diff --git a/nbs/docs/getting-started/1_getting_started_short.ipynb b/nbs/docs/getting-started/1_getting_started_short.ipynb
index cddd83a5..645f4f07 100644
--- a/nbs/docs/getting-started/1_getting_started_short.ipynb
+++ b/nbs/docs/getting-started/1_getting_started_short.ipynb
@@ -167,7 +167,7 @@
"id": "8e7cea32-ade9-4b23-be93-9a4fbea7c6b2",
"metadata": {},
"source": [
- "You can test the validate of your token calling the `validate_token` method:"
+ "Check your token status with the `validate_token` method."
]
},
{
@@ -198,6 +198,14 @@
"timegpt.validate_token()"
]
},
+ {
+ "cell_type": "markdown",
+ "id": "a2597400",
+ "metadata": {},
+ "source": [
+ "To learn more about how to set up your token, please refer to the [Setting Up your Authentication Token](https://nixtlaverse.nixtla.io/nixtla/docs/getting-started/setting_up_your_authentication_token.html) tutorial. "
+ ]
+ },
{
"cell_type": "markdown",
"id": "8ca0d1f7-9730-4146-b6f3-596099ce6e3b",
diff --git a/nbs/docs/getting-started/2_setting_up_your_authentication_token.ipynb b/nbs/docs/getting-started/2_setting_up_your_authentication_token.ipynb
new file mode 100644
index 00000000..6b000e91
--- /dev/null
+++ b/nbs/docs/getting-started/2_setting_up_your_authentication_token.ipynb
@@ -0,0 +1,224 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Setting Up Your Authentication Token "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "A **token**, also known as an **API Key**, is a unique string of characters that serves as a key to authenticate your requests to `TimeGTP`. This tutorial will explain how to set up your token when using the Nixtla SDK. \n",
+ "\n",
+ "Upon [registration](https://dashboard.nixtla.io/), you will recibe an email asking you to confirm your signup. After confirming, you will receive access to your dashboard. There, under `API Keys`, you will find your token. To integrate your token into your development workflow with the Nixtla SDK, you have two methods. "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## 1. Direct copy and paste \n",
+ "\n",
+ "- **Step 1**: Copy the token found in the `API Keys` of your [dashboard]((https://dashboard.nixtla.io/)). \n",
+ "- **Step 2**: Instantiate the `TimeGPT` class by directly pasting your token into the code, as shown below:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from nixtlats import TimeGPT \n",
+ "timegpt = TimeGPT(token = 'your token here')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "This approach is straightforward and best for quick tests or scripts that won’t be shared."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## 2. Using an environment variable"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "- **Step 1:** Store your token in an environment variable named `TIMEGPT_TOKEN`. This can be done for a session or permanently, depending on your preference.\n",
+ "- **Step 2:** When you instantiate the `TimeGPT` class, the SDK will automatically look for the `TIMEGPT_TOKEN` environment variable and use it to authenticate your requests."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "True"
+ ]
+ },
+ "execution_count": null,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "#| hide\n",
+ "from dotenv import load_dotenv\n",
+ "load_dotenv()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from nixtlats import TimeGPT\n",
+ "timegpt = TimeGPT()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "::: {.callout-important}\n",
+ "The environment variable must be named exactly `TIMEGPT_TOKEN`, with all capital letters and no deviations in spelling, for the SDK to recognize it.\n",
+ "::: "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "There are several ways to set an environment variable. "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### a. From the Terminal\n",
+ "Use the `export` command to set `TIMEGPT_TOKEN`. \n",
+ "\n",
+ "``` bash\n",
+ "export TIMEGPT_TOKEN=your_token\n",
+ "```"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### b. Using a `.env` file\n",
+ "\n",
+ "For a more persistent solution that can be version-controlled if private, or for ease of use across different projects, place your token in a `.env` file.\n",
+ "\n",
+ "``` bash\n",
+ "# Inside a file named .env\n",
+ "TIMEGPT_TOKEN=your_token\n",
+ "```"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "**Within Python:** If using a `.env` file, you can load the environment variable within your Python script. Use the `dotenv` package to load the `.env` file and then instantiate the `TimeGPT` class."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from dotenv import load_dotenv\n",
+ "load_dotenv()\n",
+ "\n",
+ "from nixtlats import TimeGPT\n",
+ "timegpt = TimeGPT()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "This approach is more secure and suitable for applications that will be deployed or shared, as it keeps tokens out of the source code."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "::: {.callout-important}\n",
+ "Remember, your token is like a password - keep it secret, keep it safe!\n",
+ "::: "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Validate your token\n",
+ "\n",
+ "You can always find your token in the `API Keys` section of your dashboard. To check the status of your token, use the [`validate_token` method](https://nixtlaverse.nixtla.io/nixtla/timegpt.html#timegpt-validate-token) of the `TimeGPT` class. This method will return `True` if the token is valid and `False` otherwise. "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "INFO:nixtlats.timegpt:Happy Forecasting! :), If you have questions or need support, please email ops@nixtla.io\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ "True"
+ ]
+ },
+ "execution_count": null,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "timegpt.validate_token()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "You don't need to validate your token every time you use `TimeGPT`. This function is provided for your convenience to ensure its validity. For full access to `TimeGPT`'s functionalities, in addition to a valid token, you also need sufficient credits in your account. You can check your credits in the `Usage` section of your [dashboard]((https://dashboard.nixtla.io/)). "
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "python3",
+ "language": "python",
+ "name": "python3"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
diff --git a/nbs/docs/misc/0_faqs.ipynb b/nbs/docs/misc/0_faqs.ipynb
index 5a15097b..371166d4 100644
--- a/nbs/docs/misc/0_faqs.ipynb
+++ b/nbs/docs/misc/0_faqs.ipynb
@@ -2,509 +2,316 @@
"cells": [
{
"cell_type": "markdown",
- "id": "9e84913f-7149-47ba-b89d-463527e4e861",
"metadata": {},
"source": [
- "# FAQS"
+ "# FAQS\n",
+ "\n",
+ "Commonly asked questions about TimeGPT"
]
},
{
"cell_type": "markdown",
- "id": "8436f5ca-9fac-47c5-982c-3b565ea84de4",
"metadata": {},
"source": [
- "## Setting Up Your Authentication Token for Nixtla SDK\n",
- "\n",
- "### What is a token?\n",
- "\n",
- "A token is a unique string of characters that serves as a key to authenticate your requests when using the Nixtla SDK. It ensures that the person making the requests is allowed to do so.\n",
- "\n",
- "### How do I use my token with Nixtla SDK?\n",
- "\n",
- "Nixtla will provide you with a personal token upon registration or via your account settings. To integrate this token into your development workflow with the Nixtla SDK, you have two primary methods:\n",
- "\n",
- "1. **Direct Copy and Paste:**\n",
- " - **Step 1:** Copy the token provided to you by Nixtla.\n",
- " - **Step 2:** Instantiate the `TimeGPT` class by directly pasting your token into the code, as shown below:"
+ "## Table of contents\n",
+ "- [TimeGPT](#timegpt)\n",
+ "- [TimeGPT Token](#timegpt-token)\n",
+ "- [Features and Capabilities](#features-and-capabilities)\n",
+ "- [Fine-tuning](#finetuning)\n",
+ "- [Pricing and Billing](#pricing-and-billing)\n",
+ "- [Privacy and Security](#privacy-and-security)\n",
+ "- [Troubleshooting](#troubleshooting)\n",
+ "- [Additional Support](#additional-support)"
]
},
{
- "cell_type": "code",
- "execution_count": null,
- "id": "621dc459-7da5-4cfa-9e11-7d46c6f46fcf",
+ "cell_type": "markdown",
"metadata": {},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "/home/ubuntu/miniconda/envs/nixtlats/lib/python3.11/site-packages/statsforecast/core.py:25: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
- " from tqdm.autonotebook import tqdm\n"
- ]
- }
- ],
"source": [
- "from nixtlats import TimeGPT\n",
- "timegpt = TimeGPT(token='paste your token here')"
+ "## TimeGPT"
]
},
{
"cell_type": "markdown",
- "id": "0c6b4125-e547-42cd-8852-8708328005c4",
"metadata": {},
"source": [
- "This approach is straightforward and best for quick tests or scripts that won't be shared.\n",
+ "### What is TimeGPT?\n",
"\n",
- "2. **Using an Environment Variable:**\n",
- " \n",
- " - **Step 1:** Store your token in an environment variable named `TIMEGPT_TOKEN`. This can be done for a session or permanently, depending on your preference.\n",
+ "`TimeGPT` is the first foundation model for time series forecasting. It can produce accurate forecasts for new time series across a diverse array of domains using only historical values as inputs. The model \"reads\" time series data sequentially from left to right, similarly to how humans read a sentence. It looks at windows of past data, which we can think of as \"tokens\", and then predicts what comes next. This prediction is based on patterns the model identifies and that it extrapolates into the future. Beyond forecasting, `TimeGPT` supports other time series related tasks, such as what-if-scenarios, anomaly detection, and more. \n",
"\n",
- " - **Step 2:**\n",
- " When you instantiate the `TimeGPT` class, it will automatically look for the `TIMEGPT_TOKEN` environment variable."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "b4a2ff54-d128-4fb9-bcd0-cf0adef25e33",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "True"
- ]
- },
- "execution_count": null,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "#| hide\n",
- "from dotenv import load_dotenv\n",
+ "### Is TimeGPT based on a Large Language Model (LLM)? \n",
"\n",
- "load_dotenv()"
+ "No, `TimeGPT` is not based on any large language model. While it follows the same principle of training a large transformer model on a vast dataset, its architecture is specifically designed to handle time series data and it has been trained to minimize forecasting errors. \n",
+ "\n",
+ "### How do I get started with TimeGPT?\n",
+ "\n",
+ "To get started with `TimeGPT`, you need to register for an account [here](https://dashboard.nixtla.io/). You will receive an email asking you to confirm your signup. After confirming, you will be able to access your dashboard, which contains the details of your account.\n",
+ "\n",
+ "### How accessible is TimeGPT and what are the usage costs? \n",
+ "\n",
+ "For a more in-depth understanding of `TimeGPT`, please refer to the [research paper](https://arxiv.org/pdf/2310.03589.pdf). While certain aspects of the model's architecture remain confidential, registration for `TimeGPT` is open to all. New users receive $1,000 USD in free credits and subsequent usage fees are based on token consumption. For more details, please refer to the [Pricing and Billing](#pricing-and-billing) section\n",
+ "\n",
+ "### How can I use TimeGPT?\n",
+ "\n",
+ "- Through the [Python SDK](https://github.com/Nixtla/nixtla)\n",
+ "\n",
+ "- Via the `TimeGPT` API. For instructions on how to call the API using different languages, please refer to the [API documentation](https://docs.nixtla.io/reference/timegpt_timegpt_post)\n",
+ "\n",
+ "Both methods require you to have a [token](#timegpt-token), which is obtained upon registration and can be found in your dashboard under `API Keys`."
]
},
{
- "cell_type": "code",
- "execution_count": null,
- "id": "ed03880a-8a43-4297-9912-19a15535800a",
+ "cell_type": "markdown",
"metadata": {},
- "outputs": [],
"source": [
- "from nixtlats import TimeGPT\n",
- "timegpt = TimeGPT()"
+ "## TimeGPT Token"
]
},
{
"cell_type": "markdown",
- "id": "6b8b4f8f-a53b-48c3-b3bd-3b7191abbba8",
"metadata": {},
"source": [
- " There are several ways to set an environment variable:\n",
+ "### What is a token?\n",
+ "\n",
+ "A token, also known as an API Key, is a unique string of characters that serves as a key to authenticate your requests when using the Nixtla SDK. It ensures that the person making the requests is authorized to do so.\n",
+ "\n",
+ "### Where can I get a token? \n",
+ "\n",
+ "Upon registration, you will receive a token that can be found in your [dashboard](https://dashboard.nixtla.io/) under `API Keys`. Remember that your token is personal and should not be shared with anyone.\n",
"\n",
- " - **From the Terminal:** Use the export command to set the `TIMEGPT_TOKEN`."
+ "### How do I use my token?\n",
+ "\n",
+ "To integrate your token into your development workflow, please refer to the tutorial on [Setting Up Your Authentication Token](https://docs.nixtla.io/docs/setting_up_your_authentication_token). \n",
+ "\n",
+ "### How can I check the status of my token?\n",
+ "\n",
+ "If you want to check the status of your token, you can use the [`validate_token` method](https://nixtlaverse.nixtla.io/nixtla/timegpt.html#timegpt-validate-token) of the `TimeGPT` class. "
]
},
{
"cell_type": "markdown",
- "id": "6f0cc628-65a6-4a5d-80cc-7d79d848cdde",
"metadata": {},
"source": [
- "``` bash\n",
- "export TIMEGPT_TOKEN=your_token\n",
- "```"
+ "## Features and Capabilities"
]
},
{
"cell_type": "markdown",
- "id": "dcc7c1e3-d077-4c25-89dc-d863db5bface",
"metadata": {},
"source": [
- " - **Using a `.env` File:** For a more persistent solution that can be version-controlled if private, or for ease of use across different projects, place your token in a `.env` file."
+ "### Can TimeGPT handle multiple time series?\n",
+ "\n",
+ "Yes. For guidance on forecasting multiple time series at once, consult the [Multiple Series](https://nixtlaverse.nixtla.io/nixtla/docs/tutorials/multiple_series.html) tutorial. \n",
+ "\n",
+ "### Does TimeGPT support forecasting with exogenous variables?\n",
+ "\n",
+ "Yes. For instructions on how to incorporate exogenous variables to `TimeGPT`, see the [Exogenous Variables](https://nixtlaverse.nixtla.io/nixtla/docs/tutorials/exogenous_variables.html) tutorial. For incorporating calendar dates specifically, you may find the [Holidays and Special Dates](https://docs.nixtla.io/docs/holidays_and_special_dates) tutorial useful. \n",
+ "\n",
+ "### Can TimeGPT be used for anomaly detection? \n",
+ "\n",
+ "Yes. To learn how to use `TimeGPT` for anomaly detection, refer to the [Anomaly Detection](https://nixtlaverse.nixtla.io/nixtla/docs/tutorials/anomaly_detection.html) tutorial.\n",
+ "\n",
+ "### Does TimeGPT support cross-validation? \n",
+ "\n",
+ "Yes. To learn how to use `TimeGPT` for cross-validation, refer to the [Cross-Validation](https://nixtlaverse.nixtla.io/nixtla/docs/tutorials/cross_validation.html) tutorial.\n",
+ "\n",
+ "### Can TimeGPT be used to forecast historical data?\n",
+ "\n",
+ "Yes. To find out how to forecast historical data using `TimeGPT`, see the [Historical Forecast](https://nixtlaverse.nixtla.io/nixtla/docs/tutorials/historical_forecast.html) tutorial.\n",
+ "\n",
+ "### Can TimeGPT be used for uncertainty quantification?\n",
+ "\n",
+ "Yes. For more information, explore the [Prediction Intervals](https://docs.nixtla.io/docs/prediction_intervals) and [Quantile Forecasts](https://docs.nixtla.io/docs/quantile_forecasts) tutorials. \n",
+ "\n",
+ "### Can TimeGPT handle large datasets? \n",
+ "\n",
+ "Yes. When dealing with large datasets that contain hundreds of thousands or millions of time series, we recommend using a distributed backend. `TimeGPT` is compatible with several distributed computing frameworks, including [Spark](https://docs.nixtla.io/docs/how_to_on_spark_forecasting), Ray, and Fugue. Both the `TimeGPT` SDK and API don’t have a limit on the size of the dataset as long as a distributed backend is used.\n",
+ "\n",
+ "### Can TimeGPT be used with limited/short data?\n",
+ "\n",
+ "`TimeGPT` requires at least two seasonal periods of the given frequency to produce accurate forecasts. More may be needed for confidence intervals and for fine-tuning. While `TimeGPT` can work with just one observation, its accuracy will be limited. \n",
+ "\n",
+ "### What is the maximum forecast horizon allowed by TimeGPT?\n",
+ "\n",
+ "While `TimeGPT` does not have a maximum forecast horizon, its performance will decrease as the horizon increases. For details, refer to the tutorial on [Long Horizon in Time Series](https://docs.nixtla.io/docs/long_horizon_in_time_series).\n",
+ "\n",
+ "### Can TimeGPT handle missing values? \n",
+ "\n",
+ "`TimeGPT` cannot handle missing values or series with irregular timestamps. For more information, see the [Forecasting Time Series with Irregular Timestamps](https://nixtlaverse.nixtla.io/nixtla/docs/tutorials/irregular_timestamps.html) tutorial.\n",
+ "\n",
+ "### How can I plot the TimeGPT forecast? \n",
+ "\n",
+ "The `TimeGPT` class has a [`plot` method](https://nixtlaverse.nixtla.io/nixtla/timegpt.html#timegpt-plot) that can be used to visualize the forecast. This method only works in interactive environments such as Jupyter notebooks and it doesn't work on Python scripts. \n",
+ "\n",
+ "### Does TimeGPT support polars? \n",
+ "\n",
+ "As of now, `TimeGPT` supports only pandas DataFrames and does not offer support for polars. \n",
+ "\n",
+ "### Does TimeGPT produce stable predictions? \n",
+ "\n",
+ "`TimeGPT` is engineered for stability, ensuring consistent results for identical input data. This means that given the same dataset, the model will produce the same forecasts."
]
},
{
"cell_type": "markdown",
- "id": "19f83214-aef7-484a-9595-1b8999b8fd5c",
"metadata": {},
"source": [
- "``` bash\n",
- "# Inside a file named .env\n",
- "TIMEGPT_TOKEN=your_token\n",
- "```"
+ "## Fine-tuning"
]
},
{
"cell_type": "markdown",
- "id": "e9322665-aabf-427e-be55-95090a7ed293",
"metadata": {},
"source": [
- " - **Within Python:** If using a `.env` file, you can load the environment variable within your Python script. Use the `dotenv` package to load the `.env` file, then instantiate the `TimeGPT` class."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "1a1966ef-271a-450c-a935-e841a24af498",
- "metadata": {},
- "outputs": [],
- "source": [
- "from dotenv import load_dotenv\n",
+ "### What is fine-tuning?\n",
+ "\n",
+ "`TimeGPT` was trained on the largest publicly available time series dataset, covering a wide range of domains such as finance, retail, healthcare, and more. This comprehensive training enables `TimeGPT` to produce accurate forecasts for new time series without additional training, a capability known as zero-shot learning. \n",
+ "\n",
+ "While the zero-shot model provides a solid baseline, the performance of `TimeGPT` can often be improved through fine-tuning. During this process, the `TimeGPT` model undergoes additional training using your specific dataset, starting from the pre-trained paramaters. The updated model then produces the forecasts. You can control the number of training iterations and the loss function for fine-tuning with the `finetune_steps` and the `finetune_loss` parameters in the `forecast` method from the `TimeGPT` class, respectively. \n",
+ "\n",
+ "For a comprehensive guide on how to apply fine-tuning, please refer to the [fine-tuning](https://docs.nixtla.io/docs/finetuning) and the [fine-tuning with a specific loss function](https://docs.nixtla.io/docs/fine_tuning_with_a_specific_loss_function) tutorials. \n",
+ "\n",
+ "### Do I have to fine-tune every series? \n",
+ "\n",
+ "No, you do not need to fine-tune every series individually. When using the `finetune_steps` parameter, the model undergoes fine-tuning across all series in your dataset simultaneously. This method uses a cross-learning approach, allowing the model to learn from multiple series at once, which can improve individual forecasts.\n",
"\n",
- "load_dotenv()\n",
- "from nixtlats import TimeGPT\n",
- "timegpt = TimeGPT()"
+ "Keep in mind that selecting the right number of fine-tuning steps may require some trial and error. As the number of fine-tuning steps increases, the model becomes more specialized to your dataset, but will take longer to train and may be more prone to overfitting. \n",
+ "\n",
+ "### Can I save fine-tuned parameters? \n",
+ "\n",
+ "Currently, it is not possible to save the fine-tuned parameters for later use. This means you will need to perform fine-tuning each time you submit your data, whether using the Python SDK or the API."
]
},
{
"cell_type": "markdown",
- "id": "8586d2a7-df4f-4d68-87db-e26d44092132",
"metadata": {},
"source": [
- " This approach is more secure and suitable for applications that will be deployed or shared, as it keeps tokens out of the source code.\n",
- "\n",
- "Remember, your token is like a password - keep it secret, keep it safe!"
