance Functor (Reader a) where
fmap f h = f . h

Now let’s consider what happens if, instead of fixing the source of the hom-set, we fix
the target. In other words, we’re asking the question if the mapping

C(-, a)

is also a functor. It is, but instead of being covariant, it’s contravariant. That’s because
the same kind of matching of morphisms end to end results in postcomposition by f;
rather than precomposition, as was the case with C(a, -).

We have already seen this contravariant functor in Haskell. We called it Op:

type Op a x = x -> a

instance Contravariant (Op a) where
contramap f h = h . f

Finally, if we let both objects vary, we get a profunctor C(-, =), which is contravariant
in the first argument and covariant in the second (to underline the fact that the two
arguments may vary independently, we use a double dash as the second placeholder).
We have seen this profunctor before, when we talked about functoriality:

instance Profunctor (->) where
dimap ab cd bc = cd . bc . ab
lmap = flip (.)
rmap = (.)
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The important lesson is that this observation holds in any category: the mapping of
objects to hom-sets is functorial. Since contravariance is equivalent to a mapping from
the opposite category, we can state this fact succintly as:

C(-, =) :: Cop × C -> Set

15.2 Representable Functors

We’ve seen that, for every choice of an object a in C, we get a functor from C to Set.
This kind of structure-preserving mapping to Set is often called a representation. We
are representing objects and morphisms of C as sets and functions in Set.

The functor C(a, -) itself is sometimes called representable. More generally, any
functor F that is naturally isomorphic to the hom-functor, for some choice of a, is
called representable. Such functor must necessarily be Set-valued, since C(a, -) is.

I said before that we often think of isomorphic sets as identical. More generally,
we think of isomorphic objects in a category as identical. That’s because objects
have no structure other than their relation to other objects (and themselves) through
morphisms.

For instance, we’ve previously talked about the category of monoids, Mon, that was
initially modeled with sets. But we were careful to pick as morphisms only those
functions that preserved the monoidal structure of those sets. So if two objects in
Mon are isomorphic, meaning there is an invertible morphism between them, they
have exactly the same structure. If we peeked at the sets and functions that they were
based upon, we’d see that the unit element of one monoid was mapped to the unit
element of another, and that a product of two elements was mapped to the product
of their mappings.

The same reasoning can be applied to functors. Functors between two categories
form a category in which natural transformations play the role of morphisms. So two
functors are isomorphic, and can be thought of as identical, if there is an invertible
natural transformation between them.

Let’s analyze the definition of the representable functor from this perspective. For F to
be representable we require that: There be an object a in C ; one natural transformation
� from C(a, -) to F; another natural transformation, �, in the opposite direction; and
that their composition be the identity natural transformation.

Let’s look at the component of � at some object x. It’s a function in Set:

�x :: C(a, x) -> F x

The naturality condition for this transformation tells us that, for any morphism f from
x to y, the following diagram commutes:

F f � �x = �y � C(a, f)

In Haskell, we would replace natural transformations with polymorphic functions:
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alpha :: forall x. (a -> x) -> F x

with the optional forall quantifier. The naturality condition

fmap f . alpha = alpha . fmap f

is automatically satisfied due to parametricity (it’s one of those theorems for free I
mentioned earlier), with the understanding that fmap on the left is defined by the
functor F, whereas the one on the right is defined by the reader functor. Since fmap
for reader is just function precomposition, we can be even more explicit. Acting on h,
an element of C(a, x), the naturality condition simplifies to:

fmap f (alpha h) = alpha (f . h)

The other transformation, beta, goes the opposite way:

beta :: forall x. F x -> (a -> x)

It must respect naturality conditions, and it must be the inverse of �:

� � � = id = � � �

We will see later that a natural transformation from C(a, -) to any Set-valued functor
always exists (Yoneda’s lemma) but it is not necessarily invertible.

Let me give you an example in Haskell with the list functor and Int as a. Here’s a
natural transformation that does the job:

alpha :: forall x. (Int -> x) -> [x]
alpha h = map h [12]

I have arbitrarily picked the number 12 and created a singleton list with it. I can then
fmap the function h over this list and get a list of the type returned by h. (There are
actually as many such transformations as there are list of integers.)

The naturality condition is equivalent to the composability of map (the list version of
fmap):

map f (map h [12]) = map (f . h) [12]

But if we tried to find the inverse transformation, we would have to go from a list of
arbitrary type x to a function returning x:

beta :: forall x. [x] -> (Int -> x)
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You might think of retrieving an x from the list, e.g., using head, but that won’t work
for an empty list. Notice that there is no choice for the type a (in place of Int) that
would work here. So the list functor is not representable.

Remember when we talked about Haskell (endo-) functors being a little like containers?
In the same vein we can think of representable functors as containers for storing mem-
oized results of function calls (the members of hom-sets in Haskell are just functions).
The representing object, the type a in C(a, -), is thought of as the key type, with
which we can access the tabulated values of a function. The transformation we called
� is called tabulate, and its inverse, �, is called index. Here’s a (slightly simplified)
Representable class definition:

class Representable f where
type Rep f :: *
tabulate :: (Rep f -> x) -> f x
index :: f x -> Rep f -> x

Notice that the representing type, our a, which is called Rep f here, is part of the
definition of Representable. The star just means that Rep f is a type (as opposed to
a type constructor, or other more exotic kinds).

Infinite lists, or streams, which cannot be empty, are representable.

data Stream x = Cons x (Stream x)

You can think of them as memoized values of a function taking an Integer as an
argument. (Strictly speaking, I should be using non-negative natural numbers, but I
didn’t want to complicate the code.)

To tabulate such a function, you create an infinite stream of values. Of course, this
is only possible because Haskell is lazy. The values are evaluated on demand. You
access the memoized values using index:

instance Representable Stream where
type Rep Stream = Integer
tabulate f = Cons (f 0) (tabulate (f . (+1)))
index (Cons b bs) n = if n == 0 then b else index bs (n - 1)

It’s interesting that you can implement a single memoization scheme to cover a whole
family of functions with arbitrary return types.

Representability for contravariant functors is similarly defined, except that we keep
the second argument of C(-, a) fixed. Or, equivalently, we may consider functors
from Cop to Set, because Cop(a, -) is the same as C(-, a).

There is an interesting twist to representability. Remember that hom-sets can inter-
nally be treated as exponential objects, in cartesian closed categories. The hom-set
C(a, x) is equivalent to xa, and for a representable functor F we can write:

-a = F
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Let’s take the logarithm of both sides, just for kicks:

a = log F

Of course, this is a purely formal transformation, but if you know some of the properties
of logarithms, it is quite helpful. In particular, it turns out that functors that are based
on product types can be represented with sum types, and that sum-type functors are
not in general representable (example: the list functor).

Finally, notice that a representable functor gives us two different implementations
of the same thing — one a function, one a data structure. They have exactly the
same content — the same values are retrieved using the same keys. That’s the sense
of “sameness” I was talking about. Two naturally isomorphic functors are identical
as far as their contents are involved. On the other hand, the two representations
are often implemented differently and may have different performance characteristics.
Memoization is used as a performance enhancement and may lead to substantially
reduced run times. Being able to generate different representations of the same under-
lying computation is very valuable in practice. So, surprisingly, even though it’s not
concerned with performance at all, category theory provides ample opportunities to
explore alternative implementations that have practical value.

15.3 Challenges

1. Show that the hom-functors map identity morphisms in C to corresponding
identity functions in Set.

2. Show that Maybe is not representable.
3. Is the Reader functor representable?
4. Using Stream representation, memoize a function that squares its argument.
5. Show that tabulate and index for Stream are indeed the inverse of each other.

(Hint: use induction.)
6. The functor:

Pair a = Pair a a

is representable. Can you guess the type that represents it? Implement tabulate
and index.
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16 The Yoneda Lemma

Most constructions in category theory are generalizations of results from other more
specific areas of mathematics. Things like products, coproducts, monoids, exponen-
tials, etc., have been known long before category theory. They might have been known
under different names in different branches of mathematics. A cartesian product in set
theory, a meet in order theory, a conjunction in logic — they are all specific examples
of the abstract idea of a categorical product.

The Yoneda lemma stands out in this respect as a sweeping statement about categories
in general with little or no precedent in other branches of mathematics. Some say that
its closest analog is Cayley’s theorem in group theory (every group is isomorphic to a
permutation group of some set).

The setting for the Yoneda lemma is an arbitrary category C together with a functor
F from C to Set. We’ve seen in the previous section that some Set-valued func-
tors are representable, that is isomorphic to a hom-functor. The Yoneda lemma tells
us that all Set-valued functors can be obtained from hom-functors through natural
transformations, and it explicitly enumerates all such transformations.

When I talked about natural transformations, I mentioned that the naturality condi-
tion can be quite restrictive. When you define a component of a natural transformation
at one object, naturality may be strong enough to “transport” this component to an-
other object that is connected to it through a morphism. The more arrows between
objects in the source and the target categories there are, the more constraints you
have for transporting the components of natural transformations. Set happens to be
a very arrow-rich category.

The Yoneda lemma tells us that a natural transformation between a hom-functor and
any other functor F is completely determined by specifying the value of its single
component at just one point! The rest of the natural transformation just follows from
naturality conditions.

So let’s review the naturality condition between the two functors involved in the
Yoneda lemma. The first functor is the hom-functor. It maps any object x in C
to the set of morphisms C(a, x) — for a a fixed object in C. We’ve also seen that it
maps any morphism f from x to y to C(a, f).

The second functor is an arbitrary Set-valued functor F.

Let’s call the natural transformation between these two functors �. Because we are
operating in Set, the components of the natural transformation, like �x or �y, are just
regular functions between sets:

�x :: C(a, x) -> F x
�y :: C(a, y) -> F y

And because these are just functions, we can look at their values at specific points.
But what’s a point in the set C(a, x)? Here’s the key observation: Every point in the
set C(a, x) is also a morphism h from a to x.

So the naturality square for �:
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Figure 74:

Figure 75:

�y � C(a, f) = F f � �x

becomes, point-wise, when acting on h:

�y (C(a, f) h) = (F f) (�x h)

You might recall from the previous section that the action of the hom-functor C(a,-)
on a morphism f was defined as precomposition:

C(a, f) h = f � h

which leads to:

�y (f � h) = (F f) (�x h)

Just how strong this condition is can be seen by specializing it to the case of x equal
to a.

In that case h becomes a morphism from a to a. We know that there is at least one
such morphism, h = ida. Let’s plug it in:
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Figure 76:

�y f = (F f) (�a ida)

Notice what has just happened: The left hand side is the action of �y on an arbitrary
element f of C(a, y). And it is totally determined by the single value of �a at ida.
We can pick any such value and it will generate a natural transformation. Since the
values of �a are in the set F a, any point in F a will define some �.

Conversely, given any natural transformation � from C(a, -) to F, you can evaluate it
at ida to get a point in F a.

We have just proven the Yoneda lemma:

There is a one-to-one correspondence between natural transformations from C(a, -)
to F and elements of F a.

in other words,

Nat(C(a, -), F) � F a

Or, if we use the notation [C, Set] for the functor category between C and Set, the
set of natural transformation is just a hom-set in that category, and we can write:

[C, Set](C(a, -), F) � F a

I’ll explain later how this correspondence is in fact a natural isomorphism.

Now let’s try to get some intuition about this result. The most amazing thing is that
the whole natural transformation crystallizes from just one nucleation site: the value
we assign to it at ida. It spreads from that point following the naturality condition.
It floods the image of C in Set. So let’s first consider what the image of C is under
C(a, -).

Let’s start with the image of a itself. Under the hom-functor C(a, -), a is mapped
to the set C(a, a). Under the functor F, on the other hand, it is mapped to the set
F a. The component of the natural transformation �a is some function from C(a, a)
to F a. Let’s focus on just one point in the set C(a, a), the point corresponding to
the morphism ida. To emphasize the fact that it’s just a point in a set, let’s call it p.
The component �a should map p to some point q in F a. I’ll show you that any choice
of q leads to a unique natural transformation.
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Figure 77:

The first claim is that the choice of one point q uniquely determines the rest of the
function �a. Indeed, let’s pick any other point, p' in C(a, a), corresponding to some
morphism g from a to a. And here’s where the magic of the Yoneda lemma happens:
g can be viewed as a point p' in the set C(a, a). At the same time, it selects two
functions between sets. Indeed, under the hom-functor, the morphism g is mapped to
a function C(a, g); and under F it’s mapped to F g.

Now let’s consider the action of C(a, g) on our original p which, as you remember,
corresponds to ida. It is defined as precomposition, g�ida, which is equal to g, which
corresponds to our point p'. So the morphism g is mapped to a function that, when
acting on p produces p', which is g. We have come full circle!

Now consider the action of F g on q. It is some q', a point in F a. To complete the
naturality square, p' must be mapped to q' under �a. We picked an arbitrary p' (an
arbitrary g) and derived its mapping under �a. The function �a is thus completely
determined.

The second claim is that �x is uniquely determined for any object x in C that is
connected to a. The reasoning is analogous, except that now we have two more sets,
C(a, x) and F x, and the morphism g from a to x is mapped, under the hom-functor,
to:

C(a, g) :: C(a, a) -> C(a, x)

and under F to:

F g :: F a -> F x

Again, C(a, g) acting on our p is given by the precomposition: g � ida, which corre-
sponds to a point p' in C(a, x). Naturality determines the value of �x acting on p'
to be:

q' = (F g) q

Since p' was arbitrary, the whole function �x is thus determined.

What if there are objects in C that have no connection to a? They are all mapped
under C(a, -) to a single set — the empty set. Recall that the empty set is the initial
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Figure 78:

object in the category of sets. It means that there is a unique function from this set
to any other set. We called this function absurd. So here, again, we have no choice
for the component of the natural transformation: it can only be absurd.

One way of understanding the Yoneda lemma is to realize that natural transforma-
tions between Set-valued functors are just families of functions, and functions are in
general lossy. A function may collapse information and it may cover only parts of
its codomain. The only functions that are not lossy are the ones that are invertible
— the isomorphisms. It follows then that the best structure-preserving Set-valued
functors are the representable ones. They are either the hom-functors or the functors
that are naturally isomorphic to hom-functors. Any other functor F is obtained from
a hom-functor through a lossy transformation. Such a transformation may not only
lose information, but it may also cover only a small part of the image of the functor F
in Set.

16.1 Yoneda in Haskell

We have already encountered the hom-functor in Haskell under the guise of the reader
functor:

type Reader a x = a -> x

The reader maps morphisms (here, functions) by precomposition:

instance Functor (Reader a) where
fmap f h = f . h

The Yoneda lemma tells us that the reader functor can be naturally mapped to any
other functor.

A natural transformation is a polymorphic function. So given a functor F, we have a
mapping to it from the reader functor:

alpha :: forall x . (a -> x) -> F x
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As usual, forall is optional, but I like to write it explicitly to emphasize parametric
polymorphism of natural transformations.

The Yoneda lemma tells us that these natural transformations are in one-to-one cor-
respondence with the elements of F a:

forall x . (a -> x) -> F x � F a

The right hand side of this identity is what we would normally consider a data structure.
Remember the interpretation of functors as generalized containers? F a is a container
of a. But the left hand side is a polymorphic function that takes a function as an
argument. The Yoneda lemma tells us that the two representations are equivalent —
they contain the same information.

Another way of saying this is: Give me a polymorphic function of the type:

alpha :: forall x . (a -> x) -> F x

and I’ll produce a container of a. The trick is the one we used in the proof of the
Yoneda lemma: we call this function with id to get an element of F a:

alpha id :: F a

The converse is also true: Given a value of the type F a:

fa :: F a

one can define a polymorphic function:

alpha h = fmap h fa

of the correct type. You can easily go back and forth between the two representations.

The advantage of having multiple representations is that one might be easier to com-
pose than the other, or that one might be more efficient in some applications than the
other.

The simplest illustration of this principle is the code transformation that is often used
in compiler construction: the continuation passing style or CPS. It’s the simplest
application of the Yoneda lemma to the identity functor. Replacing F with identity
produces:

forall r . (a -> r) -> r � a
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The interpretation of this formula is that any type a can be replaced by a function
that takes a “handler” for a. A handler is a function accepting a and performing the
rest of the computation — the continuation. (The type r usually encapsulates some
kind of status code.)

This style of programming is very common in UIs, in asynchronous systems, and
in concurrent programming. The drawback of CPS is that it involves inversion of
control. The code is split between producers and consumers (handlers), and is not
easily composable. Anybody who’s done any amount of nontrivial web programming
is familiar with the nightmare of spaghetti code from interacting stateful handlers. As
we’ll see later, judicious use of functors and monads can restore some compositional
properties of CPS.

16.2 Co-Yoneda

As usual, we get a bonus construction by inverting the direction of arrows. The
Yoneda lemma can be applied to the opposite category Cop to give us a mapping
between contravariant functors.

Equivalently, we can derive the co-Yoneda lemma by fixing the target object of our
hom-functors instead of the source. We get the contravariant hom-functor from C
to Set: C(-, a). The contravariant version of the Yoneda lemma establishes one-to-
one correspondence between natural transformations from this functor to any other
contravariant functor F and the elements of the set F a:

Nat(C(-, a), F) � F a

Here’s the Haskell version of the co-Yoneda lemma:

forall x . (x -> a) -> F x � F a

Notice that in some literature it’s the contravariant version that’s called the Yoneda
lemma.

16.3 Challenges

1. Show that the two functions phi and psi that form the Yoneda isomorphism in
Haskell are inverses of each other.

phi :: (forall x . (a -> x) -> F x) -> F a
phi alpha = alpha id

psi :: F a -> (forall x . (a -> x) -> F x)
psi fa h = fmap h fa

2. A discrete category is one that has objects but no morphisms other than iden-
tity morphisms. How does the Yoneda lemma work for functors from such a
category?
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3. A list of units [()] contains no other information but its length. So, as a data
type, it can be considered an encoding of integers. An empty list encodes zero, a
singleton [()] (a value, not a type) encodes one, and so on. Construct another
representation of this data type using the Yoneda lemma for the list functor.

16.4 Bibliography

1. Catsters video
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17 Yoneda Embedding

We’ve seen previously that, when we fix an object a in the category C, the mapping
C(a, -) is a (covariant) functor from C to Set.

x -> C(a, x)

(The codomain is Set because the hom-set C(a, x) is a set.) We call this mapping a
hom-functor — we have previously defined its action on morphisms as well.

Now let’s vary a in this mapping. We get a new mapping that assigns the hom-functor
C(a, -) to any a.

a -> C(a, -)

It’s a mapping of objects from category C to functors, which are objects in the functor
category (see the section about functor categories in Natural Transformations). Let’s
use the notation [C, Set] for the functor category from C to Set. You may also recall
that hom-functors are the prototypical representable functors.

Every time we have a mapping of objects between two categories, it’s natural to ask
if such a mapping is also a functor. In other words whether we can lift a morphism
from one category to a morphism in the other category. A morphism in C is just an
element of C(a, b), but a morphism in the functor category [C, Set] is a natural
transformation. So we are looking for a mapping of morphisms to natural transforma-
tions.

Let’s see if we can find a natural transformation corresponding to a morphism f ::
a->b. First, lets see what a and b are mapped to. They are mapped to two functors:
C(a, -) and C(b, -). We need a natural transformation between those two functors.

And here’s the trick: we use the Yoneda lemma:

[C, Set](C(a, -), F) � F a

and replace the generic F with the hom-functor C(b, -). We get:

[C, Set](C(a, -), C(b, -)) � C(b, a)

This is exactly the natural transformation between the two hom-functors we were look-
ing for, but with a little twist: We have a mapping between a natural transformation
and a morphism — an element of C(b, a) — that goes in the “wrong” direction. But
that’s okay; it only means that the functor we are looking at is contravariant.

Actually, we’ve got even more than we bargained for. The mapping from C to [C,
Set] is not only a contravariant functor — it is a fully faithful functor. Fullness and
faithfulness are properties of functors that describe how they map hom-sets.

A faithful functor is injective on hom-sets, meaning that it maps distinct morphisms
to distinct morphisms. In other words, it doesn’t coalesce them.
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Figure 79:

Figure 80:

A full functor is surjective on hom-sets, meaning that it maps one hom-set onto the
other hom-set, fully covering the latter.

A fully faithful functor F is a bijection on hom-sets — a one to one matching of all
elements of both sets. For every pair of objects a and b in the source category C there
is a bijection between C(a, b) and D(F a, F b), where D is the target category of F
(in our case, the functor category, [C, Set]). Notice that this doesn’t mean that F is
a bijection on objects. There may be objects in D that are not in the image of F, and
we can’t say anything about hom-sets for those objects.

17.1 The Embedding

The (contravariant) functor we have just described, the functor that maps objects in
C to functors in [C, Set]:

a -> C(a, -)

defines the Yoneda embedding. It embeds a category C (strictly speaking, the category
Cop, because of contravariance) inside the functor category [C, Set]. It not only maps
objects in C to functors, but also faithfully preserves all connections between them.
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This is a very useful result because mathematicians know a lot about the category of
functors, especially functors whose codomain is Set. We can get a lot of insight about
an arbitrary category C by embedding it in the functor category.

Of course there is a dual version of the Yoneda embedding, sometimes called the co-
Yoneda embedding. Observe that we could have started by fixing the target object
(rather than the source object) of each hom-set, C(-, a). That would give us a
contravariant hom-functor. Contravariant functors from C to Set are our familiar
presheaves (see, for instance, Limits and Colimits). The co-Yoneda embedding defines
the embedding of a category C in the category of presheaves. Its action on morphisms
is given by:

[C, Set](C(-, a), C(-, b)) � C(a, b)

Again, mathematicians know a lot about the category of presheaves, so being able to
embed an arbitrary category in it is a big win.

17.2 Application to Haskell

In Haskell, the Yoneda embedding can be represented as the isomorphism between
natural transformations amongst reader functors on the one hand, and functions (going
in the opposite direction) on the other hand:

forall x. (a -> x) -> (b -> x) � b -> a

(Remember, the reader functor is equivalent to ((->) a).)

The left hand side of this identity is a polymorphic function that, given a function
from a to x and a value of type b, can produce a value of type x (I’m uncurrying —
dropping the parentheses around — the function b -> x). The only way this can be
done for all x is if our function knows how to convert a b to an a. It has to secretly
have access to a function b->a.

Given such a converter, btoa, one can define the left hand side, call itfromY, as:

fromY :: (a -> x) -> b -> x
fromY f b = f (btoa b)

Conversely, given a function fromY we can recover the converter by calling fromY with
the identity:

fromY id :: b -> a

This establishes the bijection between functions of the type fromY and btoa.

An alternative way of looking at this isomorphism is that it’s a CPS encoding of a
function from b to a. The argument a->x is a continuation (the handler). The result
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is a function from b to x which, when called with a value of type b, will execute the
continuation precomposed with the function being encoded.

The Yoneda embedding also explains some of the alternative representations of data
structures in Haskell. In particular, it provides a very useful representation of lenses
from the Control.Lens library.

17.3 Preorder Example

This example was suggested by Robert Harper. It’s the application of the Yoneda
embedding to a category defined by a preorder. A preorder is a set with an ordering
relation between its elements that’s traditionally written as <= (less than or equal). The
“pre” in preorder is there because we’re only requiring the relation to be transitive and
reflexive but not necessarily antisymmetric (so it’s possible to have cycles).

A set with the preorder relation gives rise to a category. The objects are the elements
of this set. A morphism from object a to b either doesn’t exist, if the objects cannot
be compared or if it’s not true that a <= b; or it exists if a <= b, and it points from a
to b. There is never more than one morphism from one object to another. Therefore
any hom-set in such a category is either an empty set or a one-element set. Such a
category is called thin.

It’s easy to convince yourself that this construction is indeed a category: The arrows
are composable because, if a <= b and b <= c then a <= c; and the composition is
associative. We also have the identity arrows because every element is (less than or)
equal to itself (reflexivity of the underlying relation).

We can now apply the co-Yoneda embedding to a preorder category. In particular,
we’re interested in its action on morphisms:

[C, Set](C(-, a), C(-, b)) � C(a, b)

The hom-set on the right hand side is non-empty if and only if a <= b — in which
case it’s a one-element set. Consequently, if a <= b, there exists a single natural
transformation on the left. Otherwise there is no natural transformation.

So what’s a natural transformation between hom-functors in a preorder? It should be
a family of functions between sets C(-, a) and C(-, b). In a preorder, each of these
sets can either be empty or a singleton. Let’s see what kind of functions are there at
our disposal.

There is a function from an empty set to itself (the identity acting on an empty set),
a function absurd from an empty set to a singleton set (it does nothing, since it only
needs to be defined for elements of an empty set, of which there are none), and a
function from a singleton to itself (the identity acting on a one-element set). The only
combination that is forbidden is the mapping from a singleton to an empty set (what
would the value of such a function be when acting on the single element?).

So our natural transformation will never connect a singleton hom-set to an empty
hom-set. In other words, if x <= a (singleton hom-set C(x, a)) then C(x, b) cannot
be empty. A non-empty C(x, b) means that x is less or equal to b. So the existence
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of the natural transformation in question requires that, for every x, if x <= a then x
<= b.

for all x, x � a � x � b

On the other hand, co-Yoneda tells us that the existence of this natural transformation
is equivalent to C(a, b) being non-empty, or to a <= b. Together, we get:

a � b if and only if for all x, x � a � x � b

We could have arrived at this result directly. The intuition is that, if a <= b then all
elements that are below a must also be below b. Conversely, when you substitute a
for x on the right hand side, it follows that a <= b. But you must admit that arriving
at this result through the Yoneda embedding is much more exciting.

17.4 Naturality

The Yoneda lemma establishes the isomorphism between the set of natural transfor-
mations and an object in Set. Natural transformations are morphisms in the functor
category [C, Set]. The set of natural transformation between any two functors is a
hom-set in that category. The Yoneda lemma is the isomorphism:

[C, Set](C(a, -), F) � F a

This isomorphism turns out to be natural in both F and a. In other words, it’s natural
in (F, a), a pair taken from the product category [C, Set] × C. Notice that we are
now treating F as an object in the functor category.

Let’s think for a moment what this means. A natural isomorphism is an invertible
natural transformation between two functors. And indeed, the right hand side of our
isomorphism is a functor. It’s a functor from [C, Set] × C to Set. Its action on a
pair (F, a) is a set — the result of evaluating the functor F at the object a. This is
called the evaluation functor.

The left hand side is also a functor that takes (F, a) to a set of natural transformations
[C, Set](C(a, -), F).

To show that these are really functors, we should also define their action on morphisms.
But what’s a morphism between a pair (F, a) and (G, b)? It’s a pair of morphisms,
(Φ, f); the first being a morphism between functors — a natural transformation —
the second being a regular morphism in C.

The evaluation functor takes this pair (Φ, f) and maps it to a function between two
sets, F a and G b. We can easily construct such a function from the component of Φ
at a (which maps F a to G a) and the morphism f lifted by G:

(G f) � Φa
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Notice that, because of naturality of Φ, this is the same as:

Φb � (F f)

I’m not going to prove the naturality of the whole isomorphism — after you’ve estab-
lished what the functors are, the proof is pretty mechanical. It follows from the fact
that our isomorphism is built up from functors and natural transformations. There is
simply no way for it to go wrong.

17.5 Challenges

1. Express the co-Yoneda embedding in Haskell.
2. Show that the bijection we established between fromY and btoa is an isomor-

phism (the two mappings are the inverse of each other).
3. Work out the Yoneda embedding for a monoid. What functor corresponds to

the monoid’s single object? What natural transformations correspond to monoid
morphisms?

4. What is the application of the covariant Yoneda embedding to preorders? (Ques-
tion suggested by Gershom Bazerman.)

5. Yoneda embedding can be used to embed an arbitrary functor category [C, D]
in the functor category [[C, D], Set]. Figure out how it works on morphisms
(which in this case are natural transformations).
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18 It’s All About Morphisms

If I haven’t convinced you yet that category theory is all about morphisms then I
haven’t done my job properly. Since the next topic is adjunctions, which are defined
in terms of isomorphisms of hom-sets, it makes sense to review our intuitions about the
building blocks of hom-sets. Also, you’ll see that adjunctions provide a more general
language to describe a lot of constructions we’ve studied before, so it might help to
review them too.

18.1 Functors

To begin with, you should really think of functors as mappings of morphisms — the
view that’s emphasized in the Haskell definition of the Functor typeclass, which re-
volves around fmap. Of course, functors also map objects — the endpoints of mor-
phisms — otherwise we wouldn’t be able to talk about preserving composition. Ob-
jects tell us which pairs of morphisms are composable. The target of one morphism
must be equal to the source of the other — if they are to be composed. So if we want
the composition of morphisms to be mapped to the composition of lifted morphisms,
the mapping of their endpoints is pretty much determined.

18.2 Commuting Diagrams

A lot of properties of morphisms are expressed in terms of commuting diagrams. If a
particular morphism can be described as a composition of other morphisms in more
than one way, then we have a commuting diagram.

In particular, commuting diagrams form the basis of almost all universal constructions
(with the notable exceptions of the initial and terminal objects). We’ve seen this in
the definitions of products, coproducts, various other (co-)limits, exponential objects,
free monoids, etc.

The product is a simple example of a universal construction. We pick two objects a
and b and see if there exists an object c, together with a pair of morphisms p and q,
that has the universal property of being their product.

A product is a special case of a limit. A limit is defined in terms of cones. A general
cone is built from commuting diagrams. Commutativity of those diagrams may be
replaced with a suitable naturality condition for the mapping of functors. This way
commutativity is reduced to the role of the assembly language for the higher level
language of natural transformations.

18.3 Natural Transformations

In general, natural transformations are very convenient whenever we need a mapping
from morphisms to commuting squares. Two opposing sides of a naturality square are
the mappings of some morphism f under two functors F and G. The other sides are
the components of the natural transformation (which are also morphisms).
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Figure 81:

Figure 82:

Naturality means that when you move to the “neighboring” component (by neighbor-
ing I mean connected by a morphism), you’re not going against the structure of either
the category or the functors. It doesn’t matter whether you first use a component
of the natural transformation to bridge the gap between objects, and then jump to
its neighbor using the functor; or the other way around. The two directions are or-
thogonal. A natural transformation moves you left and right, and the functors move
you up and down or back and forth — so to speak. You can visualize the image of
a functor as a sheet in the target category. A natural transformation maps one such
sheet corresponding to F, to another, corresponding to G.

We’ve seen examples of this orthogonality in Haskell. There the action of a functor
modifies the content of a container without changing its shape, while a natural trans-
formation repackages the untouched contents into a different container. The order of
these operations doesn’t matter.

We’ve seen the cones in the definition of a limit replaced by natural transformations.
Naturality ensures that the sides of every cone commute. Still, a limit is defined in
terms of mappings between cones. These mappings must also satisfy commutativity
conditions. (For instance, the triangles in the definition of the product must commute.)

These conditions, too, may be replaced by naturality. You may recall that the universal
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Figure 83:

cone, or the limit, is defined as a natural transformation between the (contravariant)
hom-functor:

F :: c -> C(c, Lim D)

and the (also contravariant) functor that maps objects in C to cones, which themselves
are natural transformations:

G :: c -> Nat(Δc, D)

Here, Δc is the constant functor, and D is the functor that defines the diagram in C.
Both functors F and G have well defined actions on morphisms in C. It so happens that
this particular natural transformation between F and G is an isomorphism.

18.4 Natural Isomorphisms

A natural isomorphism — which is a natural transformation whose every component
is reversible — is category theory’s way of saying that “two things are the same.” A
component of such a transformation must be an isomorphism between objects — a
morphism that has the inverse. If you visualize functor images as sheets, a natural
isomorphism is a one-to-one invertible mapping between those sheets.

18.5 Hom-Sets

But what are morphisms? They do have more structure than objects: unlike objects,
morphisms have two ends. But if you fix the source and the target objects, the
morphisms between the two form a boring set (at least for locally small categories).
We can give elements of this set names like f or g, to distinguish one from another —
but what is it, really, that makes them different?

The essential difference between morphisms in a given hom-set lies in the way they
compose with other morphisms (from abutting hom-sets). If there is a morphism
h whose composition (either pre- or post-) with f is different than that with g, for
instance:

h � f � h � g
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then we can directly “observe” the difference between f and g. But even if the difference
is not directly observable, we might use functors to zoom in on the hom-set. A functor
F may map the two morphisms to distinct morphisms:

F f � F g

in a richer category, where the abutting hom-sets provide more resolution, e.g.,

h' � F f � h' � F g

where h' is not in the image of F.

18.6 Hom-Set Isomorphisms

A lot of categorical constructions rely on isomorphisms between hom-sets. But since
hom-sets are just sets, a plain isomorphism between them doesn’t tell you much. For
finite sets, an isomorphism just says that they have the same number of elements. If the
sets are infinite, their cardinality must be the same. But any meaningful isomorphism
of hom-sets must take into account composition. And composition involves more than
one hom-set. We need to define isomorphisms that span whole collections of hom-
sets, and we need to impose some compatibility conditions that interoperate with
composition. And a natural isomorphism fits the bill exactly.

But what’s a natural isomorphism of hom-sets? Naturality is a property of mappings
between functors, not sets. So we are really talking about a natural isomorphism be-
tween hom-set-valued functors. These functors are more than just set-valued functors.
Their action on morphisms is induced by the appropriate hom-functors. Morphisms are
canonically mapped by hom-functors using either pre- or post-composition (depending
on the covariance of the functor).

The Yoneda embedding is one example of such an isomorphism. It maps hom-sets in
C to hom-sets in the functor category; and it’s natural. One functor in the Yoneda
embedding is the hom-functor in C and the other maps objects to sets of natural
transformations between hom-sets.

The definition of a limit is also a natural isomorphism between hom-sets (the second
one, again, in the functor category):

C(c, Lim D) � Nat(Δc, D)

It turns out that our construction of an exponential object, or that of a free monoid,
can also be rewritten as a natural isomorphism between hom-sets.

This is no coincidence — we’ll see next that these are just different examples of ad-
junctions, which are defined as natural isomorphisms of hom-sets.
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18.7 Asymmetry of Hom-Sets

There is one more observation that will help us understand adjunctions. Hom-sets are,
in general, not symmetric. A hom-set C(a, b) is often very different from the hom-set
C(b, a). The ultimate demonstration of this asymmetry is a partial order viewed as
a category. In a partial order, a morphism from a to b exists if and only if a is less
than or equal to b. If a and b are different, then there can be no morphism going the
other way, from b to a. So if the hom-set C(a, b) is non-empty, which in this case
means it’s a singleton set, then C(b, a) must be empty, unless a = b. The arrows in
this category have a definite flow in one direction.

A preorder, which is based on a relation that’s not necessarily antisymmetric, is also
“mostly” directional, except for occasional cycles. It’s convenient to think of an arbi-
trary category as a generalization of a preoder.

A preorder is a thin category — all hom-sets are either singletons or empty. We can
visualize a general category as a “thick” preorder.

18.8 Challenges

1. Consider some degenerate cases of a naturality condition and draw the appro-
priate diagrams. For instance, what happens if either functor F or G map both
objects a and b (the ends of f :: a -> b) to the same object, e.g., F a = F b or
G a = G b? (Notice that you get a cone or a co-cone this way.) Then consider
cases where either F a = G a or F b = G b. Finally, what if you start with a
morphism that loops on itself — f :: a -> a?

18.9 Acknowledgments
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Figure 84:

19 Adjunctions

In mathematics we have various ways of saying that one thing is like another. The
strictest is equality. Two things are equal if there is no way to distinguish one from
another. One can be substituted for the other in every imaginable context. For
instance, did you notice that we used equality of morphisms every time we talked
about commuting diagrams? That’s because morphisms form a set (hom-set) and set
elements can be compared for equality.

But equality is often too strong. There are many examples of things being the same
for all intents and purposes, without actually being equal. For instance, the pair
type (Bool, Char) is not strictly equal to (Char, Bool), but we understand that
they contain the same information. This concept is best captured by an isomorphism
between two types — a morphism that’s invertible. Since it’s a morphism, it preserves
the structure; and being “iso” means that it’s part of a round trip that lands you in the
same spot, no matter on which side you start. In the case of pairs, this isomorphism
is called swap:

swap :: (a,b) -> (b,a)
swap (a,b) = (b,a)

swap happens to be its own inverse.

19.1 Adjunction and Unit/Counit Pair

When we talk about categories being isomorphic, we express this in terms of mappings
between categories, a.k.a. functors. We would like to be able to say that two categories
C and D are isomorphic if there exists a functor R (“right”) from C to D, which is
invertible. In other words, there exists another functor L (“left”) from D back to
C which, when composed with R, is equal to the identity functor I. There are two
possible compositions, R � L and L � R; and two possible identity functors: one in C
and another in D.
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But here’s the tricky part: What does it mean for two functors to be equal? What do
we mean by this equality:

R � L = ID

or this one:

L � R = IC

It would be reasonable to define functor equality in terms of equality of objects. Two
functors, when acting on equal objects, should produce equal objects. But we don’t,
in general, have the notion of object equality in an arbitrary category. It’s just not
part of the definition. (Going deeper into this rabbit hole of “what equality really is,”
we would end up in Homotopy Type Theory.)

You might argue that functors are morphisms in the category of categories, so they
should be equality-comparable. And indeed, as long as we are talking about small
categories, where objects form a set, we can indeed use the equality of elements of a
set to equality-compare objects.

But, remember, Cat is really a 2-category. Hom-sets in a 2-category have additional
structure — there are 2-morphisms acting between 1-morphisms. In Cat, 1-morphisms
are functors, and 2-morphisms are natural transformations. So it’s more natural (can’t
avoid this pun!) to consider natural isomorphisms as substitutes for equality when
talking about functors.

So, instead of isomorphism of categories, it makes sense to consider a more general
notion of equivalence. Two categories C and D are equivalent if we can find two func-
tors going back and forth between them, whose composition (either way) is naturally
isomorphic to the identity functor. In other words, there is a two-way natural trans-
formation between the composition R � L and the identity functor ID, and another
between L � R and the identity functor IC.

Adjunction is even weaker than equivalence, because it doesn’t require that the com-
position of the two functors be isomorphic to the identity functor. Instead it stipulates
the existence of a one way natural transformation from ID to R�L, and another from
L�R to IC. Here are the signatures of these two natural transformations:

� :: ID -> R � L
� :: L � R -> IC

� is called the unit, and � the counit of the adjunction.

Notice the asymmetry between these two definitions. In general, we don’t have the
two remaining mappings:

R � L -> ID -- not necessarily
IC -> L � R -- not necessarily

178



Figure 85:

Because of this asymmetry, the functor L is called the left adjoint to the functor R,
while the functor R is the right adjoint to L. (Of course, left and right make sense only
if you draw your diagrams one particular way.)

The compact notation for the adjunction is:

L � R

To better understand the adjunction, let’s analyze the unit and the counit in more
detail.

Let’s start with the unit. It’s a natural transformation, so it’s a family of morphisms.
Given an object d in D, the component of � is a morphism between I d, which is equal
to d, and (R � L) d; which, in the picture, is called d':

�d :: d -> (R � L) d

Notice that the composition R�L is an endofunctor in D.

This equation tells us that we can pick any object d in D as our starting point, and
use the round trip functor R � L to pick our target object d'. Then we shoot an arrow
— the morphism �d — to our target.

By the same token, the component of of the counit � can be described as:

�c' :: (L � R) c -> c

where c' is (L � R) c. It tells us that we can pick any object c in C as our target,
and use the round trip functor L � R to pick the source c'. Then we shoot the arrow
— the morphism �c' — from the source to the target.

Another way of looking at unit and counit is that unit lets us introduce the composition
R � L anywhere we could insert an identity functor on D; and counit lets us eliminate
the composition L � R, replacing it with the identity on C. That leads to some “obvious”
consistency conditions, which make sure that introduction followed by elimination
doesn’t change anything:
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Figure 86:

Figure 87:

L = L � ID -> L � R � L -> IC � L = L

R = ID � R -> R � L � R -> R � IC = R

These are called triangular identities because they make the following diagrams com-
mute:

These are diagrams in the functor category: the arrows are natural transformations,
and their composition is the horizontal composition of natural transformations. In
components, these identities become:

� L d � L � d = id L d
R � c � � R c = id R c

We often see unit and counit in Haskell under different names. Unit is known as
return (or pure, in the definition of Applicative):

return :: d -> m d
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and counint as extract:

extract :: w c -> c

Here, m is the (endo-) functor corresponding to R�L, and w is the (endo-) functor cor-
responding to L�R. As we’ll see later, they are part of the definition of a monad and a
comonad, respectively.

If you think of an endofunctor as a container, the unit (or return) is a polymorphic
function that creates a default box around a value of arbitrary type. The counit (or
extract) does the reverse: it retrieves or produces a single value from a container.

We’ll see later that every pair of adjoint functors defines a monad and a comonad.
Conversely, every monad or comonad may be factorized into a pair of adjoint functors
— this factorization is not unique, though.

In Haskell, we use monads a lot, but only rarely factorize them into pairs of adjoint
functors, primarily because those functors would normally take us out of Hask.

We can however define adjunctions of endofunctors in Haskell. Here’s part of the
definition taken from Data.Functor.Adjunction:

class (Functor f, Representable u) =>
Adjunction f u | f -> u, u -> f where
unit :: a -> u (f a)
counit :: f (u a) -> a

This definition requires some explanation. First of all, it describes a multi-parameter
type class — the two parameters being f and u. It establishes a relation called
Adjunction between these two type constructors.

Additional conditions, after the vertical bar, specify functional dependencies. For
instance, f -> u means that u is determined by f (the relation between f and u is a
function, here on type constructors). Conversely, u -> f means that, if we know u,
then f is uniquely determined.

I’ll explain in a moment why, in Haskell, we can impose the condition that the right
adjoint u be a representable functor.

19.2 Adjunctions and Hom-Sets

There is an equivalent definition of the adjunction in terms of natural isomorphisms of
hom-sets. This definition ties nicely with universal constructions we’ve been studying
so far. Every time you hear the statement that there is some unique morphism, which
factorizes some construction, you should think of it as a mapping of some set to a
hom-set. That’s the meaning of “picking a unique morphism.”

Furthermore, factorization can be often described in terms of natural transformations.
Factorization involves commuting diagrams — some morphism being equal to a com-
position of two morphisms (factors). A natural transformation maps morphisms to
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commuting diagrams. So, in a universal construction, we go from a morphism to a
commuting diagram, and then to a unique morphism. We end up with a mapping
from morphism to morphism, or from one hom-set to another (usually in different
categories). If this mapping is invertible, and if it can be naturally extended across
all hom-sets, we have an adjunction.

The main difference between universal constructions and adjunctions is that the latter
are defined globally — for all hom-sets. For instance, using a universal construction
you can define a product of two select objects, even if it doesn’t exist for any other
pair of objects in that category. As we’ll see soon, if the product of any pair of objects
exists in a category, it can be also defined through an adjunction.

Here’s the alternative definition of the adjunction using hom-sets. As before, we have
two functors L :: D->C and R :: C->D. We pick two arbitrary objects: the source
object d in D, and the target object c in C. We can map the source object d to C using
L. Now we have two objects in C, L d and c. They define a hom-set:

C(L d, c)

Similarly, we can map the target object c using R. Now we have two objects in D, d
and R c. They, too, define a hom set:

D(d, R c)

We say that L is left adjoint to R iff there is an isomorphism of hom sets:

C(L d, c) � D(d, R c)

that is natural both in d and c.

Naturality means that the source d can be varied smoothly across D; and the target
c, across C. More precisely, we have a natural transformation � between the following
two (covariant) functors from C to Set. Here’s the action of these functors on objects:
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c -> C(L d, c)
c -> D(d, R c)

The other natural transformation, �, acts between the following (contravariant) func-
tors:

d -> C(L d, c)
d -> D(d, R c)

Both natural transformations must be invertible.

It’s easy to show that the two definitions of the adjunction are equivalent. For instance,
let’s derive the unit transformation starting from the isomorphism of hom-sets:

C(L d, c) � D(d, R c)

Since this isomorphism works for any object c, it must also work for c = L d:

C(L d, L d) � D(d, (R � L) d)

We know that the left hand side must contain at least one morphism, the identity. The
natural transformation will map this morphism to an element of D(d, (R � L) d) or,
inserting the identity functor I, a morphism in:

D(I d, (R � L) d)

We get a family of morphisms parameterized by d. They form a natural transformation
between the functor I and the functor R � L (the naturality condition is easy to verify).
This is exactly our unit, �.

Conversely, starting from the existence of the unit and co-unit, we can define the
transformations between hom-sets. For instance, let’s pick an arbitrary morphism f in
the hom-set C(L d, c). We want to define a � that, acting on f, produces a morphism
in D(d, R c).

There isn’t really much choice. One thing we can try is to lift f using R. That will
produce a morphism R f from R (L d) to R c — a morphism that’s an element of
D((R � L) d, R c).

What we need for a component of �, is a morphism from d to R c. That’s not a problem,
since we can use a component of �d to get from d to (R � L) d. We get:

�f = R f � �d

The other direction is analogous, and so is the derivation of �.

Going back to the Haskell definition of Adjunction, the natural transformations � and
� are replaced by polymorphic (in a and b) functions leftAdjunct and rightAdjunct,
respectively. The functors L and R are called f and u:
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class (Functor f, Representable u) =>
Adjunction f u | f -> u, u -> f where
leftAdjunct :: (f a -> b) -> (a -> u b)
rightAdjunct :: (a -> u b) -> (f a -> b)

The equivalence between the unit/counit formulation and the leftAdjunct/rightAdjunct
formulation is witnessed by these mappings:

unit = leftAdjunct id
counit = rightAdjunct id
leftAdjunct f = fmap f . unit
rightAdjunct f = counit . fmap f

It’s very instructive to follow the translation from the categorical description of the
adjunction to Haskell code. I highly encourage this as an exercise.

We are now ready to explain why, in Haskell, the right adjoint is automatically a
representable functor. The reason for this is that, to the first approximation, we can
treat the category of Haskell types as the category of sets.

When the right category D is Set, the right adjoint R is a functor from C to Set. Such
a functor is representable if we can find an object rep in C such that the hom-functor
C(rep, _) is naturally isomorphic to R. It turns out that, if R is the right adjoint of
some functor L from Set to C, such an object always exists — it’s the image of the
singleton set () under L:

rep = L ()

Indeed, the adjunction tells us that the following two hom-sets are naturally isomor-
phic:

C(L (), c) � Set((), R c)

For a given c, the right hand side is the set of functions from the singleton set () to R
c. We’ve seen earlier that each such function picks one element from the set R c. The
set of such functions is isomorphic to the set R c. So we have:

C(L (), -) � R

which shows that R is indeed representable.

19.3 Product from Adjunction

We have previously introduced several concepts using universal constructions. Many
of those concepts, when defined globally, are easier to express using adjunctions. The
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Figure 89:

simplest non-trivial example is that of the product. The gist of the universal construc-
tion of the product is the ability to factorize any product-like candidate through the
universal product.

More precisely, the product of two objects a and b is the object (a × b) (or (a, b)
in the Haskell notation) equipped with two morphisms fst and snd such that, for any
other candidate c equipped with two morphisms p::c->a and q::c->b, there exists a
unique morphism m::c->(a, b) that factorizes p and q through fst and snd.

As we’ve seen earlier, in Haskell, we can implement a factorizer that generates this
morphism from the two projections:

factorizer :: (c -> a) -> (c -> b) -> (c -> (a, b))
factorizer p q = \x -> (p x, q x)

It’s easy to verify that the factorization conditions hold:

fst . factorizer p q = p
snd . factorizer p q = q

We have a mapping that takes a pair of morphisms p and q and produces another
morphism m = factorizer p q.

How can we translate this into a mapping between two hom-sets that we need to define
an adjunction? The trick is to go outside of Hask and treat the pair of morphisms as
a single morphism in the product category.

Let me remind you what a product category is. Take two arbitrary categories C and
D. The objects in the product category C×D are pairs of objects, one from C and one
from D. The morphisms are pairs of morphisms, one from C and one from D.

To define a product in some category C, we should start with the product category
C×C. Pairs of morphism from C are single morphisms in the product category C×C.

It might be a little confusing at first that we are using a product category to define
a product. These are, however, very different products. We don’t need a universal
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construction to define a product category. All we need is the notion of a pair of objects
and a pair of morphisms.

However, a pair of objects from C is not an object in C. It’s an object in a different
category, C×C. We can write the pair formally as <a, b>, where a and b are objects
of C. The universal construction, on the other hand, is necessary in order to define
the object a×b (or (a, b) in Haskell), which is an object in the same category C. This
object is supposed to represent the pair <a, b> in a way specified by the universal
construction. It doesn’t always exist and, even if it exists for some, might not exist
for other pairs of objects in C.

Let’s now look at the factorizer as a mapping of hom-sets. The first hom-set is in
the product category C×C, and the second is in C. A general morphism in C×C would
be a pair of morphisms <f, g>:

f :: c' -> a
g :: c'' -> b

with c'' potentially different from c'. But to define a product, we are interested in
a special morphism in C×C, the pair p and q that share the same source object c.
That’s okay: In the definition of an adjuncion, the source of the left hom-set is not
an arbitrary object — it’s the result of the left functor L acting on some object from
the right category. The functor that fits the bill is easy to guess — it’s the diagonal
functor from C to C×C, whose action on objects is:

Δ c = <c, c>

The left-hand side hom-set in our adjunction should thus be:

(C×C)(Δ c, <a, b>)

It’s a hom-set in the product category. Its elements are pairs of morphisms that we
recognize as the arguments to our factorizer:

(c -> a) -> (c -> b) ...

The right-hand side hom-set lives in C, and it goes between the source object c and
the result of some functor R acting on the target object in C×C. That’s the functor
that maps the pair <a, b> to our product object, a×b. We recognize this element of
the hom-set as the result of the factorizer:

... -> (c -> (a, b))

We still don’t have a full adjunction. For that we first need our factorizer to be
invertible — we are building an isomorphism between hom-sets. The inverse of the
factorizer should start from a morphism m — a morphism from some object c to the
product object a×b. In other words, m should be an element of:
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C(c, a×b)

The inverse factorizer should map m to a morphism <p, q> in C×C that goes from
<c, c> to <a, b>; in other words, a morphism that’s an element of:

(C×C)(Δ c, <a, b>)

If that mapping exists, we conclude that there exists the right adjoint to the diagonal
functor. That functor defines a product.

In Haskell, we can always construct the inverse of the factorizer by composing m
with, respectively, fst and snd.

p = fst � m
q = snd � m

To complete the proof of the equivalence of the two ways of defining a product we also
need to show that the mapping between hom-sets is natural in a, b, and c. I will leave
this as an exercise for the dedicated reader.

To summarize what we have done: A categorical product may be defined globally as
the right adjoint of the diagonal functor:

(C × C)(Δ c, <a, b>) � C(c, a×b)

Here, a×b is the result of the action of our right adjoint functor Product on the pair
<a, b>. Notice that any functor from C×C is a bifunctor, so Product is a bifunctor.
In Haskell, the Product bifunctor is written simply as (,). You can apply it to two
types and get their product type, for instance:

(,) Int Bool ~ (Int, Bool)
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19.4 Exponential from Adjunction

The exponential ba, or the function object a�b, can be defined using a universal con-
struction. This construction, if it exists for all pairs of objects, can be seen as an
adjunction. Again, the trick is to concentrate on the statement:

For any other object z with a morphism

g :: z × a -> b

there is a unique morphism

h :: z -> (a�b)

This statement establishes a mapping between hom-sets.

In this case, we are dealing with objects in the same category, so the two adjoint
functors are endofunctors. The left (endo-)functor L, when acting on object z, produces
z × a. It’s a functor that corresponds to taking a product with some fixed a.

The right (endo-)functor R, when acting on b produces the function object a�b (or ba).
Again, a is fixed. The adjunction between these two functors is often written as:

- × a � (-)a

The mapping of hom-sets that underlies this adjunction is best seen by redrawing the
diagram that we used in the universal construction.

Notice that the eval morphism is nothing else but the counit of this adjunction:

(a�b) × a -> b

where:

(a�b) × a = (L � R) b
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I have previously mentioned that a universal construction defines a unique object, up
to isomorphism. That’s why we have “the” product and “the” exponential. This
property translates to adjunctions as well: if a functor has an adjoint, this adjoint is
unique up to isomorphism.

19.5 Challenges

1. Derive the naturality square for �, the transformation between the two (con-
travariant) functors:

a -> C(L a, b)
a -> D(a, R b)

2. Derive the counit � starting from the hom-sets isomorphism in the second defi-
nition of the adjunction.

3. Complete the proof of equivalence of the two definitions of the adjunction.
4. Show that the coproduct can be defined by an adjunction. Start with the defi-

nition of the factorizer for a coproduct.
5. Show that the coproduct is the left adjoint of the diagonal functor.
6. Define the adjunction between a product and a function object in Haskell.
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Figure 92: Monoids m1 and m2 have the same underlying set. There are more
functions between the underlying sets of m2 and m3 than there are morphisms
between them.

20 Free Monoid from Adjunction

Free constructions are a powerful application of adjunctions. A free functor is defined
as the left adjoint to a forgetful functor. A forgetful functor is usually a pretty simple
functor that forgets some structure. For instance, lots of interesting categories are
built on top of sets. But categorical objects, which abstract those sets, have no internal
structure — they have no elements. Still, those objects often carry the memory of sets,
in the sense that there is a mapping — a functor — from a given category C to Set.
A set corresponding to some object in C is called its underlying set.

Monoids are such objects that have underlying sets — sets of elements. There is a for-
getful functor U from the category of monoids Mon to the category of sets, which maps
monoids to their underlying sets. It also maps monoid morphisms (homomorphisms)
to functions between sets.

I like to think of Mon as having split personality. On the one hand, it’s a bunch of
sets with multiplication and unit elements. On the other hand, it’s a category with
featureless objects whose only structure is encoded in morphisms that go between them.
Every set-function that preserves multiplication and unit gives rise to a morphism in
Mon.

Things to keep in mind:

• There may be many monoids that map to the same set, and
• There are fewer (or at most as many as) monoid morphisms than there are

functions between their underlying sets.

The functor F that’s the left adjoint to the forgetful functor U is the free functor that
builds free monoids from their generator sets. The adjunction follows from the free
monoid universal construction we’ve discussed before.

In terms of hom-sets, we can write this adjunction as:

Mon(F x, m) � Set(x, U m)
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Figure 93:

This (natural in x and m) isomorphism tells us that:

• For every monoid homomorphism between the free monoid F x generated by x
and an arbitrary monoid m there is a unique function that embeds the set of
generators x in the underlying set of m. It’s a function in Set(x, U m).

• For every function that embeds x in the underlying set of some m there is a unique
monoid morphism between the free monoid generated by x and the monoid m.
(This is the morphism we called h in our universal construction.)

The intuition is that F x is the “maximum” monoid that can be built on the basis of
x. If we could look inside monoids, we would see that any morphism that belongs to
Mon(F x, m) embeds this free monoid in some other monoid m. It does it by possibly
identifying some elements. In particular, it embeds the generators of F x (i.e., the
elements of x) in m. The adjunction shows that the embedding of x, which is given
by a function from Set(x, U m) on the right, uniquely determines the embedding of
monoids on the left, and vice versa.

In Haskell, the list data structure is a free monoid (with some caveats: see Dan Doel’s
blog post). A list type [a] is a free monoid with the type a representing the set of
generators. For instance, the type [Char] contains the unit element — the empty
list [] — and the singletons like ['a'], ['b'] — the generators of the free monoid.
The rest is generated by applying the “product.” Here, the product of two lists simply
appends one to another. Appending is associative and unital (that is, there is a neutral
element — here, the empty list). A free monoid generated by Char is nothing but the
set of all strings of characters from Char. It’s called String in Haskell:

type String = [Char]

(type defines a type synonym — a different name for an existing type).

Another interesting example is a free monoid built from just one generator. It’s the
type of the list of units, [()]. Its elements are [], [()], [(), ()], etc. Every such list
can be described by one natural number — its length. There is no more information
encoded in the list of units. Appending two such lists produces a new list whose
length is the sum of the lengths of its constituents. It’s easy to see that the type [()]
is isomorphic to the additive monoid of natural numbers (with zero). Here are the two
functions that are the inverse of each other, witnessing this isomorphism:
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toNat :: [()] -> Int
toNat = length

toLst :: Int -> [()]
toLst n = replicate n ()

For simplicity I used the type Int rather than Natural, but the idea is the same. The
function replicate creates a list of length n pre-filled with a given value — here, the
unit.

20.1 Some Intuitions

What follows are some hand-waving arguments. Those kind of arguments are far from
rigorous, but they help in forming intuitions.

To get some intuition about the free/forgetful adjunctions it helps to keep in mind that
functors and functions are lossy in nature. Functors may collapse multiple objects and
morphisms, functions may bunch together multiple elements of a set. Also, their image
may cover only part of their codomain.

An “average” hom-set in Set will contain a whole spectrum of functions starting with
the ones that are least lossy (e.g., injections or, possibly, isomorphisms) and ending
with constant functions that collapse the whole domain to a single element (if there is
one).

I tend to think of morphisms in an arbitrary category as being lossy too. It’s just
a mental model, but it’s a useful one, especially when thinking of adjunctions — in
particular those in which one of the categories is Set.

Formally, we can only speak of morphisms that are invertible (isomorphisms) or non-
invertible. It’s that latter kind that may be though of as lossy. There is also a notion
of mono- and epi- morphisms that generalize the idea of injective (non-collapsing)
and surjective (covering the whole codomain) functions, but it’s possible to have a
morphism that is both mono and epi, and which is still non-invertible.

In the Free � Forgetful adjunction, we have the more constrained category C on the left,
and a less constrained category D on the right. Morphisms in C are “fewer” because
they have to preserve some additional structure. In the case of Mon, they have to
preserve multiplication and unit. Morphisms in D don’t have to preserve as much
structure, so there are “more” of them.

When we apply a forgetful functor U to an object c in C, we think of it as revealing
the “internal structure” of c. In fact, if D is Set we think of U as defining the internal
structure of c — its underlying set. (In an arbitrary category, we can’t talk about the
internals of an object other than through its connections to other objects, but here we
are just hand-waving.)

If we map two objects c' and c using U, we expect that, in general, the mapping
of the hom-set C(c', c) will cover only a subset of D(U c', U c). That’s because
morphisms in C(c', c) have to preserve the additional structure, whereas the ones in
D(U c', U c) don’t.
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Figure 94:

Figure 95:

But since an adjunction is defined as an isomporphism of particular hom-sets, we have
to be very picky with our selection of c'. In the adjunction, c' is picked not from just
anywhere in C, but from the (presumably smaller) image of the free functor F:

C(F d, c) � D(d, U c)

The image of F must therefore consist of objects that have lots of morphisms going to
an arbitrary c. In fact, there has to be as many structure-preserving morphisms from
F d to c as there are non-structure preserving morphisms from d to U c. It means
that the image of F must consist of essentially structure-free objects (so that there is
no structure to preserve by morphisms). Such “structure-free” objects are called free
objects.

In the monoid example, a free monoid has no structure other than what’s generated
by unit and associativity laws. Other than that, all multiplications produce brand
new elements.

In a free monoid, 2*3 is not 6 — it’s a new element [2, 3]. Since there is no identification
of [2, 3] and 6, a morphism from this free monoid to any other monoid m is allowed to
map them separately. But it’s also okay for it to map both [2, 3] and 6 (their product)
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to the same element of m. Or to identify [2, 3] and 5 (their sum) in an additive monoid,
and so on. Different identifications give you different monoids.

This leads to another interesting intuition: Free monoids, instead of performing the
monoidal operation, accumulate the arguments that were passed to it. Instead of
multiplying 2 and 3 they remember 2 and 3 in a list. The advantage of this scheme
is that we don’t have to specify what monoidal operation we will use. We can keep
accumulating arguments, and only at the end apply an operator to the result. And it’s
then that we can chose what operator to apply. We can add the numbers, or multiply
them, or perform addition modulo 2, and so on. A free monoid separates the creation
of an expression from its evaluation. We’ll see this idea again when we talk about
algebras.

This intuition generalizes to other, more elaborate free constructions. For instance,
we can accumulate whole expression trees before evaluating them. The advantage of
this approach is that we can transform such trees to make the evaluation faster or
less memory consuming. This is, for instance, done in implementing matrix calculus,
where eager evaluation would lead to lots of allocations of temporary arrays to store
intermediate results.

20.2 Challenges

1. Consider a free monoid built from a singleton set as its generator. Show that
there is a one-to-one correspondence between morphisms from this free monoid
to any monoid m, and functions from the singleton set to the underlying set of
m.
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21 Monads: Programmer’s Definition

Programmers have developed a whole mythology around monads. It’s supposed to
be one of the most abstract and difficult concepts in programming. There are people
who “get it” and those who don’t. For many, the moment when they understand the
concept of the monad is like a mystical experience. The monad abstracts the essence
of so many diverse constructions that we simply don’t have a good analogy for it in
everyday life. We are reduced to groping in the dark, like those blind men touching
different parts of the elephant end exclaiming triumphantly: “It’s a rope,” “It’s a tree
trunk,” or “It’s a burrito!”

Let me set the record straight: The whole mysticism around the monad is the result
of a misunderstanding. The monad is a very simple concept. It’s the diversity of
applications of the monad that causes the confusion.

As part of research for this post I looked up duct tape (a.k.a., duck tape) and its
applications. Here’s a little sample of things that you can do with it:

• sealing ducts
• fixing CO2 scrubbers on board Apollo 13
• wart treatment
• fixing Apple’s iPhone 4 dropped call issue
• making a prom dress
• building a suspension bridge

Now imagine that you didn’t know what duct tape was and you were trying to figure
it out based on this list. Good luck!

So I’d like to add one more item to the collection of “the monad is like…” clichés: The
monad is like duct tape. Its applications are widely diverse, but its principle is very
simple: it glues things together. More precisely, it composes things.

This partially explains the difficulties a lot of programmers, especially those coming
from the imperative background, have with understanding the monad. The problem is
that we are not used to thinking of programing in terms of function composition. This
is understandable. We often give names to intermediate values rather than pass them
directly from function to function. We also inline short segments of glue code rather
than abstract them into helper functions. Here’s an imperative-style implementation
of the vector-length function in C:

double vlen(double * v) {
double d = 0.0;
int n;
for (n = 0; n < 3; ++n)
d += v[n] * v[n];

return sqrt(d);
}

Compare this with the (stylized) Haskell version that makes function composition
explicit:
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vlen = sqrt . sum . fmap (flip (^) 2)

(Here, to make things even more cryptic, I partially applied the exponentiation oper-
ator (^) by setting its second argument to 2.)

I’m not arguing that Haskell’s point-free style is always better, just that function
composition is at the bottom of everything we do in programming. And even though
we are effectively composing functions, Haskell does go to great lengths to provide
imperative-style syntax called the do notation for monadic composition. We’ll see its
use later. But first, let me explain why we need monadic composition in the first place.

21.1 The Kleisli Category

We have previously arrived at the writer monad by embellishing regular functions. The
particular embellishment was done by pairing their return values with strings or, more
generally, with elements of a monoid. We can now recognize that such embellishment
is a functor:

newtype Writer w a = Writer (a, w)

instance Functor (Writer w) where
fmap f (Writer (a, w)) = Writer (f a, w)

We have subsequently found a way of composing embellished functions, or Kleisli
arrows, which are functions of the form:

a -> Writer w b

It was inside the composition that we implemented the accumulation of the log.

We are now ready for a more general definition of the Kleisli category. We start with
a category C and an endofunctor m. The corresponding Kleisli category K has the
same objects as C, but its morphisms are different. A morphism between two objects
a and b in K is implemented as a morphism:

a -> m b

in the original category C. It’s important to keep in mind that we treat a Kleisli arrow
in K as a morphism between a and b, and not between a and m b.

In our example, m was specialized to Writer w, for some fixed monoid w.

Kleisli arrows form a category only if we can define proper composition for them. If
there is a composition, which is associative and has an identity arrow for every object,
then the functor m is called a monad, and the resulting category is called the Kleisli
category.

In Haskell, Kleisli composition is defined using the fish operator >=>, and the identity
arrrow is a polymorphic function called return. Here’s the definition of a monad using
Kleisli composition:
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class Monad m where
(>=>) :: (a -> m b) -> (b -> m c) -> (a -> m c)
return :: a -> m a

Keep in mind that there are many equivalent ways of defining a monad, and that this
is not the primary one in the Haskell ecosystem. I like it for its conceptual simplicity
and the intuition it provides, but there are other definitions that are more convenient
when programming. We’ll talk about them momentarily.

In this formulation, monad laws are very easy to express. They cannot be enforced in
Haskell, but they can be used for equational reasoning. They are simply the standard
composition laws for the Kleisli category:

(f >=> g) >=> h = f >=> (g >=> h) -- associativity
return >=> f = f -- left unit
f >=> return = f -- right unit

This kind of a definition also expresses what a monad really is: it’s a way of composing
embellished functions. It’s not about side effects or state. It’s about composition. As
we’ll see later, embellished functions may be used to express a variety of effects or
state, but that’s not what the monad is for. The monad is the sticky duct tape that
ties one end of an embellished function to the other end of an embellished function.

Going back to our Writer example: The logging functions (the Kleisli arrows for the
Writer functor) form a category because Writer is a monad:

instance Monoid w => Monad (Writer w) where
f >=> g = \a ->
let Writer (b, s) = f a

Writer (c, s') = g b
in Writer (c, s `mappend` s')
return a = Writer (a, mempty)

Monad laws for Writer w are satisfied as long as monoid laws for w are satisfied (they
can’t be enforced in Haskell either).

There’s a useful Kleisli arrow defined for the Writer monad called tell. It’s sole
purpose is to add its argument to the log:

tell :: w -> Writer w ()
tell s = Writer ((), s)

We’ll use it later as a building block for other monadic functions.

21.2 Fish Anatomy

When implementing the fish operator for different monads you quickly realize that
a lot of code is repeated and can be easily factored out. To begin with, the Kleisli
composition of two functions must return a function, so its implementation may as
well start with a lambda taking an argument of type a:
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(>=>) :: (a -> m b) -> (b -> m c) -> (a -> m c)
f >=> g = \a -> ...

The only thing we can do with this argument is to pass it to f:

f >=> g = \a -> let mb = f a
in ...

At this point we have to produce the result of type m c, having at our disposal an
object of type m b and a function g :: b -> m c. Let’s define a function that does
that for us. This function is called bind and is usually written in the form of an infix
operator:

(>>=) :: m a -> (a -> m b) -> m b

For every monad, instead of defining the fish operator, we may instead define bind. In
fact the standard Haskell definition of a monad uses bind:

class Monad m where
(>>=) :: m a -> (a -> m b) -> m b
return :: a -> m a

Here’s the definition of bind for the Writer monad:

(Writer (a, w)) >>= f = let Writer (b, w') = f a
in Writer (b, w `mappend` w')

It is indeed shorter than the definition of the fish operator.

It’s possible to further dissect bind, taking advantage of the fact that m is a functor.
We can use fmap to apply the function a -> m b to the contents of m a. This will
turn a into m b. The result of the application is therefore of type m (m b). This is not
exactly what we want — we need the result of type m b — but we’re close. All we
need is a function that collapses or flattens the double application of m. Such function
is called join:

join :: m (m a) -> m a

Using join, we can rewrite bind as:

ma >>= f = join (fmap f ma)

That leads us to the third option for defining a monad:
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class Functor m => Monad m where
join :: m (m a) -> m a
return :: a -> m a

Here we have explicitly requested that m be a Functor. We didn’t have to do that in
the previous two definitions of the monad. That’s because any type constructor m that
either supports the fish or bind operator is automatically a functor. For instance, it’s
possible to define fmap in terms of bind and return:

fmap f ma = ma >>= \a -> return (f a)

For completeness, here’s join for the Writer monad:

join :: Monoid w => Writer w (Writer w a) -> Writer w a
join (Writer ((Writer (a, w')), w)) = Writer (a, w `mappend` w')

21.3 The do Notation

One way of writing code using monads is to work with Kleisli arrows — composing
them using the fish operator. This mode of programming is the generalization of the
point-free style. Point-free code is compact and often quite elegant. In general, though,
it can be hard to understand, bordering on cryptic. That’s why most programmers
prefer to give names to function arguments and intermediate values.

When dealing with monads it means favoring the bind operator over the fish operator.
Bind takes a monadic value and returns a monadic value. The programmer may chose
to give names to those values. But that’s hardly an improvement. What we really
want is to pretend that we are dealing with regular values, not the monadic containers
that encapsulate them. That’s how imperative code works — side effects, such as
updating a global log, are mostly hidden from view. And that’s what the do notation
emulates in Haskell.

You might be wondering then, why use monads at all? If we want to make side effects
invisible, why not stick to an imperative language? The answer is that the monad
gives us much better control over side effects. For instance, the log in the Writer
monad is passed from function to function and is never exposed globally. There is no
possibility of garbling the log or creating a data race. Also, monadic code is clearly
demarcated and cordoned off from the rest of the program.

The do notation is just syntactic sugar for monadic composition. On the surface, it
looks a lot like imperative code, but it translates directly to a sequence of binds and
lambda expressions.

For instance, take the example we used previously to illustrate the composition of
Kleisli arrows in the Writermonad. Using our current definitions, it could be rewritten
as:

process :: String -> Writer String [String]
process = upCase >=> toWords
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This function turns all characters in the input string to upper case and splits it into
words, all the while producing a log of its actions.

In the do notation it would look like this:

process s = do
upStr <- upCase s
toWords upStr

Here, upStr is just a String, even though upCase produces a Writer:

upCase :: String -> Writer String String
upCase s = Writer (map toUpper s, "upCase ")

This is because the do block is desugared by the compiler to:

process s =
upCase s >>= \ upStr ->
toWords upStr

The monadic result of upCase is bound to a lambda that takes a String. It’s the name
of this string that shows up in the do block. When reading the line:

upStr <- upCase s

we say that upStr gets the result of upCase s.

The pseudo-imperative style is even more pronounced when we inline toWords. We
replace it with the call to tell, which logs the string "toWords ", followed by the call
to return with the result of splitting the string upStr using words. Notice that words
is a regular function working on strings.

process s = do
upStr <- upStr s
tell "toWords "
return (words upStr)

Here, each line in the do block introduces a new nested bind in the desugared code:

process s =
upCase s >>= \upStr ->
tell "toWords " >>= \() ->
return (words upStr)

Notice that tell produces a unit value, so it doesn’t have to be passed to the following
lambda. Ignoring the contents of a monadic result (but not its effect — here, the
contribution to the log) is quite common, so there is a special operator to replace bind
in that case:
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(>>) :: m a -> m b -> m b
m >> k = m >>= (\_ -> k)

The actual desugaring of our code looks like this:

process s =
upCase s >>= \upStr ->
tell "toWords " >>
return (words upStr)

In general, do blocks consist of lines (or sub-blocks) that either use the left arrow to
introduce new names that are then available in the rest of the code, or are executed
purely for side-effects. Bind operators are implicit between the lines of code. Inciden-
tally, it is possible, in Haskell, to replace the formatting in the do blocks with braces
and semicolons. This provides the justification for describing the monad as a way of
overloading the semicolon.

Notice that the nesting of lambdas and bind operators when desugaring the do notation
has the effect of influencing the execution of the rest of the do block based on the result
of each line. This property can be used to introduce complex control structures, for
instance to simulate exceptions.

Interestingly, the equivalent of the do notation has found its application in imperative
languages, C++ in particular. I’m talking about resumable functions or coroutines.
It’s not a secret that C++ futures form a monad. It’s an example of the continuation
monad, which we’ll discuss shortly. The problem with continuations is that they are
very hard to compose. In Haskell, we use the do notation to turn the spaghetti of “my
handler will call your handler” into something that looks very much like sequential
code. Resumable functions make the same transformation possible in C++. And
the same mechanism can be applied to turn the spaghetti of nested loops into list
comprehensions or “generators,” which are essentially the do notation for the list
monad. Without the unifying abstraction of the monad, each of these problems is
typically addressed by providing custom extensions to the language. In Haskell, this
is all dealt with through libraries.
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22 Monads and Effects

Now that we know what the monad is for — it lets us compose embellished functions
— the really interesting question is why embellished functions are so important in
functional programming. We’ve already seen one example, the Writer monad, where
embellishment let us create and accumulate a log across multiple function calls. A
problem that would otherwise be solved using impure functions (e.g., by accessing and
modifying some global state) was solved with pure functions.

22.1 The Problem

Here is a short list of similar problems, copied from Eugenio Moggi’s seminal paper,
all of which are traditionally solved by abandoning the purity of functions.

• Partiality: Computations that may not terminate
• Nondeterminism: Computations that may return many results
• Side effects: Computations that access/modify state

– Read-only state, or the environment
– Write-only state, or a log
– Read/write state

• Exceptions: Partial functions that may fail
• Continuations: Ability to save state of the program and then restore it on

demand
• Interactive Input
• Interactive Output

What really is mind blowing is that all these problems may be solved using the same
clever trick: turning to embellished functions. Of course, the embellishment will be
totally different in each case.

You have to realize that, at this stage, there is no requirement that the embellishment
be monadic. It’s only when we insist on composition — being able to decompose
a single embellished function into smaller embellished functions — that we need a
monad. Again, since each of the embellishments is different, monadic composition will
be implemented differently, but the overall pattern is the same. It’s a very simple
pattern: composition that is associative and equipped with identity.

The next section is heavy on Haskell examples. Feel free to skim or even skip it if
you’re eager to get back to category theory or if you’re already familiar with Haskell’s
implementation of monads.

22.2 The Solution

First, let’s analyze the way we used the Writermonad. We started with a pure function
that performed a certain task — given arguments, it produced a certain output. We
replaced this function with another function that embellished the original output by
pairing it with a string. That was our solution to the logging problem.
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We couldn’t stop there because, in general, we don’t want to deal with monolithic
solutions. We needed to be able to decompose one log-producing function into smaller
log-producing functions. It’s the composition of those smaller functions that led us to
the concept of a monad.

What’s really amazing is that the same pattern of embellishing the function return
types works for a large variety of problems that normally would require abandoning
purity. Let’s go through our list and identify the embellishment that applies to each
problem in turn.

22.2.1 Partiality

We modify the return type of every function that may not terminate by turning it into
a “lifted” type — a type that contains all values of the original type plus the special
“bottom” value �. For instance, the Bool type, as a set, would contain two elements:
True and False. The lifted Bool contains three elements. Functions that return the
lifted Bool may produce True or False, or execute forever.

The funny thing is that, in a lazy language like Haskell, a never-ending function may
actually return a value, and this value may be passed to the next function. We call
this special value the bottom. As long as this value is not explicitly needed (for
instance, to be pattern matched, or produced as output), it may be passed around
without stalling the execution of the program. Because every Haskell function may be
potentially non-terminating, all types in Haskell are assumed to be lifted. This is why
we often talk about the category Hask of Haskell (lifted) types and functions rather
than the simpler Set. It is not clear, though, that Hask is a real category (see this
Andrej Bauer post).

22.2.2 Nondeterminism

If a function can return many different results, it may as well return them all at once.
Semantically, a non-deterministic function is equivalent to a function that returns a
list of results. This makes a lot of sense in a lazy garbage-collected language. For
instance, if all you need is one value, you can just take the head of the list, and the tail
will never be evaluated. If you need a random value, use a random number generator
to pick the n-th element of the list. Laziness even allows you to return an infinite list
of results.

In the list monad — Haskell’s implementation of nondeterministic computations —
join is implemented as concat. Remember that join is supposed to flatten a container
of containers — concat concatenates a list of lists into a single list. return creates a
singleton list:

instance Monad [] where
join = concat
return x = [x]

The bind operator for the list monad is given by the general formula: fmap followed
by join which, in this case gives:
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as >>= k = concat (fmap k as)

Here, the function k, which itself produces a list, is applied to every element of the list
as. The result is a list of lists, which is flattened using concat.

From the programmer’s point of view, working with a list is easier than, for instance,
calling a non-deterministic function in a loop, or implementing a function that re-
turns an iterator (although, in modern C++, returning a lazy range would be almost
equivalent to returning a list in Haskell).

A good example of using non-determinism creatively is in game programming. For
instance, when a computer plays chess against a human, it can’t predict the opponent’s
next move. It can, however, generate a list of all possible moves and analyze them one
by one. Similarly, a non-deterministic parser may generate a list of all possible parses
for a given expression.

Even though we may interpret functions returning lists as non-deterministic, the ap-
plications of the list monad are much wider. That’s because stitching together compu-
tations that produce lists is a perfect functional substitute for iterative constructs —
loops — that are used in imperative programming. A single loop can be often rewrit-
ten using fmap that applies the body of the loop to each element of the list. The do
notation in the list monad can be used to replace complex nested loops.

My favorite example is the program that generates Pythagorean triples — triples of
positive integers that can form sides of right triangles.

triples = do
z <- [1..]
x <- [1..z]
y <- [x..z]
guard (x^2 + y^2 == z^2)
return (x, y, z)

The first line tells us that z gets an element from an infinite list of positive numbers
[1..]. Then x gets an element from the (finite) list [1..z] of numbers between 1
and z. Finally y gets an element from the list of numbers between x and z. We have
three numbers 1 <= x <= y <= z at our disposal. The function guard takes a Bool
expression and returns a list of units:

guard :: Bool -> [()]
guard True = [()]
guard False = []

This function (which is a member of a larger class called MonadPlus) is used here to
filter out non-Pythagorean triples. Indeed, if you look at the implementation of bind
(or the related operator >>), you’ll notice that, when given an empty list, it produces
an empty list. On the other hand, when given a non-empty list (here, the singleton list
containing unit [()]), bind will call the continuation, here return (x, y, z), which
produces a singleton list with a verified Pythagorean triple. All those singleton lists
will be concatenated by the enclosing binds to produce the final (infinite) result. Of

204

http://ericniebler.com/2014/04/27/range-comprehensions/


course, the caller of triples will never be able to consume the whole list, but that
doesn’t matter, because Haskell is lazy.

The problem that normally would require a set of three nested loops has been dramati-
cally simplified with the help of the list monad and the do notation. As if that weren’t
enough, Haskell let’s you simplify this code even further using list comprehension:

triples = [(x, y, z) | z <- [1..]
, x <- [1..z]
, y <- [x..z]
, x^2 + y^2 == z^2]

This is just further syntactic sugar for the list monad (strictly speaking, MonadPlus).

You might see similar constructs in other functional or imperative languages under
the guise of generators and coroutines.

22.2.3 Read-Only State

A function that has read-only access to some external state, or environment, can be
always replaced by a function that takes that environment as an additional argument.
A pure function (a, e) -> b (where e is the type of the environment) doesn’t look,
at first sight, like a Kleisli arrow. But as soon as we curry it to a -> (e -> b) we
recognize the embellishment as our old friend the reader functor:

newtype Reader e a = Reader (e -> a)

You may interpret a function returning a Reader as producing a mini-executable:
an action that given an environment produces the desired result. There is a helper
function runReader to execute such an action:

runReader :: Reader e a -> e -> a
runReader (Reader f) e = f e

It may produce different results for different values of the environment.

Notice that both the function returning a Reader, and the Reader action itself are
pure.

To implement bind for the Reader monad, first notice that you have to produce a
function that takes the environment e and produces a b:

ra >>= k = Reader (\e -> ...)

Inside the lambda, we can execute the action ra to produce an a:

ra >>= k = Reader (\e -> let a = runReader ra e
in ...)

205



We can then pass the a to the continuation k to get a new action rb:

ra >>= k = Reader (\e -> let a = runReader ra e
rb = k a

in ...)

Finally, we can run the action rb with the environment e:

ra >>= k = Reader (\e -> let a = runReader ra e
rb = k a

in runReader rb e)

To implement return we create an action that ignores the environment and returns
the unchanged value.

Putting it all together, after a few simplifications, we get the following definition:

instance Monad (Reader e) where
ra >>= k = Reader (\e -> runReader (k (runReader ra e)) e)
return x = Reader (\e -> x)

22.2.4 Write-Only State

This is just our initial logging example. The embellishment is given by the Writer
functor:

newtype Writer w a = Writer (a, w)

For completeness, there’s also a trivial helper runWriter that unpacks the data con-
structor:

runWriter :: Writer w a -> (a, w)
runWriter (Writer (a, w)) = (a, w)

As we’ve seen before, in order to make Writer composable, w has to be a monoid.
Here’s the monad instance for Writer written in terms of the bind operator:

instance (Monoid w) => Monad (Writer w) where
(Writer (a, w)) >>= k = let (a', w') = runWriter (k a)

in Writer (a', w `mappend` w')
return a = Writer (a, mempty)
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22.2.5 State

Functions that have read/write access to state combine the embellishments of the
Reader and the Writer. You may think of them as pure functions that take the state
as an extra argument and produce a pair value/state as a result: (a, s) -> (b, s).
After currying, we get them into the form of Kleisli arrows a -> (s -> (b, s)), with
the embellishment abstracted in the State functor:

newtype State s a = State (s -> (a, s))

Again, we can look at a Kleisli arrow as returning an action, which can be executed
using the helper function:

runState :: State s a -> s -> (a, s)
runState (State f) s = f s

Different initial states may not only produce different results, but also different final
states.

The implementation of bind for the State monad is very similar to that of the Reader
monad, except that care has to be taken to pass the correct state at each step:

sa >>= k = State (\s -> let (a, s') = runState sa s
sb = k a

in runState sb s')

Here’s the full instance:

instance Monad (State s) where
sa >>= k = State (\s -> let (a, s') = runState sa s

in runState (k a) s')
return a = State (\s -> (a, s))

There are also two helper Kleisli arrows that may be used to manipulate the state.
One of them retrieves the state for inspection:

get :: State s s
get = State (\s -> (s, s))

and the other replaces it with a completely new state:

put :: s -> State s ()
put s' = State (\s -> ((), s'))
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22.2.6 Exceptions

An imperative function that throws an exception is really a partial function — it’s a
function that’s not defined for some values of its arguments. The simplest implemen-
tation of exceptions in terms of pure total functions uses the Maybe functor. A partial
function is extended to a total function that returns Just a whenever it makes sense,
and Nothing when it doesn’t. If we want to also return some information about the
cause of the failure, we can use the Either functor instead (with the first type fixed,
for instance, to String).

Here’s the Monad instance for Maybe:

instance Monad Maybe where
Nothing >>= k = Nothing
Just a >>= k = k a
return a = Just a

Notice that monadic composition for Maybe correctly short-circuits the computation
(the continuation k is never called) when an error is detected. That’s the behavior we
expect from exceptions.

22.2.7 Continuations

It’s the “Don’t call us, we’ll call you!” situation you may experience after a job
interview. Instead of getting a direct answer, you are supposed to provide a handler,
a function to be called with the result. This style of programming is especially useful
when the result is not known at the time of the call because, for instance, it’s being
evaluated by another thread or delivered from a remote web site. A Kleisli arrow in
this case returns a function that accepts a handler, which represents “the rest of the
computation”:

data Cont r a = Cont ((a -> r) -> r)

The handler a -> r, when it’s eventually called, produces the result of type r, and
this result is returned at the end. A continuation is parameterized by the result type.
(In practice, this is often some kind of status indicator.)

There is also a helper function for executing the action returned by the Kleisli arrow.
It takes the handler and passes it to the continuation:

runCont :: Cont r a -> (a -> r) -> r
runCont (Cont k) h = k h

The composition of continuations is notoriously difficult, so its handling through a
monad and, in particular, the do notation, is of extreme advantage.

Let’s figure out the implementation of bind. First let’s look at the stripped down
signature:
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(>>=) :: ((a -> r) -> r) ->
(a -> (b -> r) -> r) ->
((b -> r) -> r)

Our goal is to create a function that takes the handler (b -> r) and produces the
result r. So that’s our starting point:

ka >>= kab = Cont (\hb -> ...)

Inside the lambda, we want to call the function ka with the appropriate handler that
represents the rest of the computation. We’ll implement this handler as a lambda:

runCont ka (\a -> ...)

In this case, the rest of the computation involves first calling kab with a, and then
passing hb to the resulting action kb:

runCont ka (\a -> let kb = kab a
in runCont kb hb)

As you can see, continuations are composed inside out. The final handler hb is called
from the innermost layer of the computation. Here’s the full instance:

instance Monad (Cont r) where
ka >>= kab = Cont (\hb -> runCont ka (\a -> runCont (kab a) hb))
return a = Cont (\ha -> ha a)

22.2.8 Interactive Input

This is the trickiest problem and a source of a lot of confusion. Clearly, a function like
getChar, if it were to return a character typed at the keyboard, couldn’t be pure. But
what if it returned the character inside a container? As long as there was no way of
extracting the character from this container, we could claim that the function is pure.
Every time you call getChar it would return exactly the same container. Conceptually,
this container would contain the superposition of all possible characters.

If you’re familiar with quantum mechanics, you should have no problem understanding
this analogy. It’s just like the box with the Schrödinger’s cat inside — except that
there is no way to open or peek inside the box. The box is defined using the special
built-in IO functor. In our example, getChar could be declared as a Kleisli arrow:

getChar :: () -> IO Char
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(Actually, since a function from the unit type is equivalent to picking a value of the
return type, the declaration of getChar is simplified to getChar :: IO Char.)

Being a functor, IO lets you manipulate its contents using fmap. And, as a functor,
it can store the contents of any type, not just a character. The real utility of this
approach comes to light when you consider that, in Haskell, IO is a monad. It means
that you are able to compose Kleisli arrows that produce IO objects.

You might think that Kleisli composition would allow you to peek at the contents of
the IO object (thus “collapsing the wave function,” if we were to continue the quantum
analogy). Indeed, you could compose getChar with another Kleisli arrow that takes
a character and, say, converts it to an integer. The catch is that this second Kleisli
arrow could only return this integer as an (IO Int). Again, you’ll end up with a
superposition of all possible integers. And so on. The Schrödinger’s cat is never out
of the bag. Once you are inside the IO monad, there is no way out of it. There is no
equivalent of runState or runReader for the IO monad. There is no runIO!

So what can you do with the result of a Kleisli arrow, the IO object, other than
compose it with another Kleisli arrow? Well, you can return it from main. In Haskell,
main has the signature:

main :: IO ()

and you are free to think of it as a Kleisli arrow:

main :: () -> IO ()

From that perspective, a Haskell program is just one big Kleisli arrow in the IO monad.
You can compose it from smaller Kleisli arrows using monadic composition. It’s up
to the runtime system to do something with the resulting IO object (also called IO
action).

Notice that the arrow itself is a pure function — it’s pure functions all the way down.
The dirty work is relegated to the system. When it finally executes the IO action
returned from main, it does all kinds of nasty things like reading user input, modifying
files, printing obnoxious messages, formatting a disk, and so on. The Haskell pro-
gram never dirties its hands (well, except when it calls unsafePerformIO, but that’s
a different story).