+ "## Pricing and Billing "
]
},
{
"cell_type": "markdown",
- "id": "abf7effe-3536-4cd2-8469-1feede45a52b",
"metadata": {},
"source": [
- "## Long Horizon in Time Series\n",
+ "### How does pricing work? \n",
+ "\n",
+ "`TimeGPT`'s cost is based on usage. Every call you make has a certain number of input, output, and finetune tokens associated with it. Price tiers are based on the number of tokens used, which you can find in your [dashboard](https://dashboard.nixtla.io/) under `Billing`. The cost per token decreases as you move up tiers, and you will pay the corresponding price for each segment of tokens used.\n",
"\n",
- "When managing long horizon forecasting tasks in time series analysis, understanding the data's frequency and seasonality is crucial. Seasonality refers to periodic fluctuations in time series data that occur at regular intervals, like daily, weekly, or annually. \n",
+ "### Are there free credits or discounts? \n",
"\n",
- "### What is Long Horizon? \n",
+ "Upon signing up, all users receive $1000 USD in free credits. Once these credits are exhausted, you will be asked to add a payment method to continue using `TimeGPT`. Costs are then calculated based on the number of tokens used and the applicable price tiers. \n",
"\n",
- "- **Definition**:\n",
- " A \"long horizon\" in time series forecasting refers to predictions that extend beyond the range of one or two seasonal\n",
- " cycles. The exact definition depends on the data's frequency and inherent seasonality. For example, with daily data that\n",
- " shows weekly seasonality (7 days), forecasting beyond two weeks would typically be considered a long horizon.\n",
+ "The pricing model is designed for production settings where pipelines have already been tested and established. However, if you need additional free credits for testing, or if you are using `TimeGPT` for academic purposes, please contact us at ops@nixtla.io to ask about eligibility for additional free credits or discounts. \n",
"\n",
- "- **Challenges**:\n",
- " Forecasting over a long horizon is challenging due to the increased uncertainty and the potential influence of many more\n",
- " unknown factors as the forecast period extends. Also, the further out the forecast, the more likely it is that the seasonal\n",
- " patterns may change or be influenced by other factors.\n",
+ "Free credits do not expire and can be used at any time.\n",
"\n",
- "### How do I use `TimeGPT` for Long Horizon tasks?\n",
+ "### How are tokens counted? \n",
"\n",
- "To effectively forecast long horizons, especially when you need to predict more than two seasonal cycles, it's recommended to use specialized models. The `TimeGPT` model in the Nixtla SDK is designed to handle these kinds of tasks:\n",
+ "One token corresponds to one row of your dataset. Please refer to [TimeGPT Quickstart](https://nixtlaverse.nixtla.io/nixtla/docs/getting-started/getting_started_short.html#usage) and our tutorials to understand the data format required for each use case. For high-frequency data, we recommend trimming the input whenever possible. For example, when working with minute-level data, consider trimming to the most recent hour to reduce costs. \n",
"\n",
- "- **Model Selection**:\n",
- " Choose the appropriate model variant designed for long horizons. For the Nixtla SDK, this is done by setting the `model`\n",
- " parameter to `'timegpt-1-long-horizon'`.\n",
+ "In the `Usage` section of your [dashboard](https://dashboard.nixtla.io/), you can find a detailed record of your token consumption history, helping you track and manage your usage effectively.\n",
"\n",
- "- **Forecasting**:\n",
- " Use the `forecast` method to predict the future values of your time series. You can specify the number of periods to\n",
- " forecast (`h`) corresponding to your long-horizon needs.\n",
+ "### How does billing work? \n",
"\n",
- "Here's how you can implement it:"
+ "Billing is done within the first five days of each month. We have partnered with Stripe to handle all payment processing. You can view your invoices and payment history in your [dashboard](https://dashboard.nixtla.io/) under `Billing`. "
]
},
{
- "cell_type": "code",
- "execution_count": null,
- "id": "6db4ba4f-cee6-4742-a3c4-2be89780610a",
+ "cell_type": "markdown",
"metadata": {},
- "outputs": [],
"source": [
- "import pandas as pd"
+ "::: {.callout-warning}\n",
+ "Don't confuse the input, output, and finetune tokens with the TimeGPT token or API Key. The input, output, and finetune tokens are used to calculate your usage costs, while the TimeGPT token is used to authenticate your requests.\n",
+ "::: "
]
},
{
- "cell_type": "code",
- "execution_count": null,
- "id": "64a13d22-797c-4268-8e15-241f162f9a96",
+ "cell_type": "markdown",
"metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "
\n",
- "\n",
- "
\n",
- " \n",
- "
\n",
- "
\n",
- "
timestamp
\n",
- "
value
\n",
- "
\n",
- " \n",
- " \n",
- "
\n",
- "
0
\n",
- "
1949-01-01
\n",
- "
112
\n",
- "
\n",
- "
\n",
- "
1
\n",
- "
1949-02-01
\n",
- "
118
\n",
- "
\n",
- "
\n",
- "
2
\n",
- "
1949-03-01
\n",
- "
132
\n",
- "
\n",
- "
\n",
- "
3
\n",
- "
1949-04-01
\n",
- "
129
\n",
- "
\n",
- "
\n",
- "
4
\n",
- "
1949-05-01
\n",
- "
121
\n",
- "
\n",
- " \n",
- "
\n",
- "
"
- ],
- "text/plain": [
- " timestamp value\n",
- "0 1949-01-01 112\n",
- "1 1949-02-01 118\n",
- "2 1949-03-01 132\n",
- "3 1949-04-01 129\n",
- "4 1949-05-01 121"
- ]
- },
- "execution_count": null,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
"source": [
- "df = pd.read_csv('https://raw.githubusercontent.com/Nixtla/transfer-learning-time-series/main/datasets/air_passengers.csv')\n",
- "df.head()"
+ "## Privacy and Security "
]
},
{
- "cell_type": "code",
- "execution_count": null,
- "id": "81094b7d-8241-4006-a424-7adf9ab90dfa",
+ "cell_type": "markdown",
"metadata": {},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "INFO:nixtlats.timegpt:Validating inputs...\n",
- "INFO:nixtlats.timegpt:Preprocessing dataframes...\n",
- "INFO:nixtlats.timegpt:Inferred freq: MS\n",
- "WARNING:nixtlats.timegpt:The specified horizon \"h\" exceeds the model horizon. This may lead to less accurate forecasts. Please consider using a smaller horizon.\n",
- "INFO:nixtlats.timegpt:Calling Forecast Endpoint...\n"
- ]
- }
- ],
"source": [
- "from nixtlats import TimeGPT\n",
- "timegpt = TimeGPT()\n",
+ "### How do you ensure the privacy and security of my data?\n",
"\n",
- "# df is your time series dataframe\n",
- "# h is the forecast horizon\n",
- "# 'timegpt-1-long-horizon' is the model variant for long horizon forecasting\n",
- "fcst_df = timegpt.forecast(df=df, h=36, model='timegpt-1-long-horizon', time_col='timestamp', target_col='value')"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "e7683ffa-7526-4827-8040-d0e97b4470c7",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAACHgAAAFjCAYAAABMwS57AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD8tElEQVR4nOzdd3hc1bX38e90adS73OVu3Cu2AWPcsU0nEMB0brghQCDcNO7lJRAIJNybBEgoIQFMKCGB2DQbcAeDe2/gbsu2rN410tTz/jGWwLhJ8oxmJP0+zyMefOacvdfM0dZIc9ZZy2QYhoGIiIiIiIiIiIiIiIiIiIiIRC1zpAMQERERERERERERERERERERkdNTgoeIiIiIiIiIiIiIiIiIiIhIlFOCh4iIiIiIiIiIiIiIiIiIiEiUU4KHiIiIiIiIiIiIiIiIiIiISJRTgoeIiIiIiIiIiIiIiIiIiIhIlFOCh4iIiIiIiIiIiIiIiIiIiEiUU4KHiIiIiIiIiIiIiIiIiIiISJRTgoeIiIiIiIiIiIiIiIiIiIhIlFOCh4iIiIiIiIiIiIiIiIiIiEiUU4KHiIiIiIiItBmzZ8/GZDJx4MCBSIfSKAcOHMBkMjF79uwz7nvrrbeSk5MT9phERERERERERCQ6KcFDREREREREpB3Jy8vjkUceYdOmTWGbo7y8nDvvvJOMjAzi4uKYMGECGzZsCNt8IiIiIiIiIiLtgRI8REREREREpM246aabqK2tpVu3bpEOpVG6detGbW0tN910U4vNmZeXx6OPPhq2BI9AIMDMmTN56623uOeee3jqqacoLCzkoosuYvfu3WGZU0RERERERESkPbBGOgARERERERGRULFYLFgslkiH0Wgmk4mYmJhIhxFS7777LitWrOCdd97he9/7HgDXXnstffr04Ve/+hVvvfVWhCMUEREREREREWmdVMFDREREREREIubWW28lJyfnhO2PPPIIJpOp4d8mk4l77rmH9957j4EDB+JwOBgwYACffPLJccfNnj0bk8nEgQMHGrYZhsHjjz9O586dcTqdTJgwge3bt5OTk8Ott956yjlPNybAxx9/zLhx44iLiyMhIYGZM2eyffv2Jj3/AwcOYDKZmD179nHb659nTEwMAwcOZO7cuU0a91SWLVvGqFGjALjtttswmUzHzb97926uvvpqsrOziYmJoXPnzlx33XVUVFQ0eo53332XrKwsrrrqqoZtGRkZXHvttbz//vu43e6QPBcRERERERERkfZGFTxERERERESkVfjiiy+YM2cOP/rRj0hISODZZ5/l6quvJjc3l7S0tFMe9/DDD/P4448zY8YMZsyYwYYNG5g6dSoej6fZsbz++uvccsstTJs2jd/97ne4XC5eeOEFLrjgAjZu3HjSpJXGWrBgAVdffTX9+/fnySefpKSkhNtuu43OnTufsG9ZWRl+v/+MYzqdTpxOJ+eccw6//vWvefjhh7nzzjsZN24cAOeddx4ej4dp06bhdru59957yc7O5siRI3z00UeUl5eTlJTUqPg3btzI8OHDMZuPv6fk3HPP5aWXXmLXrl0MGjSoUWOJiIiIiIiIiMg3lOAhIiIiIiIircJXX33Fjh076NmzJwATJkxgyJAh/OMf/+Cee+456TFFRUU89dRTzJw5kw8//LChQsf//M//8MQTTzQrjurqan784x/zH//xH7z00ksN22+55Rb69u3LE088cdz2pvrFL35BVlYWX3zxRUNSxfjx45k6dSrdunU7bt9hw4Zx8ODBM475q1/9ikceeYSsrCymT5/Oww8/zNixY7nxxhsb9tm0aRP79+8/rrUKBBNkmuLo0aNceOGFJ2zv0KEDAHl5eUrwEBERERERERFpBiV4iIiIiIiISKswefLkhuQOgMGDB5OYmMi+fftOecyiRYvweDzce++9x7Vfuf/++5ud4LFw4ULKy8u5/vrrKS4ubthusVgYPXo0S5cubda4EEyO2LRpE7/85S+Pq5gxZcoU+vfvT01NzXH7v/nmm9TW1p5x3B49epxxn/r5Pv30U2bMmIHT6Wxi9EG1tbU4HI4TtsfExDQ8LiIiIiIiIiIiTacEDxEREREREWkVunbtesK2lJQUysrKTnlMfXWL3r17H7c9IyODlJSUZsWxe/duACZOnHjSxxMTE5s1Lpw6XoC+ffuyYcOG47adf/75zZ7ru7p3784DDzzAH/7wB958803GjRvHZZddxo033tjo9iwAsbGxuN3uE7bX1dU1PC4iIiIiIiIiIk2nBA8RERERERGJmG9X1fg2v99/wjaLxXLSfQ3DaNFYAoEAAK+//jrZ2dkn7G+1ttyf2kVFRSd9rb4rPj6e+Pj4M+73+9//nltvvZX333+fBQsW8OMf/5gnn3ySVatW0blz50bF1KFDB44ePXrC9vptHTt2bNQ4IiIiIiIiIiJyPCV4iIiIiIiISMSkpKRQXl5+wvb6ShZnq1u3bkCw6sa325QUFRWdUPmjvqJHeXk5ycnJp4ylvk1MZmYmkydPDkmcJ4v3u3bu3HnCtlGjRjXqtfrVr37FI488Apw6kaXeoEGDGDRoEA899BArVqzg/PPP58UXX+Txxx9vxDOAoUOHsnz5cgKBAGazuWH76tWrcTqd9OnTp1HjiIiIiIiIiIjI8ZTgISIiIiIiIhHTs2dPKioq2LJlC4MHDwaClR7mzp0bkvEnT56MzWbjT3/6E1OnTm1Ibnj66adPGgvA559/zmWXXQZATU0Nr7322nH7TZs2jcTERJ544gkmTJiAzWY77vGioiIyMjKaFW+HDh0YOnQor732Gr/85S8bWqMsXLiQHTt2NCSA1HvzzTepra0947jfTm6Ji4sDOCGxprKyEqfTeVwFkkGDBmE2m0/acuVUvve97/Huu+8yZ84cvve97wFQXFzMO++8w6WXXorD4Wj0WCIiIiIiIiIi8g0leIiIiIiIiEjEXHfddfziF7/gyiuv5Mc//jEul4sXXniBPn36sGHDhrMePyMjg5/+9Kc8+eSTXHLJJcyYMYONGzfy8ccfk56efty+U6dOpWvXrtxxxx387Gc/w2Kx8Morr5CRkUFubm7DfomJibzwwgvcdNNNDB8+nOuuu65hn3nz5nH++efz5z//udkxP/nkk8ycOZMLLriA22+/ndLSUv70pz8xYMAAqqurj9v3/PPPb/L4PXv2JDk5mRdffJGEhATi4uIYPXo0mzdv5p577uGaa66hT58++Hw+Xn/9dSwWC1dffXWjx//e977HmDFjuO2229ixYwfp6ek8//zz+P1+Hn300SbHKyIiIiIiIiIiQUrwEBERERERkYhJS0tj7ty5PPDAA/z85z+ne/fuPPnkk+zevTskCR4Ajz/+ODExMbz44ossXbqU0aNHs2DBAmbOnHncfjabjblz5/KjH/2I//f//h/Z2dncf//9pKSkcNtttx237w033EDHjh357W9/y//+7//idrvp1KkT48aNO2Hfprr44ot55513eOihh3jwwQfp2bMnr776Ku+//z7Lli07q7Eh+Dxfe+01HnzwQX74wx/i8/l49dVXGT9+PNOmTePDDz/kyJEjOJ1OhgwZwscff8yYMWMaPb7FYmH+/Pn87Gc/49lnn6W2tpZRo0Yxe/Zs+vbte9bxi4iIiIiIiIi0VybDMIxIByEiIiIiIiLS0nJycrjooouYPXt2pEMRERERERERERE5I3OkAxARERERERERERERERERERGR01OLFhEREREREZEQ83g8lJaWnnafpKQkYmNjWyiis1dRUUFtbe1p98nOzm6haERERERERERE2h8leIiIiIiIiIiE2IoVK5gwYcJp93n11Ve59dZbWyagELjvvvt47bXXTruPusCKiIiIiIiIiISPydCnLyIiIiIiIiIhVVZWxvr160+7z4ABA+jQoUMLRXT2duzYQV5e3mn3mTx5cgtFIyIiIiIiIiLS/ijBQ0RERERERERERERERERERCTKmSMdgIiIiIiIiIiIiIiIiIiIiIicnjXSAUSDQCBAXl4eCQkJmEymSIcjIiIiIiIiIiIiIiIiIhIyhmFQVVVFx44dMZtVA0CktVKCB5CXl0eXLl0iHYaIiIiIiIiIiIiIiIiISNgcOnSIzp07RzoMEWkmJXgACQkJQPAHWmJiYoSjEYkOXq+XBQsWMHXqVGw2W6TDEWmXtA5FooPWokh00FoUiQ5aiyKRp3UoEh20FkWig9Zi41VWVtKlS5eG66Ii0jopwQMa2rIkJiYqwUPkGK/Xi9PpJDExUb8UiUSI1qFIdNBaFIkOWosi0UFrUSTytA5FooPWokh00FpsuvrroiLSOqnBkoiIiIiIiIiIiIiIiIiIiEiUU4KHiIiIiIiIiIiIiIiIiIiISJRTgoeIiIiIiIiIiIiIiIiIiIhIlFOCh4iIiIiIiIiIiIiIiIiIiEiUU4KHiIiIiIiIiIiIiIiIiIiISJRTgoeIiIiIiIiIiIiIiIiIiIhIlFOCh4iIiIiIiIiIiIiIiIiIiEiUU4KHiIiIiIiIiIiIiIiIiIiISJRTgoeIiIiIiIiIiIiIiIhIO1RX4KJiWwmGYUQ6FBERaQRrpAMQERERERERERERERERkZZVtbuc4i+PggG2ZAfOzvGRDklERM5AFTxERERERERERERERERE2gnDMCjfUkzxF8HkDgB3cV1kgxIRkUaJaIJHTk4OJpPphK+7774bgLq6Ou6++27S0tKIj4/n6quvpqCg4LgxcnNzmTlzJk6nk8zMTH72s5/h8/ki8XREREREREREREREREREopZhGJSuLqBsfREAtiQ7AJ5SJXiIiLQGEU3wWLt2LUePHm34WrhwIQDXXHMNAD/5yU/48MMPeeedd/jss8/Iy8vjqquuajje7/czc+ZMPB4PK1as4LXXXmP27Nk8/PDDEXk+IiIiIiIiIiIiIiIiItHI8Aco+iyPyq/KAEgdlUnamGxACR4iIq2FNZKTZ2RkHPfv3/72t/Ts2ZPx48dTUVHByy+/zFtvvcXEiRMBePXVVznnnHNYtWoVY8aMYcGCBezYsYNFixaRlZXF0KFDeeyxx/jFL37BI488gt1uj8TTEhEREREREREREREREYkaAY+fgiWHqTvqAjNkXNCR+J5J+OuCVfF9VV4CHj9muyXCkYqIyOlEtILHt3k8Ht544w1uv/12TCYT69evx+v1Mnny5IZ9+vXrR9euXVm5ciUAK1euZNCgQWRlZTXsM23aNCorK9m+fXuLPwcRERERERERERERERGRaOKv9XH044PUHXVhsprImtyF+J5JAFhirFjigveDe8rckQxTREQaIaIVPL7tvffeo7y8nFtvvRWA/Px87HY7ycnJx+2XlZVFfn5+wz7fTu6of7z+sVNxu9243d+8SVVWVgLg9Xrxer1n+1RE2oT6taA1IRI5Woci0UFrUSQ6aC2KRAetRZHI0zoUiQ5ai9Ja+Kq8FC3Ow1/txeywkD6xA7Y0x3Hfu7ZkO/4aH7VFNVhSbRGMtum0FhtPr5FI2xA1CR4vv/wy06dPp2PHjmGf68knn+TRRx89YfuCBQtwOp1hn1+kNVm4cGGkQxBp97QORaKD1qJIdNBaFIkOWosikad1KBIdtBYlmsX6HORUdcJmWHGbPeyPOYJn9Vcn7JflSiOLNPZt2cvhvQURiPTsaS2emcvlinQIIhICUZHgcfDgQRYtWsScOXMatmVnZ+PxeCgvLz+uikdBQQHZ2dkN+6xZs+a4sQoKChoeO5UHH3yQBx54oOHflZWVdOnShalTp5KYmBiKpyTS6nm9XhYuXMiUKVOw2VpXxq5IW6F1KBIdtBZFooPWokh00FoUiTytQ5HooLUo0c5b5qbw08MYhoEtxU6HiTn0jO1/0n1rc6sp+TyfrLhMBs8Y0cKRnh2txcar72ggIq1bVCR4vPrqq2RmZjJz5syGbSNGjMBms7F48WKuvvpqAHbu3Elubi5jx44FYOzYsfzmN7+hsLCQzMxMIJihl5iYSP/+J3+TAnA4HDgcjhO222w2/fAX+Q6tC5HI0zoUiQ5aiyLRQWtRJDpoLYpEntahSHTQWpRoVb6rCMNn4MiKJXtyF8x2y6l3zowDwFvuwWqxYjKbWijK0NFaPDO9PiJtQ8QTPAKBAK+++iq33HILVus34SQlJXHHHXfwwAMPkJqaSmJiIvfeey9jx45lzJgxAEydOpX+/ftz00038dRTT5Gfn89DDz3E3XfffdIEDhEREREREREREREREZG2zPAbuA5WAZAyLOP0yR2ANd6GyWbG8Abwlruxp8a0RJgiItIMEU/wWLRoEbm5udx+++0nPPbHP/4Rs9nM1VdfjdvtZtq0aTz//PMNj1ssFj766CPuuusuxo4dS1xcHLfccgu//vWvW/IpiIiIiIiIiIiIiIiIiESF2rwaAp4AllgLMVnOM+5vMpmwpzpwF9TiLlWCh4hINIt4gsfUqVMxDOOkj8XExPDcc8/x3HPPnfL4bt26MX/+/HCFJyIiIiIiIiIiIiIiItJq1OyvBCAuJ7HR7VYcqTG4C2rxlNYBSWGMTkREzoY50gGIiIiIiIiIiIiIiIiIyNkL+ALU5Abbs8R1T2z0cfa0YNWOYIKHiIhEKyV4iIiIiIiIiIiIiIiIiLQBtUeqMbwBLE4rjszYRh9X35bFU+o+ZeV9ERGJPCV4iIiIiIiIiIiIiIiISJMZAUPJAFGmZv831TtMpsa1ZwGwJ9vBBAG3H3+NL1zhiYjIWbJGOgARERERERERERERERFpHfx1Ply51dQcrKQ2z4UjI4YO07s1KZlAwiPgDeA6FEzwiG9CexYAk8WMPdmBp8yNp7QOa7wtHCGKiMhZUoKHiIiIiIiIiIiIiIiInJK32ovrYBWug1XUFbrgW0U73AW1+F0+rHFKCIg016FqDJ+BNcGGPT2mycfbU2PwlLlxl9bh7JoQhghFRORsKcFDREREREREREREREREGhiGgbfCQ82BKly5VXhK6o573J4Wg7NrAjV7K/BWenAX1SrBIwrU7K8Amt6epZ49zQF7wVPqDnVoIiISIkrwEBERERERERERERERkQZl64uo2FryzQYTxGQ6cXZLwNk1HluCHQBfjTeY4FFcR1xO01qCSGgFPH5qj9QATW/PUs+eGqz64SmtO8OeIiISKUrwEBEREREREREREREREQAMf4CqnWUAxHaKIy4nEWfXeCwxJ15ScqTHUL0L3MW1LR2mfEdNbhWG38CWZMeW4mjWGPUJHr4qLwGPH7PdEsoQRUQkBJTgISIiIiIiIiIiIiIiIgDU5tUQ8ASwOK1kTely2lYfjvRYANzFdRiG0ay2IBIaNfsrgea3ZwGwOCxY4qz4a3x4St3EZDtDGaKIiISAOdIBiIiIiIiIiIiIiIhI++Kr8VL5dRk+lzfSoch31ByoAiCuW8IZEwXsKQ5MFhOGN4C30tMS4clJ+Ot8De1Z4prZnqWe41gVD7fatIiIRCVV8BARERERERERERERkRbhr/VRvqWEqp1lGH6DuvxEMi/qFOmw5BjDb+DKPZbgkXPmRAGT2YQ9LQZ3YS3uojrsSc1rDSJnx5VbBQbYUx3Yk8/uHNjTYnAdqsajBA8RkaikBA8REREREREREREREQkrv9tPxbYSKneUYviMhu11Ba4IRiXfVXv0WHuWWCuOrNhGHeNIDyZ4eIproVdSmCOUk6nefywp5yyrd0AwSQTAU6IEDxGRaKQEDxERERERERERERERCYuAN0DljlIqtpUQ8AQAsKfHkDw4ncKlh/G7fPhqvFjjbBGOVABqDlQC4GxEe5Z6jvRYoAx3cW0YI5NT8df6qDsamvYsAPZjLVo85R4Mv4HJ0rjvAxERaRlK8BARERERERERERERkZAK+AJU7SynfEsxgTo/ALZkBynDM3B2jcdkMmFLduAtc+MurlOCRxQwAgaug/WVIBIafVwwwQM8pW4lBERAzYHKYHuW9BhsCfazHs8ab8NkM2N4A3gr3A0JHyIiEh2U4CEiIiIiIiIiIiIiIiFTc6CSktUF+F0+AKwJNlKGZRDXPRGT+ZuL/470mGMJHrXEdWt8QoGER21efXsWCzGZzkYfZ020YbabCXgCeMrqGhI+pGVU7w9WXYkPQfUOAJPJhCM1hroCF+7SOiV4iIhEGXOkAxARERERERERERERkbbB5/JSuOwIfpcPi9NK2nnZdL6qJ/E9k45L7gBwZAQTAdzFdZEIVb7jm/YsiSecq9MxmUzY03UuI8FX48VdEGyNE5cTmgQPAHuaAwhWZRERkeiiCh4iIiIiIiIiIiIiIhISrtzqYLuItBg6zOiG2Xrq+0wbWnsU12IYBiaTWntEihEwgucOiMtpejUVR3oMdXk1uItrgZQQRyenUp+U48iKxRofujZH9VU7PCVK2BERiTaq4CEiIiIiIiIiIiIiIiFRc7AKgLjuiadN7gCwpzgwWUwEPAG8lZ6WCE9OofZoDQG3H3OMhZisxrdnqVefrOMuUkJAS6qpb88Swuod8K0Ej9I6DMMI6dgiInJ2lOAhIiIiIiIiIiIiIiJnze/2U3e0BoC4rmeuAmEym7CnBS8kKzEgsmoOHEvM6ZbQpPYs9RwZwfPorXAT8AZCGpucnLfKE1w3JnCGOsEj2QFmCHgC+Gt8IR1bRETOjhI8RERERERERERERETkrLkOVYEBthQHtiR7o475dpsWiQwjYOCqr7zSzEQBq9OGxWkFA9xq69Ei6qt3xGQ7sTqtIR3bZDEFkzwAd6nOp4hINFGCh4iIiIiIiIiIiIiInLWGJIFuZ67eUa++8oNbCR4RU5fvCrZncViIyW56e5Z6jvRjbT10LltEfYJHXPfQVu+o9+02LSIiEj2U4CEiIiIiIiIiIiIiImcl4A1QeyTYnsXZlASPYxU83CVuDL8Rltjk9BoSBZrZnqWeI+PYuSxWQkC4eSvceErdYGpaQlVTNCR4lLjDMr6IiDSPEjxEREREREREREREROSs1B6pxvAbWONt2FMcjT7OmmDD7LBAwMBTpsSAlmYEDGrqK6+cZSWIhmSdIlXwCLfqY0k5sR3jsMSEtj1LPXtqcB2rgoeISHRRgoeIiIiIiIiIiIiIRI1AIBDpEKQZ6pMEnN0SMJkaXwXCZDI1tPZQYkDLC1V7FgB7WvA8+qq9+Ot8oQhPTqHmQGiSck6nvoKHr9qL3+0P2zwiItI0SvAQERERERERERERkaiwd28+06Y/xk9//hqFhRWRDkcayfAbuA5VA81rF9FQ+UGtPVpczYFgJQjnWbZnAbA4LNgS7YDOZTh5qzx4y4LtWZxdw9OeBYLn0xpvA8BTpjYtIiLRQgkeIiIiIiIiIiIiIhIVFi7aTE2NmxUrdjLrpqf56KN1GIYR6bDkDGqP1mB4A1hiLTgyY5t8vCPjWAWPYlXwaEnHtWfJCU2igD1d5zLcXLnBcxaT7cTisIR1LrVpERGJPkrwEBEREREREREREZGosGbtHgBSU+OpqXHzxG/n8F8/VTWPaOeqb8/StWntWerVV/DwlnsIeNQKoqXUFbgI1AXbs8R2iAvJmI6MY9VYipQQEC6ug8FqOeGs3lGvvk2Lp0TnU0QkWijBQ0REREREREREREQirrLSxc6deQD87aUfcfePLsZut7Jq9S5V84hiRsCg5lhFgea0ZwGwxFobWkG4dSG5xTS0Z+kaf9btWeo5vlXBQ+s19Px1PuoKXUALJ3iogoeISNRQgoeIiIiIiIiIiIiIRNy69XsxDIOcnAyys5OZdcOFzH71HgYM6HJcNY+CgvJIhyrf4i6qDVaBsJuJOYsqEA2JAUVq7dESjIDRUHklLicxZOPaU2PABIE6P/4aX8jGlSDXoWowgq1TbMeSosKpoUVLuRvDr4QdEZFoEPEEjyNHjnDjjTeSlpZGbGwsgwYNYt26dQ2PG4bBww8/TIcOHYiNjWXy5Mns3r37uDFKS0uZNWsWiYmJJCcnc8cdd1BdXd3ST0VEREREREREREREmmndur0AjBrZq2FbTrdMXnz+P4+r5nHjzc/woap5RI2a+vYsXRLOqgqE/VibFnexKgW0hLpCF/7aYGJObMfQtGcBMFvN2FOCSQHuYiXrhJrrWLUcZzOr5TSVNd6G2W6GAHgq3C0yp4iInF5EEzzKyso4//zzsdlsfPzxx+zYsYPf//73pKSkNOzz1FNP8eyzz/Liiy+yevVq4uLimDZtGnV13/ySN2vWLLZv387ChQv56KOP+Pzzz7nzzjsj8ZREREREREREREREpBnWrtsDHJ/gAWCxmE+o5vHkb+fw05+9htvtjUSocoxhfFMFwtkt/qzGcmR809pDwq9m/7Hz1vXsEnNOxlGfrFOkZJ1QCvgC1B6pASCuBdqzAJhMpm/atKh9kohIVIhogsfvfvc7unTpwquvvsq5555L9+7dmTp1Kj179gSCvxw+/fTTPPTQQ1x++eUMHjyYv//97+Tl5fHee+8B8NVXX/HJJ5/wt7/9jdGjR3PBBRfwpz/9ibfffpu8vLwIPjsRERERERERERERaYy8vFKOHCnFYjEzbHiPk+5TX83jnh9Nx263snLVLuZ/vKGFI5Vv85S68VV7MVlMxHY6ywSPtFgwgb/Gh8+lxJ1wCrZnqQRC256lniOjvhqLknVCqfZIDYbfwBpvw3asSkpLaEjwKFUFDxGRaBDRBI8PPviAkSNHcs0115CZmcmwYcP461//2vD4/v37yc/PZ/LkyQ3bkpKSGD16NCtXrgRg5cqVJCcnM3LkyIZ9Jk+ejNlsZvXq1S33ZERERERERERERESkWdYea88yoH8X4pynvnBpsZi54YZx3HTjeAA2bNzXIvHJydUnCcR2jsdsPbvLDWabGVtSfWsPVQoIp7rC2rC0Z6nnSD9WjaWkDiOgVkqh0tCepWsCJlNoq66cjj01uC49pVqXIiLRwBrJyfft28cLL7zAAw88wH//93+zdu1afvzjH2O327nlllvIz88HICsr67jjsrKyGh7Lz88nMzPzuMetViupqakN+3yX2+3G7f4m07CyMvhLqNfrxetVZrAI0LAWtCZEIkfrUCQ6aC2KRAetRZHooLUoEnltdR2uXr0LgOHDuzfquQ0a1AWAjRv34/F4WvRip3yj+kDwgrOjkzMk35O2NDvecje1BTXYO8Sc9Xjh1JrXYvW+cgBiOsfhC/ggEOIJ4syYLCYMb4DaEhe2ZHuIJ2h/jIDRkODh6BTbot935qTgpUR3aV1U/rxtzWuxpek1EmkbIprgEQgEGDlyJE888QQAw4YNY9u2bbz44ovccsstYZv3ySef5NFHHz1h+4IFC3A6nWGbV6Q1WrhwYaRDEGn3tA5FooPWokh00FoUiQ5aiyKR15bWoWEYrFq9EwCvp5D58+ef8RivN4DFYqK0tJo335pLakp0JwO0RQ6/jb4V3TEwWL7jSwJfn32WQGpdEp3JIu/rw3yZ1zoqdLe6tWjAOeU9sGFle+HXVM1fH5Zpepo6E4eTdUvXUOaoDMsc7UmcN5aeni74TH4Wr1sKLZhjYTJgAL0xewIs+mghXouv5SZvgla3FiPA5XJFOgQRCYGIJnh06NCB/v37H7ftnHPO4d///jcA2dnZABQUFNChQ4eGfQoKChg6dGjDPoWFhceN4fP5KC0tbTj+ux588EEeeOCBhn9XVlbSpUsXpk6dSmJi6PvNibRGXq+XhQsXMmXKFGw2W6TDEWmXtA5FooPWokh00FoUiQ5aiyKR1xbX4a5dedTVrcHpdHD77d/DarU06rhFSwrZsuUgycndmDFjRJijlO+q3FZG5aYSYjo4uXjSxSEZ01NSR+HHh0k0JzB9+vSoqxTwba11LboLailaeASTzcwFl16IyRKe17h8XRHVX1fQr1NfUs7NCMsc7Un965nYPZkZ581o8fkL5uXiLfNwwdDziO0S3+Lzn05rXYuRUN/RQERat4gmeJx//vns3LnzuG27du2iW7duAHTv3p3s7GwWL17ckNBRWVnJ6tWrueuuuwAYO3Ys5eXlrF+/nhEjgr/EL1myhEAgwOjRo086r8PhwOE4sY+jzWbTD3+R79C6EIk8rUOR6KC1KBIdtBZFooPWokjktaV1uGHjAQCGD+tObGzjK3EMG9qdLVsOsmVrLldeMSZM0cmpuA/XABCfkxSy70VrpjXY2sMTwFQLtqTo/x5vbWuxIrcYgLicBOwx4WudEpsVR/XXFXhL3a3q9YlGhmFQdzhYeSGU660pHGmxeMs8+Ct82HpE5/lsbWsxEvT6iLQN5khO/pOf/IRVq1bxxBNPsGfPHt566y1eeukl7r77bgBMJhP3338/jz/+OB988AFbt27l5ptvpmPHjlxxxRVAsOLHxRdfzA9+8APWrFnDl19+yT333MN1111Hx44dI/jsRERERERERERERORM1q3bC8DIkb2adNywYd0B2LRxP4ZhhDwuOTVfjRd3cR0Azq4JIRvXZDZhTw0m+biLa0M2rgQZAYOaA1UAxHcPbzVzR3osAJ5SN4b/7Nv3tGeeMje+ai8mi4nYTnERiaF+XXpK6yIyv4iIfCOiCR6jRo1i7ty5/OMf/2DgwIE89thjPP3008yaNathn5///Ofce++93HnnnYwaNYrq6mo++eQTYmK+yeR+88036devH5MmTWLGjBlccMEFvPTSS5F4SiIiIiIiIiIiIiLSSG63l81bDgAwamTPJh07aGA3LBYzBYUV5OeXhz44OSXXwWCSgCMzFqsztIXCHRnHEjyKlOARarVHagi4/ZhjLMR0CG+igDXBhtlhgYCBp9Qd1rnauvr1FtspDrM1Mpf17GnBqvju4jol1ImIRFhEW7QAXHLJJVxyySWnfNxkMvHrX/+aX//616fcJzU1lbfeeisc4YmIiIiIiIiIiIhImGzZchCPx0d6eiI5OZlNOjY21k6/fp3Yvv0QGzftp0OHlDBFKd9Vc+yCc1y30FXvqBes/FDWUCFEQqd6fwUQrN5hMpvCOpfJZMKRHkPtkRrcxbU4MmLDOl9b5soNrrdQVstpKkd6LCaLCb/Lh7fM3VDRQ0REWl5EK3iIiIiIiIiIiIiISPu1dt0eIFi9w2Rq+gXnoUOCbVo2btwf0rjk1Px1PuoKXAA4w5bgEWwFYQRUKSBUAr4AroPVAMSFuT1LvfpzqWSd5vNWe4MVUEzg7BIfsTjMVjOxHYNVX2pyqyMWh4iIKMFDRERERERERERERCJk7dpjCR6jejXr+GHDjiV4bFKCR0txHaoGA+ypDmwJ9pCPb020YbabMfwGnlIlBoRK7aFqDF8Aa7wNR2bLVNNwpB9rt1OsdjvNVV+9IybLiSUmskX5nV2DCSauQ1URjUNEpL1TgoeIiIiIiIiIiIiItLjy8hp27T4KwMgRPZs1xpDB3TCbTeTllVJYWBHK8OQU6tuzhKN6B9S39lDlh1Cr3lcJBKt3NKdaTnPYj51Hb7mHgNffInO2Na6DkW/PUi+2czAGT3EdPpc3wtGIiLRfSvAQERERERERERERkRa3YcM+DMOgR48s0tOb1zIiLi6GPr07ArBJVTzCLuD1U5dXA0BcmBI8ABwZqvwQSn63n9ojwbYa8T1apj0LgNVpxRIXrDqhZJ2m87v937RD6hq59iz1rE5rw9p0HVKbFhGRSFGCh4iIiIiIiIiIiIi0uDX17VlGNq89S70hQ3MAtWlpCa5D1Rh+A2uiHVuyI2zzNFTwKFJSQCi4cqsw/Aa2ZDu2lPCdt5NRNZbma2iHlBKedkjN4ewSTOxy5SrBQ0QkUpTgISIiIiIiIiIiIiItbt26YILHyJHNa89Sb9jQ7oASPFpCQ5uPnISwtvn4prWHW609QuCb9ixJLdaepZ4jXdVYmsuVG952SM1RX0mk7mgNAW8gwtGIiLRPSvAQERERERERERERkRZ1+EgJeUfLsFjMDQkazTV0SA4mk4nc3GJKS6tCFKF8l7/OR+3hY20+eiaFda7jWnuUqPLD2fDX+qg7Gmyr05LtWerVV/DwqIJHkwR8gYa2Os6u0ZPgYUt2YI23YfgNao+1axIRkZalBA8RERERERERERERaVHrjrVnGTiwK07n2bWMSEx00rNHFgCbNh0429DkFGr2VwbbRaTFYA9je5Z6atMSGg3nLT0GW2LLt/mor+Dhq/bir/W1+PytVV1eDYbPwBJnxZ7asm11TsdkMjVU8XAdUkKdiEgkKMFDRERERERERERERFrU2nV7ATh3VK+QjDd0mNq0hFv13mCbj/ieLVMFwpFxLMFDrT3OSvX+Y+ctAtU7AMx2C7akYGKJzmXj1RxrzxLXNbztkJrD2SVYUcR1qBojYEQ4GhGR9kcJHiIiIiIiIiIiItIueL0+Pv54Az/7+d/5fPmOSIfTbvn9AdatDyZ4jBwZogSPITmAEjzCxVvlwV1UCyaI695CCR7HKj+otUfzeau9uAuDSRUtdd