Of course, because Haskell is lazy, main returns almost immediately, and the dirty work
begins right away. It’s during the execution of the IO action that the results of pure
computations are requested and evaluated on demand. So, in reality, the execution of
a program is an interleaving of pure (Haskell) and dirty (system) code.

There is an alternative interpretation of the IO monad that is even more bizarre but
makes perfect sense as a mathematical model. It treats the whole Universe as an object
in a program. Notice that, conceptually, the imperative model treats the Universe as
an external global object, so procedures that perform I/O have side effects by virtue of
interacting with that object. They can both read and modify the state of the Universe.

We already know how to deal with state in functional programming — we use the
state monad. Unlike simple state, however, the state of the Universe cannot be easily
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described using standard data structures. But we don’t have to, as long as we never
directly interact with it. It’s enough that we assume that there exists a type RealWorld
and, by some miracle of cosmic engineering, the runtime is able to provide an object
of this type. An IO action is just a function:

type IO a = RealWorld -> (a, RealWorld)

Or, in terms of the State monad:

type IO = State RealWorld

However, >=> and return for the IO monad have to be built into the language.

22.2.9 Interactive Output

The same IO monad is used to encapsulate interactive output. RealWorld is supposed
to contain all output devices. You might wonder why we can’t just call output functions
from Haskell and pretend that they do nothing. For instance, why do we have:

putStr :: String -> IO ()

rather than the simpler:

putStr :: String -> ()

Two reasons: Haskell is lazy, so it would never call a function whose output — here,
the unit object — is not used for anything. And, even if it weren’t lazy, it could
still freely change the order of such calls and thus garble the output. The only way
to force sequential execution of two functions in Haskell is through data dependency.
The input of one function must depend on the output of another. Having RealWorld
passed between IO actions enforces sequencing.

Conceptually, in this program:

main :: IO ()
main = do
putStr "Hello "
putStr "World!"

the action that prints “World!” receives, as input, the Universe in which “Hello ” is
already on the screen. It outputs a new Universe, with “Hello World!” on the screen.
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22.3 Conclusion

Of course I have just scratched the surface of monadic programming. Monads not only
accomplish, with pure functions, what normally is done with side effects in imperative
programming, but they also do it with a high degree of control and type safety. They
are not without drawbacks, though. The major complaint about monads is that they
don’t easily compose with each other. Granted, you can combine most of the basic
monads using the monad transformer library. It’s relatively easy to create a monad
stack that combines, say, state with exceptions, but there is no formula for stacking
arbitrary monads together.
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Figure 96:

23 Monads Categorically

If you mention monads to a programmer, you’ll probably end up talking about effects.
To a mathematician, monads are about algebras. We’ll talk about algebras later —
they play an important role in programming — but first I’d like to give you a little
intuition about their relation to monads. For now, it’s a bit of a hand-waving argument,
but bear with me.

Algebra is about creating, manipulating, and evaluating expressions. Expressions are
built using operators. Consider this simple expression:

x2 + 2 x + 1

This expression is formed using variables like x, and constants like 1 or 2, bound to-
gether with operators like plus or times. As programmers, we often think of expressions
as trees.

Trees are containers so, more generally, an expression is a container for storing variables.
In category theory, we represent containers as endofunctors. If we assign the type a to
the variable x, our expression will have the type m a, where m is an endofunctor that
builds expression trees. (Nontrivial branching expressions are usually created using
recursively defined endofunctors.)

What’s the most common operation that can be performed on an expression? It’s
substitution: replacing variables with expressions. For instance, in our example, we
could replace x with y - 1 to get:

(y - 1)2 + 2 (y - 1) + 1

Here’s what happened: We took an expression of type m a and applied a transformation
of type a -> m b (b represents the type of y). The result is an expression of type m b.
Let me spell it out:

m a -> (a -> m b) -> m b
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Yes, that’s the signature of monadic bind.

That was a bit of motivation. Now let’s get to the math of the monad. Mathe-
maticians use different notation than programmers. They prefer to use the letter T
for the endofunctor, and Greek letters: � for join and � for return. Both join and
return are polymorphic functions, so we can guess that they correspond to natural
transformations.

Therefore, in category theory, a monad is defined as an endofunctor T equipped with
a pair of natural transformations � and �.

� is a natural transformation from the square of the functor T2 back to T. The square
is simply the functor composed with itself, T � T (we can only do this kind of squaring
for endofunctors).

� :: T2 -> T

The component of this natural transformation at an object a is the morphism:

�a :: T (T a) -> T a

which, in Hask, translates directly to our definition of join.

� is a natural transformation between the identity functor I and T:

� :: I -> T

Considering that the action of I on the object a is just a, the component of � is given
by the morphism:

�a :: a -> T a

which translates directly to our definition of return.

These natural transformations must satisfy some additional laws. One way of looking
at it is that these laws let us define a Kleisli category for the endofunctor T. Remem-
ber that a Kleisli arrow between a and b is defined as a morphism a -> T b. The
composition of two such arrows (I’ll write it as a circle with the subscript T) can be
implemented using �:

g �T f = �c � (T g) � f

where

f :: a -> T b
g :: b -> T c
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Figure 97:

Here T, being a functor, can be applied to the morphism g. It might be easier to
recognize this formula in Haskell notation:

f >=> g = join . fmap g . f

or, in components:

(f >=> g) a = join (fmap g (f a))

In terms of the algebraic interpretation, we are just composing two successive substi-
tutions.

For Kleisli arrows to form a category we want their composition to be associative, and
�a to be the identity Kleisli arrow at a. This requirement can be translated to monadic
laws for � and �. But there is another way of deriving these laws that makes them look
more like monoid laws. In fact � is often called multiplication, and � unit.

Roughly speaking, the associativity law states that the two ways of reducing the cube
of T, T3, down to T must give the same result. Two unit laws (left and right) state
that when � is applied to T and then reduced by �, we get back T.

Things are a little tricky because we are composing natural transformations and func-
tors. So a little refresher on horizontal composition is in order. For instance, T3 can
be seen as a composition of T after T2. We can apply to it the horizontal composition
of two natural transformations:

IT � �

and get T�T; which can be further reduced to T by applying �. IT is the identity natural
transformation from T to T. You will often see the notation for this type of horizontal
composition IT � � shortened to T��. This notation is unambiguous because it makes
no sense to compose a functor with a natural transformation, therefore T must mean
IT in this context.
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Figure 98:

Figure 99:

We can also draw the diagram in the (endo-) functor category [C, C]:

Alternatively, we can treat T3 as the composition of T2�T and apply ��T to it. The
result is also T�T which, again, can be reduced to T using �. We require that the two
paths produce the same result.

Similarly, we can apply the horizontal composition ��T to the composition of the identity
functor I after T to obtain T2, which can then be reduced using �. The result should
be the same as if we applied the identity natural transformation directly to T. And,
by analogy, the same should be true for T��.

You can convince yourself that these laws guarantee that the composition of Kleisli
arrows indeed satisfies the laws of a category.

The similarities between a monad and a monoid are striking. We have multiplication
�, unit �, associativity, and unit laws. But our definition of a monoid is too narrow to
describe a monad as a monoid. So let’s generalize the notion of a monoid.
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Figure 100:

23.1 Monoidal Categories

Let’s go back to the conventional definition of a monoid. It’s a set with a binary
operation and a special element called unit. In Haskell, this can be expressed as a
typeclass:

class Monoid m where
mappend :: m -> m -> m
mempty :: m

The binary operation mappend must be associative and unital (i.e., multiplication by
the unit mempty is a no-op).

Notice that, in Haskell, the definition of mappend is curried. It can be interpreted as
mapping every element of m to a function:

mappend :: m -> (m -> m)

It’s this interpretation that gives rise to the definition of a monoid as a single-object
category where endomorphisms (m -> m) represent the elements of the monoid. But
because currying is built into Haskell, we could as well have started with a different
definition of multiplication:

mu :: (m, m) -> m

Here, the cartesian product (m, m) becomes the source of pairs to be multiplied.

This definition suggests a different path to generalization: replacing the cartesian
product with categorical product. We could start with a category where products are
globally defined, pick an object m there, and define multiplication as a morphism:

� :: m × m -> m
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We have one problem though: In an arbitrary category we can’t peek inside an object,
so how do we pick the unit element? There is a trick to it. Remember how element
selection is equivalent to a function from the singleton set? In Haskell, we could replace
the definition of mempty with a function:

eta :: () -> m

The singleton is the terminal object in Set, so it’s natural to generalize this definition
to any category that has a terminal object t:

� :: t -> m

This lets us pick the unit “element” without having to talk about elements.

Unlike in our previous definition of a monoid as a single-object category, monoidal laws
here are not automatically satisfied — we have to impose them. But in order to for-
mulate them we have to establish the monoidal structure of the underlying categorical
product itself. Let’s recall how monoidal structure works in Haskell first.

We start with associativity. In Haskell, the corresponding equational law is:

mu x (mu y z) = mu (mu x y) z

Before we can generalize it to other categories, we have to rewrite it as an equality
of functions (morphisms). We have to abstract it away from its action on individual
variables — in other words, we have to use point-free notation. Knowning that the
cartesian product is a bifunctor, we can write the left hand side as:

(mu . bimap id mu)(x, (y, z))

and the right hand side as:

(mu . bimap mu id)((x, y), z)

This is almost what we want. Unfortunately, the cartesian product is not strictly
associative — (x, (y, z)) is not the same as ((x, y), z) — so we can’t just write
point-free:

mu . bimap id mu = mu . bimap mu id

On the other hand, the two nestings of pairs are isomorphic. There is an invertible
function called the associator that converts between them:

alpha :: ((a, b), c) -> (a, (b, c))
alpha ((x, y), z) = (x, (y, z))
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With the help of the associator, we can write the point-free associativity law for mu:

mu . bimap id mu . alpha = mu . bimap mu id

We can apply a similar trick to unit laws which, in the new notation, take the form:

mu (eta (), x) = x
mu (x, eta ()) = x

They can be rewritten as:

(mu . bimap eta id) ((), x) = lambda ((), x)
(mu . bimap id eta) (x, ()) = rho (x, ())

The isomorphisms lambda and rho are called the left and right unitor, respectively.
They witness the fact that the unit () is the identity of the cartesian product up to
isomorphism:

lambda :: ((), a) -> a
lambda ((), x) = x

rho :: (a, ()) -> a
rho (x, ()) = x

The point-free versions of the unit laws are therefore:

mu . bimap id eta = lambda
mu . bimap eta id = rho

We have formulated point-free monoidal laws for mu and eta using the fact that the
underlying cartesian product itself acts like a monoidal multiplication in the category
of types. Keep in mind though that the associativity and unit laws for the cartesian
product are valid only up to isomorphism.

It turns out that these laws can be generalized to any category with products and
a terminal object. Categorical products are indeed associative up to isomorphism
and the terminal object is the unit, also up to isomorphism. The associator and the
two unitors are natural isomorphisms. The laws can be represented by commuting
diagrams.

Notice that, because the product is a bifunctor, it can lift a pair of morphisms — in
Haskell this was done using bimap.

We could stop here and say that we can define a monoid on top of any category with
categorical products and a terminal object. As long as we can pick an object m and
two morphisms � and � that satisfy monoidal laws, we have a monoid. But we can do
better than that. We don’t need a full-blown categorical product to formulate the laws
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Figure 101:

for � and �. Recall that a product is defined through a universal construction that uses
projections. We haven’t used any projections in our formulation of monoidal laws.

A bifunctor that behaves like a product without being a product is called a tensor
product, often denoted by the infix operator �. A definition of a tensor product in
general is a bit tricky, but we won’t worry about it. We’ll just list its properties —
the most important being associativity up to isomorphism.

Similarly, we don’t need the object t to be terminal. We never used its terminal
property — namely, the existence of a unique morphism from any object to it. What
we require is that it works well in concert with the tensor product. Which means that
we want it to be the unit of the tensor product, again, up to isomorphism. Let’s put
it all together:

A monoidal category is a category C equipped with a bifunctor called the tensor
product:

� :: C × C -> C

and a distinct object i called the unit object, together with three natural isomorphisms
called, respectively, the associator and the left and right unitors:

�a b c :: (a � b) � c -> a � (b � c)
�a :: i � a -> a
�a :: a � i -> a

(There is also a coherence condition for simplifying a quadruple tensor product.)

What’s important is that a tensor product describes many familiar bifunctors. In
particular, it works for a product, a coproduct and, as we’ll see shortly, for the compo-
sition of endofunctors (and also for some more esoteric products like Day convolution).
Monoidal categories will play an essential role in the formulation of enriched categories.
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Figure 102:

Figure 103:

23.2 Monoid in a Monoidal Category

We are now ready to define a monoid in a more general setting of a monoidal category.
We start by picking an object m. Using the tensor product we can form powers of m.
The square of m is m � m. There are two ways of forming the cube of m, but they are
isomorphic through the associator. Similarly for higher powers of m (that’s where we
need the coherence conditions). To form a monoid we need to pick two morphisms:

� :: m � m -> m
� :: i -> m

where i is the unit object for our tensor product.

These morphisms have to satisfy associativity and unit laws, which can be expressed
in terms of the following commuting diagrams:

Notice that it’s essential that the tensor product be a bifunctor because we need to
lift pairs of morphisms to form products such as � � id or � � id. These diagrams are
just a straightforward generalization of our previous results for categorical products.
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Figure 104:

23.3 Monads as Monoids

Monoidal structures pop up in unexpected places. One such place is the functor
category. If you squint a little, you might be able to see functor composition as a
form of multiplication. The problem is that not any two functors can be composed
— the target category of one has to be the source category of the other. That’s just
the usual rule of composition of morphisms — and, as we know, functors are indeed
morphisms in the category Cat. But just like endomorphisms (morphisms that loop
back to the same object) are always composable, so are endofunctors. For any given
category C, endofunctors from C to C form the functor category [C, C]. Its objects
are endofunctors, and morphisms are natural transformations between them. We can
take any two objects from this category, say endofunctors F and G, and produce a third
object F � G — an endofunctor that’s their composition.

Is endofunctor composition a good candidate for a tensor product? First, we have
to establish that it’s a bifunctor. Can it be used to lift a pair of morphisms — here,
natural transformations? The signature of the analog of bimap for the tensor product
would look something like this:

bimap :: (a -> b) -> (c -> d) -> (a � c -> b � d)

If you replace objects by endofunctors, arrows by natural transformations, and tensor
products by composition, you get:

(F -> F') -> (G -> G') -> (F � G -> F' � G')

which you may recognize as the special case of horizontal composition.

We also have at our disposal the identity endofunctor I, which can serve as the identity
for endofunctor composition — our new tensor product. Moreover, functor composi-
tion is associative. In fact associativity and unit laws are strict — there’s no need for
the associator or the two unitors. So endofunctors form a strict monoidal category
with functor composition as tensor product.

What’s a monoid in this category? It’s an object — that is an endofunctor T; and two
morphisms — that is natural transformations:
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Figure 105:

Figure 106:

� :: T � T -> T
� :: I -> T

Not only that, here are the monoid laws:

They are exactly the monad laws we’ve seen before. Now you understand the famous
quote from Saunders Mac Lane:

All told, monad is just a monoid in the category of endofunctors.

You might have seen it emblazoned on some t-shirts at functional programming con-
ferences.

23.4 Monads from Adjunctions

An adjunction, L � R, is a pair of functors going back and forth between two categories
C and D. There are two ways of composing them giving rise to two endofunctors, R �
L and L � R. As per an adjunction, these endofunctors are related to identity functors
through two natural transformations called unit and counit:
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Figure 107:

Figure 108:

� :: ID -> R � L
� :: L � R -> IC

Immediately we see that the unit of an adjunction looks just like the unit of a monad.
It turns out that the endofunctor R � L is indeed a monad. All we need is to define the
appropriate � to go with the �. That’s a natural transformation between the square of
our endofunctor and the endofunctor itself or, in terms of the adjoint functors:

R � L � R � L -> R � L

And, indeed, we can use the counit to collapse the L � R in the middle. The exact
formula for � is given by the horizontal composition:

� = R � � � L

Monadic laws follow from the identities satisfied by the unit and counit of the adjunc-
tion and the interchange law.

We don’t see a lot of monads derived from adjunctions in Haskell, because an ad-
junction usually involves two categories. However, the definitions of an exponential,
or a function object, is an exception. Here are the two endofunctors that form this
adjunction:
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L z = z × s
R b = s � b

You may recognize their composition as the familiar state monad:

R (L z) = s � (z × s)

We’ve seen this monad before in Haskell:

newtype State s a = State (s -> (a, s))

Let’s also translate the adjunction to Haskell. The left functor is the product functor:

newtype Prod s a = Prod (a, s)

and the right functor is the reader functor:

newtype Reader s a = Reader (s -> a)

They form the adjunction:

instance Adjunction (Prod s) (Reader s) where
counit (Prod (Reader f, s)) = f s
unit a = Reader (\s -> Prod (a, s))

You can easily convince yourself that the composition of the reader functor after the
product functor is indeed equivalent to the state functor:

newtype State s a = State (s -> (a, s))

As expected, the unit of the adjunction is equivalent to the return function of the
state monad. The counit acts by evaluating a function acting on its argument. This
is recognizable as the uncurried version of the function runState:

runState :: State s a -> s -> (a, s)
runState (State f) s = f s

(uncurried, because in counit it acts on a pair).

We can now define join for the state monad as a component of the natural transfor-
mation �. For that we need a horizontal composition of three natural transformations:

� = R � � � L
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In other words, we need to sneak the counit � across one level of the reader functor.
We can’t just call fmap directly, because the compiler would pick the one for the State
functor, rather than the Reader functor. But recall that fmap for the reader functor
is just left function composition. So we’ll use function composition directly.

We have to first peel off the data constructor State to expose the function inside the
State functor. This is done using runState:

ssa :: State s (State s a)
runState ssa :: s -> (State s a, s)

Then we left-compose it with the counit, which is defined by uncurry runState. Fi-
nally, we clothe it back in the State data constructor:

join :: State s (State s a) -> State s a
join ssa = State (uncurry runState . runState ssa)

This is indeed the implementation of join for the State monad.

It turns out that not only every adjunction gives rise to a monad, but the converse is
also true: every monad can be factorized into a composition of two adjoint functors.
Such factorization is not unique though.

We’ll talk about the other endofunctor L � R in the next section.
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24 Comonads
Now that we have covered monads, we can reap the benefits of duality and get comon-
ads for free simply by reversing the arrows and working in the opposite category.

Recall that, at the most basic level, monads are about composing Kleisli arrows:

a -> m b

where m is a functor that is a monad. If we use the letter w (upside down m) for the
comonad, we can define co-Kleisli arrows as morphism of the type:

w a -> b

The analog of the fish operator for co-Kleisli arrows is defined as:

(=>=) :: (w a -> b) -> (w b -> c) -> (w a -> c)

For co-Kleisli arrows to form a category we also have to have an identity co-Kleisli
arrow, which is called extract:

extract :: w a -> a

This is the dual of return. We also have to impose the laws of associativity as well as
left- and right-identity. Putting it all together, we could define a comonad in Haskell
as:

class Functor w => Comonad w where
(=>=) :: (w a -> b) -> (w b -> c) -> (w a -> c)
extract :: w a -> a

In practice, we use slightly different primitives, as we’ll see shortly.

The question is, what’s the use for comonads in programming?

24.1 Programming with Comonads

Let’s compare the monad with the comonad. A monad provides a way of putting
a value in a container using return. It doesn’t give you access to a value or values
stored inside. Of course, data structures that implement monads might provide access
to their contents, but that’s considered a bonus. There is no common interface for
extracting values from a monad. And we’ve seen the example of the IO monad that
prides itself in never exposing its contents.

A comonad, on the other hand, provides the means of extracting a single value from
it. It does not give the means to insert values. So if you want to think of a comonad
as a container, it always comes pre-filled with contents, and it lets you peek at it.

Just as a Kleisli arrow takes a value and produces some embellished result — it embel-
lishes it with context — a co-Kleisli arrow takes a value together with a whole context
and produces a result. It’s an embodiment of contextual computation.
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24.2 The Product Comonad

Remember the reader monad? We introduced it to tackle the problem of implementing
computations that need access to some read-only environment e. Such computations
can be represented as pure functions of the form:

(a, e) -> b

We used currying to turn them into Kleisli arrows:

a -> (e -> b)

But notice that these functions already have the form of co-Kleisli arrows. Let’s
massage their arguments into the more convenient functor form:

data Product e a = P e a
deriving Functor

We can easily define the composition operator by making the same environment avail-
able to the arrows that we are composing:

(=>=) :: (Product e a -> b) -> (Product e b -> c) -> (Product e a -> c)
f =>= g = \(P e a) -> let b = f (P e a)

c = g (P e b)
in c

The implementation of extract simply ignores the environment:

extract (P e a) = a

Not surprisingly, the product comonad can be used to perform exactly the same com-
putations as the reader monad. In a way, the comonadic implementation of the envi-
ronment is more natural — it follows the spirit of “computation in context.” On the
other hand, monads come with the convenient syntactic sugar of the do notation.

The connection between the reader monad and the product comonad goes deeper,
having to do with the fact that the reader functor is the right adjoint of the product
functor. In general, though, comonads cover different notions of computation than
monads. We’ll see more examples later.

It’s easy to generalize the Product comonad to arbitrary product types including tuples
and records.
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24.3 Dissecting the Composition

Continuing the process of dualization, we could go ahead and dualize monadic bind
and join. Alternatively, we can repeat the process we used with monads, where we
studied the anatomy of the fish operator. This approach seems more enlightening.

The starting point is the realization that the composition operator must produce a
co-Kleisli arrow that takes w a and produces a c. The only way to produce a c is to
apply the second function to an argument of the type w b:

(=>=) :: (w a -> b) -> (w b -> c) -> (w a -> c)
f =>= g = g ...

But how can we produce a value of type w b that could be fed to g? We have at our
disposal the argument of type w a and the function f :: w a -> b. The solution is
to define the dual of bind, which is called extend:

extend :: (w a -> b) -> w a -> w b

Using extend we can implement composition:

f =>= g = g . extend f

Can we next dissect extend? You might be tempted to say, why not just apply the
function w a -> b to the argument w a, but then you quickly realize that you’d have
no way of converting the resulting b to w b. Remember, the comonad provides no
means of lifting values. At this point, in the analogous construction for monads, we
used fmap. The only way we could use fmap here would be if we had something
of the type w (w a) at our disposal. If we coud only turn w a into w (w a). And,
conveniently, that would be exactly the dual of join. We call it duplicate:

duplicate :: w a -> w (w a)

So, just like with the definitions of the monad, we have three equivalent definitions
of the comonad: using co-Kleisli arrows, extend, or duplicate. Here’s the Haskell
definition taken directly from Control.Comonad library:

class Functor w => Comonad w where
extract :: w a -> a
duplicate :: w a -> w (w a)
duplicate = extend id
extend :: (w a -> b) -> w a -> w b
extend f = fmap f . duplicate
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Provided are the default implementations of extend in terms of duplicate and vice
versa, so you only need to override one of them.

The intuition behind these functions is based on the idea that, in general, a comonad
can be thought of as a container filled with values of type a (the product comonad was
a special case of just one value). There is a notion of the “current” value, one that’s
easily accessible through extract. A co-Kleisli arrow performs some computation that
is focused on the current value, but it has access to all the surrounding values. Think
of the Conway’s game of life. Each cell contains a value (usually just True or False).
A comonad corresponding to the game of life would be a grid of cells focused on the
“current” cell.

So what does duplicate do? It takes a comonadic container w a and produces a
container of containers w (w a). The idea is that each of these containers is focused
on a different a inside w a. In the game of life, you would get a grid of grids, each cell
of the outer grid containing an inner grid that’s focused on a different cell.

Now look at extend. It takes a co-Kleisli arrow and a comonadic container w a filled
with as. It applies the computation to all of these as, replacing them with bs. The
result is a comonadic container filled with bs. extend does it by shifting the focus from
one a to another and applying the co-Kleisli arrow to each of them in turn. In the
game of life, the co-Kleisli arrow would calculate the new state of the current cell. To
do that, it would look at its context — presumably its nearest neighbors. The default
implementation of extend illustrates this process. First we call duplicate to produce
all possible foci and then we apply f to each of them.

24.4 The Stream Comonad

This process of shifting the focus from one element of the container to another is best
illustrated with the example of an infinite stream. Such a stream is just like a list,
except that it doesn’t have the empty constructor:

data Stream a = Cons a (Stream a)

It’s trivially a Functor:

instance Functor Stream where
fmap f (Cons a as) = Cons (f a) (fmap f as)

The focus of a stream is its first element, so here’s the implementation of extract:

extract (Cons a _) = a

duplicate produces a stream of streams, each focused on a different element.

duplicate (Cons a as) = Cons (Cons a as) (duplicate as)
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The first element is the original stream, the second element is the tail of the original
stream, the third element is its tail, and so on, ad infinitum.

Here’s the complete instance:

instance Comonad Stream where
extract (Cons a _) = a
duplicate (Cons a as) = Cons (Cons a as) (duplicate as)

This is a very functional way of looking at streams. In an imperative language, we
would probably start with a method advance that shifts the stream by one position.
Here, duplicate produces all shifted streams in one fell swoop. Haskell’s laziness
makes this possible and even desirable. Of course, to make a Stream practical, we
would also implement the analog of advance:

tail :: Stream a -> Stream a
tail (Cons a as) = as

but it’s never part of the comonadic interface.

If you had any experience with digital signal processing, you’ll see immediately that
a co-Kleisli arrow for a stream is just a digital filter, and extend produces a filtered
stream.

As a simple example, let’s implement the moving average filter. Here’s a function that
sums n elements of a stream:

sumS :: Num a => Int -> Stream a -> a
sumS n (Cons a as) = if n <= 0 then 0 else a + sumS (n - 1) as

Here’s the function that calculates the average of the first n elements of the stream:

average :: Fractional a => Int -> Stream a -> a
average n stm = (sumS n stm) / (fromIntegral n)

Partially applied average n is a co-Kleisli arrow, so we can extend it over the whole
stream:

movingAvg :: Fractional a => Int -> Stream a -> Stream a
movingAvg n = extend (average n)

The result is the stream of running averages.

A stream is an example of a unidirectional, one-dimensional comonad. It can be easily
made bidirectional or extended to two or more dimensions.
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24.5 Comonad Categorically

Defining a comonad in category theory is a straightforward exercise in duality. As
with the monad, we start with an endofunctor T. The two natural transformations, �
and �, that define the monad are simply reversed for the comonad:

� :: T -> I
� :: T -> T2

The components of these transformations correspond to extract and duplicate.
Comonad laws are the mirror image of monad laws. No big surprise here.

Then there is the derivation of the monad from an adjunction. Duality reverses an
adjunction: the left adjoint becomes the right adjoint and vice versa. And, since the
composition R � L defines a monad, L � R must define a comonad. The counit of the
adjunction:

� :: L � R -> I

is indeed the same � that we see in the definition of the comonad — or, in components,
as Haskell’s extract. We can also use the unit of the adjunction:

� :: I -> R � L

to insert an R � L in the middle of L � R and produce L � R � L � R. Making T2 from
T defines the �, and that completes the definition of the comonad.

We’ve also seen that the monad is a monoid. The dual of this statement would require
the use of a comonoid, so what’s a comonoid? The original definition of a monoid as a
single-object category doesn’t dualize to anything interesting. When you reverse the
direction of all endomorphisms, you get another monoid. Recall, however, that in our
approach to a monad, we used a more general definition of a monoid as an object in
a monoidal category. The construction was based on two morphisms:

� :: m � m -> m
� :: i -> m

The reversal of these morphisms produces a comonoid in a monoidal category:

� :: m -> m � m
� :: m -> i

One can write a definition of a comonoid in Haskell:

class Comonoid m where
split :: m -> (m, m)
destroy :: m -> ()
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but it is rather trivial. Obviously destroy ignores its argument.

destroy _ = ()

split is just a pair of functions:

split x = (f x, g x)

Now consider comonoid laws that are dual to the monoid unit laws.

lambda . bimap destroy id . split = id
rho . bimap id destroy . split = id

Here, lambda and rho are the left and right unitors, respectively (see the definition of
monoidal categories). Plugging in the definitions, we get:

lambda (bimap destroy id (split x))
= lambda (bimap destroy id (f x, g x))
= lambda ((), g x)
= g x

which proves that g = id. Similarly, the second law expands to f = id. In conclusion:

split x = (x, x)

which shows that in Haskell (and, in general, in the category Set) every object is a
trivial comonoid.

Fortunately there are other more interesting monoidal categories in which to define
comonoids. One of them is the category of endofunctors. And it turns out that, just
like the monad is a monoid in the category of endofunctors,

The comonad is a comonoid in the category of endofunctors.

24.6 The Store Comonad

Another important example of a comonad is the dual of the state monad. It’s called
the costate comonad or, alternatively, the store comonad.