5ORtVYmsYIGLgORV97lnox2U7MdjOBOn/w54KIiLQoa6QDEBEREREREREREQmnmpo63n9/Lf9850uKioJ3sx/JK+HCcf0jHFn7tGt3HlVVtcTFOTinX6eQjDl0aLCCx759BVRUuEhKcoZkXAmq3lsBQGyHOKxOW4vM+d3WHpZYXc5oqpp9wfMWk+1ssfN2MjHZsVTvrcCVW0XK8IyIxdFauItqCdT5MdvNxGRH388yk9lEbOd4avZV4jpUTUxW9MUoItKWqYKHiIiIiIiIiIiItElFRRU89/zHXHHV7/jz8x9TVFRJWlqw3P2BA0WUllZFOsR2ae3aPQAMH94Dq9USkjFTU+LJyQleON60+UBIxpQgwzCoOdaeJa6F2rMAmG0WbMlq7XE2ao61Z4mLUHuWes5uiWAGT5kbT5mqeJxJzcHge5OzSwImc3S1Z6nn7BIPgCtX76MiIi1NCR4iIiIiIiIiIiLSpuzbV8DjT7zL1df8H2++tZyaGjfdumXw37+8in+/8zN69coGYONGtfOIhLXrggkeo0LUnqXesGNVPDapTUtIeYrr8FZ6MFlMxHVr2XYRau3RfJ5yN55Sd7CtTguft++yOCw4OwUTAqr3VUY0lmhnGEZD0oSza3yEozm12E7xYAJvhQdvhSfS4YiItCuqaSYiIiIiIiIiIiJtwu7dR3nxpQWsXLmzYduQITnMun4c553XF7M5eL/b8GE92L37KBs27mfSpMGRCrddqqvzsGXLQQBGjQptgseQId2Z+94aNirBI6Sqj7X5cHZLwGwLTcWVxnJkxFK9p0IVPJqh5lgiRWyneCwxkb8UFNczCdehamr2VZIyPAOTKTorU0Sat8yNr8qLyWIKJlFEKYvDQky2k7qjLlyHqkhKSot0SCIi7Ubk39VFREREREREREREzpLH4+O+n7xMebkLk8nE+PH9mXX9hQwY0OWEfYcN684///UlGzfti0Ck7dvmLQfxev1kZibRtUt6SMceNixYwWP37qNUV9cRHx8T0vHbIyNgNFRciI9Amw9HevAcuovrMAxDSQGNZBhGQ2JOJM7byTi7xGOymvFVe3EX1hKT5Yx0SFGpbGMRALGd4jDborsIv7NrwrEEj2qSBirBQ0SkpUT3u4OIiIiIiIiIiIhII2zYsI/ychdpaQm8/dZPeOLxWSdN7gAYOiQHk8nEgQNFlJZWtXCk7du6Y+1ZRo7sGfKL9RnpiXTunIZhGGzeciCkY7dXtXk1BOr8mB2WiFQTsKfEYLKYCLj9+Kq8LT5/a+UpqWuoAuHsGtn2LPXMVnNDqxi1aTm5moOVuHKrwQwpwzMjHc4ZObsEfybUFbjwu/0RjkZEpP1QgoeIiIiIiIiIiIi0esu/+AqAcRecQ5czVIZITHTSq1c2ABs3qp1HS1qzNpjgce7I0LZnqTdsaLCKxya1aQmJb1eBMJlbvnqGyWLCnhas4lGbV9Pi87dW9QkUzi7xUVUFIq5nsJpIzf5KjIAR4WiiS8Djp2RVAQBJA9OwpzgiHNGZ2RLs2FIcYEDt4epIhyMi0m5Ezzu7iIiIiIiIiIiISDMYhsEXX36T4NEYw4f1AGCDEjxaTFlZNbt3HwWCFTzCYeiQHECJO6EQ8AZwHQxWuInrkRSxOOKOVaCo2a+qD41hGEbDaxXJ83YysR3iMMdYCLj91B5Rws63la4vwu/yYU2wkTwktO2rwqm+iocrV9WwRERaihI8REREREREREREpFXbuTOPoqJKYmPtDB/eo1HHDBsWrPSwcdO+cIYm37J+Q/C17tUzm9TU8LSNGHrsvO7clYfL5Q7LHO2FK7cKw2dgTbDhyIiJWBzO7sGqD3X5LnwutWk5k7oCF36XD7PdjLNzXKTDOY7JbCL+2Pmsrw4jUFdYS9XXZQCkn9cBs7X1XLqrT8ByHanB8Ksqi4hIS2g97xIiIiIiIiIiIiIiJ1FfvWP0ub1xOGyNOmbokBxMJhMHDhRRUqI7j1vCqtW7ABgZpvYsAB2yU8jOTsbvD7B1W27Y5mkPqvcea8/SMwmTqeXbs9SzxdtwZMQCUHNAa/VMavYea8/SLQGTJfouAcX1DFYVceVWEfAGIhxN5BkBg+IVwcpG8T2TiO0YXUk5Z2JPj8ESa8HwBqjLV1UWEZGWEH3v7iIiIiIiIiIiIiJNsHx509qzACQmOunVKxuAjZvUziPcams9LFu6DYBx4xp/nppj2NBj1VnUpqXZ/LU+avOCF2vjo6DNR9yxqg81B9Sm5XQMv0HNsbY60XDeTsaRHoM1wYbhM9TWA6jYVoK3zI3ZYSH13MxIh9NkJpMJZ5djVTwOVUc4GhGR9kEJHiIiIiIiIiIiItJqHc0vY/eeo5jNJsaO7dukY4cPC7Zz2bhRbVrCbdmybbhqPXTqlMrQITlhnWvosQSPTUrcabbq/ZVgBC/G25LskQ6HuJzgBWR3QS2+GrVpOZXavGoCbj+WWAsx2c5Ih3NSJpOpIfmkel/7TtjxVnko31QMQOqoTCwx1ghH1DzOrvEA1ORWYRhq0yIiEm5K8BAREREREREREZFW68svvwZg0KBuJCc3rbT9sGHBRIANqvQQdh/NWw/AzBkjwt7uo76Cx46vDuN2KxmgOWqOtWepb6cRadY4G46s+jYt7Tsp4FQMw6BieykAcTmJmMyRa6tzJnE9ghVZao9U46/zRTiayDAMg5IV+Rh+g5gOTuJ7Rcdaa46YDnGYLCb8NT48Ze5IhyMi0uY1Kh3w2WefbfLAt912GwkJCU0+TkRERERERERERKSxln9xrD3L+U1v+zF0SA4mk4mDB4soKakiLU2fZ4bD4SMlbNy0H5PJxIzpw8M+X6dOqaSnJ1JcXMm27bmMGN4z7HO2Jd4KN+7iOjBB/LHWKNEgPicRd0EtNfurSBqQFulwok755mLqjrowWUwk9EuJdDinZU92YE+LwVNSR82BKhKjPN5wqNlXSW1eDSaLifSxHcKe+BZOZquZ2E5xuHKrceVW4UiNiXRIIiJtWqMSPO6//346d+6MxWJp1KCHDh3ikksuUYKHiIiIiIiIiIiIhE11dR0bj1XfGDeu6QkeiYlOevXKZvfuo2zctJ/JkwaHOkQB5s/fAMC5o3qRmRn+u9RNJhPDhuawcNEWNm7crwSPJqpvmxHbMQ5LbPS0jHDmJFCyugB3US3eai+2eFukQ4oatXk1lG8MtvpIG5uNPdkR4YjOLL5HIqUldVTvrWh3CR5+t5+SNQUAJA1Oj4o2SGfL2SUhmOBxqJqUoRmRDkdEpE1r9G9n69atIzMzs1H7KrFDREREREREREREwm3V6l34fH66dcugS5f0Zo0xfFiPYILHxn1K8AgDvz/A/I+DCR6XzBzRYvMOG9qdhYu2sGmT2u80hWEYVB9rzxIfJe1Z6lmdNmKyndTlu6jZX0nyIFXxAPC5vBR+dgSA+N5JJPROjmxAjRTXPZHStYW4C2vxVnmwJbT+JIfGKl1bQKDOjy3Z3ma+j51d4gHwFNfhq/FijVMClohIuJgbs9OvfvUr4uPjGz3of//3f5OamtrsoERERERERERERETO5Itj7VkuaEZ7lnrDhnUHYMNGJQKEw9p1eygsrCAxMZZx4/q32LxDhwbP67bth/B4fC02b2vnLqrDV+XFZDXh7Bp9N3LGHWsZU3OgMsKRRAcjYFC47EgwWSDFQdqY7EiH1GjWuGDCDkDN/vZzPmvzXVTvDiZRpZ/XAZOl9bZm+TZLrBVHRiwArkPVEY5GRKRta3SCh9PpbPSgDz74IMnJyc2NSUREREREREREROS0fD4/K1fuBODCZrRnqTd0SA4mk4mDB4soKakKVXhyzLz56wGYOmUIdnvLtfvo1i2DlJQ4PB4fX311uMXmbe3qq3c4uyVgtjXq8kGLiuuWAKZglQBvpSfS4URc2YYi3AW1mGxmsiZ0wmyNvnN2OvVVYqr3to8ED8MfoGTFUQAS+iQTk9X4626tgbNr8EZx1yG9l4qIhFOz3u19Ph+LFi3iL3/5C1VVwR/UeXl5VFcrK09ERERERERERETCb9PmA1RV15GcHEf//l2aPU5iopNevYJ3vW9UO4+Qqqx08fnnOwCYOXNki85tMpkYOiRYxUPntXGMgNFQSSHa2rPUs8RaiekQB6iKh+tQFRVbSwDIOL8DtiRHhCNqOme3BDCb8Ja78ZTWRTqcsDIMg9L1RXgrPFhiLaSMzIx0SCFXX/Wn7qiLgDcQ4WhERNquJid4HDx4kEGDBnH55Zdz9913U1RUBMDvfvc7fvrTnzZprEceeQSTyXTcV79+/Roer6ur4+677yYtLY34+HiuvvpqCgoKjhsjNzeXmTNn4nQ6yczM5Gc/+xk+n0ruiYiIiIiIiIiItGX17VnOP68fFsvZ3bU+fFgPADZu3HfWcck3FizcjNfrp3fvDvTt07HF569vv6MEj8apPVJNwO3HEmsh9lgSRTSK7x68iNye2np8l7fKQ9HneQAknpPS0LqmtbE4LDg7B6s+VO9ru+fTMAzKNhRRub0UgLTR2VgclghHFXq2JDvWRDuG36B6T3mkwxERabOa/JfPfffdx8iRIykrKyM2NrZh+5VXXsnixYubHMCAAQM4evRow9cXX3zR8NhPfvITPvzwQ9555x0+++wz8vLyuOqqqxoe9/v9zJw5E4/Hw4oVK3jttdeYPXs2Dz/8cJPjEBEREREREREROZNAIEBVVW2kw2j3DMNg+bEEj3Fn0Z6lXn0iwIaNSgQIpXnzgu1ZZs4YEZH5hw7JAWDLloNUVLgiEkNrUt8mI657IiazKcLRnJqz67E2LaVuvBXuSIfT4gx/gMJlRwh4AjjSY0gdlRXpkM5KfM9gckr1vgoMw4hwNKFXn9xRsSVYbSV1dFarTcg5E5PJRFL/FADKt5ZgBNre+RQRiQZNTvBYvnw5Dz30EHa7/bjtOTk5HDlypMkBWK1WsrOzG77S09MBqKio4OWXX+YPf/gDEydOZMSIEbz66qusWLGCVatWAbBgwQJ27NjBG2+8wdChQ5k+fTqPPfYYzz33HB6P+u+JiIiIiIiIiEjobNiwj1tv+zMXz3icNWt3Rzqcdm3fvgKOHi3DbrcyamSvsx5v6JDumEwmDh4soqSkKgQRyq7deezclYfNZmHa1KERiaFnz2x69+6A2+3l7X9+ceYD2rHafBc1B4+1Z+kRne1Z6llirMR2DFYYqd7f/tZryZpCPMV1mO1mMiZ0xmSJ3mScxojtHI/JZsZf48Nd0LYSKE+W3JHUPzXCUYVXfO9kLLEW/DU+qvdWRDocEZE2qckJHoFAAL/ff8L2w4cPk5CQ0OQAdu/eTceOHenRowezZs0iNzcXgPXr1+P1epk8eXLDvv369aNr166sXLkSgJUrVzJo0CCysr7JUJ02bRqVlZVs3769ybGIiIiIiIiIiIh819H8Mh76f29xz4//xp69+RiGweLFWyMdVrtWX71j1MhexMbaz7D3mSUmxtK7dwcANqhNS0jUV+8Yd8E5JCU5IxKDyWTi9lsnAvDOuyuprGxbF49DxVvloXDJYQgEq3fY02MiHdIZ1VdAaG9tWqr3VVL1dRkAGRd2xBZvi3BEZ89sNRPXLXhtqXpf20kIaI/JHRA8n4kD0gCoUBUPEZGwsDb1gKlTp/L000/z0ksvAcFfkqurq/nVr37FjBkzmjTW6NGjmT17Nn379uXo0aM8+uijjBs3jm3btpGfn4/dbic5Ofm4Y7KyssjPzwcgPz//uOSO+sfrHzsVt9uN2/1N6bbKyuAvgV6vF6/X26TnINJW1a8FrQmRyNE6FIkOWosi0UFrUSQ6tLe1WFfn4e1/fsmbb32Bx+PDbDYxdEgOGzbuZ9Pm/e3mdYhGny/fAcB55/UJ2XkYMrgbu3blsX79Xi4a3z8kY4ZDa1iHHo+PBQs2AzBt2tCIxjpmTC969Mhi374C/vH259x+28SIxRKNAh4/hQuPEHD7saU6SBqdjs/ni3RYZ2TvEANm8Ja7cRXVYEs++0Svpmrpteit8FD8ZR4ACQNSsGXHRPXPgaaI6RZH9Z4KavZXkjg8rdVXJTEMg8pNpVRtDybjJI1Mx9k7oc2crzOJ7RFP+ZZivBUeKveV4+wWH9b5WsP7YrTQayTSNjQ5weP3v/8906ZNo3///tTV1XHDDTewe/du0tPT+cc//tGksaZPn97w/4MHD2b06NF069aNf/3rX8TGxjY1tEZ78sknefTRR0/YvmDBApzOyGSTi0SrhQsXRjoEkXZP61AkOmgtikQHrUWR6NDW16JhGOzcVcrSZblUVgbbAHfpksDkid1ITHSwYeN+Dh0q4Z133icurvXfPd3aVFV7+PrrYKtoV80h5s8vCMm4fn/wQtwXX27jnH6WkIwZTtG8Dr/eWUJFpYv4eBvFRbuYPz+yLY0GDUxg374C3v7nFyQnVRMT0+SPxdsmA3KqO5HojcNj8rIjsBffgtZTnSjH0pHEQDxbFm2kwFkSsThaYi1aAxZ6VHYmJuCg2upiS94uOBr2aVuOAeeYemDzWPniw8+pstdEOqLmMyC7Np3MumC1jiPOQrbs2wXtrDhUljmNLNI4suIAu7flQgvk7ETz+2K0cLlckQ5BREKgyb/Jdu7cmc2bN/P222+zZcsWqqurueOOO5g1a9ZZJ2UkJyfTp08f9uzZw5QpU/B4PJSXlx9XxaOgoIDs7GwAsrOzWbNmzXFjFBQUNDx2Kg8++CAPPPBAw78rKyvp0qULU6dOJTEx8ayeg0hb4fV6WbhwIVOmTMFm04dVIpGgdSgSHbQWRaKD1qJIdGgPa3Hv3nye/dPHbNp8AICsrCTu+uE0LhrfH5MpeHXio3mH2buvgMzM3oyP4koPbdUHH64DNtL/nM5ce+0VIRu3qqqWue/9jtLSOkaPHkdaWtPbUbeE1rAOl33+BgBXXD6GSy6ZfIa9w+/iiwNs2fIC+w8UUlmVyFVXXRTpkKJC+boiqssqMFlMdJ7anR5p50Q6pCap2VdJ2YpCOtmzGT793Iaf0S2lpdait9JD8eI8/AEfFqeF3hf3p59zcNjmi5TydUVUf11B/7S+pI079fWdaBas3FFC1fZyAJJHptO5X6/IBhUhfref/LkHiPXFMHHYeGI6xoVtrtbwvhgt6jsaiEjr1qxUZavVyo033hjqWKiurmbv3r3cdNNNjBgxApvNxuLFi7n66qsB2LlzJ7m5uYwdOxaAsWPH8pvf/IbCwkIyMzOBYIZeYmIi/fuf+o9rh8OBw+E4YbvNZtMPf5Hv0LoQiTytQ5HooLUoEh20FkWiQ1tci35/gGf/NI9/z1lFIGBgt1u56cbxzLphHDExx5f+Hzq0O3v3FbBt+yEmTx4SoYjbrxUrdwFw4YX9Q/p9mJpqo3fvDuzalcfWbYeYEuXnNlrXYVFRBWvX7gHg0ktGRU2Mt902kYd/9TbvvruS668bR3x8TKRDiqjKr8uo/roCgIwLOxKXHZ0JTaeT2D2Z8tVF+Cq9UB3AlhqZcxrOtegurqVoQbCFjjXRTvbULtgSWr4dTUtI7J1C9dcV1B2uwew3YWlllXYMw6BsfVFDckfq6CyS+qdGNqgIstlsJPRNoXJ7KVXby0noltwic0bLe0600usj0jY0+R3y73//+2kfv/nmmxs91k9/+lMuvfRSunXrRl5eHr/61a+wWCxcf/31JCUlcccdd/DAAw+QmppKYmIi9957L2PHjmXMmDEATJ06lf79+3PTTTfx1FNPkZ+fz0MPPcTdd9990gQOERERERERERGRk/nk04288+5KACZOGMjdd0+nQ3bKSfcdMiSHf89ZxeZjVT6k5bhcbtav3wvABeeHvtrAsGHd2bUrj40b90d9gke0+viTjQQCBkOG5NClS3qkw2kw4aKB5ORkcOBAEe+8u4Lbbp0Y6ZAipjavhpJV+QCkDM8gLqd1VrU22y3EdorDlVtN9f5KUiOU4BEutXk1FCw+jOELYE+LIXtKFyyxrSvpoSnsaTHY02PwFNdR+XU5KUOj5+fHmdQnd1RsDbYKShudRWI7Tu6olzQwlcqvynAX1FKX7yIm2xnpkERE2oQm/zZw3333Hfdvr9eLy+XCbrfjdDqblOBx+PBhrr/+ekpKSsjIyOCCCy5g1apVZGRkAPDHP/4Rs9nM1VdfjdvtZtq0aTz//PMNx1ssFj766CPuuusuxo4dS1xcHLfccgu//vWvm/q0RERERERERESkHfv3nFUA/Mcdk7j9tkmn3XfI4G4A7N5zlJqaOuLi2tZFxWi2du0ePB4fHTum0r17ZsjHHz6sB//855ds2Lgv5GO3B4Zh8NG89QBcMnNEhKM5nsVi5tabJ/DIr//F2//8kmuvPZ84Z/u7SdBb4aZw6WEwIK5HIkmD0yId0lmJ656IK7eamv2VpAzPaPE2LeFSvb+Sos+PQABiOjjJmtgZs90S6bDCymQykdQ/laLP86j6uozkQWmYLK3jfFZ9VabkjpOwOm0k9E6iamc55VuKyc7uGumQRETahCYneJSVlZ2wbffu3dx111387Gc/a9JYb7/99mkfj4mJ4bnnnuO555475T7dunVj/vz5TZpXRERERERERESk3o6vDvP110ew2SxcecXoM+6fkZFExw4p5B0tY+u2XMaM7tMCUQrA8i++AmDcuHPCciF3yOAcTCYTubnFFBdXkp7eOisbRMqWLQc5fLiE2Fg7Ey4aGOlwTjBp0mBemb2E3Nxi/v3vldx800WRDqlF+d1+ChYdJuAJ4MiIJf38Dq0+IcLZJQGTxYSvyounpA5HemykQzprlV+XUbIyWGHFmZNA5oUdMVnMEY6qZcTlJFK6tgB/rY+aA5XE90yKdEhnVFdYS8naAgBSRmYqueM7kgalUbWrnNojNbiLa5u0RgNeP74aH/bk9peMJyJyOiH5raB379789re/PaG6h4iIiIiIiIiISLSbMzdYvWPSxMGkpMQ36pghQ3IA1KalBfn9Ab5c8TUA48LQngUgMTGW3r07ALBx0/6wzNGW1VfvmDRxEM4orI5hsZi59ZYJAPzj7S9wudwRjqjlGAGDwqWH8VZ6sMRZyZrUGbO19ScNmG1mYjsHf27XHKiKcDRnxzAMyjYWNSR3JPRNJnN8p3aT3AFgsphI6Bdsj1axoxTDMCIc0en563wULjsMgWAyTtJAJXd8ly3BTlz3YLJk+bEqJ43hr/Vx9ONcjn58EG+lJ1zhiYi0SiH7zcBqtZKXlxeq4URERERERERERMKuosLFokVbALjqyjNX76jXkOCx5UAYopKT2bYtl4oKFwkJsQw+1iYnHIYN6w7Axo1K8GgKl8vNkqVbAbhk5sgIR3NqkycNpnPnNCoqXMyZuzrS4bQIwzAoWZ1P3VEXJquJ7MldsMQ2ubh31Io/dvG4Zn9l1CcEnIoRMChZVUD5pmIAkoemkzY2G5O5dVdYaY7EvimYLCY8xXW4C2sjHc4pGQGDos/z8Nf4sCXayWgDFXHCJflYKyjXgSo85WdOrPNWecibdwBPSR0YEPD4wx2iiEir0uTf4j744IPj/m0YBkePHuXPf/4z559/fsgCExERERERERERCbd589bj8fjo06cjAwZ0afRx9QkeO3YcxuPxYbe3nYul0aq+Pct55/XFarWEbZ7hw3rwz39+yYaN+8I2R1u0ZOk2ams9dO2SzqBBXSMdzilZrRZuvWUCj//mXd76x3KuvmoMsbH2SIcVNgFfgJJV+VTvrgAgY3wn7KkxEY4qtGK7xGOymvBVe/EU1+HIaF1tWgx/gKLP8xoqkKSNySLxnPZbCcISayWuRyLVuyuo3FFKTJYz0iGdVPnmYmqP1GCymMic0AmzPXzvS62dPSUGZ9d4XLnVVGwtIWNcx1Pu6y6to2BBLv5aP9Z4G9lTu2BLir6KUCIikdTkvzyvuOKK4/5tMpnIyMhg4sSJ/P73vw9VXCIiIiIiIiIiImEVCASY817wDv6rrxrTpDtvu3ZJJyUljrKyGnbuPMKgQeGrKCFBXxxL8AhXe5Z6QwbnYDKZyM0tpri4kvT0xLDO11bMm7cOgBkzRkT9XexTpwzhlVeXkJdXytz3VnPD9eMiHVJYeKu9FC45HLwL3gRpo7OI65oQ6bBCzmw14+ySQM3+Sqr3VrS6BI/iFfnB5A4zZIzrRHwP/cxJ7J9K9e4Kag5W4av2Yo23RTqk47iOVDdUW0k7r0ObS5oKh+TB6bhyq6neW0Hy0HRsCScm1tXm11Cw6DCGN4A9xUHW1C5YndF17kVEokGTW7QEAoHjvvx+P/n5+bz11lt06NAhHDGKiIiIiIiIiIiE3Jo1e8jLKyU+PoYpkwc36ViTycSQwTkAbNp8IPTByXEOHCgk91AxVquF0aN7h3WuxMRYevcOfs65cZPatJxJZWUtr85ewuYtBzGbTUyfPizSIZ2R1Wrh1psvAuDNtz6nrs4T2YDCoPZINXkf7MdTUofZYSF7atc2XRUivncSAFW7K/C7W087h+r9lVTvqQATZE3qouSOYxypMcRkO8GAyq/LIh3OcXzVXoo+ywMgoW8yCb2SIhxR6+DIiCWmYxwYULGt9ITHaw5UUrDgEIY3QEyWk+zp3ZTcISJyCk1O8BAREREREREREWkL/j1nFQAzZ4wgJqbpLRrq27Rs3nIghFHJybz775UAjD63N3Fx4b9Tetiw7gBs2KA2LadSXFzJc89/zFXfe4q//m0RABdPG0ZGK6l4cvHFw+jQIYWyshree39NpMMJGcMwKN9STP7CQwTcfuzpMXS6rDuxHeMiHVpYxXaMw5bswPAFqNpVHulwGsVX46VkxVEAkgen4ewcH+GIokti/2BCUtXOMgLeQJOPd5fUUb23gsqvy6jYVkLZpiJK1xZSvDKfouV5FC49TP7CXPIX5lL5dVmjEoMMv0HhssPBtZUWQ+q5WU2Oqz1LHpwGQPXucnwuX8P2yq/LKFx2BMNv4OyaQNbULlgcankjInIqjWrR8sADDzR6wD/84Q/NDkZEREREREREpDUyDIPcQ8F2DuVlNZSX11BWXkNZw/9XU14e/P/OndP50zN34HDorsRIOnq0jBUrdwJw5RWjmzVGfQWPrVsOEggEMJt1L1U4lJZV89G89QBcf90FLTLn8GE9+Oc/v2TjRlXw+K4jR0p5863Pmf/xBjye4AW6nj2zuWnWhUycOCjC0TWe1Wrh5psu4ndPzeXNt5Zz5RWjW/3P5YDHT9EXR3EdrAKCVS3SxmRjtrb9n00mk4mkgakUf3GUyh2lJPVPxWSJ3lZBhmFQtDyPgCeAPT2G5KEZkQ4p6ji7xGONt+Gr9lK9t4LEfimNPrZ6bwVFn+c1ev/awzWUrinAmZNAQu9kYrKdJ201Vbq2AHdRHWa7mcwJndrF2gqlmGwnjoxY3EW1VG4vJWVkBuWbihva3ST0SSZtbDYmc/SuXRGRaNCoBI+NGzc2arBo760oIiIiIiIiIhIOr85ewt9eXtyofcvLc1m6bBsXT4v+NgZt2Xvvr8EwDEaN6kXXrunNGqNXr2ycsXaqquvYt6+AXr3Uvjgc/v3vlXg8Ps45p3NDZY1wGzI4B5PJRO6hYoqKK1tNVYpw2rPnKK+/8RmLl2wlEDAAGDSoKzffeBHnnde3VX42PGP6MGa/tpSCgnLe/2At115zXqRDajZPuZvCJYfxVnjADGljsknok9wqz0tzxfdIpGx9EX6Xj+r9lVHdOqNyeyl1R12YrCYyL+yoC9onYTKbSOyfSumaAip3lJLQt3Hfz+6SOoq/DFZGcaTHYHFaMVnNmK1mTDYzZqsJk9Uc3GYz46/zU72nAm+5m5q9ldTsrcSaYCOhdzLxvZKwxgUTv6r3VVD5VbBdTMaFHbElNL3yV3tnMplIHpJGwaLDx6qm+KjeXQFA8pB0koelt6ufWSIizdWoBI+lS5eGOw4RERERERERkVapqKiC19/4HIAundNITUsgJTmOlJQ4kpODXykp8SQnx/HFF1/xr3dWMG/+eiV4RJDb7eXDj9YCcNWVY5o9jtVqYcDArqxdu4fNmw8owSMMXC437/472Epn1g3jWuzCT2JiLL17d2DXrjxWr9rFJZeMbJF5o1F+fjm//8MHfLni64ZtY0b34aabxjN0SE6rvhhns1m55abxPPV/7/PGm59z+WWjWmUVj5oDlRQtP4rhC2BxWsmc2JmYjNhIh9XiTBYzif1TKFtfROW2EuJ7Jkbl96e7tI7S9UUApJ6bhS3JEeGIoldC7yTKNhThrfBQm1eDs9Pp29j463wULjmM4TeI7RxH1uQujfoeSBqYiru4jupd5VTvr8RX5aVsQxFlG4uI7RiHs2sCpWsLgvsOTsPZJSEkz689iu0cjz3FgafM3ZDckTYmi8RzUiMcmYhI69GoBA8RERERERERETm5l19ZgtvtZdCgrrz4/H+e9kJCp06pvPPuStav30deXikdO+rD7EhYumwb5eUuMjOTOP+8vmc11tAhOaxdu4dNWw5w9dVjQxSh1Pvwo3VUVdXSuXMa4y8c0KJzT5wwiF278njv/TXtNsHDMAweefSfbNl6EJPJxMQJA7nxxvH07dMx0qGFzIwZI5j992UUFlaw7LPtTJs6NNIhNUn55mLKNgSTBWKynWRe1AlLbPv92D+hbwrlm4vxlLmpy6sh9gwJAS0t4AtQ9FkeBAycXeJJ6JMc6ZCimtluIaF3EpVflVG5vfS0CR5GwKDoszx81V6sCTYyLuzU6AQfk8lETEYsMRmxpJ6bRc3BSqp3VVBX4KL2SA21R2oAiOngJGWY2umcDZPJRNLgdIo+OwLmYAWbuO6qkiUi0hTN+k1v3bp1/Otf/yI3NxePx3PcY3PmzAlJYCIiIiIiIiIi0e7AgUI+mrcOgLvvmn7GCwkdslMYOaIna9ftYf7HG/iPOya3RJjyHXPmrgbg8stGYbVazmqsIYNzANi8+SCGYUTl3eKtlc/n5+1/fgnADdddgMVibtH5L7lkBC+/sogdXx3mq68Pc06/zi06fzRYvGQrW7YeJCbGxt9e+hE9emRFOqSQs9utzJg+nNmvLWXx4i2tKsHDXVrXkNyROCCV1JGZ7b7Vh8VhIaF3MpVflVGxrbRZCR41B6soWXkUI3BsgwlMJo79p/7fJgwMetR1pi6vBmvXpEb9/C9bX4i33I05xkL6+R30ntEIif1TqfyqjNojNXgq3NhPUfGkbGMRtXk1mKwmsiZ2xuJo3vu72WYmoVcyCb2S8VZ4qNpTTvWeCsxWM5njO7X7NRYKcd0TMJk7YU2040iNiXQ4IiKtTpP/Knr77bc577zz+Oqrr5g7dy5er5ft27ezZMkSkpKit6ediIiIiIiIiEiovfiXBQQCBuPGncPgwd0adczMmSMAmDd/A4FA4Ax7S6jt3JXHtm25WK0WLrt01FmPN2BAF6xWC8XFleTllYUgQqm3eMlWCgrKSUmJY/r04S0+f2pKPBMmDAJgzpzVLT5/pLndXp57/hMAbrpxfJtM7qg3aVLwPK9es5uqqtoIR9N4ZesKAYjLSSDt3CxdeD4mcUAqmKA2rwZPaV2TjvW5fBR/eRR/rZ+A+9hXnR9/rR+/yxf8qvHhq/bir/YR73NSvOQoR+cfpPZozWnHdh2ppnJH8H0i44KO7brSSlPYEu04uwQTdepfv++qOVBJxZYSANLP74A9REkDtiQ7qSMy6fr93nS6qofOWYiYTCbichKV3CEi0kxNTvB44okn+OMf/8iHH36I3W7nmWee4euvv+baa6+la9eu4YhRRERERERERCTqbNlykM+X78BsNvHDO6c2+rjxF/YnIT6GgoJy1q/fF8YI5WTmzF0FwEXjB5CWlnDW4zkcNvr16wTAli0Hzno8CTIMgzff/ByAa685H4fDFpE4rr5qDAALF22mstIVkRgi5a1/LKegoJyszCRuuH5cpMMJq549sumek4nX62f5F19FOpxGqT1SHWwbYYaUEZmRDieq2BLsxHUL/nyv2F7a6OMMw6Bk5VECbj/2VAedruwR/LqiO50u707Hy7rT8dKc4NclOWRM60RRTCmYTbgLa8n/JJejnxykrvDEJCF/nY/i5UcBSOiX0pCwII2T2D/Y0q56Tzl+t/+4xzzlboqOvbaJA1KJ7xGeG5FVbUVERKJFkxM89u7dy8yZMwGw2+3U1NRgMpn4yU9+wksvvRTyAEVEREREREREoo1hGDz/QvDO9pkzR9C9e+PvbHc4bEyePASAefPXhyU+ObmqqloWLNgMwFVXjQ7ZuPVtWjYpwSNkVq/ezZ69+cTG2rnyitCdq6YaOKALvXt3wOPx8dG89rNei4oref2NzwD40Y8ujliCTUuaODFYxWPxkq0RjuTMDMOg9Fj1jsR+KdgS7RGOKPokDUwDoHpfBb4ab6OOqdlXiSu3GsyQMa4j9mRH8CslBntqDI60GBzpscGvjODXUWcxHa7oRkK/FDBD3VEXR+cdIH/hIdwlweohhmFQvCIff60vWBFilBJymiqmgxNbsgPDZ1C9u7xhe8Djp3DJYQxfgJhsJ6kj9dqKiEjb1+QEj5SUFKqqqgDo1KkT27ZtA6C8vByXq31lsYuIiIiIiIhI+/TFl1+zZetB7HYr/3H7pCYff8klwTYtyz7bTmVl62kH0NrN/3gDbreXnj2zG5IyQmHokOBYmzcfCNmY7d0bbwWrd1x22SgSE2MjFofJZOKqK4NVPOa+t7rdtFV68cVPqavzMmhQVyZPGhzpcFpEfZuWNWt2R321luq9lXhK3ZhsZpKHpEc6nKjkyIjFkRULAaj86szts3wuHyWrCwBIHpLepBYfFqeV9LHZdL6qJ/G9k4LtYQ5Xk/fBfgqWHKZ8czGug1VggowLO2K2NvmyTLtnMplIGpACBM+nETAwDIOi5Xl4KzxYnFYyL+qkNkUiItIuNPk3iQsvvJCFCxcCcM0113Dffffxgx/8gOuvv55Jk5r+gYaIiIiIiIiISGvi8/l54cVg9Y7vX3s+GRlNLwXer28nevTIwuPxsWjx5lCHKCcRCASYO3c1AFddOTqkpdYHDeoGQG5uMaVl1SEbt73a8dVhNmzYh8Vi5rprz490OEydMoT4+BiOHCllzdo9kQ4n7HZ8dZiPP9kIwH0/vqTdtCXI6ZZJr57Z+P0BPvt8R6TDOaWAL0DZhmD1juTBaVhirBGOKHrVV/Go2llGwOs/5X7fbc2SPLh5STO2BDsZF3Sk85U9ieuRCIDrYBXlG4sBSBmegSM9cglrrV1cjyTMDgu+ai+u3CoqtpQcq7hiImtiZyyxWgsiItI+NPkd789//jN1dcHSYv/zP/+DzWZjxYoVXH311Tz00EMhD1BEREREREREJJp8/MlGDhwoIjExlhtnXdisMUwmE5fMHMGzf5rPvPkbGioESPisX7+P3EPFOJ0Opk4dGtKxExNj6dEji337Ctiy5QAXjR8Y0vHbmzffDFbvmDplCFlZyZENBoiNtTNj+nD+9c4K5sxdzZjRfSIdUtgYhsEzz34EwPSLh9H/nM4RjqhlTZw4iD1781m8ZCuXXjIy0uGcVOVXZfhrfFicVhL7p0Y6nKjm7BKPLdGOt9JD1a4Kkgac/PWq2X98a5azrQJhS7KTOb4TnsHplG0swnWwipiOcQ0JJ9I8ZquZhL7JVGwpoXRtIb7qYOud9LHZODKUOCMicjp+vx+vt3EtyyTybDYbFovllI83OcEjNfWbX4LMZjO//OUvmxeZiIiIiIiIiEgrU1fn4a9/WwTALTdPICGh+RcUpk0dynPPf8JXXx1m7758evbIDlWYchJz5q4Cghet45yOkI8/ZHAO+/YVsHnzQSV4nIXDh0tY9tl2AG64flyEo/nGlVeO5l/vrGDFiq85ml9Gh+yUSIcUFosWb2Hr1lxiYmz88IfTIh1Oi5s0cRAv/XUh69fvpaysmpSU+LDN5XP5sDqb9vG8v85HxZZvqkGo1cfpmUwmEgemUrIin8odpSSek3JC8obP5aNkVfNas5yJPcVB1sTO+Gt9mB0WtQ8JgcR+KVRsLWlI7kjok0xCn+TIBiUiEsUMwyA/P5/y8vJIhyJNlJycTHZ29kmr6TU5wWPy5MnceOONXHXVVSQmJoYkQBERERERERGR1uBf76ykuLiS7Oxkrr7q7KpupKTEc8H5/fjs8x3Mm7eBH987I0RRyncVFJSz/IuvgGB7lnAYMiSHue+tZvPmA2EZv734x9vLMQyDsWP70rNn9CQ9deuawcgRPVm3fi/vv7+GH/5n20t+qKvz8PzzwfZTN904noz09vfZb5cu6fTp05Fdu/L47LPtXHFFeH5e+Fw+jry/D2eneNLGZmO2NS5Ro3xLCQFPAHuKg/ieTW8P1h7F90yibEMRvmovNQeqiO/xzfd1qFqznIlah4SONc5GXPdEavZV4siIJW1MVqRDEhGJavXJHZmZmTidznbTeq81MwwDl8tFYWGwJV+HDh1O2KfJv1kMGDCABx98kB/96EfMnDmTG2+8kRkzZmCz2c4+YhERERERERGRKFVR4eKNNz8D4Af/MQW7/ewv2FwycySffb6DTz7dyF0/nIrNpotA4fDhR+sIBAyGD+tO9+7huRg0dEgOALt251HjcoelSkhbV1paxbz5GwCa3f4onK6+agzr1u/lgw/Xcfttk0LyMyCa/OPtLygorCArKzmqqqe0tEkTB7FrVx6Ll25tVoJHaVk1cU4HDsepPy+vO1pDwO2nem8FdUW1ZI7viCP99BWhvFUeKr8qBSBlVKaqQTSS2WomsV8K5ZuKqdhWQlz3hIaLW6FuzSItI210Fo60GOJ7JWGyqIqNiMip+P3+huSOtDS1CWtNYmODvxcWFhaSmZl5QruWJr/7PfPMMxw5coT33nuPuLg4br75ZrKysrjzzjv57LPPQhO1iIiIiIiIiEiUee3vy6iurqN3rw5MmzokJGOOHt2btLQEystrWLFiZ0jGlOMZhsGiRVsAuPTSUWGbJzMziQ4dUggEDLZtyw3bPG3ZO++uxOPxMaB/l4aEmWhy/vn9yMhIpLy8hqXLtkU6nJAqKqrg9TeCn+3e/aOLT5uc0NZNmjgIgI0b91NaWtXk4//v9+9z3fV/YN26PafcJ75nEh0u7oYlzoqv0kPevANUbC/BMIxTHlO2oQgCENMxDmen8LWOaYsSz0nBZDHhKamjrsAFhLc1i4SXJcZK0sA0LDFtK8lORCTUvN5gOyun0xnhSKQ56s9b/Xn8tmalN5rNZqZOncrs2bMpKCjgL3/5C2vWrGHixIlnF6mIiIiIiIiISBQ6ml/Gv+esBOCuH07DbA7NHaNWq4WLpw0DYN789SEZU463Z08+uYeKsdutXHDBOWGda8jgHAC1aWkGl8vNnDmrAJg1a1xUlo+2Wi1ccfm5AMyZuyrC0YTWCy8uoK7Oy+BB3RoSHNqrjh1TOeeczgQCBkuXNi2RZ8uWgyxbtp2i4kpSUxNOu29MtpNOl/fA2TUBAlC6ppCCRYfw1/pO2NddXEvNvkoAUkdmNikmCSYExPcKtrSp2FbaYq1ZREREokE0/l4tZ3a683ZWn0bk5+fz4osv8rvf/Y4tW7YwalT47oIQEREREREREYmUv/51EV6vnxEjejB6dO+Qjj1z5nAAVq7aRUlJ0+8Wl9NbsnQrAGNG9wl725Qhx6pObNlyIKzztEUffrSOquo6unZJZ9wF/SMdzilddukoLBYzW7fmsmt3XqTDCYkdOw7xyacbAbjvvpm6CMA3VTwWH/v50RiGYfCn5+YDwfZbPXqcuR2UxWEhc2In0sZmY7KYqD1cw5H391GbV3PcuKVrgz3Y43sm4UhTpYnmSBqQCkDtoWrKNxYHW7OY1JpFREREWp8mJ3hUVlby6quvMmXKFLp06cILL7zAZZddxu7du1m1qm1lrouIiIiIiIiI7N59lE8XbALgR3ddHPKLnzndMhk4sCt+f6DhIquEhmF8cwf+xAkDwz7fkCHdANi2/RBe74l34cvJ+Xx+3n77CwCuv34cFktoKuSEQ1paAhddNACAOXNWRzias2cYBk8/Ow+AGdOHc06/zhGOKDpMnBBM8Ni8+SBFxZWNOmbp0m1s336I2Fg7/3HHpEbPZTKZSOyXQsdLc7AlO/DX+sn/NJfSdYUYAYPaw9XU5bswWUykDM9o1vMRsCU5cHYNtrYp31wMQPJQtWYRERFpi3Jycnj66acjHUbYNPmvpaysLP7nf/6HgQMHsnLlSnbu3MnDDz9Mz549wxGfiIiIiIiIiEhE/eWvCzAMg0mTBoXt4uclM0cA8NG89RiGEZY52qNvt2c5P8ztWQC6dc0gOdmJx+Pj651to7pDS1i4aAsFhRWkpsZz8bShkQ7njK66cgwACxZuoqqqNsLRnJ2Fi7awbVsusbF2/vM/p0Y6nKiRnZ3MwIFdj0sSOx2Px8fzL34KwKwbxpGentjkOe0pMXS8NIeEvskAVGwt4ei8Aw3VOxLPScUab2vyuPKNpIFpDf+v1iwiIiLSWjU5weODDz7g8OHD/PGPf2TkyJHhiElEREREREREJCoUFJSzcuUuAO78jylhm2fSxEHExNg4eLCIbdsPhW2e9qYl27NA8E78wYNyANi8+UDY52sLSsuqefmVxQBce835OBzRfwF76JAcunfPpK7Oy8eftN6qOy6Xmxde+ASAm24cT0YzkhLasoY2LUu2nHHfOXNXkZdXSnpaAtdfN67Zc5qtZtLP60DmhE6Y7WbcxXV4KzyYHRaSBqedeQA5LUdmLLGd4jDZzGrNIiIiIq1WkxM8pkyZgtkcvWUSRURERERERERCZeGiLRiGwdChOXTpEr47fePiYphwUbCFyLx568M2T3tiGAZLlgQTPCYeu1DbEoYMyQGU4NEYFRUu7rv/FfLySsnMTOLKK86NdEiNYjKZuPqqYBWPOXNXtWjVnW3bcvnlg28y+7WtHD5c0uxxDMPg8SfepaCwguzsZK6/7oIQRtk2TJwwEJPJxNatuRQUlJ9yv8rKWl6dvRSAH/xgCrGx9rOeOy4nkU6X98CRFQtAyogMLA7LWY/b3plMJrImd6Hr93urNYuIiEiUeumll+jYsSOBQOC47Zdffjm33347e/fu5fLLLycrK4v4+HhGjRrFokWLTjnegQMHMJlMbNq0qWFbeXk5JpOJZcuWNWzbtm0b06dPJz4+nqysLG666SaKi4tD/fRColGZGsOHD6esrKzRg15wwQUcOXKk2UGJiIiIiIiItCdFxZVs3nwAn88f6VDkOz5dsAmAaVOHhX2u+jYtixZvobbWE/b52ro9e/I5dLgk2J7l/H4tNm99gseWrQdP+FBSvlFVVcv9P3mFvXvzSUtL4E/P3EFCQmykw2q0adOG4Yy1k5tbzPr1e8M+37ZtuTzwX7O584cvsnLVLgoKXfzXz/5OUVFFs8b7++ufsWzZdqxWC4/+6vutonJKS8vISGLw4G4ALDlNm5bX/r6UqqpaevTIYsb04SGb3xpvo8P0bnT5fi8S+6aEbNz2zmQ2YbbpBlYREWmfDMOgttbT4l9NSYi+5pprKCkpYenSpQ3bSktL+eSTT5g1axbV1dXMmDGDxYsXs3HjRi6++GIuvfRScnNzm/26lJeXM3HiRIYNG8a6dev45JNPKCgo4Nprr232mOFkbcxOmzZtYvPmzaSmpjZq0E2bNuF2u88qMBEREREREZH2wOVyc+edL1BQWEFiYizjLxzAhAkDGTmiJ1ar7taNpD17jrJ3bz42m6WhukY4DR3anY4dU8nLK2XZsm1MD+GFwvaovj3L2DEt056lXp/eHYiNtVNVVcv+/YX07JndYnO3FjUuNw/812x27sojOTmOZ5++PawVcsIhzung4ouHMWfuaubMXc3Ikb3CMs+2bbm88uoSVq0OtoqyWMxMmTKY1au/Jj+/nPsfeJUXnruTxERno8dcsXInL/11IQD/9cBlDBrULSyxtwWTJw5i8+YDLF685aRVTo4cKeXdf68E4J67p2OxhDZxwGQyYXUq+UZERERCo67Oy6Qpj7T4vIsXPtLoKmcpKSlMnz6dt956i0mTJgHw7rvvkp6ezoQJEzCbzQwZMqRh/8cee4y5c+fywQcfcM899zQrvj//+c8MGzaMJ554omHbK6+8QpcuXdi1axd9+vRp1rjh0qgED4BJkyY1OrvGZFLvOhEREREREZHGeHX2UgoKg3dgV1bW8uFH6/jwo3VK9ogCny7YDMD55/UjMTH8lQVMJhMzZwznr39bxLz565XgcRa+3Z5lwoSWa88CYLVaGDigK2vX7WHT5gNK8PiO2loPP/3Za2zfcYjExFieffp2unfPinRYzXLVlWOYM3c1y7/4isLCCjIzk0I29skSOy6eNoxbbrmIrMxE/vGPubw7Zy/79xfyXz97jWefvqNRH5ofOlTMI4/+E8MwuOLyc7n8slEhi7ktuuiigfzxmY/Y8dVh8vJK6djx+BsgX3zpU7xeP6NG9WLM6Oj64F9ERESktZo1axY/+MEPeP7553E4HLz55ptcd911mM1mqqureeSRR5g3bx5Hjx7F5/NRW1t7VhU8Nm/ezNKlS4mPjz/hsb1797bOBI/9+/c3eeDOnTs3af/f/va3PPjgg9x33308/fTTANTV1fFf//VfvP3227jdbqZNm8bzzz9PVtY3f/Tl5uZy1113Nbzot9xyC08++SRWa6NzV0REREREREQi4sDBQt7+5xcAPPnEjcTFOVi6dCvLPttOWVnNcckeF47rz8SJg5Ts0UICgQALFm4CYNrUoS0274zpw/nby4vZsHE/R46U0qlT46qpyvEi1Z6l3pAh3Vi7bg+bNx/g6qvGtPj8LWHX7jy2bjnI+PEDSE9PbNQxbreXn//y72zefIC4OAdP/+F2evXqEOZIw6dHjyyGDe3Oxk37mfveav7zzqlnPebJEjumXzyMm2++iM6d0gDwer0kJTn4v6du5sf3v8L27Yd48H/e5Knf3oTdfurPRGtcbn7x4OtUV9cxeFA3fnL/JWcdb1uXlpbA0KHd2bBhH0uWbuPGWRc2PLZ9+yEWL96KyWTinh9Nj2CUIiIiIo0TE2Nj8cJHIjJvU1x66aUYhsG8efMYNWoUy5cv549//CMAP/3pT1m4cCH/93//R69evYiNjeV73/seHs/J25yazcEKa98uZOH1eo/bp7q6mksvvZTf/e53JxzfoUP0/b3SqCyIbt3CW6Zv7dq1/OUvf2Hw4MHHbf/JT37CvHnzeOedd0hKSuKee+7hqquu4ssvvwTA7/czc