We’ve seen before that the state monad is generated by the adjunction that defines
the exponentials:

L z = z × s
R a = s � a
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We’ll use the same adjunction to define the costate comonad. A comonad is defined
by the composition L � R:

L (R a) = (s � a) × s

Translating this to Haskell, we start with the adjunction between the Prod functor on
the left and the Reader functor or the right. Composing Prod after Reader is equivalent
to the following definition:

data Store s a = Store (s -> a) s

The counit of the adjunction taken at the object a is the morphism:

�a :: ((s � a) × s) -> a

or, in Haskell notation:

counit (Prod (Reader f, s)) = f s

This becomes our extract:

extract (Store f s) = f s

The unit of the adjunction:

unit a = Reader (\s -> Prod (a, s))

can be rewritten as partially applied data constructor:

Store f :: s -> Store f s

We construct �, or duplicate, as the horizontal composition:

� :: L � R -> L � R � L � R
� = L � � � R

We have to sneak � through the leftmost L, which is the Prod functor. It means acting
with �, or Store f, on the left component of the pair (that’s what fmap for Prod would
do). We get:

duplicate (Store f s) = Store (Store f) s
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(Remember that, in the formula for �, L and R stand for identity natural transformations
whose components are identity morphisms.)

Here’s the complete definition of the Store comonad:

instance Comonad (Store s) where
extract (Store f s) = f s
duplicate (Store f s) = Store (Store f) s

You may think of the Reader part of Store as a generalized container of as that are
keyed using elements of the type s. For instance, if s is Int, Reader Int a is an
infinite bidirectional stream of as. Store pairs this container with a value of the key
type. For instance, Reader Int a is paired with an Int. In this case, extract uses
this integer to index into the infinite stream. You may think of the second component
of Store as the current position.

Continuing with this example, duplicate creates a new infinite stream indexed by
an Int. This stream contains streams as its elements. In particular, at the current
position, it contains the original stream. But if you use some other Int (positive or
negative) as the key, you’d obtain a shifted stream positioned at that new index.

In general, you can convince yourself that when extract acts on the duplicated Store
it produces the original Store (in fact, the identity law for the comonad states that
extract . duplicate = id).

The Store comonad plays an important role as the theoretical basis for the Lens library.
Conceptually, the Store s a comonad encapsulates the idea of “focusing” (like a lens)
on a particular substructure of the date type a using the type s as an index. In
particular, a function of the type:

a -> Store s a

is equivalent to a pair of functions:

set :: a -> s -> a
get :: a -> s

If a is a product type, set could be implemented as setting the field of type s inside
of a while returning the modified version of a. Similarly, get could be implemented to
read the value of the s field from a. We’ll explore these ideas more in the next section.

24.7 Challenges

1. Implement the Conway’s Game of Life using the Store comonad. Hint: What
type do you pick for s?
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25 F-Algebras
We’ve seen several formulations of a monoid: as a set, as a single-object category, as
an object in a monoidal category. How much more juice can we squeeze out of this
simple concept?

Let’s try. Take this definition of a monoid as a set m with a pair of functions:

� :: m × m -> m
� :: 1 -> m

Here, 1 is the terminal object in Set — the singleton set. The first function defines
multiplication (it takes a pair of elements and returns their product), the second selects
the unit element from m. Not every choice of two functions with these signatures results
in a monoid. For that we need to impose additional conditions: associativity and unit
laws. But let’s forget about that for a moment and just consider “potential monoids.”
A pair of functions is an element of a cartesian product of two sets of functions. We
know that these sets may be represented as exponential objects:

� � m m×m
� � m1

The cartesian product of these two sets is:

m m×m × m1

Using some high-school algebra (which works in every cartesian closed category), we
can rewrite it as:

m m×m + 1

The plus sign stands for the coproduct in Set. We have just replaced a pair of functions
with a single function — an element of the set:

m × m + 1 -> m

Any element of this set of functions is a potential monoid.

The beauty of this formulation is that it leads to interesting generalizations. For
instance, how would we describe a group using this language? A group is a monoid
with one additional function that assigns the inverse to every element. The latter is
a function of the type m->m. As an example, integers form a group with addition as a
binary operation, zero as the unit, and negation as the inverse. To define a group we
would start with a triple of functions:

m × m -> m
m -> m
1 -> m
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As before, we can combine all these triples into one set of functions:

m × m + m + 1 -> m

We started with one binary operator (addition), one unary operator (negation), and
one nullary operator (identity — here zero). We combined them into one function. All
functions with this signature define potential groups.

We can go on like this. For instance, to define a ring, we would add one more binary
operator and one nullary operator, and so on. Each time we end up with a function
type whose left-hand side is a sum of powers (possibly including the zeroth power —
the terminal object), and the right-hand side being the set itself.

Now we can go crazy with generalizations. First of all, we can replace sets with
objects and functions with morphisms. We can define n-ary operators as morphisms
from n-ary products. It means that we need a category that supports finite products.
For nullary operators we require the existence of the terminal object. So we need a
cartesian category. In order to combine these operators we need exponentials, so that’s
a cartesian closed category. Finally, we need coproducts to complete our algebraic
shenanigans.

Alternatively, we can just forget about the way we derived our formulas and concen-
trate on the final product. The sum of products on the left hand side of our morphism
defines an endofunctor. What if we pick an arbitrary endofunctor F instead? In that
case we don’t have to impose any constraints on our category. What we obtain is
called an F-algebra.

An F-algebra is a triple consisting of an endofunctor F, an object a, and a morphism

F a -> a

The object is often called the carrier, an underlying object or, in the context of pro-
gramming, the carrier type. The morphism is often called the evaluation function or
the structure map. Think of the functor F as forming expressions and the morphism
as evaluating them.

Here’s the Haskell definition of an F-algebra:

type Algebra f a = f a -> a

It identifies the algebra with its evaluation function.

In the monoid example, the functor in question is:

data MonF a = MEmpty | MAppend a a

This is Haskell for 1 + a × a (remember algebraic data structures).

A ring would be defined using the following functor:
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data RingF a = RZero
| ROne
| RAdd a a
| RMul a a
| RNeg a

which is Haskell for 1 + 1 + a × a + a × a + a.

An example of a ring is the set of integers. We can choose Integer as the carrier type
and define the evaluation function as:

evalZ :: Algebra RingF Integer
evalZ RZero = 0
evalZ ROne = 1
evalZ (RAdd m n) = m + n
evalZ (RMul m n) = m * n
evalZ (RNeg n) = -n

There are more F-algebras based on the same functor RingF. For instance, polynomials
form a ring and so do square matrices.

As you can see, the role of the functor is to generate expressions that can be evaluated
using the evaluator of the algebra. So far we’ve only seen very simple expressions. We
are often interested in more elaborate expressions that can be defined using recursion.

25.1 Recursion

One way to generate arbitrary expression trees is to replace the variable a inside the
functor definition with recursion. For instance, an arbitrary expression in a ring is
generated by this tree-like data structure:

data Expr = RZero
| ROne
| RAdd Expr Expr
| RMul Expr Expr
| RNeg Expr

We can replace the original ring evaluator with its recursive version:

evalZ :: Expr -> Integer
evalZ RZero = 0
evalZ ROne = 1
evalZ (RAdd e1 e2) = evalZ e1 + evalZ e2
evalZ (RMul e1 e2) = evalZ e1 * evalZ e2
evalZ (RNeg e) = -(evalZ e)
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This is still not very practical, since we are forced to represent all integers as sums of
ones, but it will do in a pinch.

But how can we describe expression trees using the language of F-algebras? We have
to somehow formalize the process of replacing the free type variable in the definition
of our functor, recursively, with the result of the replacement. Imagine doing this in
steps. First, define a depth-one tree as:

type RingF1 a = RingF (RingF a)

We are filling the holes in the definition of RingF with depth-zero trees generated by
RingF a. Depth-2 trees are similarly obtained as:

type RingF2 a = RingF (RingF (RingF a))

which we can also write as:

type RingF2 a = RingF (RingF1 a)

Continuing this process, we can write a symbolic equation:

type RingFn+1 a = RingF (RingFn a)

Conceptually, after repeating this process infinitely many times, we end up with our
Expr. Notice that Expr does not depend on a. The starting point of our journey
doesn’t matter, we always end up in the same place. This is not always true for an
arbitrary endofunctor in an arbitrary category, but in the category Set things are nice.

Of course, this is a hand-waving argument, and I’ll make it more rigorous later.

Applying an endofunctor infinitely many times produces a fixed point, an object defined
as:

Fix f = f (Fix f)

The intuition behind this definition is that, since we applied f infinitely many times
to get Fix f, applying it one more time doesn’t change anything. In Haskell, the
definition of a fixed point is:

newtype Fix f = Fix (f (Fix f))

Arguably, this would be more readable if the constructor’s name were different than
the name of the type being defined, as in:

newtype Fix f = In (f (Fix f))
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but I’ll stick with the accepted notation. The constructor Fix (or In, if you prefer)
can be seen as a function:

Fix :: f (Fix f) -> Fix f

There is also a function that peels off one level of functor application:

unFix :: Fix f -> f (Fix f)
unFix (Fix x) = x

The two functions are the inverse of each other. We’ll use these functions later.

25.2 Category of F-Algebras

Here’s the oldest trick in the book: Whenever you come up with a way of constructing
some new objects, see if they form a category. Not surprisingly, algebras over a given
endofunctor F form a category. Objects in that category are algebras — pairs consisting
of a carrier object a and a morphism F a -> a, both from the original category C.

To complete the picture, we have to define morphisms in the category of F-algebras.
A morphism must map one algebra (a, f) to another algebra (b, g). We’ll define it
as a morphism m that maps the carriers — it goes from a to b in the original category.
Not any morphism will do: we want it to be compatible with the two evaluators. (We
call such a structure-preserving morphism a homomorphism.) Here’s how you define
a homomorphism of F-algebras. First, notice that we can lift m to the mapping:

F m :: F a -> F b

we can then follow it with g to get to b. Equivalently, we can use f to go from F a to
a and then follow it with m. We want the two paths to be equal:

g � F m = m � f

It’s easy to convince yourself that this is indeed a category (hint: identity morphisms
from C work just fine, and a composition of homomorphisms is a homomorphism).

An initial object in the category of F-algebras, if it exists, is called the initial algebra.
Let’s call the carrier of this initial algebra i and its evaluator j :: F i -> i. It turns
out that j, the evaluator of the initial algebra, is an isomorphism. This result is known
as Lambek’s theorem. The proof relies on the definition of the initial object, which
requires that there be a unique homomorphism m from it to any other F-algebra. Since
m is a homomorphism, the following diagram must commute:

Now let’s construct an algebra whose carrier is F i. The evaluator of such an algebra
must be a morphism from F (F i) to F i. We can easily construct such an evaluator
simply by lifting j:
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F j :: F (F i) -> F i

Because (i, j) is the initial algebra, there must be a unique homomorphism m from
it to (F i, F j). The following diagram must commute:

But we also have this trivially commuting diagram (both paths are the same!):

which can be interpreted as showing that j is a homomorphism of algebras, mapping
(F i, F j) to (i, j). We can glue these two diagrams together to get:

This diagram may, in turn, be interpreted as showing that j � m is a homomorphism
of algebras. Only in this case the two algebras are the same. Moreover, because (i,
j) is initial, there can only be one homomorphism from it to itself, and that’s the
identity morphism idi — which we know is a homomorphism of algebras. Therefore
j � m = idi. Using this fact and the commuting property of the left diagram we can
prove that m � j = idFi. This shows that m is the inverse of j and therefore j is an
isomorphism between F i and i:

F i � i

But that is just saying that i is a fixed point of F. That’s the formal proof behind the
original hand-waving argument.
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Back to Haskell: We recognize i as our Fix f, j as our constructor Fix, and its
inverse as unFix. The isomorphism in Lambek’s theorem tells us that, in order to get
the initial algebra, we take the functor f and replace its argument a with Fix f. We
also see why the fixed point does not depend on a.

25.2.1 Natural Numbers

Natural numbers can also be defined as an F-algebra. The starting point is the pair
of morphisms:

zero :: 1 -> N
succ :: N -> N

The first one picks the zero, and the second one maps all numbers to their successors.
As before, we can combine the two into one:

1 + N -> N

The left hand side defines a functor which, in Haskell, can be written like this:

data NatF a = ZeroF | SuccF a

The fixed point of this functor (the initial algebra that it generates) can be encoded
in Haskell as:

data Nat = Zero | Succ Nat

A natural number is either zero or a successor of another number. This is known as
the Peano representation for natural numbers.

25.3 Catamorphisms

Let’s rewrite the initiality condition using Haskell notation. We call the initial algebra
Fix f. Its evaluator is the contructor Fix. There is a unique morphism m from the
initial algebra to any other algebra over the same functor. Let’s pick an algebra whose
carrier is a and the evaluator is alg.

By the way, notice what m is: It’s an evaluator for the fixed point, an evaluator for the
whole recursive expression tree. Let’s find a general way of implementing it.

Lambek’s theorem tells us that the constructor Fix is an isomorphism. We called its
inverse unFix. We can therefore flip one arrow in this diagram to get:

Let’s write down the commutation condition for this diagram:

m = alg . fmap m . unFix

243



Figure 114:

Figure 115:

We can interpret this equation as a recursive definition of m. The recursion is bound to
terminate for any finite tree created using the functor f. We can see that by noticing
that fmap m operates underneath the top layer of the functor f. In other words, it
works on the children of the original tree. The children are always one level shallower
than the original tree.

Here’s what happens when we apply m to a tree constructed using Fix f. The action
of unFix peels off the constructor, exposing the top level of the tree. We then apply
m to all the children of the top node. This produces results of type a. Finally, we
combine those results by applying the non-recursive evaluator alg. The key point is
that our evaluator alg is a simple non-recursive function.

Since we can do this for any algebra alg, it makes sense to define a higher order
function that takes the algebra as a parameter and gives us the function we called m.
This higher order function is called a catamorphism:

cata :: Functor f => (f a -> a) -> Fix f -> a
cata alg = alg . fmap (cata alg) . unFix

Let’s see an example of that. Take the functor that defines natural numbers:
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data NatF a = ZeroF | SuccF a

Let’s pick (Int, Int) as the carrier type and define our algebra as:

fib :: NatF (Int, Int) -> (Int, Int)
fib ZeroF = (1, 1)
fib (SuccF (m, n)) = (n, m + n)

You can easily convince yourself that the catamorphism for this algebra, cata fib,
calculates Fibonacci numbers.

In general, an algebra for NatF defines a recurrence relation: the value of the current
element in terms of the previous element. A catamorphism then evaluates the n-th
element of that sequence.

25.4 Folds

A list of e is the initial algebra of the following functor:

data ListF e a = NilF | ConsF e a

Indeed, replacing the variable a with the result of recursion, which we’ll call List e,
we get:

data List e = Nil | Cons e (List e)

An algebra for a list functor picks a particular carrier type and defines a function that
does pattern matching on the two constructors. Its value for NilF tells us how to
evaluate an empty list, and its value for ConsF tells us how to combine the current
element with the previously accumulated value.

For instance, here’s an algebra that can be used to calculate the length of a list (the
carrier type is Int):

lenAlg :: ListF e Int -> Int
lenAlg (ConsF e n) = n + 1
lenAlg NilF = 0

Indeed, the resulting catamorphism cata lenAlg calculates the length of a list. Notice
that the evaluator is a combination of (1) a function that takes a list element and an
accumulator and returns a new accumulator, and (2) a starting value, here zero. The
type of the value and the type of the accumulator are given by the carrier type.

Compare this to the traditional Haskell definition:

length = foldr (\e n -> n + 1) 0
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The two arguments to foldr are exactly the two components of the algebra.

Let’s try another example:

sumAlg :: ListF Double Double -> Double
sumAlg (ConsF e s) = e + s
sumAlg NilF = 0.0

Again, compare this with:

sum = foldr (\e s -> e + s) 0.0

As you can see, foldr is just a convenient specialization of a catamorphism to lists.

25.5 Coalgebras

As usual, we have a dual construction of an F-coagebra, where the direction of the
morphism is reversed:

a -> F a

Coalgebras for a given functor also form a category, with homomorphisms preserv-
ing the coalgebraic structure. The terminal object (t, u) in that category is called
the terminal (or final) coalgebra. For every other algebra (a, f) there is a unique
homomorphism m that makes the following diagram commute:

A terminal colagebra is a fixed point of the functor, in the sense that the morphism u
:: t -> F t is an isomorphism (Lambek’s theorem for coalgebras):

F t � t
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A terminal coalgebra is usually interpreted in programming as a recipe for generating
(possibly infinite) data structures or transition systems.

Just like a catamorphism can be used to evaluate an initial algebra, an anamorphism
can be used to coevaluate a terminal coalgebra:

ana :: Functor f => (a -> f a) -> a -> Fix f
ana coalg = Fix . fmap (ana coalg) . coalg

A canonical example of a coalgebra is based on a functor whose fixed point is an infinite
stream of elements of type e. This is the functor:

data StreamF e a = StreamF e a
deriving Functor

and this is its fixed point:

data Stream e = Stream e (Stream e)

A coalgebra for StreamF e is a function that takes the seed of type a and produces a
pair (StreamF is a fancy name for a pair) consisting of an element and the next seed.

You can easily generate simple examples of coalgebras that produce infinite sequences,
like the list of squares, or reciprocals.

A more interesting example is a coalgebra that produces a list of primes. The trick
is to use an infinite list as a carrier. Our starting seed will be the list [2..]. The
next seed will be the tail of this list with all multiples of 2 removed. It’s a list of
odd numbers starting with 3. In the next step, we’ll take the tail of this list and
remove all multiples of 3, and so on. You might recognize the makings of the sieve of
Eratosthenes. This coalgebra is implemented by the following function:

era :: [Int] -> StreamF Int [Int]
era (p : ns) = StreamF p (filter (notdiv p) ns)

where notdiv p n = n `mod` p /= 0

The anamorphism for this coalgebra generates the list of primes:

primes = ana era [2..]

A stream is an infinite list, so it should be possible to convert it to a Haskell list. To
do that, we can use the same functor StreamF to form an algebra, and we can run a
catamorphism over it. For instance, this is a catamorphism that converts a stream to
a list:

toListC :: Fix (StreamF e) -> [e]
toListC = cata al

where al :: StreamF e [e] -> [e]
al (StreamF e a) = e : a
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Here, the same fixed point is simultaneously an initial algebra and a terminal coalgebra
for the same endofunctor. It’s not always like this, in an arbitrary category. In general,
an endofunctor may have many (or no) fixed points. The initial algebra is the so called
least fixed point, and the terminal coalgebra is the greatest fixed point. In Haskell,
though, both are defined by the same formula, and they coincide.

The anamorphism for lists is called unfold. To create finite lists, the functor is modified
to produce a Maybe pair:

unfoldr :: (b -> Maybe (a, b)) -> b -> [a]

The value of Nothing will terminate the generation of the list.

An interesting case of a coalgebra is related to lenses. A lens can be represented as a
pair of a getter and a setter:

set :: a -> s -> a
get :: a -> s

Here, a is usually some product data type with a field of type s. The getter retrieves
the value of that field and the setter replaces this field with a new value. These two
functions can be combined into one:

a -> (s, s -> a)

We can rewrite this function further as:

a -> Store s a

where we have defined a functor:

data Store s a = Store (s -> a) s

Notice that this is not a simple algebraic functor constructed from sums of products.
It involves an exponential as.

A lens is a coalgebra for this functor with the carrier type a. We’ve seen before that
Store s is also a comonad. It turns out that a well-behaved lens corresponds to a
coalgebra that is compatible with the comonad structure. We’ll talk about this in the
next section.

25.6 Challenges

1. Implement the evaluation function for a ring of polynomials of one variable. You
can represent a polynomial as a list of coefficients in front of powers of x. For
instance, 4x2-1 would be represented as (starting with the zero’th power) [-1,
0, 4].
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2. Generalize the previous construction to polynomials of many independent vari-
ables, like x2y-3y3z.

3. Implement the algebra for the ring of 2×2 matrices.
4. Define a coalgebra whose anamorphism produces a list of squares of natural

numbers.
5. Use unfoldr to generate a list of the first n primes.
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Figure 117:

26 Algebras for Monads

If we interpret endofunctors as ways of defining expressions, algebras let us evaluate
them and monads let us form and manipulate them. By combining algebras with
monads we not only gain a lot of functionality but we can also answer a few interesting
questions. One such question concerns the relation between monads and adjunctions.
As we’ve seen, every adjunction defines a monad (and a comonad). The question is:
Can every monad (comonad) be derived from an adjunction? The answer is positive.
There is a whole family of adjunctions that generate a given monad. I’ll show you two
such adjunction.

Let’s review the definitions. A monad is an endofunctor m equipped with two natural
transformations that satisfy some coherence conditions. The components of these
transformations at a are:

�a :: a -> m a
�a :: m (m a) -> m a

An algebra for the same endofunctor is a selection of a particular object — the carrier
a — together with the morphism:

alg :: m a -> a

The first thing to notice is that the algebra goes in the opposite direction to �a. The
intuition is that �a creates a trivial expression from a value of type a. The first
coherence condition that makes the algebra compatible with the monad ensures that
evaluating this expression using the algebra whose carrier is a gives us back the original
value:

alg � �a = ida

The second condition arises from the fact that there are two ways of evaluating the
doubly nested expression m (m a). We can first apply �a to flatten the expression, and
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Figure 118:

Figure 119:

then use the evaluator of the algebra; or we can apply the lifted evaluator to evaluate
the inner expressions, and then apply the evaluator to the result. We’d like the two
strategies to be equivalent:

alg � �a = alg � m alg

Here, m alg is the morphism resulting from lifting alg using the functor m. The
following commuting diagrams describe the two conditions (I replaced m with T in
anticipation of what follows):

We can also express these condition in Haskell:

alg . return = id
alg . join = alg . fmap alg

Let’s look at a small example. An algebra for a list endofunctor consists of some type
a and a function that produces an a from a list of a. We can express this function
using foldr by choosing both the element type and the accumulator type to be equal
to a:
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foldr :: (a -> a -> a) -> a -> [a] -> a

This particular algebra is specified by a two-argument function, let’s call it f, and a
value z. The list functor happens to also be a monad, with return turning a value
into a singleton list. The composition of the algebra, here foldr f z, after return
takes x to:

foldr f z [x] = x `f` z

where the action of f is written in the infix notation. The algebra is compatible with
the monad if the following coherence condition is satisfied for every x:

x `f` z = x

If we look at f as a binary operator, this condition tells us that z is the right unit.

The second coherence condition operates on a list of lists. The action of join concate-
nates the individual lists. We can then fold the resulting list. On the other hand, we
can first fold the individual lists, and then fold the resulting list. Again, if we interpret
f as a binary operator, this condition tells us that this binary operation is associative.
These conditions are certainly fulfilled when (a, f, z) is a monoid.

26.1 T-algebras

Since mathematicians prefer to call their monads T, they call algebras compatible with
them T-algebras. T-algebras for a given monad T in a category C form a category
called the Eilenberg-Moore category, often denoted by CT. Morphisms in that category
are homomorphisms of algebras. These are the same homomorphisms we’ve seen
defined for F-algebras.

A T-algebra is a pair consisting of a carrier object and an evaluator, (a, f). There is
an obvious forgetful functor UT from CT to C, which maps (a, f) to a. It also maps
a homomorphism of T-algebras to a corresponding morphism between carrier objects
in C. You may remember from our discussion of adjunctions that the left adjoint to a
forgetful functor is called a free functor.

The left adjoint to UT is called FT. It maps an object a in C to a free algebra in CT.
The carrier of this free algebra is T a. Its evaluator is a morphism from T (T a) back
to T a. Since T is a monad, we can use the monadic �a (Haskell join) as the evaluator.

We still have to show that this is a T-algebra. For that, two coherence conditions must
be satisified:

alg � �Ta = idTa

alg � �a = alg � T alg
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But these are just monadic laws, if you plug in � for the algebra.

As you may recall, every adjunction defines a monad. It turns out that the adjunction
between FT and UT defines the very monad T that was used in the construction of the
Eilenberg-Moore category. Since we can perform this construction for every monad,
we conclude that every monad can be generated from an adjunction. Later I’ll show
you that there is another adjunction that generates the same monad.

Here’s the plan: First I’ll show you that FT is indeed the left adjoint of UT. I’ll do it by
defining the unit and the counit of this adjunction and proving that the corresponding
triangular identities are satisfied. Then I’ll show you that the monad generated by
this adjunction is indeed our original monad.

The unit of the adjunction is the natural transformation:

� :: I -> UT � FT

Let’s calculate the a component of this transformation. The identity functor gives
us a. The free functor produces the free algebra (T a, �a), and the forgetful functor
reduces it to T a. Altogether we get a mapping from a to T a. We’ll simply use the
unit of the monad T as the unit of this adjunction.

Let’s look at the counit:

� :: FT � UT -> I

Let’s calculate its component at some T-algebra (a, f). The forgetful functor forgets
the f, and the free functor produces the pair (T a, �a). So in order to define the
component of the counit � at (a, f), we need the right morphism in the Eilenberg-
Moore category, or a homomorphism of T-algebras:

(T a, �a) -> (a, f)

Such homomorphism should map the carrier T a to a. Let’s just resurrect the forgotten
evaluator f. This time we’ll use it as a homomorphism of T-algebras. Indeed, the same
commuting diagram that makes f a T-algebra may be re-interpreted to show that it’s
a homomorphism of T-algebras:

We have thus defined the component of the counit natural transformation � at (a, f)
(an object in the category of T-algebras) to be f.

To complete the adjunction we also need to show that the unit and the counit satisfy
triangular identites. These are:

The first one holds because of the unit law for the monad T. The second is just the
law of the T-algebra (a, f).

We have established that the two functors form an adjunction:

FT � UT
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Figure 121:

Every adjunction gives rise to a monad. The round trip

UT � FT

is the endofunctor in C that gives rise to the corresponding monad. Let’s see what its
action on an object a is. The free algebra created by FT is (T a, �a). The forgetful
functor FT drops the evaluator. So, indeed, we have:

UT � FT = T

As expected, the unit of the adjunction is the unit of the monad T.

You may remember that the counint of the adjunction produces monadic muliplication
through the following formula:

� = R � � � L

This is a horizontal composition of three natural transformations, two of them being
identity natural transformations mapping, respectively, L to L and R to R. The one in
the middle, the counit, is a natural transformation whose component at an algebra
(a, f) is f.
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Let’s calculate the component �a. We first horizontally compose � after FT, which
results in the component of � at FTa. Since FT takes a to the algebra (T a, �a), and
� picks the evaluator, we end up with �a. Horizontal composition on the left with UT
doesn’t change anything, since the action of UT on morphisms is trivial. So, indeed,
the � obtained from the adjunction is the same as the � of the original monad T.

26.2 The Kleisli Category

We’ve seen the Kleisli category before. It’s a category constructed from another cate-
gory C and a monad T. We’ll call this category CT. The objects in the Kleisli category
CT are the objects of C, but the morphisms are different. A morphism fK from a to
b in the Kleisli category corresponds to a morphism f from a to T b in the original
category. We call this morphism a Kleisli arrow from a to b.

Composition of morphisms in the Kleisli category is defined in terms of monadic compo-
sition of Kleisli arrows. For instance, let’s compose gK after fK. In the Kleisli category
we have:

fK :: a -> b
gK :: b -> c

which, in the category C, corresponds to:

f :: a -> T b
g :: b -> T c

We define the composition:

hK = gK � fK

as a Kleisli arrow in C

h :: a -> T c
h = � � (T g) � f

In Haskell we would write it as:

h = join . fmap g . f

There is a functor F from C to CT which acts trivially on objects. On morphims, it
maps f in C to a morphism in CT by creating a Kleisli arrow that embellishes the
return value of f. Given a morphism:

f :: a -> b
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it creates a morphism in CT with the corresponding Kleisli arrow:

� � f

In Haskell we’d write it as:

return . f

We can also define a functor G from CT back to C. It takes an object a from the Kleisli
category and maps it to an object T a in C. Its action on a morphism fK corresponding
to a Kleisli arrow:

f :: a -> T b

is a morphism in C :

T a -> T b

given by first lifting f and then applying �:

�T b � T f

In Haskell notation this would read:

G fT = join . fmap f

You may recognize this as the definition of monadic bind in terms of join.

It’s easy to see that the two functors form an adjunction:

F � G

and their composition G � F reproduces the original monad T.

So this is the second adjunction that produces the same monad. In fact there is
a whole category of adjunctions Adj(C, T) that result in the same monad T on C.
The Kleisli adjunction we’ve just seen is the initial object in this category, and the
Eilenberg-Moore adjunction is the terminal object.
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26.3 Coalgebras for Comonads

Analogous constructions can be done for any comonad W. We can define a category of
coalgebras that are compatible with a comonad. They make the following diagrams
commute:

where coa is the coevaluation morphism of the coalgebra whose carrier is a:

coa :: a -> W a

and � and � are the two natural transformations defining the comonad (in Haskell, their
components are called extract and duplicate).

There is an obvious forgetful functor UW from the category of these coalgebras to C. It
just forgets the coevaluation. We’ll consider its right adjoint FW.

UW � FW

The right adjoint to a forgetful functor is called a cofree functor. FW generates cofree
coalgebras. It assigns, to an object a in C, the coalgebra (W a, �a). The adjunction
reproduces the original comonad as the composite FW � UW.

Similarly, we can construct a co-Kleisli category with co-Kleisli arrows and regenerate
the comonad from the corresponding adjunction.

26.4 Lenses

Let’s go back to our discussion of lenses. A lens can be written as a coalgebra:

coalgs :: a -> Store s a

for the functor Store s:

data Store s a = Store (s -> a) s

This coalgebra can be also expressed as a pair of functions:
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set :: a -> s -> a
get :: a -> s

(Think of a as standing for “all,” and s as a “small” part of it.) In terms of this pair,
we have:

coalgs a = Store (set a) (get a)

Here, a is a value of type a. Notice that partially applied set is a function s->a.

We also know that Store s is a comonad:

instance Comonad (Store s) where
extract (Store f s) = f s
duplicate (Store f s) = Store (Store f) s

The question is: Under what conditions is a lens a coalgebra for this comonad? The
first coherence condition:

�a � coalg = ida

translates to:

set a (get a) = a

This is the lens law that expresses the fact that if you set a field of the structure a to
its previous value, nothing changes.

The second condition:

fmap coalg � coalg = �a � coalg

requires a little more work. First, recall the definition of fmap for the Store functor:

fmap g (Store f s) = Store (g . f) s

Applying fmap coalg to the result of coalg gives us:

Store (coalg . set a) (get a)

On the other hand, applying duplicate to the result of coalg produces:

Store (Store (set a)) (get a)
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For these two expressions to be equal, the two functions under Store must be equal
when acting on an arbitrary s:

coalg (set a s) = Store (set a) s

Expanding coalg, we get:

Store (set (set a s)) (get (set a s)) = Store (set a) s

This is equivalent to two remaining lens laws. The first one:

set (set a s) = set a

tells us that setting the value of a field twice is the same as setting it once. The second
law:

get (set a s) = s

tells us that getting a value of a field that was set to s gives s back.

In other words, a well-behaved lens is indeed a comonad coalgebra for the Store
functor.

26.5 Challenges

1. What is the action of the free functor F :: C -> CT on morphisms. Hint: use
the naturality condition for monadic �.

2. Define the adjunction:

UW � FW

3. Prove that the above adjunction reproduces the original comonad.
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27 End and Coends

There are many intuitions that we may attach to morphisms in a category, but we can
all agree that if there is a morphism from the object a to the object b than the two
objects are in some way “related.” A morphism is, in a sense, the proof of this relation.
This is clearly visible in any poset category, where a morphism is a relation. In general,
there may be many “proofs” of the same relation between two objects. These proofs
form a set that we call the hom-set. When we vary the objects, we get a mapping
from pairs of objects to sets of “proofs.” This mapping is functorial — contravariant
in the first argument and covariant in the second. We can look at it as establishing a
global relationship between objects in the category. This relationship is described by
the hom-functor:

C(-, =) :: Cop × C -> Set

In general, any functor like this may be interpreted as establishing a relation between
objects in a category. A relation may also involve two different categories C and D.
A functor, which describes such a relation, has the following signature and is called a
profunctor:

p :: Dop × C -> Set

Mathematicians say that it’s a profunctor from C to D (notice the inversion), and use
a slashed arrow as a symbol for it:

C � D

You may think of a profunctor as a proof-relevant relation between objects of C and
objects of D, where the elements of the set symbolize proofs of the relation. Whenever
p a b is empty, there is no relation between a and b. Keep in mind that relations
don’t have to be symmetric.

Another useful intuition is the generalization of the idea that an endofunctor is a
container. A profunctor value of the type p a b could then be considered a container
of bs that are keyed by elements of type a. In particular, an element of the hom-
profunctor is a function from a to b.

In Haskell, a profunctor is defined as a two-argument type constructor p equipped with
the method called dimap, which lifts a pair of functions, the first going in the “wrong”
direction:

class Profunctor p where
dimap :: (c -> a) -> (b -> d) -> p a b -> p c d

The functoriality of the profunctor tells us that if we have a proof that a is related to
b, then we get the proof that c is related to d, as long as there is a morphism from
c to a and another from b to d. Or, we can think of the first function as translating
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Figure 123:

new keys to the old keys, and the second function as modifying the contents of the
container.

For profunctors acting within one category, we can extract quite a lot of information
from diagonal elements of the type p a a. We can prove that b is related to c as
long as we have a pair of morphisms b->a and a->c. Even better, we can use a single
morphism to reach off-diagonal values. For instance, if we have a morphism f::a->b,
we can lift the pair <f, idb> to go from p b b to p a b:

dimap f id pbb :: p a b

Or we can lift the pair <ida, f> to go from p a a to p a b:

dimap id f paa :: p a b

27.1 Dinatural Transformations

Since profunctors are functors, we can define natural transformations between them in
the standard way. In many cases, though, it’s enough to define the mapping between
diagonal elements of two profunctors. Such a transformation is called a dinatural
transformation, provided it satisfies the commuting conditions that reflect the two ways
we can connect diagonal elements to non-diagonal ones. A dinatural transformation
between two profunctors p and q, which are members of the functor category [Cop ×
C, Set], is a family of morphisms:

�a :: p a a -> q a a

for which the following diagram commutes, for any f::a->b:

Notice that this is strictly weaker than the naturality condition. If � were a natural
transformation in [Cop × C, Set], the above diagram could be constructed from two
naturality squares and one functoriality condition (profunctor q preserving composi-
tion):
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Figure 124:

Notice that a component of a natural transformation � in [Cop × C, Set] is indexed
by a pair of objects � a b. A dinatural transformation, on the other hand, is indexed
by one object, since it only maps diagonal elements of the respective profunctors.

27.2 Ends

We are now ready to advance from “algebra” to what could be considered the “calculus”
of category theory. The calculus of ends (and coends) borrows ideas and even some
notation from traditional calculus. In particular, the coend may be understood as an
infinite sum or an integral, whereas the end is similar to an infinite product. There is
even something that resembles the Dirac delta function.

An end is a genaralization of a limit, with the functor replaced by a profunctor. Instead
of a cone, we have a wedge. The base of a wedge is formed by diagonal elements of a
profunctor p. The apex of the wedge is an object (here, a set, since we are considering
Set-valued profunctors), and the sides are a family of functions mapping the apex to
the sets in the base. You may think of this family as one polymorphic function — a
function that’s polymorphic in its return type:

� :: forall a . apex -> p a a

Unlike in cones, within a wedge we don’t have any functions that would connect
vertices of the base. However, as we’ve seen earlier, given any morphism f::a->b in C,
we can connect both p a a and p b b to the common set p a b. We therefore insist
that the following diagram commute:

This is called the wedge condition. It can be written as:

p ida f � �a = p f idb � �b

Or, using Haskell notation:

dimap id f . alpha = dimap f id . alpha
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Figure 125:

Figure 126:

We can now proceed with the universal construction and define the end of p as the
uinversal wedge — a set e together with a family of functions � such that for any other
wedge with the apex a and a family � there is a unique function h::a->e that makes
all triangles commute:

�a � h = �a

The symbol for the end is the integral sign, with the “integration variable” in the
subscript position:

�c p c c

Components of � are called projection maps for the end:

�a :: �c p c c -> p a a

Note that if C is a discrete category (no morphisms other than the identities) the end
is just a global product of all diagonal entries of p across the whole category C. Later
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I’ll show you that, in the more general case, there is a relationship between the end
and this product through an equalizer.

In Haskell, the end formula translates directly to the universal quantifier:

forall a. p a a

Strictly speaking, this is just a product of all diagonal elements of p, but the wedge
condition is satisfied automatically due to parametricity (I’ll explain it in a separate
blog post). For any function f :: a -> b, the wedge condition reads:

dimap f id . pi = dimap id f . pi

or, with type annotations:

dimap f idb . pib = dimap ida f . pia

where both sides of the equation have the type:

Profunctor p => (forall c. p c c) -> p a b

and pi is the polymorphic projection:

pi :: Profunctor p => forall c. (forall a. p a a) -> p c c
pi e = e

Here, type inference automatically picks the right component of e.

Just as we were able to express the whole set of commutation conditions for a cone as
one natural transformation, likewise we can group all the wedge conditions into one
dinatural transformation. For that we need the generalization of the constant functor
Δc to a constant profunctor that maps all pairs of objects to a single object c, and all
pairs of morphisms to the identity morphism for this object. A wedge is a dinatural
transformation from that functor to the profunctor p. Indeed, the dinaturality hexagon
shrinks down to the wedge diamond when we realize that Δc lifts all morphisms to one
identity function.

Ends can also be defined for target categories other than Set, but here we’ll only
consider Set-valued profunctors and their ends.

27.3 Ends as Equalizers

The commutation condition in the definition of the end can be written using an equal-
izer. First, let’s define two functions (I’m using Haskell notation, because mathemat-
ical notation seems to be less user-friendly in this case). These functions correspond
to the two converging branches of the wedge condition:
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lambda :: Profunctor p => p a a -> (a -> b) -> p a b
lambda paa f = dimap id f paa

rho :: Profunctor p => p b b -> (a -> b) -> p a b
rho pbb f = dimap f id pbb

Both functions map diagonal elements of the profunctor p to polymorphic functions
of the type:

type ProdP p = forall a b. (a -> b) -> p a b

These functions have different types. However, we can unify their types, if we form
one big product type, gathering together all diagonal elements of p:

newtype DiaProd p = DiaProd (forall a. p a a)

The functions lambda and rho induce two mappings from this product type:

lambdaP :: Profunctor p => DiaProd p -> ProdP p
lambdaP (DiaProd paa) = lambda paa

rhoP :: Profunctor p => DiaProd p -> ProdP p
rhoP (DiaProd paa) = rho paa

The end of p is the equalizer of these two functions. Remember that the equalizer
picks the largest subset on which two functions are equal. In this case it picks the
subset of the product of all diagonal elements for which the wedge diagrams commute.

27.4 Natural Transformations as Ends

The most important example of an end is the set of natural transformations. A natural
transformation between two functors F and G is a family of morphisms picked from
hom-sets of the form C(F a, G a). If it weren’t for the naturality condition, the set
of natural transformations would be just the product of all these hom-sets. In fact, in
Haskell, it is:

forall a. f a -> g a

The reason it works in Haskell is because naturality follows from parametricity. Out-
side of Haskell, though, not all diagonal sections across such hom-sets will yield natural
transformations. But notice that the mapping:

<a, b> -> C(F a, G b)
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Figure 127:

is a profunctor, so it makes sense to study its end. This is the wedge condition:

Let’s just pick one element from the set �c C(F c, G c). The two projections will
map this element to two components of a particular transformation, let’s call them:

�a :: F a -> G a
�b :: F b -> G b

In the left branch, we lift a pair of morphisms <ida, G f> using the hom-functor. You
may recall that such lifting is implemented as simultaneous pre- and post-composition.
When acting on �a the lifted pair gives us:

G f � �a � ida

The other branch of the diagram gives us:

idb � �b � F f

Their equality, demanded by the wedge condition, is nothing but the naturality con-
dition for �.

27.5 Coends

As expected, the dual to an end is called a coend. It is constructed from a dual to a
wedge called a cowedge (pronounced co-wedge, not cow-edge).

The symbol for a coend is the integral sign with the “integration variable” in the
superscript position:

� c p c c
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Figure 128: An edgy cow?

Just like the end is related to a product, the coend is related to a coproduct, or a
sum (in this respect, it resembles an integral, which is a limit of a sum). Rather
than having projections, we have injections going from the diagonal elements of the
profunctor down to the coend. If it weren’t for the cowedge conditions, we could say
that the coend of the profunctor p is either p a a, or p b b, or p c c, and so on. Or
we could say that there exists such an a for which the coend is just the set p a a. The
universal quantifier that we used in the definition of the end turns into an existential
quantifier for the coend.

This is why, in pseudo-Haskell, we would define the coend as:

exists a. p a a

The standard way of encoding existential quantifiers in Haskell is to use universally
quantified data constructors. We can thus define:

data Coend p = forall a. Coend (p a a)

The logic behind this is that it should be possible to construct a coend using a value
of any of the family of types p a a, no matter what a we chose.

Just like an end can be defined using an equalizer, a coend can be described using
a coequalizer. All the cowedge conditions can be summarized by taking one gigantic
coproduct of p a b for all possible functions b->a. In Haskell, that would be expressed
as an existential type:

data SumP p = forall a b. SumP (b -> a) (p a b)

There are two ways of evaluating this sum type, by lifting the function using dimap
and applying it to the profunctor p:

lambda, rho :: Profunctor p => SumP p -> DiagSum p
lambda (SumP f pab) = DiagSum (dimap f id pab)
rho (SumP f pab) = DiagSum (dimap id f pab)
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where DiagSum is the sum of diagonal elements of p:

data DiagSum p = forall a. DiagSum (p a a)

The coequalizer of these two functions is the coend. A coequilizer is obtained from
DiagSum p by identifying values that are obtained by applying lambda or rho to the
same argument. Here, the argument is a pair consisting of a function b->a and an
element of p a b. The application of lambda and rho produces two potentially different
values of the type DiagSum p. In the coend, these two values are identified, making
the cowedge condition automatically satisfied.

The process of identification of related elements in a set is formally known as taking
a quotient. To define a quotient we need an equivalence relation ~, a relation that is
reflexive, symmetric, and transitive:

a ~ a
if a ~ b then b ~ a
if a ~ b and b ~ c then a ~ c

Such a relation splits the set into equivalence classes. Each class consists of elements
that are related to each other. We form a quotient set by picking one representative
from each class. A classic example is the definition of rational numbers as pairs of
whole numbers with the following equivalence relation:

(a, b) ~ (c, d) iff a * d = b * c

It’s easy to check that this is an equivalence relation. A pair (a, b) is interpreted as
a fraction a/b, and fractions that have a common divisor are identified. A rational
number is an equivalence class of such fractions.

You might recall from our earlier discussion of limits and colimits that the hom-functor
is continuous, that is, it preserves limits. Dually, the contravariant hom-functor turns
colimits into limits. These properties can be generalized to ends and coends, which
are a generalization of limits and colimits, respectively. In particular, we get a very
useful identity for converting coends to ends:

Set(� x p x x, c) � �x Set(p x x, c)

Let’s have a look at it in pseudo-Haskell:

(exists x. p x x) -> c � forall x. p x x -> c

It tells us that a function that takes an existential type is equivalent to a polymorphic
function. This makes perfect sense, because such a function must be prepared to
handle any one of the types that may be encoded in the existential type. It’s the same
principle that tells us that a function that accepts a sum type must be implemented
as a case statement, with a tuple of handlers, one for every type present in the sum.
Here, the sum type is replaced by a coend, and a family of handlers becomes an end,
or a polymorphic function.
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27.6 Ninja Yoneda Lemma

The set of natural transformations that appears in the Yoneda lemma may be encoded
using an end, resulting in the following formulation:

�z Set(C(a, z), F z) � F a

There is also a dual formula:

� z C(a, z) × F z � F a

This identity is strongly reminiscent of the formula for the Dirac delta function (a
function �(a - z), or rather a distribution, that has an infinite peak at a = z). Here,
the hom-functor plays the role of the delta function.

Together these two identities are sometimes called the Ninja Yoneda lemma.

To prove the second formula, we will use the consequence of the Yoneda embedding,
which states that two objects are isomorphic if and only if their hom-functors are
isomorphic. In other words a � b if and only if there is a natural transformation of
the type:

[C, Set](C(a, -), C(b, =))

that is an isomorphism.

We start by inserting the left-hand side of the identity we want to prove inside a
hom-functor that’s going to some arbitrary object c:

Set(� z C(a, z) × F z, c)

Using the continuity argument, we can replace the coend with the end:

�z Set(C(a, z) × F z, c)

We can now take advantage of the adjunction between the product and the exponential:

�z Set(C(a, z), c(F z))

We can “perform the integration” by using the Yoneda lemma to get:

c(F a)

This exponential object is isomorphic to the hom-set:

Set(F a, c)

Finally, we take advantage of the Yoneda embedding to arrive at the isomorphism:

� z C(a, z) × F z � F a
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27.7 Profunctor Composition

Let’s explore further the idea that a profunctor describes a relation — more precisely,
a proof-relevant relation, meaning that the set p a b represents the set of proofs that a
is related to b. If we have two relations p and q we can try to compose them. We’ll say
that a is related to b through the composition of q after p if there exist an intermediary
object c such that both q b c and p c a are non-empty. The proofs of this new relation
are all pairs of proofs of individual relations. Therefore, with the understanding that
the existential quantifier corresponds to a coend, and the cartesian product of two sets
corresponds to “pairs of proofs,” we can define composition of profunctors using the
following formula:

(q � p) a b = � c p c a × q b c

Here’s the equivalent Haskell definition from Data.Profunctor.Composition, after
some renaming:

data Procompose q p a b where
Procompose :: q a c -> p c b -> Procompose q p a b

This is using generalized algebraic data type, or GADT syntax, in which a free type
variable (here c) is automatically existentially quanitified. The (uncurried) data con-
structor Procompose is thus equivalent to:

exists c. (q a c, p c b)

The unit of so defined composition is the hom-functor — this immediately follows from
the Ninja Yoneda lemma. It makes sense, therefore, to ask the question if there is a
category in which profunctors serve as morphisms. The answer is positive, with the
caveat that both associativity and identity laws for profunctor composition hold only
up to natural isomorphism. Such a category, where laws are valid up to isomorphism, is
called a bicategory (which is more general than a 2-category). So we have a bicategory
Prof, in which objects are categories, morphisms are profunctors, and morphisms
between morphisms (a.k.a., two-cells) are natural transformations. In fact, one can go
even further, because beside profunctors, we also have regular functors as morphisms
between categories. A category which has two types of morphisms is called a double
category.

Profunctors play an important role in the Haskell lens library and in the arrow library.
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Figure 129:

Figure 130:

28 Kan Extensions

So far we’ve been mostly working with a single category or a pair of categories. In
some cases that was a little too constraining. For instance, when defining a limit in
a category C, we introduced an index category I as the template for the pattern that
would form the basis for our cones. It would have made sense to introduce another
category, a trivial one, to serve as a template for the apex of the cone. Instead we
used the constant functor Δc from I to C.

It’s time to fix this awkwardness. Let’s define a limit using three categories. Let’s
start with the functor D from the index category I to C. This is the functor that selects
the base of the cone — the diagram functor.

The new addition is the category 1 that contains a single object (and a single identity
morphism). There is only one possible functor K from I to this category. It maps all
objects to the only object in 1, and all morphisms to the identity morphism. Any
functor F from 1 to C picks a potential apex for our cone.

A cone is a natural transformation � from F � K to D. Notice that F � K does exactly
the same thing as our original Δc. The following diagram shows this transformation.

We can now define a universal property that picks the “best” such functor F. This F
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Figure 131:

Figure 132:

will map 1 to the object that is the limit of D in C, and the natural transformation �
from F � K to D will provide the corresponding projections. This universal functor is
called the right Kan extension of D along K and is denoted by RanKD.

Let’s formulate the universal property. Suppose we have another cone — that is
another functor F' together with a natural transformation �' from F' � K to D.

If the Kan extension F = RanKD exists, there must be a unique natural transformation
� from F' to it, such that �' factorizes through �, that is:

�' = � . (� � K)

Here, � � K is the horizontal composition of two natural transformations (one of them
being the identity natural transformation on K). This transformation is then vertically
composed with �.

In components, when acting on an object i in I, we get:

�'i = �i � � K i
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Figure 133:

In our case, � has only one component corresponding to the single object of 1. So,
indeed, this is the unique morphism from the apex of the cone defined by F' to the
apex of the universal cone defined by RanKD. The commuting conditions are exactly
the ones required by the definition of a limit.

But, importantly, we are free to replace the trivial category 1 with an arbitrary cate-
gory A, and the definition of the right Kan extension remains valid.

28.1 Right Kan Extension

The right Kan extension of the functor D::I->C along the functor K::I->A is a functor
F::A->C (denoted RanKD) together with a natural transformation

� :: F � K -> D

such that for any other functor F'::A->C and a natural transformation

�' :: F' � K -> D

there is a unique natural transformation

� :: F' -> F

that factorizes �':

�' = � . (� � K)

This is quite a mouthful, but it can be visualized in this nice diagram:

An interesting way of looking at this is to notice that, in a sense, the Kan extension
acts like the inverse of “functor multiplication.” Some authors go as far as use the
notation D/K for RanKD. Indeed, in this notation, the definition of �, which is also
called the counit of the right Kan extension, looks like simple cancellation:
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Figure 134:

Figure 135:

� :: D/K � K -> D

There is another interpretation of Kan extensions. Consider that the functor K embeds
the category I inside A. In the simplest case I could just be a subcategory of A. We
have a functor D that maps I to C. Can we extend D to a functor F that is defined
on the whole of A? Ideally, such an extension would make the composition F � K be
isomorphic to D. In other words, F would be extending the domain of D to A. But a
full-blown isomorphism is usually too much to ask, and we can do with just half of it,
namely a one-way natural transformation � from F � K to D. (The left Kan extension
picks the other direction.)

Of course, the embedding picture breaks down when the functor K is not injective on
objects or not faithful on hom-sets, as in the example of the limit. In that case, the
Kan extension tries its best to extrapolate the lost information.

28.2 Kan Extension as Adjunction

Now suppose that the right Kan extension exists for any D (and a fixed K). In that
case RanK - (with the dash replacing D) is a functor from the functor category [I, C]
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Figure 136:

to the functor category [A, C]. It turns out that this functor is the right adjoint to
the precomposition functor -�K. The latter maps functors in [A, C] to functors in [I,
C]. The adjunction is:

[I, C](F' � K, D) � [A, C](F', RanKD)

It is just a restatement of the fact that to every natural transformation we called �'
corresponds a unique natural transformation we called �.

Furthermore, if we chose the category I to be the same as C, we can substitute the
identity functor IC for D. We get the following identity:

[C, C](F' � K, IC) � [A, C](F', RanKIC)

We can now chose F' to be the same as RanKIC. In that case the right hand side
contains the identity natural transformation and, corresponding to it, the left hand
side gives us the following natural transformation:

� :: RanKIC � K -> IC

This looks very much like the counit of an adjunction:

RanKIC � K

Indeed, the right Kan extension of the identity functor along a functor K can be used
to calculate the left adjoint of K. For that, one more condition is necessary: the right
Kan extension must be preserved by the functor K. The preservation of the extension
means that, if we calculate the Kan extension of the functor precomposed with K, we
should get the same result as precomposing the original Kan extesion with K. In our
case, this condition simplifies to:

K � RanKIC � RanKK
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Figure 137:

Notice that, using the division-by-K notation, the adjunction can be written as:

I/K � K

which confirms our intuition that an adjunction describes some kind of an inverse. The
preservation condition becomes:

K � I/K � K/K

The right Kan extension of a functor along itself, K/K, is called a codensity monad.

The adjunction formula is an important result because, as we’ll see soon, we can
calculate Kan extensions using ends (coends), thus giving us practical means of finding
right (and left) adjoints.

28.3 Left Kan Extension

There is a dual construction that gives us the left Kan extension. To build some
intuition, we’ll can start with the definition of a colimit and restructure it to use the
singleton category 1. We build a cocone by using the functor D::I->C to form its base,
and the functor F::1->C to select its apex.

The sides of the cocone, the injections, are components of a natural transformation �
from D to F � K.

The colimit is the universal cocone. So for any other functor F' and a natural trans-
formation

�' :: D -> F'� K

there is a unique natural transformation � from F to F'

such that:
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Figure 138:

Figure 139:

Figure 140:
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Figure 141:

Figure 142:

�' = (� � K) . �

This is illustrated in the following diagram:

Replacing the singleton category 1 with A, this definition naturally generalized to the
definition of the left Kan extension, denoted by LanKD.

The natural transformation:

� :: D -> LanKD � K

is called the unit of the left Kan extension.

As before, we can recast the one-to-one correspondence between natural transforma-
tions:

�' = (� � K) . �
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in terms of the adjunction:

[A, C](LanKD, F') � [I, C](D, F' � K)

In other words, the left Kan extension is the left adjoint, and the right Kan extension
is the right adjoint of the postcomposition with K.

Just like the right Kan extension of the identity functor could be used to calculate
the left adjoint of K, the left Kan extension of the identity functor turns out to be the
right adjoint of K (with � being the unit of the adjunction):

K � LanKIC

Combining the two results, we get:

RanKIC � K � LanKIC

28.4 Kan Extensions as Ends

The real power of Kan extensions comes from the fact that they can be calculated
using ends (and coends). For simplicity, we’ll restrict our attention to the case where
the target category C is Set, but the formulas can be extended to any category.

Let’s revisit the idea that a Kan extension can be used to extend the action of a
functor outside of its original domain. Suppose that K embeds I inside A. Functor D
maps I to Set. We could just say that for any object a in the image of K, that is a
= K i, the extended functor maps a to D i. The problem is, what to do with those
objects in A that are outside of the image of K? The idea is that every such object is
potentially connected through lots of morphisms to every object in the image of K. A
functor must preserve these morphisms. The totality of morphisms from an object a
to the image of K is characterized by the hom-functor:

A(a, K -)

Notice that this hom-functor is a composition of two functors:

A(a, K -) = A(a, -) � K

The right Kan extension is the right adjoint of functor composition:

[I, Set](F' � K, D) � [A, Set](F', RanKD)

Let’s see what happens when we replace F' with the hom functor:

[I, Set](A(a, -) � K, D) � [A, Set](A(a, -), RanKD)
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Figure 143:

and then inline the composition:

[I, Set](A(a, K -), D) � [A, Set](A(a, -), RanKD)

The right hand side can be reduced using the Yoneda lemma:

[I, Set](A(a, K -), D) � RanKD a

We can now rewrite the set of natural transformations as the end to get this very
convenient formula for the right Kan extension:

RanKD a � �i Set(A(a, K i), D i)

There is an analogous formula for the left Kan extension in terms of a coend:

LanKD a = �i A(K i, a) × D i

To see that this is the case, we’ll show that this is indeed the left adjoint to functor
composition:

[A, Set](LanKD, F') � [I, Set](D, F'� K)

Let’s substitute our formula in the left hand side:

[A, Set](�i A(K i, -) × D i, F')

This is a set of natural transformations, so it can be rewritten as an end:

�a Set(�i A(K i, a) × D i, F'a)

280



Using the continuity of the hom-functor, we can replace the coend with the end:

�a �i Set(A(K i, a) × D i, F'a)

We can use the product-exponential adjunction:

�a �i Set(A(K i, a), (F'a)D i)

The exponential is isomorphic to the corresponding hom-set:

�a �i Set(A(K i, a), A(D i, F'a))

There is a theorem called the Fubini theorem that allows us to swap the two ends:

�i �a Set(A(K i, a), A(D i, F'a))

The inner end represents the set of natural transformations between two functors, so
we can use the Yoneda lemma:

�i A(D i, F'(K i))

This is indeed the set of natural transformations that forms the right hand side of the
adjunction we set out to prove:

[I, Set](D, F'� K)

These kinds of calculations using ends, coends, and the Yoneda lemma are pretty
typical for the “calculus” of ends.

28.5 Kan Extensions in Haskell

The end/coend formulas for Kan extensions can be easily translated to Haskell. Let’s
start with the right extension:

RanKD a � �i Set(A(a, K i), D i)

We replace the end with the universal quantifier, and hom-sets with function types:

newtype Ran k d a = Ran (forall i. (a -> k i) -> d i)

Looking at this definition, it’s clear that Ran must contain a value of type a to which
the function can be applied, and a natural transformation between the two functors k
and d. For instance, suppose that k is the tree functor, and d is the list functor, and
you were given a Ran Tree [] String. If you pass it a function:
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f :: String -> Tree Int

you’ll get back a list of Int, and so on. The right Kan extension will use your function
to produce a tree and then repackage it into a list. For instance, you may pass it a
parser that generates a parsing tree from a string, and you’ll get a list that corresponds
to the depth-first traversal of this tree.

The right Kan extension can be used to calculate the left adjoint of a given functor
by replacing the functor d with the identity functor. This leads to the left adjoint of
a functor k being represented by the set of polymorphic functions of the type:

forall i. (a -> k i) -> i

Suppose that k is the forgetful functor from the category of monoids. The universal
quantifier then goes over all monoids. Of course, in Haskell we cannot express monoidal
laws, but the following is a decent approximation of the resulting free functor (the
forgetful functor k is an identity on objects):

type Lst a = forall i. Monoid i => (a -> i) -> i

As expected, it generates free monoids, or Haskell lists:

toLst :: [a] -> Lst a
toLst as = \f -> foldMap f as

fromLst :: Lst a -> [a]
fromLst f = f (\a -> [a])

The left Kan extension is a coend:

LanKD a = �i A(K i, a) × D i

so it translates to an existential quantifier. Symbolically:

Lan k d a = exists i. (k i -> a, d i)

This can be encoded in Haskell using GADTs, or using a universally quantified data
constructor:

data Lan k d a = forall i. Lan (k i -> a) (d i)

The interpretation of this data structure is that it contains a function that takes a
container of some unspecified is and produces an a. It also has a container of those
is. Since you have no idea what is are, the only thing you can do with this data
structure is to retrieve the container of is, repack it into the container defined by the
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functor k using a natural transformation, and call the function to obtain the a. For
instance, if d is a tree, and k is a list, you can serialize the tree, call the function with
the resulting list, and obtain an a.

The left Kan extension can be used to calculate the right adjoint of a functor. We
know that the right adjoint of the product functor is the exponential, so let’s try to
implement it using the Kan extension:

type Exp a b = Lan ((,) a) I b

This is indeed isomorphic to the function type, as witnessed by the following pair of
functions:

toExp :: (a -> b) -> Exp a b
toExp f = Lan (f . fst) (I ())

fromExp :: Exp a b -> (a -> b)
fromExp (Lan f (I x)) = \a -> f (a, x)

Notice that, as described earlier in the general case, we performed the following steps:
(1) retrieved the container of x (here, it’s just a trivial identity container), and the
function f, (2) repackaged the container using the natural transformation between the
identity functor and the pair functor, and (3) called the function f.

28.6 Free Functor

An interesting application of Kan extensions is the construction of a free functor. It’s
the solution to the following practical problem: suppose you have a type constructor
— that is a mapping of objects. Is it possible to define a functor based on this type
constructor? In other words, can we define a mapping of morphisms that would extend
this type constructor to a full-blown endofunctor?

The key observation is that a type constructor can be described as a functor whose
domain is a discrete category. A discrete category has no morphisms other than the
identity morphisms. Given a category C, we can always construct a discrete category
|C| by simply discarding all non-identity morphisms. A functor F from |C| to C is
then a simple mapping of objects, or what we call a type constructor in Haskell. There
is also a canonical functor J that injects |C| into C : it’s an identity on objects (and on
identity morphisms). The left Kan extension of F along J, if it exists, is then a functor
for C to C :

LanJ F a = �i C(J i, a) × F i

It’s called a free functor based on F.

In Haskell, we would write it as:

data FreeF f a = forall i. FMap (i -> a) (f i)
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Indeed, for any type constructor f, FreeF f is a functor:

instance Functor (FreeF f) where
fmap g (FMap h fi) = FMap (g . h) fi

As you can see, the free functor fakes the lifting of a function by recording both
the function and its argument. It accumulates the lifted functions by recording their
composition. Functor rules are automatically satisfied. This construction was used in
a paper Freer Monads, More Extensible Effects.

Alternatively, we can use the right Kan extension for the same purpose:

newtype FreeF f a = FreeF (forall i. (a -> i) -> f i)

It’s easy to check that this is indeed a functor:

instance Functor (FreeF f) where
fmap g (FreeF r) = FreeF (\bi -> r (bi . g))
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29 Enriched Categories

A category is small if its objects form a set. But we know that there are things larger
than sets. Famously, a set of all sets cannot be formed within the standard set theory
(the Zermelo-Fraenkel theory, optionally augmented with the Axiom of Choice). So a
category of all sets must be large. There are mathematical tricks like Grothendieck
universes that can be used to define collections that go beyond sets. These tricks let
us talk about large categories.

A category is locally small if morphisms between any two objects form a set. If they
don’t form a set, we have to rethink a few definitions. In particular, what does it
mean to compose morphisms if we can’t even pick them from a set? The solution is to
bootstrap ourselves by replacing hom-sets, which are objects in Set, with objects from
some other category V. The difference is that, in general, objects don’t have elements,
so we are no longer allowed to talk about individual morphisms. We have to define
all properties of an enriched category in terms of operations that can be performed on
hom-objects as a whole. In order to do that, the category that provides hom-objects
must have additional structure — it must be a monoidal category. If we call this
monoidal category V, we can talk about a category C enriched over V.

Beside size reasons, we might be interested in generalizing hom-sets to something
that has more structure than mere sets. For instance, a traditional category doesn’t
have the notion of a distance between objects. Two objects are either connected by
morphisms or not. All objects that are connected to a given object are its neighbors.
Unlike in real life; in a category, a friend of a friend of a friend is as close to me as
my bosom buddy. In a suitably enriched category, we can define distances between
objects.

There is one more very practical reason to get some experience with enriched categories,
and that’s because a very useful online source of categorical knowledge, the nLab, is
written mostly in terms of enriched categories.

29.1 Why Monoidal Category?

When constructing an enriched category we have to keep in mind that we should be
able to recover the usual definitions when we replace the monoidal category with Set
and hom-objects with hom-sets. The best way to accomplish this is to start with
the usual definitions and keep reformulating them in a point-free manner — that is,
without naming elements of sets.

Let’s start with the definition of composition. Normally, it takes a pair of morphisms,
one from C(b, c) and one from C(a, b) and maps it to a morphism from C(a, c).
In other words it’s a mapping:

C(b, c) × C(a, b) -> C(a, c)

This is a function between sets — one of them being the cartesian product of two
hom-sets. This formula can be easily generalized by replacing cartesian product with
something more general. A categorical product would work, but we can go even further
and use a completely general tensor product.
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Next come the identity morphisms. Instead of picking individual elements from hom-
sets, we can define them using functions from the singleton set 1:

ja :: 1 -> C(a, a)

Again, we could replace the singleton set with the terminal object, but we can go even
further by replacing it with the unit i of the tensor product.

As you can see, objects taken from some monoidal category V are good candidates for
hom-set replacement.

29.2 Monoidal Category

We’ve talked about monoidal categories before, but it’s worth restating the definition.
A monoidal category defines a tensor product that is a bifunctor:

� :: V × V -> V

We want the tensor product to be associative, but it’s enough to satisfy associativity
up to natural isomorphism. This isomorphism is called the associator. Its components
are:

�a b c :: (a � b) � c -> a � (b � c)

It must be natural in all three arguments.

A monoidal category must also define a special unit object i that serves as the unit
of the tensor product; again, up to natural isomorphism. The two isomorphisms are
called, respectively, the left and the right unitor, and their components are:

�a :: i � a -> a
�a :: a � i -> a

The associator and the unitors must satisfy coherence conditions:

A monoidal category is called symmetric if there is a natural isomorphism with com-
ponents:

�a b :: a � b -> b � a

whose “square is one”:

�b a � �a b = ida�b
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Figure 144:

Figure 145:

and which is consistent with the monoidal structure.

An interesting thing about monoidal categories is that you may be able to define the
internal hom (the function object) as the right adjoint to the tensor product. You
may recall that the standard definition of the function object, or the exponential,
was through the right adjoint to the categorical product. A category in which such an
object existed for any pair of objects was called cartesian closed. Here is the adjunction
that defines the internal hom in a monoidal category:

V(a � b, c) ~ V(a, [b, c])

Following G. M. Kelly, I’m using the notation [b, c] for the internal hom. The
counit of this adjunction is the natural transformation whose components are called
evaluation morphisms:

�a b :: ([a, b] � a) -> b

Notice that, if the tensor product is not symmetric, we may define another internal
hom, denoted by [[a, c]], using the following adjunction:

V(a � b, c) ~ V(b, [[a, c]])
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Figure 146:

A monoidal category in which both are defined is called biclosed. An example of
a category that is not biclosed is the category of endofunctors in Set, with functor
composition serving as tensor product. That’s the category we used to define monads.

29.3 Enriched Category

A category C enriched over a monoidal category V replaces hom-sets with hom-objects.
To every pair of objects a and b in C we associate an object C(a, b) in V. We use
the same notation for hom-objects as we used for hom-sets, with the understanding
that they don’t contain morphisms. On the other hand, V is a regular (non-enriched)
category with hom-sets and morphisms. So we are not entirely rid of sets — we just
swept them under the rug.

Since we cannot talk about individual morphisms in C, composition of morphisms is
replaced by a family of morphisms in V :

� :: C(b, c) � C(a, b) -> C(a, c)

Similarly, identity morphisms are replaced by a family of morphisms in V :

ja :: i -> C(a, a)

where i is the tensor unit in V.

Associativity of composition is defined in terms of the associator in V :

Unit laws are likewise expressed in terms of unitors:

29.4 Preorders

A preorder is defined as a thin category, one in which every hom-set is either empty or
a singleton. We interpret a non-empty set C(a, b) as the proof that a is less than or
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Figure 147:

Figure 148:

Figure 149:

Figure 150:
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equal to b. Such a category can be interpreted as enriched over a very simple monoidal
category that contains just two objects, 0 and 1 (sometimes called False and True).
Besides the mandatory identity morphisms, this category has a single morphism going
from 0 to 1, let’s call it 0->1. A simple monoidal structure can be established in
it, with the tensor product modeling the simple arithmetic of 0 and 1 (i.e., the only
non-zero product is 1�1). The identity object in this category is 1. This is a strict
monoidal category, that is, the associator and the unitors are identity morphisms.

Since in a preorder the-hom set is either empty or a singleton, we can easily replace it
with a hom-object from our tiny category. The enriched preorder C has a hom-object
C(a, b) for any pair of objects a and b. If a is less than or equal to b, this object is
1; otherwise it’s 0.

Let’s have a look at composition. The tensor product of any two objects is 0, unless
both of them are 1, in which case it’s 1. If it’s 0, then we have two options for the
composition morphism: it could be either id0 or 0->1. But if it’s 1, then the only
option is id1. Translating this back to relations, this says that if a <= b and b <= c
then a <= c, which is exactly the transitivity law we need.

What about the identity? It’s a morphism from 1 to C(a, a). There is only one mor-
phism going from 1, and that’s the identity id1, so C(a, a) must be 1. It means that
a <= a, which is the reflexivity law for a preorder. So both transitivity and reflexivity
are automatically enforced, if we implement a preorder as an enriched category.

29.5 Metric Spaces

An interesting example is due to William Lawvere. He noticed that metric spaces can
be defined using enriched categories. A metric space defines a distance between any
two objects. This distance is a non-negative real number. It’s convenient to include
inifinity as a possible value. If the distance is infinite, there is no way of getting from
the starting object to the target object.

There are some obvious properties that have to be satisfied by distances. One of them
is that the distance from an object to itself must be zero. The other is the triangle
inequality: the direct distance is no larger than the sum of distances with intermediate
stops. We don’t require the distance to be symmetric, which might seem weird at first
but, as Lawvere explained, you can imagine that in one direction you’re walking uphill,
while in the other you’re going downhill. In any case, symmetry may be imposed later
as an additional constraint.

So how can a metric space be cast into a categorical language? We have to construct a
category in which hom-objects are distances. Mind you, distances are not morphisms
but hom-objects. How can a hom-object be a number? Only if we can construct a
monoidal category V in which these numbers are objects. Non-negative real numbers
(plus infinity) form a total order, so they can be treated as a thin category. A morphism
between two such numbers x and y exists if and only if x >= y (note: this is the
opposite direction to the one traditionally used in the definition of a preorder). The
monoidal structure is given by addition, with zero serving as the unit object. In other
words, the tensor product of two numbers is their sum.

A metric space is a category enriched over such monoidal category. A hom-object C(a,
b) from object a to b is a non-negative (possibly infinite) number that we will call the
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distance from a to b. Let’s see what we get for identity and composition in such a
category.

By our definitions, a morphism from the tensorial unit, which is the number zero, to
a hom-object C(a, a) is the relation:

0 >= C(a, a)

Since C(a, a) is a non-negative number, this condition tells us that the distance from
a to a is always zero. Check!

Now let’s talk about composition. We start with the tensor product of two abutting
hom-objects, C(b, c)�C(a, b). We have defined the tensor product as the sum of the
two distances. Composition is a morphism in V from this product to C(a, c). A
morphism in V is defined as the greater-or-equal relation. In other words, the sum of
distances from a to b and from b to c is greater than or equal to the distance from a
to c. But that’s just the standard triangle inequality. Check!

By re-casting the metric space in terms of an enriched category, we get the triangle
inequality and the zero self-distance “for free.”

29.6 Enriched Functors

The definition of a functor involves the mapping of morphisms. In the enriched setting,
we don’t have the notion of individual morphisms, so we have to deal with hom-objects
in bulk. Hom-objects are objects in a monoidal category V, and we have morphisms
between them at our disposal. It therefore makes sense to define enriched functors
between categories when they are enriched over the same monoidal category V. We
can then use morphisms in V to map the hom-objects between two enriched categories.

An enriched functor F between two categories C and D, besides mapping objects to
objects, also assigns, to every pair of objects in C, a morphism in V :

Fa b :: C(a, b) -> D(F a, F b)

A functor is a structure-preserving mapping. For regular functors it meant preserving
composition and identity. In the enriched setting, the preservation of composition
means that the following diagram commute:

The preservation of identity is replaced by the preservation of the morphisms in V
that “select” the identity:

29.7 Self Enrichment

A closed symmetric monoidal category may be self-enriched by replacing hom-sets with
internal homs (see the definition above). To make this work, we have to define the
composition law for internal homs. In other words, we have to implement a morphism
with the following signature:
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Figure 151:

Figure 152:

[b, c] � [a, b] -> [a, c]

This is not much different from any other programming task, except that, in category
theory, we usually use point free implementations. We start by specifying the set
whose element it’s supposed to be. In this case, it’s a member of the hom-set:

V([b, c] � [a, b], [a, c])

This hom-set is isomorphic to:

V(([b, c] � [a, b]) � a, c)

I just used the adjunction that defined the internal hom [a, c]. If we can build a
morphism in this new set, the adjunction will point us at the morphism in the original
set, which we can then use as composition. We construct this morphism by composing
several morphisms that are at our disposal. To begin with, we can use the associator
�[b, c] [a, b] a to reassociate the expression on the left:

([b, c] � [a, b]) � a -> [b, c] � ([a, b] � a)

We can follow it with the co-unit of the adjunction �a b:
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[b, c] � ([a, b] � a) -> [b, c] � b

And use the counit �b c again to get to c. We have thus constructed a morphism:

�b c . (id[b, c] � �a b) . �[b, c] [a, b] a

that is an element of the hom-set:

V(([b, c] � [a, b]) � a, c)

The adjunction will give us the composition law we were looking for.

Similarly, the identity:

ja :: i -> [a, a]

is a member of the following hom-set:

V(i, [a, a])

which is isomorphic, through adjunction, to:

V(i � a, a)

We know that this hom-set contains the left identity �a. We can define ja as its image
under the adjunction.

A practical example of self-enrichment is the category Set that serves as the prototype
for types in programming languages. We’ve seen before that it’s a closed monoidal
category with respect to cartesian product. In Set, the hom-set between any two sets
is itself a set, so it’s an object in Set. We know that it’s isomorphic to the exponential
set, so the external and the internal homs are equivalent. Now we also know that,
through self-enrichment, we can use the exponential set as the hom-object and express
composition in terms of cartesian products of exponential objects.

29.8 Relation to 2-Categories

I talked about 2-categories in the context of Cat, the category of (small) categories.
The morphisms between categories are functors, but there is an additional structure:
natural transformations between functors. In a 2-category, the objects are often called
zero-cells; morphisms, 1-cells; and morphisms between morphisms, 2-cells. In Cat the
0-cells are categories, 1-cells are functors, and 2-cells are natural transformations.

But notice that functors between two categories form a category too; so, in Cat, we
really have a hom-category rather than a hom-set. It turns out that, just like Set can
be treated as a category enriched over Set, Cat can be treated as a category enriched
over Cat. Even more generally, just like every category can be treated as enriched
over Set, every 2-category can be considered enriched over Cat.
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30 Topoi

I realize that we might be getting away from programming and diving into hard-
core math. But you never know what the next big revolution in programming might
bring and what kind of math might be necessary to understand it. There are some
very interesting ideas going around, like functional reactive programming with its
continuous time, the extention of Haskell’s type system with dependent types, or the
exploration on homotopy type theory in programming.

So far I’ve been casually identifying types with sets of values. This is not strictly
correct, because such approach doesn’t take into account the fact that, in programming,
we compute values, and the computation is a process that takes time and, in extreme
cases, might not terminate. Divergent computations are part of every Turing-complete
language.

There are also foundational reasons why set theory might not be the best fit as the
basis for computer science or even math itself. A good analogy is that of set theory
being the assembly language that is tied to a particular architecture. If you want to
run your math on different architectures, you have to use more general tools.

One possibility is to use spaces in place of sets. Spaces come with more structure, and
may be defined without recourse to sets. One thing usually associated with spaces
is topology, which is necessary to define things like continuity. And the conventional
approach to topology is, you guessed it, through set theory. In particular, the notion
of a subset is central to topology. Not surprisingly, category theorists generalized
this idea to categories other than Set. The type of category that has just the right
properties to serve as a replacement for set theory is called a topos (plural: topoi), and
it provides, among other things, a generalized notion of a subset.

30.1 Subobject Classifier

Let’s start by trying to express the idea of a subset using functions rather than elements.
Any function f from some set a to b defines a subset of b–that of the image of a under f.
But there are many functions that define the same subset. We need to be more specific.
To begin with, we might focus on functions that are injective — ones that don’t smush
multiple elements into one. Injective functions “inject” one set into another. For finite
sets, you may visualize injective functions as parallel arrows connecting elements of
one set to elements of another. Of course, the first set cannot be larger than the second
set, or the arrows would necessarily converge. There is still some ambiguity left: there
may be another set a' and another injective function f' from that set to b that picks
the same subset. But you can easily convince yourself that such a set would have to
be isomorphic to a. We can use this fact to define a subset as a family of injective
functions that are related by isomorphisms of their domains. More precisely, we say
that two injective functions:

f :: a -> b
f':: a'-> b

are equivalent if there is an isomorphism:
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Figure 153:

h :: a -> a'

such that:

f = f' . h

Such a family of equivalent injections defines a subset of b.

This definition can be lifted to an arbitrary category if we replace injective functions
with monomorphism. Just to remind you, a monomorphism m from a to b is defined
by its universal property. For any object c and any pair of morphisms:

g :: c -> a
g':: c -> a

such that:

m . g = m . g'

it must be that g = g'.

On sets, this definition is easier to understand if we consider what it would mean for
a function m not to be a monomorphism. It would map two different elements of a to
a single element of b. We could then find two functions g and g' that differ only at
those two elements. The postcomposition with m would then mask this difference.

There is another way of defining a subset: using a single function called the character-
istic function. It’s a function � from the set b to a two-element set Ω. One element of
this set is designated as “true” and the other as “false.” This function assigns “true”
to those elements of b that are members of the subset, and “false” to those that aren’t.

It remains to specify what it means to designate an element of Ω as “true.” We can
use the standard trick: use a function from a singleton set to Ω. We’ll call this function
true:
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Figure 154:

Figure 155:

Figure 156:
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Figure 157:

true :: 1 -> Ω

These definitions can be combined in such a way that they not only define what a
subobject is, but also define the special object Ω without talking about elements. The
idea is that we want the morphism true to represent a “generic” subobject. In Set,
it picks a single-element subset from a two-element set Ω. This is as generic as it gets.
It’s clearly a proper subset, because Ω has one more element that’s not in that subset.

In a more general setting, we define true to be a monomorphism from the terminal
object to the classifying object Ω. But we have to define the classifying object. We need
a universal property that links this object to the characteristic function. It turns out
that, in Set, the pullback of true along the characteristic function � defines both the
subset a and the injective function that embeds it in b. Here’s the pullback diagram:

Let’s analyze this diagram. The pullback equation is:

true . unit = � . f

The function true . unitmaps every element of a to “true.” Therefore fmust map all
elements of a to those elements of b for which � is “true.” These are, by definition, the
elements of the subset that is specified by the characteristic function �. So the image
of f is indeed the subset in question. The universality of the pullback guarantees that
f is injective.

This pullback diagram can be used to define the classifying object in categories other
than Set. Such a category must have a terminal object, which will let us define
the monomorphism true. It must also have pullbacks — the actual requirement is
that it must have all finite limits (a pullback is an example of a finite limit). Under
those assumptions, we define the classifying object Ω by the property that, for every
monomorphism f there is a unique morphism � that completes the pullback diagram.

Let’s analyze the last statement. When we construct a pullback, we are given three
objects Ω, b and 1; and two morphisms, true and �. The existence of a pullback means
that we can find the best such object a, equipped with two morphisms f and unit
(the latter is uniquely determined by the definition of the terminal object), that make
the diagram commute.
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Here we are solving a different system of equations. We are solving for Ω and true while
varying both a and b. For a given a and b there may or may not be a monomorphism
f::a->b. But if there is one, we want it to be a pullback of some �. Moreover, we want
this � to be uniquely determined by f.

We can’t say that there is a one-to-one correspondence between monomorphisms f and
characteristic functions �, because a pullback is only unique up to isomorphism. But
remember our earlier definition of a subset as a family of equivalent injections. We can
generalize it by defining a subobject of b as a family of equivalent monomorphisms to
b. This family of monomorphisms is in one-to-one corrpespondence with the family of
equivalent pullbacks of our diagram.

We can thus define a set of subobjects of b, Sub(b), as a family of monomorphisms,
and see that it is isomorphic to the set of morphisms from b to Ω:

Sub(b) � C(b, Ω)

This happens to be a natural isomorphism of two functors. In other words, Sub(-) is
a representable (contravariant) functor whose representation is the object Ω.

30.2 Topos

A topos is a category that:

1. Is cartesian closed: It has all products, the terminal object, and exponentials
(defined as right adjoints to products),

2. Has limits for all finite diagrams,
3. Has a subobject classifier Ω.

This set of properties makes a topos a shoe-in for Set in most applications. It also
has additional properties that follow from its definition. For instance, a topos has all
finite colimits, including the initial object.

It would be tempting to define the subobject classifier as a coproduct (sum) of two
copies of the terminal object –that’s what it is in Set— but we want to be more
general than that. Topoi in which this is true are called Boolean.

30.3 Topoi and Logic

In set theory, a characteristic function may be interpreted as defining a property of the
elements of a set — a predicate that is true for some elements and false for others. The
predicate isEven selects a subset of even numbers from the set of natural numbers. In
a topos, we can generalize the idea of a predicate to be a morphism from object a to
Ω. This is why Ω is sometimes called the truth object.

Predicates are the building blocks of logic. A topos contains all the necessary in-
strumentation to study logic. It has products that correspond to logical conjunctions
(logical and), coproducts for disjunctions (logical or), and exponentials for implica-
tions. All standard axioms of logic hold in a topos except for the law of excluded
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middle (or, equivalently, double negation elimination). That’s why the logic of a
topos corresponds to constructive or intuitionistic logic.

Intuitionistic logic has been steadily gaining ground, finding unexpected support from
computer science. The classical notion of excluded middle is based on the belief that
there is absolute truth: Any statement is either true or false or, as Ancient Romans
would say, tertium non datur (there is no third option). But the only way we can know
whether something is true or false is if we can prove or disprove it. A proof is a process,
a computation — and we know that computations take time and resources. In some
cases, they may never terminate. It doesn’t make sense to claim that a statement is
true if we cannot prove it in finite amount of time. A topos with its more nuanced
truth object provides a more general framework for modeling interesting logics.

30.4 Challenges

1. Show that the function f that is the pullback of true along the characteristic
function must be injective.
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31 Lawvere Theories

Nowadays you can’t talk about functional programming without mentioning monads.
But there is an alternative universe in which, by chance, Eugenio Moggi turned his
attention to Lawvere theories rather than monads. Let’s explore that universe.

31.1 Universal Algebra

There are many ways of describing algebras at various levels of abstraction. We try
to find a general language to describe things like monoids, groups, or rings. At the
simplest level, all these constructions define operations on elements of a set, plus some
laws that must be satisfied by these operations. For instance, a monoid can be defined
in terms of a binary operation that is associative. We also have a unit element and
unit laws. But with a little bit of imagination we can turn the unit element to a nullary
operation — an operation that takes no arguments and returns a special element of the
set. If we want to talk about groups, we add a unary operator that takes an element
and returns its inverse. There are corresponding left and right inverse laws to go with
it. A ring defines two binary operators plus some more laws. And so on.

The big picture is that an algebra is defined by a set of n-ary operations for various
values of n, and a set of equational identities. These identities are all universally
quantified. The associativity equation must be satisfied for all possible combinations
of three elements, and so on.

Incidentally, this eliminates fields from consideration, for the simple reason that zero
(unit with respect to addition) has no inverse with respect to multiplication. The
inverse law for a field can’t be universally quantified.

This definition of a universal algebra can be extended to categories other than Set,
if we replace operations (functions) with morphisms. Instead of a set, we select an
object a (called a generic object). A unary operation is just an endomorphism of a.
But what about other arities (arity is the number of arguments for a given operation)?
A binary operation (arity 2) can be defined as a morphism from the product a×a back
to a. A general n-ary operation is a morphism from the n-th power of a to a:

�n :: an -> a

A nullary operation is a morphism from the terminal object (the zeroth power of a).
So all we need in order to define any algebra is a category whose objects are powers of
one special object a. The specific algebra is encoded in the hom-sets of this category.
This is a Lawvere theory in a nutshell.

The derivation of Lawvere theories goes through many steps, so here’s the roadmap:

1. Category of finite sets FinSet.
2. Its skeleton F.
3. Its opposite Fop.
4. Lawvere theory L: an object in the category Law.
5. Model M of a Lawvere category: an object in the category Mod(Law, Set).

300



Figure 158:

31.2 Lavwere Theories

All Lawvere theories share a common backbone. All objects in a Lawvere theory are
generated from just one object using products (really, just powers). But how do we
define these products in a general category? It turns out that we can define products
using a mapping from a simpler category. In fact this simpler category may define
coproducts instead of products, and we’ll use a contravariant functor to embed them
in our target category. A contravariant functor turns coproducts into products and
injections to projections.

The natural choice for the backbone of a Lawvere category is the category of finite sets,
FinSet. It contains the empty set 0, a singleton set 1, a two-element set 2, and so on.
All objects in this category can be generated from the singleton set using coproducts
(treating the empty set as a special case of a nullary coproduct). For instance, a
two-element set is a sum of two singletons, 2 = 1 + 1, as expressed in Haskell:

type Two = Either () ()

However, even though it’s natural to think that there’s only one empty set, there may
be many distinct singleton sets. In particular, the set 1 + 0 is different from the set
0 + 1, and different from 1 — even though they are all isomorphic. The coproduct
in the category of sets is not associative. We can remedy that situation by building
a category that identifies all isomorphic sets. Such a category is called a skeleton. In
other words, the backbone of any Lawvere theory is the skeleton F of FinSet. The
objects in this category can be identified with natural numbers (including zero) that
correspond to the element count in FinSet. Coproduct plays the role of addition.
Morphisms in F correspond to functions between finite sets. For instance, there is a
unique morphism from 0 to n (empty set being the initial object), no morphisms from
n to 0 (except 0->0), n morphisms from 1 to n (the injections), one morphism from n
to 1, and so on. Here, n denotes an object in F corresponding to all n-element sets in
FinSet that have been identified through isomorphims.

Using the category F we can formally define a Lawvere theory as a category L equipped
with a special functor

IL :: Fop -> L
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This functor must be a bijection on objects and it must preserve finite products (prod-
ucts in Fop are the same as coproducts in F):

IL (m × n) = IL m × IL n

You may sometimes see this functor characterized as identity-on-objects, which means
that the objects in F and L are the same. We will therefore use the same names for
them — we’ll denote them by natural numbers. Keep in mind though that objects in
F are not the same as sets (they are classes of isomorphic sets).

The hom-sets in L are, in general, richer than those in Fop. They may contain mor-
phisms other than the ones corresponding to functions in FinSet (the latter are some-
times called basic product operations). Equational laws of a Lawvere theory are en-
coded in those morphisms.

The key observation is that the singleton set 1 in F is mapped to some object that we
also call 1 in L, and all the other objects in L are automatically powers of this object.
For instance, the two-element set 2 in F is the coproduct 1+1, so it must be mapped
to a product 1×1 (or 12) in L. In this sense, the category F behaves like the logarithm
of L.

Among morphisms in L we have those transferred by the functor IL from F. They play
structural role in L. In particular coproduct injections ik become product projections
pk. A useful intuition is to imagine the projection:

pk :: 1n -> 1

as the prototype for a function of n variables that ignores all but the k’th variable.
Conversely, constant morphisms n->1 in F become diagonal morphisms 1->1n in L.
They correspond to duplication of variables.

The interesting morphisms in L are the ones that define n-ary operations other than
projections. It’s those morphisms that distinguish one Lawvere theory from another.
These are the multiplications, the additions, the selections of unit elements, and so
on, that define the algebra. But to make L a full category, we also need compound
operations n->m (or, equivalently, 1n -> 1m). Because of the simple structure of the
category, they turn out to be products of simpler morphisms of the type n->1. This is
a generalization of the statement that a function that returns a product is a product
of functions (or, as we’ve seen earlier, that the hom-functor is continuous).

Lavwere theories form a category Law, in which morphisms are functors that preserve
finite products and commute with the functors I. Given two such theories, (L, IL)
and (L', I'L'), a morphism between them is a functor F :: L -> L' such that:

F (m × n) = F m × F n
F � IL = I'L'

Morphisms between Lawvere theories encapsulate the idea of the interpretation of
one theory inside another. For instance, group multiplication may be interpreted as
monoid multiplication if we ignore inverses.
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Figure 159: Lawvere theory L is based on Fop, from which it inherits the “boring”
morphisms that define the products. It adds the “interesting” morphisms that
describe the n-ary operations (dotted arrows).

The simplest trivial example of a Lawvere category is Fop itself (corresponding to the
choice of the identity functor for IL). This Lawvere theory that has no operations or
laws happens to be the initial object in Law.

At this point it would be very helpful to present a non-trivial example of a Lawvere
theory, but it would be hard to explain it without first understanding what models
are.

31.3 Models of Lawvere Theories

The key to understand Lawvere theories is to realize that one such theory generalizes
a lot of individual algebras that share the same structure. For instance, the Lawvere
theory of monoids describes the essence of being a monoid. It must be valid for all
monoids. A particular monoid becomes a model of such a theory. A model is defined
as a functor from the Lawvere theory L to the category of sets Set. (There are
generalizations of Lawvere theories that use other categories for models but here I’ll
just concentrate on Set.) Since the structure of L depends heavily on products, we
require that such a functor preserve finite products. A model of L, also called the
algebra over the Lawvere theory L, is therefore defined by a functor:

M :: L -> Set
M (a × b) � M a × M b

Notice that we require the preservation of products only up to isomorphism. This is
very important, because strict preservation of products would eliminate most interest-
ing theories.

The preservation of products by models means that the image of M in Set is a sequence
of sets generated by powers of the set M 1 — the image of the object 1 from L. Let’s
call this set a. (This set is sometimes called a sort, and such algebra is called single-
sorted. There exist generalizations of Lawvere theories to multi-sorted algebras.) In
particular, binary operations from L are mapped to functions:
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a × a -> a

As with any functor, it’s possible that multiple morphisms in L are collapsed to the
same function in Set.

Incidentally, the fact that all laws are universally quantified equalities means that
every Lawvere theory has a trivial model: a constant functor mapping all objects to a
single set, and all morphisms to the identity function on it.

A general morphism in L of the form m -> n is mapped to a function:

am -> an

If we have two different models, M and N, a natural transformation between them is a
family of functions indexed by n:

�n :: M n -> N n

or, equivalently:

�n :: an -> bn

where b = N 1.

Notice that the naturality condition guarantees the preservation of n-ary operations:

N f � �n = �1 � M f

where f :: n -> 1 is an n-ary operation in L.

The functors that define models form a category of models, Mod(L, Set), with natural
transformations as morphisms.

Consider a model for the trivial Lawvere category Fop. Such model is completely
determined by its value at 1, M 1. Since M 1 can be any set, there are as many
of these models as there are sets in Set. Moreover, every morphism in Mod(Fop,
Set) (a natural transformation between functors M and N) is uniquely determined
by its component at M 1. Conversely, every function M 1 -> N 1 induces a natural
transformation between the two models M and N. Therefore Mod(Fop, Set) is equivalent
to Set.

31.4 The Theory of Monoids

The simplest nontrivial example of a Lawvere theory describes the structure of monoids.
It is a single theory that distills the structure of all possible monoids, in the sense that
the models of this theory span the whole category Mon of monoids. We’ve already
seen a universal construction, which showed that every monoid can be obtained from
an appropriate free monoid by identifying a subset of morphisms. So a single free
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monoid already generalizes a whole lot of monoids. There are, however, infinitely
many free monoids. The Lawvere theory for monoids LMon combines all of them in
one elegant construction.

Every monoid must have a unit, so we have to have a special morphism � in LMon that
goes from 0 to 1. Notice that there can be no corresponding morphism in F. Such
morphism would go in the opposite direction, from 1 to 0 which, in FinSet, would be
a function from the singleton set to the empty set. No such function exists.

Next, consider morphisms 2->1, members of LMon(2, 1), which must contain proto-
types of all binary operations. When constructing models in Mod(LMon, Set), these
morphisms will be mapped to functions from the cartesian product M 1 × M 1 to M 1.
In other words, functions of two arguments.

The question is: how many functions of two arguments can one implement using only
the monoidal operator. Let’s call the two arguments a and b. There is one function
that ignores both arguments and returns the monoidal unit. Then there are two
projections that return a and b, respectively. They are followed by functions that
return ab, ba, aa, bb, aab, and so on… In fact there are as many such functions of two
arguments as there are elements in the free monoid with generators a and b. Notice
that LMon(2, 1) must contain all those morphisms because one of the models is the
free monoid. In a free monoid they correspond to distinct functions. Other models
may collapse multiple morphisms in LMon(2, 1) down to a single function, but not
the free monoid.

If we denote the free monoid with n generators n*, we may identify the hom-set L(2,
1) with the hom-set Mon(1*, 2*) in Mon, the category of monoids. In general, we
pick LMon(m, n) to be Mon(n*, m*). In other words, the category LMon is the opposite
of the category of free monoids.

The category of models of the Lawvere theory for monoids, Mod(LMon, Set), is equiv-
alent to the category of all monoids, Mon.

31.5 Lawvere Theories and Monads

As you may remember, algebraic theories can be described using monads — in par-
ticular algebras for monads. It should be no surprise then that there is a connection
between Lawvere theories and monads.

First, let’s see how a Lawvere theory induces a monad. It does it through an adjunction
between a forgetful functor and a free functor. The forgetful functor U assigns a set to
each model. This set is given by evaluating the functor M from Mod(L, Set) at the
object 1 in L.

Another way of deriving U is by exploiting the fact that Fop is the initial object in
Law. It meanst that, for any Lawvere theory L, there is a unique functor Fop -> L.
This functor induces the opposite functor on models (since models are functors from
theories to sets):

Mod(L, Set) -> Mod(Fop, Set)
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But, as we discussed, the category of models of Fop is equivalent to Set, so we get the
forgetful functor:

U :: Mod(L, Set) -> Set

It can be shown that so defined U always has a left adjoint, the free functor F.

This is easily seen for finite sets. The free functor F produces free algebras. A free
algebra is a particular model in Mod(L, Set) that is generated from a finite set of
generators n. We can implement F as the representable functor:

L(n, -) :: L -> Set

To show that it’s indeed free, all we have to do is to prove that it’s a left adjoint to
the forgetful functor:

Mod(L(n, -), M) � Set(n, U(M))

Let’s simplify the right hand side:

Set(n, U(M)) � Set(n, M 1) � (M 1)n � M n

(I used the fact that a set of morphisms is isomorphic to the exponential which, in this
case, is just the iterated product.) The adjunction is the result of the Yoneda lemma:

[L, Set](L(n, -), M) � M n

Together, the forgetful and the free functor define a monad T = U�F on Set. Thus
every Lawvere theory generates a monad.

It turns out that the category of algebras for this monad is equivalent to the category
of models.

You may recall that monad algebras define ways to evaluate expressions that are
formed using monads. A Lawvere theory defines n-ary operations that can be used to
generate expressions. Models provide means to evaluate these expressions.

The connection between monads and Lawvere theories doesn’t go both ways, though.
Only finitary monads lead to Lawvere thories. A finitary monad is based on a finitary
functor. A finitary functor on Set is fully determined by its action on finite sets. Its
action on an arbitrary set a can be evaluated using the following coend:

F a = � n an × (F n)
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Since the coend generalizes a coproduct, or a sum, this formula is a generalization of
a power series expansion. Or we can use the intuition that a functor is a generalized
container. In that case a finitary container of as can be described as a sum of shapes
and contents. Here, F n is a set of shapes for storing n elements, and the contents is
an n-tuple of elements, itself an element of an. For instance, a list (as a functor) is
finitary, with one shape for every arity. A tree has more shapes per arity, and so on.

First off, all monads that are generated from Lawvere theories are finitary and they
can be expressed as coends:

TL a = � n an × L(n, 1)

Conversely, given any finitary monad T on Set, we can construct a Lawvere theory.
We start by constructing a Kleisli category for T. As you may remember, a morphism
in a Kleisli category from a to b is given by a morphism in the underlying category:

a -> T b

When restricted to finite sets, this becomes:

m -> T n

The category opposite to this Kleisli category, KlT
op, restricted to finite sets, is the

Lawvere theory in question. In particular, the hom-set L(n, 1) that describes n-ary
operations in L is given by the hom-set KlT(1, n).

It turns out that most monads that we encounter in programming are finitary, with
the notable exception of the continuation monad. It is possible to to extend the notion
of Lawvere theory beyond finitary operations.

31.6 Monads as Coends

Let’s explore the coend formula in more detail.

TL a = � n an × L(n, 1)

To begin with, this coend is taken over a profunctor P in F defined as:

P n m = an × L(m, 1)

This profunctor is contravariant in the first argument, n. Consider how it lifts mor-
phisms. A morphism in FinSet is a mapping of finite sets f :: m -> n. Such a
mapping describes a selection of m elements from an n-element set (repetitions are al-
lowed). It can be lifted to the mapping of powers of a, namely (notice the direction):

an -> am
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Figure 160:

The lifting simply selects m elements from a tuple of n elements (a1, a2,...an)
(possibly with repetitions).

For instance, let’s take fk :: 1 -> n — a selection of the kth element from an n-
element set. It lifts to a function that takes a n-tuple of elements of a and returns the
kth one.

Or let’s take f :: m -> 1 — a constant function that maps all m elements to one. Its
lifting is a function that takes a single element of a and duplicates it m times:

�x -> (x, x, ... x)

You might notice that it’s not immediately obvious that the profunctor in question is
covariant in the second argument. The hom-functor L(m, 1) is actually contravariant
in m. However, we are taking the coend not in the category L but in the category F.
The coend variable n goes over finite sets (or the skeletons of such). The category L
contains the opposite of F, so a morphism m -> n in F is a member of L(n, m) in L
(the embedding is given by the functor IL).

Let’s check the functoriality of L(m, 1) as a functor from F to Set. We want to lift
a function f :: m -> n, so our goal is to implement a function from L(m, 1) to L(n,
1). Corresponding to the function f there is a morphism in L from n to m (notice the
direction). Precomposing this morphism with L(m, 1) gives us a subset of L(n, 1).

Notice that, by lifting a function 1->n we can go from L(1, 1) to L(n, 1). We’ll use
this fact later on.

The product of a contravariant functor an and a covariant functor L(m, 1) is a profunc-
tor Fop×F->Set. Remember that a coend can be defined as a coproduct (disjoint sum)
of all the diagonal members of a profunctor, in which some elements are identified.
The identifications correspond to cowedge conditions.

Here, the coend starts as the disjoint sum of sets an × L(n, 1) over all ns. The
identifications can be generated by expressing the coend as a coequilizer. We start
with an off-diagonal term an × L(m, 1). To get to the diagonal, we can apply a
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Figure 161:

Figure 162:

morphism f :: m -> n either to the first or the second component of the product.
The two results are then identified.

I have shown before that the lifting of f :: 1 -> n results in these two transforma-
tions:

an -> a

and:

L(1, 1) -> L(n, 1)

Therefore, starting from an × L(1, 1) we can reach both:

a × L(1, 1)

when we lift <f, id> and:
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an × L(n, 1)

when we lift <id, f>. This doesn’t mean, however, that all elements of an × L(n,
1) can be identified with a × L(1, 1). That’s because not all elements of L(n, 1)
can be reached from L(1, 1). Remember that we can only lift morphisms from F. A
non-trivial n-ary operation in L cannot be constructed by lifting a morphism f :: 1
-> n.

In other words, we can only identify all addends in the coend formula for which L(n,
1) can be reached from L(1, 1) through the application of basic morphisms. They
are all equivalent to a × L(1, 1). Basic morphisms are the ones that are images of
morphisms in F.

Let’s see how this works in the simplest case of the Lawvere theory, the Fop itself. In
such a theory, every L(n, 1) can be reached from L(1, 1). This is because L(1, 1)
is a singleton containing just the identity morphism, and L(n, 1) only contains mor-
phisms corresponding to injections 1->n in F, which are basic morphisms. Therefore
all the addends in the coproduct are equivalent and we get:

T a = a × L(1, 1) = a

which is the identity monad.

31.7 Lawvere Theory of Side Effects

Since there is such a strong connection between monads and Lawvere theories, it’s
natural to ask the question if Lawvere theories could be used in programming as an
alternative to monads. The major problem with monads is that they don’t compose
nicely. There is no generic recipe for building monad transformers. Lawvere theories
have an advantage in this area: they can be composed using coproducts and tensor
products. On the other hand, only finitary monads can be easily converted to Lawvere
theories. The outlier here is the continuation monad. There is ongoing research in
this area (see bibliography).

To give you a taste of how a Lawvere theory can be used to describe side effects,
I’ll discuss the simple case of exceptions that are traditionally implemented using the
Maybe monad.

The Maybe monad is generated by the Lawvere theory with a single nullary operation
0->1. A model of this theory is a functor that maps 1 to some set a, and maps the
nullary operation to a function:

raise :: () -> a

We can recover the Maybe monad using the coend formula. Let’s consider what the
addition of the nullary operation does to the hom-sets L(n, 1). Besides creating a
new L(0, 1) (which is absent from Fop), it also adds new morphisms to L(n, 1).
These are the results of composing morphism of the type n->0 with our 0->1. Such
contributions are all identified with a0 × L(0, 1) in the coend formula, because they
can be obtained from:
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Figure 163:

an × L(0, 1)

by lifting 0->n in two different ways.

The coend reduces to:

TL a = a0 + a1

or, using Haskell notation:

type Maybe a = Either () a

which is equivalent to:

data Maybe a = Nothing | Just a

Notice that this Lawvere theory only supports the raising of exceptions, not their
handling.

31.8 Challenges

1. Enumarate all morphisms between 2 and 3 in F (the skeleton of FinSet).
2. Show that the category of models for the Lawvere theory of monoids is equivalent

to the category of monad algebras for the list monad.
3. The Lawvere theory of monoids generates the list monad. Show that its binary

operations can be generated using the corresponding Kleisli arrows.
4. FinSet is a subcategory of Set and there is a functor that embeds it in Set.

Any functor on Set can be restricted to FinSet. Show that a finitary functor
is the left Kan extension of its own restriction.
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32 Monads, Monoids, and Categories

There is no good place to end a book on category theory. There’s always more to learn.
Category theory is a vast subject. At the same time, it’s obvious that the same themes,
concepts, and patterns keep showing up over and over again. There is a saying that all
concepts are Kan extensions and, indeed, you can use Kan extensions to derive limits,
colimits, adjunctions, monads, the Yoneda lemma, and much more. The notion of a
category itself arises at all levels of abstraction, and so does the concept of a monoid
and a monad. Which one is the most basic? As it turns out they are all interrelated,
one leading to another in a never-ending cycle of abstractions. I decided that showing
these interconnections might be a good way to end this book.

32.1 Bicategories

One of the most difficult aspects of category theory is the constant switching of per-
spectives. Take the category of sets, for instance. We are used to defining sets in
terms of elements. An empty set has no elements. A singleton set has one element. A
cartesian product of two sets is a set of pairs, and so on. But when talking about the
category Set I asked you to forget about the contents of sets and instead concentrate
on morphisms (arrows) between them. You were allowed, from time to time, to peek
under the covers to see what a particular universal construction in Set described in
terms of elements. The terminal object turned out to be a set with one element, and
so on. But these were just sanity checks.

A functor is defined as a mapping of categories. It’s natural to consider a mapping as
a morphism in a category. A functor turned out to be a morphism in the category of
categories (small categories, if we want to avoid questions about size). By treating a
functor as an arrow, we forfeit the information about its action on the internals of a
category (its objects and morphisms), just like we forfeit the information about the
action of a function on elements of a set when we treat it as an arrow in Set. But
functors between any two categories also form a category. This time you are asked to
consider something that was an arrow in one category to be an object in another. In a
functor category functors are objects and natural transformations are morphisms. We
have discovered that the same thing can be an arrow in one category and an object in
another. The naive view of objects as nouns and arrows as verbs doesn’t hold.

Instead of switching between two views, we can try to merge them into one. This is
how we get the concept of a 2-category, in which objects are called 0-cells, morphisms
are 1-cells, and morphisms between morphisms are 2-cells.

The category of categories Cat is an immediate example. We have categories as 0-cells,
functors as 1-cells, and natural transformations as 2-cells. The laws of a 2-category
tell us that 1-cells between any two 0-cells form a category (in other words, C(a, b)
is a hom-category rather than a hom-set). This fits nicely with our earlier assertion
that functors between any two categories form a functor category.

In particular, 1-cells from any 0-cell back to itself also form a category, the hom-
category C(a, a); but that category has even more structure. Members of C(a, a)
can be viewed as arrows in C or as objects in C(a, a). As arrows, they can be
composed with each other. But when we look at them as objects, the composition
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Figure 164: 0-cells a, b; 1-cells f, g; and a 2-cell �.

becomes a mapping from a pair of objects to an object. In fact it looks very much
like a product — a tensor product to be precise. This tensor product has a unit:
the identity 1-cell. It turns out that, in any 2-category, a hom-category C(a, a) is
automatically a monoidal category with the tensor product defined as composition of
1-cells. Associativity and unit laws simply fall out from the corresponding category
laws.

Let’s see what this means in our canonical example of a 2-category Cat. The hom-
category Cat(a, a) is the category of endofunctors on a. Endofunctor composition
plays the role of a tensor product in it. The identity functor is the unit with respect
to this product. We’ve seen before that endofunctors form a monoidal category (we
used this fact in the definition of a monad), but now we see that this is a more general
phenomenon: endo-1-cells in any 2-category form a monoidal category. We’ll come
back to it later when we generalize monads.

You might recall that, in a general monoidal category, we did not insist on the monoid
laws being satisfied on the nose. It was often enough for the unit laws and the associa-
tivity laws to be satisfied up to isomorphism. In a 2-category, monoidal laws in C(a,
a) follow from composition laws for 1-cells. These laws are strict, so we will always
get a strict monoidal category. It is, however, possible to relax these laws as well. We
can say, for instance, that a composition of the identity 1-cell ida with another 1-cell,
f :: a -> b, is isomorphic, rather than equal, to f. Isomorphism of 1-cells is defined
using 2-cells. In other words, there is a 2-cell:

� :: f � ida -> f

that has an inverse.

We can do the same for the left identity and associativity laws. This kind of relaxed
2-category is called a bicategory (there are some additional coherency laws, which I
will omit here).

As expected, endo-1-cells in a bicategory form a general monoidal category with non-
strict laws.

An interesting example of a bicategory is the category of spans. A span between two
objects a and b is an object x and a pair of morphisms:
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Figure 165: Identity law in a bicategory holds up to isomorphism (an invertible
2-cell �).

Figure 166:

f :: x -> a
g :: x -> b

You might recall that we used spans in the definition of a categorical product. Here, we
want to look at spans as 1-cells in a bicategory. The first step is to define a composition
of spans. Suppose that we have an adjoining span:

f':: y -> b
g':: y -> c

The composition would be a third span, with some apex z. The most natural choice
for it is the pullback of g along f'. Remember that a pullback is the object z together
with two morphisms:

h :: z -> x
h':: z -> y

such that:
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Figure 167:

Figure 168:

g � h = f' � h'

which is universal among all such objects.

For now, let’s concentrate on spans over the category of sets. In that case, the pullback
is just a set of pairs (p, q) from the cartesian product x × y such that:

g p = f' q

Amorphism between two spans that share the same endpoints is defined as a morphism
h between their apices, such that the appropriate triangles commute.

To summarize, in the bicategory Span: 0-cells are sets, 1-cells are spans, 2-cells are
span morphisms. An identity 1-cell is a degenerate span in which all three objects are
the same, and the two morphisms are identities.

We’ve seen another example of a bicategory before: the bicategory Prof of profunctors,
where 0-cells are categories, 1-cells are profunctors, and 2-cells are natural transforma-
tions. The composition of profunctors was given by a coend.
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Figure 169:

Figure 170:

32.2 Monads

By now you should be pretty familiar with the definition of a monad as a monoid in
the category of endofunctors. Let’s revisit this definition with the new understanding
that the category of endofunctors is just one small hom-category of endo-1-cells in the
bicategory Cat. We know it’s a monoidal category: the tensor product comes from the
composition of endofunctors. A monoid is defined as an object in a monoidal category
— here it will be an endofunctor T — together with two morphisms. Morphisms
between endofunctors are natural transformations. One morphism maps the monoidal
unit — the identity endofunctor — to T:

� :: I -> T

The second morphism maps the tensor product of T � T to T. The tensor product is
given by endofunctor composition, so we get:

� :: T � T -> T

We recognize these as the two operations defining a monad (they are called return
and join in Haskell), and we know that monoid laws turn to monad laws.
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Figure 171:

Now let’s remove all mention of endofunctors from this definition. We start with a
bicategory C and pick a 0-cell a in it. As we’ve seen earlier, the hom-category C(a,
a) is a monoidal category. We can therefore define a monoid in C(a, a) by picking a
1-cell, T, and two 2-cells:

� :: I -> T
� :: T � T -> T

satisfying the monoid laws. We call this a monad.

That’s a much more general definition of a monad using only 0-cells, 1-cells, and 2-cells.
It reduces to the usual monad when applied to the bicategory Cat. But let’s see what
happens in other bicategories.

Let’s construct a monad in Span. We pick a 0-cell, which is a set that, for reasons that
will become clear soon, I will call Ob. Next, we pick an endo-1-cell: a span from Ob
back to Ob. It has a set at the apex, which I will call Ar, equipped with two functions:

dom :: Ar -> Ob
cod :: Ar -> Ob

Let’s call the elements of the set Ar “arrows.” If I also tell you to call the elements
of Ob “objects,” you might get a hint where this is leading to. The two functions dom
and cod assign the domain and the codomain to an “arrow.”

To make our span into a monad, we need two 2-cells, � and �. The monoidal unit,
in this case, is the trivial span from Ob to Ob with the apex at Ob and two identity
functions. The 2-cell � is a function between the apices Ob and Arr. In other words,
� assigns an “arrow” to every “object.” A 2-cell in Span must satisfy commutation
conditions — in this case:

dom � � = id
cod � � = id
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Figure 172:

Figure 173:

In components, this becomes:

dom (� ob) = ob = cod (� ob)

where ob is an “object” in Ob. In other words, � assigns to every “object” and “arrow”
whose domain and codomain are that “object.” We’ll call this special “arrow” the
“identity arrow.”

The second 2-cell � acts on the composition of the span Ar with itself. The composition
is defined as a pullback, so its elements are pairs of elements from Ar—pairs of “arrows”
(a1, a2). The pullback condition is:

cod a1 = dom a2

We say that a1 and a1 are “composable,” because the domain of one is the codomain
of the other.

The 2-cell � is a function that maps a pair of composable arrows (a1, a2) to a single
arrow a3 from Ar. In other words � defines composition of arrows.
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Figure 174:

It’s easy to check that monad laws correspond to identity and associativity laws for
arrows. We have just defined a category (a small category, mind you, in which objects
and arrows form sets).

So, all told, a category is just a monad in the bicategory of spans.

What is amazing about this result is that it puts categories on the same footing as other
algebraic structures like monads and monoids. There is nothing special about being a
category. It’s just two sets and four functions. In fact we don’t even need a separate
set for objects, because objects can be identified with identity arrows (they are in one-
to-one correspondence). So it’s really just a set and a few functions. Considering the
pivotal role that category theory plays in all of mathematics, this is a very humbling
realization.

32.3 Challenges

1. Derive unit and associativity laws for the tensor product defined as composition
of endo-1-cells in a bicategory.

2. Check that monad laws for a monad in Span correspond to identity and asso-
ciativity laws in the resulting category.

3. Show that a monad in Prof is an identity-on-objects functor.
4. What’s a monad algebra for a monad in Span?

32.4 Bibliography

1. Paweł Sobociński’s blog.

320

https://graphicallinearalgebra.net/2017/04/16/a-monoid-is-a-category-a-category-is-a-monad-a-monad-is-a-monoid/

	Preface
	Category: The Essence of Composition
	Arrows as Functions
	Properties of Composition
	Composition is the Essence of Programming
	Challenges

	Types and Functions
	Who Needs Types?
	Types Are About Composability
	What Are Types?
	Why Do We Need a Mathematical Model?
	Pure and Dirty Functions
	Examples of Types
	Challenges
	Bibliography

	Categories Great and Small
	No Objects
	Simple Graphs
	Orders
	Monoid as Set
	Monoid as Category
	Acknowledgments
	Challenges

	Kleisli Categories
	Composition of Logs
	The Writer Category
	Writer in Haskell
	Kleisli Categories
	Challenge
	Acknowledgments

	Products and Coproducts
	Follow the Arrows
	Initial Object
	Terminal Object
	Duality
	Isomorphisms
	Products
	Coproduct
	Asymmetry
	Challenges
	Bibliography
	Acknowledments

	Simple Algebraic Data Types
	Product Types
	Records

	Sum Types
	Algebra of Types
	Challenges
	Acknowledments


	Functors
	Functors in Programming
	The Maybe Functor
	Equational Reasoning
	Optional
	Typeclasses
	Functor in C++
	The List Functor
	The Reader Functor

	Functors as Containers
	Functor Composition
	Challenges
	Acknowledgments

	Functoriality
	Bifunctors
	Product and Coproduct Bifunctors
	Functorial Algebraic Data Types
	Functors in C++
	The Writer Functor
	Covariant and Contravariant Functors
	Profunctors
	Challenges
	Acknowledgment

	Function Types
	Universal Construction
	Currying
	Exponentials
	Cartesian Closed Categories
	Exponentials and Algebraic Data Types
	Zeroth Power
	Powers of One
	First Power
	Exponentials of Sums
	Exponentials of Exponentials
	Exponentials over Products

	Curry-Howard Isomorphism
	Bibliography
	Acknowledgments

	Natural Transformations
	Polymorphic Functions
	Beyond Naturality
	Functor Category
	2-Categories
	Conclusion
	Challenges
	Acknowledgments

	Declarative Programming
	Introduction to Part II
	Acknowledgments

	Limits and Colimits
	Limit as a Natural Isomorphism
	Examples of Limits
	Colimits
	Continuity
	Challenges
	Acknowledgments

	Free Monoids
	Free Monoid in Haskell
	Free Monoid Universal Construction
	Challenges
	Acknowledgments

	Representable Functors
	The Hom Functor
	Representable Functors
	Challenges
	Bibliography
	Acknowledgments

	The Yoneda Lemma
	Yoneda in Haskell
	Co-Yoneda
	Challenges
	Bibliography
	Acknowledgments

	Yoneda Embedding
	The Embedding
	Application to Haskell
	Preorder Example
	Naturality
	Challenges
	Acknowledgments

	It's All About Morphisms
	Functors
	Commuting Diagrams
	Natural Transformations
	Natural Isomorphisms
	Hom-Sets
	Hom-Set Isomorphisms
	Asymmetry of Hom-Sets
	Challenges
	Acknowledgments

	Adjunctions
	Adjunction and Unit/Counit Pair
	Adjunctions and Hom-Sets
	Product from Adjunction
	Exponential from Adjunction
	Challenges
	Acknowledgments

	Free Monoid from Adjunction
	Some Intuitions
	Challenges
	Acknowledgments

	Monads: Programmer's Definition
	The Kleisli Category
	Fish Anatomy
	The do Notation

	Monads and Effects
	The Problem
	The Solution
	Partiality
	Nondeterminism
	Read-Only State
	Write-Only State
	State
	Exceptions
	Continuations
	Interactive Input
	Interactive Output

	Conclusion

	Monads Categorically
	Monoidal Categories
	Monoid in a Monoidal Category
	Monads as Monoids
	Monads from Adjunctions

	Comonads
	Programming with Comonads
	The Product Comonad
	Dissecting the Composition
	The Stream Comonad
	Comonad Categorically
	The Store Comonad
	Challenges
	Acknowledgments

	F-Algebras
	Recursion
	Category of F-Algebras
	Natural Numbers

	Catamorphisms
	Folds
	Coalgebras
	Challenges

	Algebras for Monads
	T-algebras
	The Kleisli Category
	Coalgebras for Comonads
	Lenses
	Challenges
	Acknowledgment

	End and Coends
	Dinatural Transformations
	Ends
	Ends as Equalizers
	Natural Transformations as Ends
	Coends
	Ninja Yoneda Lemma
	Profunctor Composition

	Kan Extensions
	Right Kan Extension
	Kan Extension as Adjunction
	Left Kan Extension
	Kan Extensions as Ends
	Kan Extensions in Haskell
	Free Functor

	Enriched Categories
	Why Monoidal Category?
	Monoidal Category
	Enriched Category
	Preorders
	Metric Spaces
	Enriched Functors
	Self Enrichment
	Relation to 2-Categories

	Topoi
	Subobject Classifier
	Topos
	Topoi and Logic
	Challenges

	Lawvere Theories
	Universal Algebra
	Lavwere Theories
	Models of Lawvere Theories
	The Theory of Monoids
	Lawvere Theories and Monads
	Monads as Coends
	Lawvere Theory of Side Effects
	Challenges
	Acknowledgments
	Further Reading

	Monads, Monoids, and Categories
	Bicategories
	Monads
	Challenges
	Bibliography