+ZMsrOzWbFiBUePHuXmm2/GZrMdV0JFREREREREJNoYhsEf//gRfn+A887ry/gL+wMwckRPHvjJZWzavJ8lS75J9vho3no+mreeiRMG8vhjN0Q4+rZv46b9FBVVkhAfw9ixfVts3qysZEaN6sWaNbuZN389d/5gSovN3ZYsXhKZ9iz1hgzJAWDzlgMYhtHmqt0GAgF+8YvXKSis4Oln53HR+AFcdeVohg7tfsrn6vH4+O//eZP16/fhjLXzh9/fRr9+nVo48tD73vfGsnHTft55dyXXXnMeKSkn3vXXWJ8u2MSjv/4X8E1ixy03Tzhlolf37pn8/n9v5cf3v8yaNbt57PF3eORX3z9pm5BAIMBjj73DgQNFpKcn8pvHb8Bm0w1yjTF54iA2bNjH4sVbGhI8DMPgz8/NB4KJeb17R98H/yIiIiLfZTKZGt0qJZJiYmK46qqrePPNN9mzZw99+/Zl+PBghcsvv/ySW2+9lSuvvBIIJmccOHDglGNlZGQAcPToUYYNGwbApk2bjttn+PDh/Pvf/yYnJ6dVFJEIbVPAZqiurmbWrFn89a9/JSUlpWF7RUUFL7/8Mn/4wx+YOHEiI0aM4NVXX2XFihWsWrUKgAULFrBjxw7eeOMNhg4dyvTp03nsscd47rnnTpmlIyIiIiIiIhINln22nbXr9mCzWbj/x8ffRW2xmBkxvCc/++kVfPDeg/zp2Tu48orRWCxmlizdxvbthyIUdfvx6aebgGB7j9PdER8Ol8wcAcC8+evx+fwtOndbYBgGS5dGpj1LvQH9u+Bw2CgqqmT16t0RiSGctmw9SEFhBWazCb8/wOIlW7n73r9x483P8O85q6hxuY/b3+fz8/9+9Q9WrtqFw2Hjf//3FgYN7Bqh6ENr/IX96dOnIy6Xm7+/8Vmzx6mr8/Dccx8DMHHCQN5+6wH++8Grz1jFZ8CALjz5xCysVguLl2zl93/44KRttme/tpTPl+/AZrPw5G9mkZaW0OxY25vx4wdgsZjZuSuPw4dLAPj88x1s3nIQh8PGnT+YHOEIRURERNqeWbNmMW/ePF555RVmzZrVsL13797MmTOHTZs2sXnzZm644QYCgcApx4mNjWXMmDH89re/5auvvuKzzz7joYceOm6fu+++m9LSUq6//nrWrl3L3r17+fTTT7ntttvw+6Pvb/KIp6DcfffdzJw5k8mTJ/P44483bF+/fj1er5fJk7/5Bblfv3507dqVlStXMmbMGFauXMmgQYOOa9kybdo07rrrLrZv396QhfNdbrcbt/ubPzQrKyuBYDmW75ZkEWmv6teC1oRI5GgdikQHrUWR6NDW1mJdnYdnnp0HwPXXnU9WVuJpn9vgQV0ZPKgrtXVuPvlkE6/9fSm/efz6lgq33XF7vCxdtg2AyZMGtvj33dgxvUlOjqOoqJLPl29n3AXntOj8p9Ma1uK327OMPrdnRGK1WExccfko/vmvFfzlpQUMH57Tpqp4LFy0GYApkwdz7TXn8d77a1i4aAv79xfy+z98wAsvfsq0qUO44vJRdO6SxmOP/Zvly7/CbrPyxG+uZ+CAzlH9PdRUP7hjEj/7xevMmbOKq644l+zs5CaP8dY/llNcUkV2djIP/vJK7HbrKV+j767DYUNzeOh/rubRX7/De++vIT7ewQ/+45vPVL/88mv+9vJiAH5y/yX06ZPdpl7/cIuPdzBsWHfWrdvLgoWbuP6683nuhU8A+P61Y0lOdur1bKdaw3uiSHugtdh4eo2kNZk4cSKpqans3LmTG274porpH/7wB26//XbOO+880tPT+cUvftFwrf9UXnnlFe644w5GjBhB3759eeqpp5g69Zv2ih07duTLL7/kF7/4BVOnTsXtdtOtWzcuvvjihhYv0SSiCR5vv/02GzZsYO3atSc8lp+fj91uJzk5+bjtWVlZ5OfnN+zz7eSO+sfrHzuVJ598kkcfffSE7QsWLMDpdDb1aYi0aQsXLox0CCLtntahSHTQWhSJDm1lLX6+/BCFhRUkJtpJT3Mxf/78Rh3XuWPwrpQvvvya1157l4wM/Q0bDl/vLKGmxk1iop3Dh7dz5MiOFo+hb59EVq+p4W8vf0xV5f4Wn/9Monktfr48WOEmp1sCy5YtjlgcmRlebLbgXf/PPPsmfXqfvhJDaxEIGCxYsBGAhIQ6du3aQP9zrPToPpht24vZuKmA0tI65r63hrnvrSEpyUFFhRuz2cRll/agsGAn8+fvjPCzCC3DMOjaNZHc3Eoe+83rzJzes0nHu1xe/v56MGlm1Ig0Fi1a0KjjvrsOp07J4dMF+3njzeUcOXKQc0d1oKSklr+/EUxYGz4sCxP5jX7PkW+kpwXff9//YCUHDuzh8OESnE4rqamNfw+Xtiua3xNF2hOtxTNzuVyRDkGk0cxmM3l5eSdsz8nJYcmSJcdtu/vuu4/793dbtpxzzjmsWLHiuG3frXpXXxmkNYhYgsehQ4e47777WLhwITExMS0694MPPsgDDzzQ8O/Kykq6dOnC1KlTSUxMbNFYRKKV1+tl4cKFTJkyBZvNFulwRNolrUOR6KC1KBId2tJaPHy4hD88vQ6An/3XlVx4Yf8mHb97r4/PPttB7iG45ZYZ4Qix3ftyxT8AuPSS0cycGZnS+0OHlnLDjc9y4EAFQ4aMOWObhpYS7WvRMAze/MefAPj+9ycxeVJkWrTUK6+I5/U3PmfT5gp+fO8NUXn3V1Nt2Lifmpo1JCTE8sP/vBab7ZuPF6+6KngONmzYz9z31/Dll19TUeHGYjbzyCPXcuG46KlGE2o9egzhhz/6Kzt2lPDTB75P9+6ZjT72z899jMfjp1evbB544MYzfp+cah3OmAFdu37OX/+2mKXLchk0aAALFq7F4wkweHA3/vepW7BaLc1+ju3ZBRe4WLjofykqcrFiZfDGwrv+82Iuu2xUhCOTSIr290SR9kJrsfHOVOVARFqHJid49OjRg7Vr15KWlnbc9vLycoYPH86+ffsaNc769espLCxk+PDhDdv8fj+ff/45f/7zn/n000/xeDyUl5cfV8WjoKCA7OxsALKzs1mzZs1x4xYUFDQ8dioOhwOHw3HCdpvNph/+It+hdSESeVqHItFBa1EkOrT2tWgYBn9+7hO8Xj/nntubiRMHN7ltw623TOSzz3awZOk27rxzKp07pZ35IGm0igoXq1bvBmD6xcMj9v3WrVsWo8/tzarVu5g3fwN3/2h6ROI4lWhdi7t253H4WHuWCy8cEPEYb5w1nvfeW8P+/YV89vnXTJ0yJKLxhMJnnwUr2oy/sD9OZ+xJ9xkzpi9jxvSloKCchYu20K9vR0aO7NWSYba4wYO7c9H4ASz7bDt/e2UJT/32pkYdl5dXytz3gtWN7/7R9JN+ZnkqJ1uHt94ykaoqN2//8wue/dPHAGRmJvHE4zcQG9uyN9m1JWlpSZw7qhcrV+3C5XKTk5PB5ZePVsKMANH7nijS3mgtnpleH5G2ocm3DRw4cAC/33/CdrfbzZEjRxo9zqRJk9i6dSubNm1q+Bo5ciSzZs1q+H+bzcbixd+U0ty5cye5ubmMHTsWgLFjx7J161YKCwsb9lm4cCGJiYn079+0O6BEREREREREwu2LL79m5apdWK0WfnL/JU1O7gDo26cjY8f0IRAwePPNz8MQZfu2ZOlWfD4/vXt3oEePrDMfEEZXXjkagI/mrcfj8UU0ltZiyZJgK4qxY/oQ52z8hfJwSUiI5frrxwHw8suL8PlO/EytNfH5/Cz7LPgaT5o0+Iz7Z2Ulc+OsC9t8cke9O++cgtls4osvvmLr1oONOuavx74vRo3sxehze591DCaTiXvvmc6MGcGb6ux2K08+MYvU1ISzHru9+/b3/N13TVdyh4iIiIhERKMreHzwwQcN///pp5+SlJTU8G+/38/ixYvJyclp9MQJCQkMHDjwuG1xcXGkpaU1bL/jjjt44IEHSE1NJTExkXvvvZexY8cyZswYAKZOnUr//v256aabeOqpp8jPz+ehhx7i7rvvblK2u4iIiIiIiEi4ud1ennnmIwCu+/75dOua0eyxbr7pIlau2sX8jzdw+20TychIOvNB0igLFmwCYNrUoRGNA4JJCpmZSRQWVrBs2TamRkFM0cwwDJYu3QrAxImRbc3ybddccx7/eudLDh0u4ZNPN3HJzBGRDqnZNmzcR3m5i+RkJyOG94h0OFEnp1smM2eO4MMP1/H8i5/y/J9/cNpEvl2781iwYDMAd/1wWsjiMJlM/PLnVzKgfxd69erAOf06h2zs9mz8+AG89/4aunZN57zz+kY6HBERERFppxqd4HHFFVcAwT8QbrnlluMes9ls5OTk8Pvf/z6kwf3xj3/EbDZz9dVX43a7mTZtGs8//3zD4xaLhY8++oi77rqLsWPHEhcXxy233MKvf/3rkMYhIiIiIiIicrbeePNz8o6WkZmZxK23TDirsYYMyWHIkBw2bz7AW29/wX33zgxRlO1bXl4pm7ccxGQyMSUKWmlYrRYuu3Qkf3t5MXPfW60EjzPYvecoh461Zzn/vH6RDqdBnNPBTTdexJ/+PJ9XXl3M1ClDsNub3DU5KixeHEyguWj8QFUvOIU7bpvEp59uYvPmA6xYufO034svvPAphmEwZfJg+vXrFNI4rFYLV14xOqRjtndxTgcvvfjDSIchIiIiIu1co1u0BAIBAoEAXbt2pbCwsOHfgUAAt9vNzp07ueSSS84qmGXLlvH00083/DsmJobnnnuO0tJSampqmDNnDtnZ2ccd061bN+bPn4/L5aKoqIj/+7//w2ptnX8ki4iIiIiISNuUl1fK6298BsC9d0/HGYLWEbfcdBEA77+/hvLymrMeT2DBwuCd9CNH9CQjPTHC0QRdeukoLBYzm7ccZO++/EiHE9Xq27OcN7ZvSNZYKF115WjS0xLIzy/nw4/WRTqcZvF6fSz7bDsAkyZFT4WUaJOZmcQ13wu2l37xLwsIBAIn3W/duj2sXrMbq9XCnT+Y2pIhioiIiIhIK9boBI96+/fvJz09HYC6urqQByQiIiIiIiLS1jzzp3l4PD5GjOgRstYRo0f3pm+fjtTVeXnn3RUhGbM9MwyDT4+1Z5k6NfLVO+plpCcy7oJzAHjvvTURjiZ6GYbBkmPtWSZMGHiGvVuew2HjlmOVe157bSlutzfCETXd2nV7qaqqJTU1nqFDukc6nKh2043jSYiPYe/e/IbEsW8LBAI8/8KnAFx5xbl06pTa0iGKiIiIiEgr1eQEj0AgwGOPPUanTp2Ij49n3759APy///f/ePnll0MeoIiIiIiIiEhrtnLlTpYv/wqLxcwD91+KyWQKybgmk4mbb74IgHffXUlNjW7COBs7d+Zx8GARdruVi8YPiHQ4x6lvs/DxJxtxudwRjiY67d5zlMNR2J7l2y67dCTZ2ckUl1QxZ+7qSIfTZIsXbwFgwkUDsVia/JFiu5KY6GTWrPEA/PVvi/B6fcc9vnjJVr7eeQSn03HWLbtERERERKR9afJfY48//jizZ8/mqaeewm63N2wfOHAgf/vb30IanIiIiIiIiEhr5vH4+OMzHwFw7TXn0b17VkjHH39hf7p1y6Cquq5VXjCOJp8u3ATAuHHnEBcXE9lgvmPEiB507pyGy+Vm0bGL7HK8aG7PUs9ms3L7bZMAeP2NZdS0omQdj8fH58t3AGrP0ljXXjOW9LQEjh4t4733v6m+4/X6+MtLCwGYdcM4UlLiIxWiiIiIiIi0Qk1O8Pj73//OSy+9xKxZs7BYLA3bhwwZwtdffx3S4ERERERERERas8WLt3D4cAlpaQncftvEkI9vNpu56cbgXeJv//OLVtn2IRr4fH4WLQomTlw8dViEozmR2WzmisvPBWDu3NUYhhHhiKJLtLdn+baLpw2lS+c0ystdvPNO62mttHrNbmpq3GRkJDJ4ULdIh9MqxMTYG37uvzp7aUNCz/sfrCUvr5TU1Hiu+/4FkQxRRERERKRVuvXWW7niiisiHUbENDnB48iRI/Tq1euE7YFAAK9XHySJiIiIiIiIQPCi8zvvrgTgmu+dF7aqEFOnDCE7O5mysho++mhdWOZo69Zv2EdJSRVJSU5Gj+4d6XBOasb04djtVnbuyuOrr49EOpyo0hras9SzWi3cccdkAN76x3IqK2sjHFHj1LdnmThhEGaz2rM01iWXjDyW0FPDP//5BTU1dbzy6hIA7rh9ErGx9jOMICIiIiLSvphMptN+PfLIIzzzzDPMnj27ReLJz8/nvvvuo1evXsTExJCVlcX555/PCy+8gMvlatgvJyenIca4uDiGDx/OO++8c8JjJ/u69dZbmxRTk/8i69+/P8uXLz9h+7vvvsuwYdF3l4uIiIiIiIhIJGzblsvXO49gt1u57NKRYZvHarUw64YLAXjjreX4fP6wzdVWffrpJgAmTxqM1Wo5/c4Rkpwc11CdYq7a8RxnyZJg9Y5obs/ybZMnDaJHjyyqq+v4x9snfsYWbdxuL1988RUAkyaqPUtTWK0W7vzBFADeems5z7/wKeXlNXTtks6ll4TvfUFEREREpLU6evRow9fTTz9NYmLicdt++tOfkpSURHJycthj2bdvH8OGDWPBggU88cQTbNy4kZUrV/Lzn/+cjz76iEWLFh23/69//WuOHj3Kxo0bGTVqFN///vdZsWIFa9eubYj/3//+NwA7d+5s2PbMM880Ka4mJ3g8/PDD3HPPPfzud78jEAgwZ84cfvCDH/Cb3/yGhx9+uKnDiYiIiIiIyFnIzy/nd0/NZd26PZEORb7jX+8G2y9MnTKE5OS4sM51ycwRpKbGU1BQzqcLNoV1rramttbDZ59vB2Dq1KGRDeYMrrpiNACLFm9pNZUfwi3YnmUbEP3tWeqZzWZ+8B/Bi/7/emcFZWXVEY7o9Fas3Imr1kNWVjIDBnSJdDitzoQJA+nXtxOuWg9z3wsmZ/3nf06N2mQyEREREZFIys7ObvhKSkrCZDIdty0+Pv6EFi0XXXQR9957L/fffz8pKSlkZWXx17/+lZqaGm677TYSEhLo1asXH3/88XFzbdu2jenTpxMfH09WVhY33XQTxcXFDY//6Ec/wmq1sm7dOq699lrOOeccevToweWXX868efO49NJLjxsvISGB7Oxs+vTpw3PPPUdsbCwffvghGRkZDfGnpqYCkJmZedzzbIomJ3hcfvnlfPjhhyxatIi4uDgefvhhvvrqKz788EOmTJnS1OFERERERETkLPzhjx/w/gdr+fH9r/DMn+bhdqt1ZjQoKqpg2bJg0sD3vjc27PM5HDau+/4FALz+xmf4/YGwz9lWLP/iK2prPXTsmMrAKL94PXBgV3r2zMbt9vLxJxsiHU6z1dZ6+OnPX+O//+dNDhwsbPY4ZWXVPPLoP1tNe5Zvu3DcOfTr24naWg9vvPl5i87t8fgIBBr/M6K+QsqkiYMwmUzhCqvNMpvN3PXDaQ3/HtC/CxeNHxDBiERERESkvTIMg4A30OJfhmGE/bm99tprpKens2bNGu69917uuusurrnmGs477zw2bNjA1KlTuemmmxraqpSXlzNx4kSGDRvGunXr+OSTTygoKODaa68FoKSkhAULFnD33XcTF3fym3ZO9/eR1WrFZrPh8XhC/lytzTlo3LhxLFy4MNSxiIiIiIiISBPs3ZvPF19+3fDvf/7zS9at28sjv7qWnj2yIxiZzH1vDX5/gKFDc+jTu2OLzHnllaN5/fVl5OYW89nn25k4Qa0UGqO+4snF04ZG/cVrk+n/s3fXYVFm7x/H30ODgIgBFnZ3i93dtXbn6q69q7t2rLGuru2u3bp2dwcWdreIoq6BAUjO7w+/sutPV0GBAfy8rotL53nOc859ZrgZmLnnHAN16xRm3G/rWbvuGI0aFov1MX/ImrVHOXz4CvCmwKZhg2K0bVMOe3ubCF1vNBrZtv00Eydt4vlzf8zMDHTpXDlObM/ylsFgoGOHivTqM49Vq4/QuHEJkiZxjPZxz527w4/9F+LoaMewoY0/+fMpICCIQ4ffPM+UL6+fKZ+rUKGMlCiRjaNHr/Jdt2pxMm9FREREJO4zhhi5s+hKjI+bpnkWDJbR+ztwnjx5GDBgAAD9+/dn9OjRJEmShA4dOgBvdimZPn06Z8+epWjRokyZMoV8+fLxyy+/hPcxZ84cUqdOzdWrV3n27BlGo5EsWbK8M06SJEl4/fo1AF27dmXMmDHvxRIUFMRvv/3G8+fPKVeuXJTPNdIreIiIiIiIiEjssHDRPuDNp6rHjm6Bk1MCbtx4QLv201j+16FIfUJbok5gYDBr1x0DoGGDYjE2bgI7axo2fDPegoX7YuQTMqYQGBjMqtVHOOF5g5CQ0C/q6+mzVxw7dg2AShXzRkF00a9ypbzY2lpx587fnD59y9ThRNrr10EsWXoAgPTpXQgNDWPZ8oN80+Q3Nmw88cmfWw8e+NKn73yGDV/B8+f+ZMzgysw/u/BNo+IxEX6UKlIkE3lypyEoKIRF//t5Hp1OeN6gR6+5+Pr64+X1mI6dZrBm7dGP/qw4dPgyr18HkyKFM1mzpIz2GOOzkcObsG5NP3LnTmPqUERERERE4p3cuXOH/9/c3JzEiROTK9c/ReouLi4APHr0ZhXJM2fOsGfPHuzt7cO/smZ9syrkjRs3/nOcY8eOcfr0aXLkyEFgYOA753788Ufs7e2xs7NjzJgxjB49murVq0fZHN+K9AoeiRIl+mCVucFgwMbGhowZM9K6dWvatGkTJQGKiIiIiIjI++7de8rOXWcBaN68NFkyp2DRgu8ZOWo1Hh5XmDhpE0eOXOXnn+qTJAY+FS7/2LX7HL6+frgkS0jJEtlidOyGDYqxdNlBrl69z5EjV3F3z/Lpi+KY+Qv2Mm/+HgCcnBJQtkwOypbNRd48abGwMP/k9SEhoZw778WhQ5fZf+AioaFhZM+WCje3JNEdepRIkMCGypXysnbdMVavPUq+fOlNHVKkrFt/nKdPX5E8eSLmzenGCc8b/D5xI15ejxk1ejVr1hylZ48a5Mr17pvgYWFhrF5zlBkztuEfEISlpTlt25SnWdOSEXrcYyODwUDbNuXp3nMO69Yfp2WLMiRO7BAtYx32uMJPPy8mKCiEQoUyYmVpwaHDl/l13DpOnrpJvx/qkiDB+yuo7Prf80yF8tqe5UtZWlrg5PRZiymLiIiIiEQJg4WBNM1j/nUCg0X0/y1haWn57pgGwzvH3v498/ZDBa9evaJmzZofXIEjefLkvH79GoPBwJUr7654kj79m7/BbW1t37uub9++tG7dGnt7e1xcXKLtb6hI/1UxaNAgRo4cSdWqVSlcuDDwplJl69atdO3alVu3btGlSxdCQkLClzwRERERERGRqLV4yX7Cwoy4F81Mlsxvlth3dnZg3NiWrF59hMlTt3D02DVatJpEvx/rUbpUdhNH/HUwGo38teIwAHXrFo3xN54TJrSjdq3CLFt+kAUL98a7Ao+QkFA2bjwBgI2NJb6+fqxZe4w1a499tNjj1avXHD16lQOHLnPkyBVevAgIP2dlZUG7tuVjfC5fonbtwqxdd4x9+y7y9OlLnJ2jpyggqgUGBrN48X4AWrYog4WFOUWLZGbh/O9ZueoIc+bu4vKVe3Tq8geVKuWla5fKJE2akNu3HzFqzGrOnfMCIHeuNPTrV5e0aZKZcjpRomDBDOTM6cb5814sWXqA77pVi/Ix9uw9z+AhywkJCaVkyWwMH9oES0tzli47yPQZ29i16xxXrtxn+LAm4c8nAH5+r/E4chWA8uVy/1f3IiIiIiISRxgMhmjfKiWuyJ8/P6tWrSJt2rRYWLxfMpEgQQIqVqzIlClT+O6770iQIMEn+0ySJAkZM2aMjnDfEekCj4MHDzJixAg6d+78zvE//viD7du3s2rVKnLnzs2kSZNU4CEiIiIiIhINHj9+wabNngC0aFH6nXMGg4H69d3Jnz89Q4b9xbVrPvT/aRG1ahai+/fVsbW1MkXIX41z57y4evU+VlYW1KpZ0CQxNGlSglWrPThz9g6nz9wib550JokjOhz2uMLjJy9xckrA6pV9OXP2Drt3n2Pf/gvvFXuUKZ2DVKkSc+TIVU6dvkVo6D9bfzg62uLunoUSxbJSpEhm7O3fX7kgNsuSOQU5sqfmwsW7bNzkScsWZUwdUoRs2HiCx09e4pIsIdWq5gs/bmlpQZPGJahcKQ9//LmDjZs82b79NAcOXKR0qRzs2n2W4OBQ7Gyt6NKlCnXrFMbMLH7sOmwwGGjTqiy9+85nzdqjNG9WikSJ7KOs/63bTjHyl1WEhoZRoXxuBg1sGF781LRJSXLnSsPAwcvw9n5Cp84z+P67atStUwSDwcDBQ5cJCgrBLXUSMmZ0jbKYRERERERETK1r167MnDmTJk2a8MMPP+Ds7Mz169dZtmwZs2bNwtzcnGnTplG8eHEKFizIkCFDyJ07N2ZmZhw/fpzLly9ToEABk8Qe6b+Gt23bRoUKFd47Xr58ebZt2wZAtWrVuHnz5pdHJyIiIiIiIu9ZtvwQwcGh5Mmd5j/fvE+XzoWZf3ShWdOSGAwG1m84Tpt2U/D19YvhaL8uK1a9Wb2jcqW8ODl9+tMd0SFpEkeqV3vzIsOCBftMEkN0Wb/hOADVq+XHxsaKIoUz0b9fPTau/4kJ49tQs0ZBHB1t8fX1Y+26Y0yZuoUTnjcIDQ0jTZqkNGtakmlTO7Bx/U8MHtiI8uVzx7nijrfq1i0CwNp1xwgJCTVxNJ8WFBTCwkVvvh9btCiNpeX7nzlydnagf796zJrZhZw53QgICGLrtlMEB4fi7p6FRQt7UL9e0XhT3PFW0aKZyZo1Ja9fB7Ns+aEo63ftumMMH7GS0NAwqlcrwOBBjd5bVShnTjfmz+1GieJZCQoKYdxv6xk0eBl+fq/Dt2cpr+1ZREREREQknkmRIgWHDh0iNDSUSpUqkStXLnr06IGTk1P435wZMmTg1KlTVKhQgf79+5MnTx4KFizI5MmT6dOnD8OHDzdJ7JFewcPZ2ZkNGzbQs2fPd45v2LABZ2dnAPz8/HBwiBvLg4qIiIiIiMQlL174s3btUQBafOJT+1ZWFnT9tipFi2Zm6LAVeHk95tdx6xgxvInerIsGjx49Z+/eCwA0qO9u0liaNS3Fho0nOHL0Kpcv3yNr1pQmjScqPHr0nCP/2y6iZo1C75yzsDCnSOFMFCmcib59auN58ia795zj8eOXFCyQgRLFs5I6dRJThB1typfLxZSpm3nwwJe1646Z/HvuUzZt9uTvv1+QNKkjNap/fHWbbFlT8cf0Tmzbfprt289QpXJeKlbME29/bhkMBtq0LseP/RayapUHzZqWxNHR7ov6XP7XISZO2gRAg/pF6dG9xn8Wxjg62jFmdAuW/3WIqdO2smv3OS5fucejR88Bbc8iIiIiIiKm0bp1a1q3bv3e8Xnz5r1ze+/eve+1uX379nvHjEbjO7czZcrE6tWrPxpD8uTJmTx5MpMnT/5ouw+N9yFlypR5L47IinSBx8CBA+nSpQt79uyhcOHCABw/fpzNmzczY8YMAHbs2EHp0qU/1o2IiIiIiIh8hpWrPPAPCCJTxuS4F80coWsK5M/A2NEt6NBpOnv2nmfHjjNUqpQ3egP9Cq1Ze5TQ0DDy5U1HpkzJTRpLypTOVKiQm23bTrNg0V5+GdHMpPFEhY2bThAWZiRf3nS4uf13sca/iz3iM2trSzq0r8iv49Yxa/ZOKlXM88VFAZ9iNBoJDAqO9HXBwSEsWPi/1Tual8bK6tMvRxkMBqpUzkeVyvk+2TY+KFE8K5kyJufadR+W/3WIDu0rfnZf8+bv4c+ZO4A3xV7fdqn8yeIYg8FA429KkCtnGgYMWsq9e08BSJcuGenTu3x2LCIiIiIiIhK1Ir2mZYcOHdi3bx8JEiRg9erVrF69Gjs7O/bt20e7du0A6N27N8uXL4/yYEVERERERL5m/v6B/LXizRYgLVqUjtSn2bNmTUnbNuUA+G38+vBPZkvUCAwMZt36YwA0aBA7VlJo0ezNBy/27bvI7duPTBzNlwkNDWPDRk8AatUq9InWX4+aNQqSPr0LL14EMHvOrijr12g08vjxC44fv85fKw4zZuwaOnf5gyrVRlCl6ki2brtJSGjEt4XZvOUUDx/6kiSxAzVrfHz1jq+VwWCgdeuyAKxY6cHLlwGR7sNoNDLjj23hxR0d2leIUHHHv+XIkfrNli0lsgFQq6byTUREREREJDaJ1AoewcHBdOrUiYEDB7J06dLoiklEREREREQ+YP2G47x4EUCqVIkpWyZnpK9v0bw0hw5d5uIlb34ZvZoJv7WOt1sexLSdu87i6+uPS7KElPzfG6Omlj69C6VKZmf/gYssWryfAT83MHVIn+348es8fOiLg4MtZUrnMHU4sYaFhTk9vq/O9z3msHrNUerWKULatMk+q69Dhy9z8OAlbt16xK3bjz5aYHDm7N8MHLSckcObYm1t+dF+Q0JCWbBwLwDNmpX6ZPuvWelS2UmXLhm3bj1i5SoP2rQuF6nrp03fyuIlBwDo1rUqTZuU/Kw4HB3tGDOqefiWOiIiIiIiIhJ7RGoFD0tLS1atWhVdsYiIiIiIiMh/CAoKYcnSgwA0b1YKc/NIL8iIhYU5AwY0wMrKgmPHrrFm7dGoDvOrZDQaWbHSA4B69YpiYWFu4oj+0bJlGQC2bT+Nj88z0wbzBdZvOA5Alcp5VSDw/xQsmJESJbIRGhrG5CmbP6uPffsv0veHBaxbf5yz5+7w8mUAZmYG3FInoXSp7LRqWYYhg79h/tzvGD70GywsDBw+fIUeveZ+cqWJrdvefO85O9tTW6uvfJSZmRmtW71ZxWPZ8kP4+QdG+NqVqzzCizv69K712cUdbxkMBpIlS6giQBERERERkVgm0q8I1qlTh7Vr10ZDKCIiIiIiIvJftm47xePHL0iSxJEqlfN9dj9p0yTj2y5VAJgydQt37z6OqhC/WufOeXH16n2srCxi3XYG2bOlolChjISGhrF4yX5Th/NZnj59yYGDlwBtz/JfvutaFQsLczyOXMXD40qkrr1//ym//LISgHJlczJk8DcsmPcdu3YMYdnSXoz6pTmdOlaiUsU8ZMqUnFKlstOoQVYSJLDmzJnbdO02k8ePX3yw75CQUOYv2ANA0yYlsbGx+rKJfgXKlc2Fm1sSXr4MYNWqIxG65tDhy/w+cSMAnTtVol7dotEZooiIiIiIiJhQpAs8MmXKxLBhw2jQoAGjRo1i0qRJ73yJiIiIiIhI1AoNDWPR4jdvzjdtUgIrq0jttvmeBvWLUqBAel6/Dmb4yJWEhoZFRZhfrRUrDwNQuXJeEia0M3E072vVogwAGzd58uTJS9MG8xk2bT5JaGgYOXKkJkN6V1OHEyulTp2Ehg3cAZg0ZTMhIaERui44OISBg5fx8tVrcuRIzZDB31CpYh4yZkz+0ZVSUqd2ZNLvbXF2tuf6jQd0/vZPvO89ea/djh1nuHfvKU5OdtStU+TzJveVMTc3o1XLt6t4HCAgIOij7a9cvc+gwcsICzNSs0ZBWjQvHRNhioiIiIhIHBEWptd84qKPPW6RflVw9uzZODk54enpiaen5zvnDAYD33//feQjFBERERERkf+0Z+95vL2f4OhoGyUrRJiZmfFz/wa0aDWR8+e9WLzkAC1b6E3Bz/Ho0XP27rsAQMP67iaO5sPy5UtHzpxunD/vxbLlh+j6bRVThxRhRqORDRtPAMS61VFim9atyrJl60nu3PmbNWuP0rBBsU9eM236Ni5d8sbBwZbhQ5tEanuhjBld+WN6Z3r0msO9e0/p3OUPxv/WmsyZUgBvCtPmzX+zekeTxiWxtdXqHRFVsUJu5szdxb17T1mz9uh/brfy6NFz+v6wgICAIAoWyEDfPrW1pYqIiIiIiABgZWWFmZkZ9+/fJ2nSpFhZWenvhTjAaDQSFBTE33//jZmZGVZW7/8tHekCj1u3bkVJcCIiIiIiIvJpRqORhQv3AdCoYTHs7KyjpF9XVyd69qjJiJErmTV7J+5FM5MpU/Io6ftrsnrNUUJDw8iXNx0ZM8bO+89gMNCqRRn6/riANWuO0KJ5KRwdY99KIx9y8tRNvL2fYGdrRflyuUwdTqzm4GBLx/YVGTtuHbNm76JSxY+vKLNv/0WW/3UIgIE/N8DV1SnSY6ZM6cyMaZ3o1Xse16770LXbTMaObkG+fOnZtessd/9XmFavnrYMiQwLC3NatSjDL6NXs2TpAerXK/reiip+/oH0/WEBjx+/IF3aZIwc0TRSBToiIiIiIhK/mZmZkS5dOnx8fLh//76pw5FIsrOzw83NDTOz9zdk+bJ1fUVERERERCRaeRy5yrXrPtjZWtEgileIqFolH/v3X2T/gYsMG7GC2TO//eLtX74mgYHBrFt/DICGDWPn6h1vFSuWhYwZXLl+4wErV3nQtk15U4cUIevXHwegYsU8UVbcFJ/VqFGQVWuOcuPGA2bP3UWvHjU/2O7+/af88stKAJo2KUmJEtk+e8zEiR2YOqUDP/RbwOnTt+nZex5DBjdi7r9W70igxy7SqlTJx5x5u3nwwJd164/TqOE/K7KEhIQyaNBSrl33wdnZnnG/tsLBwdaE0YqIiIiISGxkZWWFm5sbISEhhIZGbCtPMT1zc3MsLCz+c8WVz3rlztvbm/Xr1+Pl5UVQ0Lt7gY4fP/5zuhQREREREZEPWLBgLwC1axeO8lUXDAYDP/xQh7Pn7rx5Q3jOLrp0rhylY8RXYWFhbNx4gufP/XFxcaJE8c9/gzwmGAwGWrYsw6DBy/hrxWEaf1Mi1hdMPH/uH779Ta1a2p4lIiwszOn+fXW+7z6bNWuOUrd2YdKlc3mnTXBwCAMHL+Plq9fkyJGazp0qffG49vY2TPitDYOGLOPAgUv89PMSABzsbWhQX6t3fA4LC3NaNi/N2HHrWLR4P7VrFcLa2hKj0ciE3zficeQq1taWjB3TkuTJE5k6XBERERERiaUMBgOWlpZYWlp+urHECZEu8Ni1axe1atUiffr0XL58mZw5c3L79m2MRiP58+ePjhhFRERERES+SqfP3OLsuTtYWprTuHGJaBnDOZE9/X6sS7/+i1i8ZD/Fi2Uld+400TJWbLBi5WHWrj1GypTOpEvnQtq0yUifLhlp0iTFxub9fU3fevbsFRcveXPx4l3OX7jL5UvevHz1GoD69YrGia0RypbJSapUifH2fsK69cdpEk3fU//FaDQCRHjP363bThEcHEqmTMnJmiVldIYWrxQskIGSJbNx4MAlJk/ZwvjfWr9zftr0bVy65I2Dgy3DhzaJsu9da2tLRg5vythf17JxkycA33xTnAQJbKKk/69RtWoFmLdgL48ePWfTZk/q1S3K8r8OsWbtUQwGA0MGNSJ7tlSmDlNERERERERiUKQLPPr370+fPn0YOnQoDg4OrFq1imTJktGsWTOqVKkSHTGKiIiIiIh8lebN3wtAtar5SZrEMdrGKVUyO9Wq5mfzlpMMH7mC+XO/i/WrO3yOe/eeMmXqFoKDQ7l1+xEHD10OP2cwGEiePBHp0yUjbdpkpEubjBcvA7h48S4XLnpz//7T9/qzsrIgX9501KldOCan8dnMzc1o0bw0o0avZunSA9SrWwRr6+j/BI+PzzO2bD3J5i2nePbsFfXrFaVVq7If3bbDaDSGb89Sq2ahCBeFyBvdvq2Kh8dVjhy9ymGPKxRzzwLAvv0XWf7XIQAG/twAV1enKB3XwsKc/v3qkTZtMm7efMg338RsEVF8Y2VlQfNmpRg/YQMLF+4joaMdk6dsAaBb16qULp3DxBGKiIiIiIhITIt0gcelS5dYunTpm4stLAgICMDe3p5hw4ZRu3ZtunTpEuVBioiIiIiIfG1OnrzJsWPXMDc3o1mzUtE+Xo/uNfD0vMG9e0+ZOm0rffvUjvYxY9r0GVsJDg4lb960lC+bi5u3HnH79iNu3X6Ir68/9+8/5f79p+8UfvxbmjRJyZE9NdmzpyJH9tRkyOAaJ1bu+LcqlfMye84uHj16zpYtJ6lTp0i0jBMQEMTevefZtOUkJ0/efOfcosX72br1FF26VKFypTyYmZm9d/35817cuv0Ia2tLKlfKGy0xxmepUyehUcNiLFl6gEmTN1G4UEYePXrOL7+sBKBpk5KUKBE92woZDAaaNikZLX1/jWrWKMiCBXt5+Og5AwcvA6BunSI0/qa4iSMTERERERERU4h0gUeCBAkICgoCIHny5Ny4cYMcOd58YuDx48dRG52IiIiIiMhXyGg0Mn3GNuDN6gWpUiaO9jHt7W34+ecGfN99NmvXHaNqlXzkzOkW7ePGlLNn77B7z3nMzAz07lmLDBlc3zn/9Nkrbt96xK1bD7l1+xG37/yNrY3Vm2KOHKnJljUVDg62Joo+6lhaWtC0SUl+n7iRRYv3U6NGwSgrUgkLC+PM2Tts3nySPXvO4R/w5rUDg8FAgfzpqVYtP7Y2VkyZtoV7954yfMQKVq85Qs8eNd/bZmLdhjerd5Qvlwt7e23x8TlatyrL5i0n8fJ6zPK/DrF7z3levnpNjhyp6dypkqnDkwiytrakWbNSTJy0CQD3opnp2aOGVrURERERERH5Sr3/MZn/MGzYMPz8/ChatCgHDx4EoFq1avTu3ZuRI0fStm1bihYtGqnBp0+fTu7cuXF0dMTR0RF3d3e2bNkSfv7169d07dqVxIkTY29vT/369Xn48OE7fXh5eVG9enXs7OxIliwZffv2JSQkJFJxiIiIiIiIxCb791/kwsW72NhY0rZNuRgbt2CBDFSrlh+j0civv60jJCQ0xsaOTmFhYUya/ObN0Zo1Cr5X3AHgnMie/PnTU7++O31612bKpPb8OrYlbVqXo3ChTPGiuOOtWjUL4uRkx32fZ+zafe6L+wsODmH+gr00ajyert1msmmzJ/4BQaRM6UyH9hVYuaIPkya2o0rlfJQunYPFC3vQpXNl7GytuHDhLu07TGPkL6t4+vQlAK9evWbXrnP/i7XQF8f3tbK3t6Fjh4oATJ22lUuXvHFwsGX40CZxbuWZr13tWoXImiUlefKkZdgwPX4iIiIiIiJfswgXeAwdOhQ/Pz/Gjx9PkSJFwo+VL1+e5cuXkzZtWmbPnh2pwVOlSsXo0aPx9PTkxIkTlCtXjtq1a3PhwgUAevbsyYYNG1ixYgX79u3j/v371KtXL/z60NBQqlevTlBQEIcPH2b+/PnMmzePQYMGRSoOERERERGR2CIkJJQZf24H4JtGxUmc2CFGx+/apQoODrZcu+bDqtVHYnTs6LJz51kuXvLGztaKDu0rmDock7OxseKbRiUAmPHHdl69ev1F/U2dtpU//tzO/ftPsbOzpmbNgsyY1om/lvWmTetyJHdN9E57KysLWjQvzdKlvahaJR8AmzZ70qjxeJYsOcCmzZ4EBgaTNm1ScuWKP6vImELNGgXJ+K+CpoE/N8DV1cl0AclnsbGxYs7srkyf2pEEdtamDkdERERERERMKMJbtBiNRgDSp08ffixBggTMmDHjswevWbPmO7dHjhzJ9OnTOXLkCKlSpWL27NksWbKEcuXefGJt7ty5ZMuWjSNHjlC0aFG2b9/OxYsX2blzJy4uLuTNm5fhw4fz448/MmTIEKysrD47NhERERGRr8GixfvZt+8CJUtmp2qVvCRNmtDUIX31tm49xZ07f+PoaEuzpqVifPxEiezp0rkyY39dy8xZOylXLhdJkzjGeBxRJTAwOHy7mxYtyuDsHLMFM7FVwwbubNh4gvv3nzJx0iZ+/qn+Z/Vz+swtVqz0AKBXz5rUqF4AG5uI/S2eNIkjAwc0pG6dIoz/fQOXL99jyrR/VvWsVbOQtqH4QubmZvTtU5sf+i2kYQN3SpTIZuqQREREREREROQLRLjAA4jWF1ZCQ0NZsWIFfn5+uLu74+npSXBwMBUq/PPpqqxZs+Lm5oaHhwdFixbFw8ODXLly4eLiEt6mcuXKdOnShQsXLpAvX74PjhUYGEhgYGD47RcvXgAQHBxMcHBwNM1QJG55mwvKCRHTUR6KxA7xORcvXfJm+oxtGI1GLly8yx9/bqdggfRUqZKPkiWyYm1taeoQvzqBgcHMnL0TgObNSmJtbW6S772qVfKwceMJLl7yZuLEjQwe1DDGY/j/PjcXFy/Zz8NHz0mWLCH16xWOl7n8OSwtzej3Yx2695jLps2eFC+WmeLFs0aqj9evgxj5yyqMRiPVquajdq2CQOQfoyxZkjN9anu2bjvDzJk7efrsFZaW5pQvn1OPVxTImjUF69f+CETNc1l8fl4UiSuUhyKxg3JRJHZQLkac7iOR+MFgfLs0xyeYmZmRMGHCTxZ5PH36NFIBnDt3Dnd3d16/fo29vT1LliyhWrVqLFmyhDZt2rxTiAFQuHBhypYty5gxY+jYsSN37txh27Zt4ef9/f1JkCABmzdvpmrVqh8cc8iQIQwdOvS940uWLMHOzi5S8YuIiIiIxEVhYUYWLDrPw4f+uLk5Ygwzctf7Zfh5KytzsmVNTK6cSUiRwl6foo8hR4/5sHefFw4OVnRsnwcLiwjvqhnlHj70Y/7C8xiN0KhhVtKljXuru7x6FcTMWWcICg6jZvUMZM+exNQhxTp79npx7LgPdnYWtGuTGzu7iBd27dp9hxOeD7C3t6Rdm9zY2ETqMyQfFBgYwpmzf5PY2YYMGRJ9+gIRERERERGJEH9/f5o2bcrz589xdIy7K3WKfO0i9erL0KFDSZgwal/Uy5IlC6dPn+b58+esXLmSVq1asW/fvigd4//r378/vXr1Cr/94sULUqdOTaVKlfQDTeR/goOD2bFjBxUrVsTSUp/eFTEF5aFI7BBfc3H1mqM8fOiPvb0NEyd0wtnZnnv3nrJt+2m2bTvDg4e+nDn7iDNnH5E6dWKqVM5LjeoFcHJKYOrQ462XrwKYNmMiAN92qUa1qh9ekTAmvfKzZ+WqIxz2+Jv27RtgbWW6HPicXPx13HqCgsPIljUlvXo1x8zMdAUzsVX5CsF06vwnt2494vTZAIYPrRWhgq5z57zwPHkMgIE/N6Jo0cxRFlPdulHWlUSD+Pq8KBKXKA9FYgflokjsoFyMuLc7GohI3BapAo/GjRuTLFmyKA3AysqKjBkzAlCgQAGOHz/OxIkT+eabbwgKCsLX1xcnJ6fw9g8fPsTV1RUAV1dXjh079k5/Dx8+DD/3X6ytrbG2tn7vuKWlpX74i/w/ygsR01MeisQO8SkXHz9+wazZuwDo3KkSLi5vPiWfNq0LnTpWpkP7ipw6fYvNm0+yZ+957t59wsxZu9i46STz536Hvb2NKcOPt/76aw8vXwaQNm1SqlcrgIWFualDolPHSuzdewFv7yf89ZcHbduUN3VIEc7FGzcesHnLSQC6f1/jg38Dypv7c9DARrTvMI0DBy6xa/cFqlb5eHFRYGAwY8aufbM1S7X8lCyZI4aildgkPj0visRVykOR2EG5KBI7KBc/TfePSPwQ4Y8vxdSSzGFhYQQGBlKgQAEsLS3ZtWtX+LkrV67g5eWFu7s7AO7u7pw7d45Hjx6Ft9mxYweOjo5kz549RuIVEREREYlrpkzdgp9fINmypaJ2rcLvnTczM6NA/gwMHNCQDet/4qf+9XFJlhAfn2eMG7/eBBHHf48fv2D5X4cA6NSxcqwo7gBIkMCG77+vDsCChfvwvvfExBFFjNFoZNKUzYSFGSlXNie5c6cxdUixWpbMKWjX9k3xzvgJ63n40Pej7f+cuYO73k9IksSR77tVj4EIRUREREREREQEIlHgYTQao3zw/v37s3//fm7fvs25c+fo378/e/fupVmzZiRMmJB27drRq1cv9uzZg6enJ23atMHd3Z2iRYsCUKlSJbJnz06LFi04c+YM27ZtY8CAAXTt2lWfzhIRERER+YATJ66zfccZzMwM9O1dG3Pzj/9JkMDOmhrVCzBsWBPMzc3Yvv0023eciaFovx5z5+0mMDCYHDlSU6pkNlOH847y5XJRqFBGgoJCGD9+Q7T8bRjVjhy5yvHj17G0NKdL5yqmDidOaN6sFDmyp8bPL5CRv6wiLCzsg+3OnbvDsuVvipF+/KEOjo62MRmmiIiIiIiIiMhXLcIFHmFhYVG+PcujR49o2bIlWbJkoXz58hw/fpxt27ZRsWJFACZMmECNGjWoX78+pUqVwtXVldWrV4dfb25uzsaNGzE3N8fd3Z3mzZvTsmVLhg0bFqVxioiIiIjEB0FBIYz77c0KHPXqFiFr1pQRvjZXTjdatSwDwLjf1uHz4Fl0hPhVunv3Mes3nADg286VY2z1xIgyGAz07lkLS0tzjhy9yp6952NsbKPRyO3bj1i95ghjf13H0aP3uXnr4UeLTEJCQpk8dTMADRsUI2VK55gKN06zsDBn4ICGWFtbcsLzBqvXHH2vTWBgMCNHrcJoNFK1Sj6KF8tqgkhFRERERERERL5eFqYcfPbs2R89b2Njw9SpU5k6dep/tkmTJg2bN2+O6tBEREREROKdJUsP4HX3Mc7O9nRoXzHS17duVZajx65x4cJdho9YweSJ7T+5Aoh82p+zdhAaGoZ70czky5fe1OF8kJtbElo0L82cubuZOGkTRYpkJoFd1K+aaDQauXPnb06eusmpU7c4eeomz575vdNm7/5puLg4Ucw9M8Xcs5I/f3psba3Cz6/fcJzbt/8mYUK78KIkiRg3tyR0/bYK4ydsYOq0rRQqlJE0bknDz8+avRMvr8ckSexA9+9rmDBSEREREREREZGvk0kLPEREREREJGbcu/eUefP3APB9t2o4OER+WwULC3MGD2pE69aTOX36NouXHKBli9JRHepX5fLle+zadQ6DwUDnTpVNHc5HtWhemm3bT3Pv3lNmz97F999Vi5J+nzx5yb79F/6zoMPKyoJcudzImiUFHkfO4+39iocPfVmz9hhr1h7DysqC/PnS4+6embx50jFr9k4A2rct/1nf51+7enWLcODAJY6fuM7w4SuYMb0TFhbmnD/vxdJlBwH4oa+2ZhERERERERERMQUVeIiIiIiIxHNGo5Hxv28gKCiEAgXSU7Fins/uK1XKxPToUZNfRq1i5qwdFC6UMVJbvci7Zvy5HYCKFfOQKVNyE0fzcdbWlvTuWYtefeaxYuVhqlXNR8aMXxazr68fLVtPeqeo421BR/586cmXLx3Zs6XGysqC4OBgUqUMply5Cpw9dxcPjysc9rjCgwe+HDl6lSNHr4b3kSZNUmrXLvxFsX2tzMzM+Kl/PVq0msTFS94sXLSPpk1KMnLUKsLCjFSpnI8SJbKZOkwRERERERERka+SCjxEREREROK5/fsv4uFxBQsLc3r3qoXBYPii/qpXy89hj8vs3XuBIcOWM29ON2xsrD59obzjhOcNjh27hoWFOR3aVTB1OBFStGhmypbJyZ695xk7bh0zpnXEzOzzt+mZPWcXz5754erqRM0aBd8p6PgvNjZWFC+WleLFsmI0Grl16xEeR65w+PAVzp67g9FopPt31bGwMP/suL52Li5O9OxRk+EjVjBn7m6uXffhzp2/SZzYgR7dq5s6PBERERERERGRr5YKPEREREQkWoSFhXH23B127znP+fNedGhXAXf3LKYO66vj7x/IhIkbAWjWtCRp0yT74j4NBgM/9q3L+fN38fJ6zOQpm+nbp84X9/s1CQkJZfqMbQDUqV2IlCmdTRxRxPXoXp2jR69y/rwXa9cdo17dop/Vz61bD1m77hgAP/9UnwL5M0S6D4PBQPr0LqRP70KzpqV4+TKAV36vSe6a6LNikn9UqZyXAwcusnffBfbuvQC83ZrFzsSRiYiIiIiIiIh8vVTgISIiIiJR5t9FHXv3nOfxk5fh54YM+4tFC7uTNImjCSP8+sydt5tHj56TPHkiWrUsE2X9Jkxox8CfG9C95xzWrD2Ge9EsX9W2DSEhofj6+uHr68ezZ348+9//39x+xYsXAbx+HUTA6yBeBwQT8DqIgIA3X69fBxEcHAqAra0VrVuVNfFsIidp0oR07lyZ8RM2MG3aVoq5Z8XV1SnS/UyZuoXQ0DBKlsz2WcUdH+LgYIuDg22U9PW1MxgM9O1TmzNnb/PsmR+VKuWl5FeU4yIiIiIiIiIisZEKPERERETki4QXdew+x969F94p6kiQwJqSJbJz48YDrl33YdSo1fw2rtUXbxEiEXPj5gOWLT8EQK+eNaN8G5VChTLS+JsSLFt+kF9Gr2bRgu9xdnaI0jFiE2/vJ4z8ZSU3bz3i5cuAL+7PYDDQvl2FOHmf1atbhJ07z3L23B1+HbeWcb9GLq+PHLmKx5GrWFiY0+3bqtEYqXyJRIns+XVsK/buPU/LFmVMHY6IiIiIiIiIyFdPBR4iIiIi8llCQkKZNXsXmzd7vlfUUapkdsqVzUWhQhmxsrLg1q2HtGk3lSNHr7Ju/XHq1C5swsi/DmFhYYwbt47Q0DBKl8pO8WJZo2Wczp0qceLEda7feMDIUasZN7ZlvCzgCQsLY/jIFZw75xV+zMzMgKOjHYkSJSCRUwKcnBKQKJE9Tk4JSJjQDltbK2xtrLCxtcLWxhIbWytsrC3/d9sKW1srrK0tTTirz2dmZka/fnVp3WYKHkeusm37aapUzheha0NCQpk8ZTMA9esXJXXqJNEZqnyh7NlSkT1bKlOHISIiIiIiIiIiqMBDRERERD6Dv38gAwYu5cjRqwDY29tQskS2d4o6/i1dOhc6d6rEpMmbmTxlMwULZiBVysSmCP2rMWv2Ls6cvYONjSXdv68RbeNYWVkwZPA3tG0/FQ+PK6xec5T69YpG23imsmbtMc6d88LO1orfJ7QlVarEODjYYm5uZurQTCZtmmS0bVOOGX9s5/eJGylcKGOEViNZt/44t24/ImFCO9q0KhcDkYqIiIiIiIiIiMQPX++rkSIiIiLyWXx9/fi++2yOHL2KtbUlgwY2ZOP6nxg4oCHFi2d9r7jjrUYNi5EvbzoCAoIYMWIloaFhMRz512PvvvPMm78HgL596uDq6hSt46VP78K3XaoAMHnKZm7dehit48W0R4+eM33GNgA6dapEzpxuODkl+KqLO95q2qQkmTIl58WLACb8vvGT7V++DGDW7J0AtG9bHkdH2+gOUUREREREREREJN7QK5IiIiIiEmE+Ps/o3OUPLl7yxtHRlskT21Glcr7/LOr4NzMzMwb83AA7WyvOnrvD0mUHYyDir8+tWw8ZMWIlAN80Kk7VKhHbNuNLNahflMKFMxEUFMLPA5fg7x8YI+NGN6PRyLjx6/H3DyRHjtTUqxv/Vif5EhYW5vzUrx7m5mbs2n2OffsvfrT9vPl7eP7cn7Rpk1JbWzWJiIiIiIiIiIhEigo8RERERCRCrl/3oVPnGXjdfYyLixMzpnciZ063SPWRPHkienR/s13IzFk7uHHjQXSE+tV6+TKAfv0X4R8QRP786en6bZUYG9vMzIxBAxqQJIkjt2//zegxazAajTE2fnTZs/c8Bw9ewsLCnH4/1tWqHR+QJUtKmjYpCcBvv63j5cuAD7bz9n7CipUeAHzXtRoWFuYxFqOIiIiIiIiIiEh8oFcnRUREROSTTp68SZeuf/L4yUvSp3fhzxmdSJsm2Wf1Vb16AUoUz0pwcCjDhq8gODgkiqP9OoWGhjFk2F/c9X6Ci4sTw4c2jvE30J2dHRgxrAnm5mbs3HWWlas8YnT8qPbiRQDjJ2wAoEXzUmRI72riiGKvtm3K4ZY6CY+fvGTK1C0fbDN12hZCQkIpUjgT7u5ZYjhCERERERERERGRuE8FHiIiIiLyUbv3nKNn77n4+QWSJ09apk/tSNKkCT+7P4PBwI8/1CVhQjuuXfdh9pzdURjt12vW7J14eFzBysqC0b80I1Eie5PEkTt3Grp1rQrApMmbOXfujkniiApTp2/h6dNXuLkloWWLMqYOJ1aztrakf796AGzYeIITJ66/c97z5A327b+IubkZ33WrZooQRURERERERERE4jwVeIiIiIjIf1q1+ggDBy0jODiU0qWy8/v4Njg42H5xv4kTO/BD3zoALFq8j/Pnvb64z6/Z3n3nmb9gLwD9+9UjS5aUJo2nUcNilC+fi9DQMH4euJSnz16ZNJ7PcfLkTTZsOAFAvx/rYm1taeKIYr88edJSv15RAEaPWUNAQBDwZnWZSZM3A1C7ViHSp3cxWYwiIiIiIiIiIiJxmQo8REREROQ9RqORmbN28Nv49RiNRurULsyI4U2j9E3usmVyUrlyXsLCjAwfsSL8zWCJnJs3HzJ8xEoAvvmmOJUr5TVtQLxZpaX/j/VImzYpjx+/YNDgZYSEhJo6rAgLDAxmzNg1ANSpXZi8edKZOKK4o3Pnyri4OHHf5xl/ztwBwJYtJ7l2zQd7exvat6tg4ghFRERERERERETiLhV4iIiISKzl8+AZv45bR6/e8/j78QtTh/PVuHL1Pt92/ZO58/YA0K5tefr2qY25edT/6tirR02SJnXkrvcTpk3fGuX9x3cvXgTQ76dFBAQEUaBAerp2qWLqkMLZ2Vnzy4hm2NpacfLkTWbO2mmSOF6+DGDGH9vo9t1M5s7bzYMHvp+8Zu68Pdz1fkKSxA58G4vu07gggZ01P/5vdZ6/Vhzm+PHr/PG/Qo/Wrcri5JTAhNGJiIiIiIiIiIjEbRamDkBERETk//N58IwFC/ayafPJ8E/9Dx32FxMntI2WIgN549mzV/w5cwfrN5zAaDRibW1Jj+41qF2rULSN6eBgy88/1adHz7msWn2EkiWzUbhQpmgbLz4JDQ1j6LDleHs/wdXVieFDm2BhYW7qsN6RNm0yfupXj4GDl7Fw0T5y5EhNqZLZY2TswMBgVq85yvwFe3jxIgCAk6duMWv2LgrkT0+1avkpUzoHNjZW71x3/boPi5fsB6B3r1rY29vESLzxSdGimalaJR9btp6iV595hIaGkTKlMw3qu5s6NBERERERERERkThNBR4iIiISa7wt7Ni4yZPQ0DAA8udPz6VL3pw8eZPFS/bTskUZ0wZpIhcu3OXSZW9srC2xsbXC1sYKaxtLbG2ssLG1xMbaCltbS2xtrbG1tfp0h/8SEhLKqtVHmDNnFy9fvQagQvncdP22Ci4uTtEwm3cVLpSJ+vWKsmr1EUb+soq5c7rhnMg+2seN62bO2onHkatYW1sy6pfmsXZlhPLlc3P+wl2W/3WI4SNWMHd2N1KlShxt44WGhrF9xxn+nLmDhw99AUibNinVqxXA48hVTp68yQnPG5zwvMG439ZTvlwuqlXNT+7caQgLMzJqzBpCQ8MoXSo7pUvniLY447vvv6vOkaNXefbMD4BuXathZaU/P0VERERERERERL6EXmETERERk/Pxecb8BXvZtPmfwo5CBTPStk058uRJy6bNnoz8ZRUzZ+0kX7705MrpZuKIY9aDB750/W4mQUEhEWqfMqUzBfJnoECB9BTInx5nZ4f/bHvs+DUmTtzErduPAMiUKTk9e9Qgb550URJ7RH3bpQrHj1/H6+5j+vSdz5RJ7bGzs47RGKLbgoX7mDtvN3nzpKV8uVyUKpUdR0e7SPfj5fWYHTvPsGDhXgD6/1iXLJlTRG2wUazrt1W4dMmbs+fu8NPPi/nzj87vrZzxpYxGI0ePXmPa9K1cv/EAgCRJHOnQvgJVq+TDwsKcZk1L4ePzjC1bT7J580nu+zxjw8YTbNh4glSpEpMxgyuXLnmTIIE1vXrVitL4vjYJE9rRt09tfh6wlEKFMlKqZDZThyQiIiIiIiIiIhLnqcBDRERETOZThR1vVauan2PHrrFj51kGD1nG/Lnf4eBga6KoY96s2TsJCgohRQpn0qRJSuDrIAJeB/M6IIjXgcEEBAQRGBjM69fBGI1G7t17yr17T1m/4TgA6dIlo0CBDBQskIF8edPh4GDLvXtPmTxlM/sPXATevBnbqWMlatYoaJJtcGxtrRg7piWduszg8uV7DBy0lDGjW8S6LUc+1/Pn/sybv5vAwGCOHrvG0WPXGPPrWgoWyEC5crkoVTI7CRN+uNgjJCSUc+fucPDQZQ4duozX3cfh5xp/U4JKlfLG0Cw+n4WFOcOHNaZ12ylcv/GAX8etY8DPDTAYDFHS/6XL3kydtpWTJ28CYG9vQ/NmpWnU0P29QpLkyRPRtk15Wrcqy5mzd9i8+SS795zD2/sJ3t5PAOjapQpJkzhGSWxfszKlc7J8WS+SJnGMssdaRERERERERETka6YCDxEREYlxjx49Z978PWzYeOKfwo5CGWnXpjy5c6d5r73BYKBvnzpcuHCX+z7PGPvrWoYNbfxVvGF4/boPW7aeAmDYkG/Inj31f7Y1Go28evWac+e98PS8gefJm1y75sOtW4+4desRK1d6YGZmIEMGV+7c+ZugoBDMzc2oV7cI7dpWwNHRtEUzbm5JGDe2Fd2+n4XHkauMHruGn/vXjxeP8+o1R3j9Opj06V2oUD43e/ac59p1n/Bij7H/r9jDzMzAkaNXOXToMh5HrvLyZUB4XxYW5uTLm46yZXNSs0ZBE84qcpImTcjwoU34vsdstmw9RY4cqalXt+gX9enn95qxv65lx86zAFhamlO/njutWpb5z4KZt8zMzMiXNx358qajZ48a7Nt3gR07z+Lq6kStWoW+KC75R6qU0bcdj4iIiIiIiIiIyNdGBR4iIiISY54+fcmChftYu+5Y+HYjhQpmpF3bDxd2/Ju9vQ1DhzSm87d/sGv3OQoXzhSn3tz+XNNnbMNoNFKubM6PFnfAm0IYBwdbirlnoZh7FuDNyhEnT90ML/i4c+dvrl3zAd7c992/r0769C7RPo+IypEjNSOGNaHfT4vYvPkkSZM40qljJVOH9UUCA4NZsdIDgJbNS1OpUl5atyqLl9djdu8598FiDyC8+AnerLDiXjQLJYpnpUiRTCRIYGOKqXyx/PnT07lTZaZN38qE3zeSJIkjpUpm/6y+goJC6PfTIjw9b2IwGKhcKS8dOlQguWuiSPdlZ2dN1ar5qVo1/2fFIiIiIiIiIiIiIhITVOAhIiIi0e7FC38WLznAipWHef06GIC8edPSsUNF8uZJF+F+cuRITccOFZk+YxsTft9ArpxupE2bLLrCNjnPkzfwOHIVc3MzOneq/Fl9JExoR9kyOSlbJicAfz9+wenTt0iUyJ4C+dPHytUxihfPSt8+tRk9Zg3zF+wlaVLHL17pwZQ2bzmJr68frq5OlCuXK/y4m1sSWrcq+8FiD4A0aZJSonhWShTPRs6cbibZOic6NGtaktt3HrF580kGDV7G+HGtyZ8/faT6CAsLY8TIlXh63sTW1orfx7chV66PF4mJiIiIiIiIiIiIxHUq8BAREZFo8+rVa5b/dYhlyw/i5xcIQPZsqejYsSKFCmb8rOKCZk1LcuLEDY6fuM6gwcuY+WcXrK0tozp0kzMajUybvg2AOrULkypV1GxzkDSJIxUr5ImSvqJTrZqFePz4BbNm7+K38RtI7OxA6dI5TB1WpIWGhrFk6QEAGn9TAgsL8w+2+3exx/37TwFIkcI5xuKMSQaDgX4/1OXlywAOHLjED/0WMmVSe7JmTRnhPqZO28rOXWcxNzfjl5HNVNwhIiIiIiIiIiIiX4X48TFAERERiVVevw5i4aJ9NGj0K7Pn7MLPL5BMGZMzdnQLZv7ZhcKFMn32yhFmZmYMHNAAJ6cEXL/xgKnTt0Zx9LHD7t3nuHTJGztbK9q0KWfqcEyiTety1KpZCKPRyOChyzlz5rapQ4q0ffsucO/eUxwdbSO8pVCKFM7xtrjjLQsLc4YNaUz+fOnw9w+kV5+53PH6O0LXLlt+kKXLDgLwU//6FCmcKTpDFREREREREREREYk1VOAhIiIiUSosLIwf+y1i+oxtvHgRQJo0SRkxrAlz53SlRIlsUbIlSJIkjgz4uQEAK1d6cPDgpS/uMzYJDg5hxp/bAWjatCTOiexNHJFpGAwG+vSuRYkS2QgKCuGHHxdw69ZDU4cVYUajkUWL9wPQoL47trZWJo4odrG2tmTM6BZkzZISX19/evScy8OHvh+9ZsfOM0yavBmALp0rU7VKvhiIVERERERERERERCR2UIGHiIiIRKkVKz04fuI6NjaWDPy5AYsWdKdcuVyYmUXtrx3F3LPwzTfFARg5ahV///08Svs3pXXrj3Pv3lOcne1p/E0JU4djUm9WeviGnDndePnqNb16z+PRo7jxWJ88dZPLV+5hZWVB/XpFTR1OrJQggQ2/jWuFW+okPHzoS49ec/H19ftg2xOeNxg+YiUADRq407xZqZgMVURERERERERERMTkVOAhIiIiUeb27UdMn7ENgO+6VaNq1fyYm0ffrxtdOlUmS+YUPH/uz9BhfxEaGhZtY8UUP7/XzJm7G4C2bcphZ2dt4ohMz8bGil/HtMTNLQkPHz2nV595vHwZYOqwPmnx4gMA1KhegERf6SosEZEokT2/T2hLsmQJuXPnb3r3nY+ff+A7ba5d86Ff/0WEhIRStkxOun9XPUpWAxIRERERERERERGJS1TgISIiIlEiJCSUYSNWEBQUQpHCmahTu3C0j2llZcHQIY2xtbXi5KlbzJ6zC6PRGO3jRqclSw/g6+uHW+ok1KpZyNThxBoJE9ox4bc2JE7swM2bDxky7C/CwmJvQc+1az4cOXoVMzMDjRt/3auwRISrqxO/j29DwoR2XLrkTf/+iwgKCgHAx+cZvfvMw98/kHx50zFoYMNoLRwTERERERERERERia1M+sroqFGjKFSoEA4ODiRLlow6depw5cqVd9q8fv2arl27kjhxYuzt7alfvz4PH76797qXlxfVq1fHzs6OZMmS0bdvX0JCQmJyKiIiIl+9BQv3cvnyPRzsbfipf70Y+3S9m1sSeveqBcC8+XsYPmIlr18HxcjYUe3x4xcsXXYQgE6dKmFhYW7iiGKX5MkTMW5sS6ysLPDwuML8BXtNHdJ/Wrz0zeodZcvkJFXKxCaOJm5ImzYZv41rjZ2tFSc8bzBk2HKePntFz95zefzkJenTuzB6VHOsrS1NHaqIiIiIiIiIiIiISZi0wGPfvn107dqVI0eOsGPHDoKDg6lUqRJ+fv/su92zZ082bNjAihUr2LdvH/fv36devXrh50NDQ6levTpBQUEcPnyY+fPnM2/ePAYNGmSKKYmIiHyVLl32Zu68PQD07l2bpEkTxuj4Vavko1vXqpibm7F12yk6dJrB3buPYzSGqDBn7m5evw4mR47UlCmdw9ThxEpZsqSkT+/aAMyavYujx65Faf9Go5EXLwK4cvU++/ZdYPlfh5g8ZQvHjvsQGBQcoT58Hjxj166zADRrWipK44vvsmdLxehRzbG0NGfv3gs0aTIeL6/HJEuWkPHjWuPgYGvqEEVERERERERERERMxsKUg2/duvWd2/PmzSNZsmR4enpSqlQpnj9/zuzZs1myZAnlypUDYO7cuWTLlo0jR45QtGhRtm/fzsWLF9m5cycuLi7kzZuX4cOH8+OPPzJkyBCsrKxMMTUREZGvRmBgMMNHrCA0NIxyZXNSsULuGI/BYDDQtElJsmVNycDBy7hx4wFt209lwE8NKB1HCiXueP3Nho0nAOj6bZUYWwElLqpRvQDnz3uxfsNxhgxdztzZ3XB1dYp0P8+f+7Nt+2nu3XuCzwNfHvg8w+fBM/z8Aj/Y/tatPxjwcwOyZ0/90X6XLz9EaGgYBQtkIGvWlJGO62tXsGBGhg1pzM8Dl/Dy1Wsc7G0YP641yZLFbOGYiIiIiIiIiIiISGxj0gKP/+/58+cAODs7A+Dp6UlwcDAVKlQIb5M1a1bc3Nzw8PCgaNGieHh4kCtXLlxcXMLbVK5cmS5dunDhwgXy5cv33jiBgYEEBv7zwv2LFy8ACA4OJjg4Yp/MFInv3uaCckJiI6PRyPoNJ7h4yfuTbS3MzSlfLif586ePgciiVlzJw+kztnL79t84O9vTvXs1k26TljNnamb92ZnBQ//i3Dkv+v+8mCaNi9O+fXkszGP3difTpm8lNDSMYsWykCN7qlj/uJtat26VuXzZm6vXfPh5wGImTWyLlVXEf7X1vveEPn0X4uPz7IPnEyVKgKuLE66uTjg727N160lu3/mbjp1n0Pib4rRuXQZrq/e3Cnn+3J/1G44D0PibYnocP1OxYpkZ8HN91q8/QYf25Umd2ln3pcSZ50WR+E65KGJ6ykOR2EG5KBI7KBcjTveRSPxgMBqNRlMHARAWFkatWrXw9fXl4ME3e88vWbKENm3avFOMAVC4cGHKli3LmDFj6NixI3fu3GHbtm3h5/39/UmQIAGbN2+matWq7401ZMgQhg4d+t7xJUuWYGdnF8UzExGRqBQaGsbWbbc4fyFy22/kyJ6EcmXdsLN7/w1Z+XxeXi9YuvwSAA3qZSZDhkQmjuiN0NAw9u2/y/ETDwBIndqBWjUyYm8fvSt7GY1GXr8Owd8/BP+AYPz9QwjwDyYs7OO/br0ODOXAQW8MBmjbOhdJkuj3kYjw9X3N/IXnef06lHx5k1GpYroIXefz4BUrV13B3z+EhAmtyZrFmYSO1jgmtCZhQmsSOlphafluQVBAQAg7d93m4qUnACRObEO1KhlIkcL+nXaHPe5x4KA3yZLa0bpVTq3EIiIiIiIiIiIisYK/vz9Nmzbl+fPnODo6mjocEflMsWYFj65du3L+/Pnw4o7o1L9/f3r16hV++8WLF6ROnZpKlSrpB5rI/wQHB7Njxw4qVqyIpaXeEJfYISAgiMFD/+L8hceYm5nRsKE7CRPafvQab++nbN5yigsXH3PX24/OHStStWo+zMzMYijqzxeVeejj84xEiRJgYxN1BQ5+fq9p22468GbLjO++qxVlfUeFmjVh774LjBm7jrt3X7Lsr+sMGdyQ3LnSREn/u3af4+DBy/j6+vHM14/nvv48f+5PaFjYZ/dZrWp+WrasHSXxfS3SZ8hFv/6LOXX6EVWrlqBypTwfbX/8xA0mTV5GwOsQMmdKzpjRzXF2tv/oNW9zcdLELhw9eoPfxm/gyZNXLF56kW8aFaNNm7JYW1kSGBjMHzMnANCxY1WTbFckEp/p91OR2EG5KGJ6ykOR2EG5KBI7KBcj7u2OBiISt8WKAo9u3bqxceNG9u/fT6pUqcKPu7q6EhQUhK+vL05OTuHHHz58iKura3ibY8eOvdPfw4cPw899iLW1NdbW1u8dt7S01A9/kf9HeSGxha+vH336zufiJW+srS0ZMbwJxYtljdC1desUYczYtVy77sPYcevZtuMsP/SpTbp0Lp++OBb4kjz0efCMadO2smv3OZyc7GjapBT16hbBzu7958HImj5jAw8e+pIieSK6d68RK39WVKyQl8yZU/LTT4u5dfsRPXrOo+u3VfimUfHPXlnBaDQyb/4eZs7a+Z9t7O1tSOSUAKdECUiYMAFWlp/eHiaBvQ1dOlWOlfdjbFayRHbatC7LnLm7+W38BrJmSUnGjMk/2Hb7jjOMGLmSkJBQChbIwKhRzUkQiVywtLSkbNlcFCiQgQkTN7Jt22mWLjvEYY+rDPipAVeu3sPX1w9XVycqVcyLhUXs3hZIJK7S76cisYNyUcT0lIcisYNyUSR2UC5+mu4fkfjBpAUeRqOR7777jjVr1rB3717SpXt3We0CBQpgaWnJrl27qF+/PgBXrlzBy8sLd3d3ANzd3Rk5ciSPHj0iWbJkAOzYsQNHR0eyZ88esxMSEZFo4ePzjJ695+Ll9RhHR1vGjW1FzpxuEb4+e/bUzJ71LStWejBz1g7OnLlNqzZTaN6sFK1alsHaOv79YhsQEMTiJftZtHg/QUEhAPj6+jNt+laWLN3/xYUeBw9eYsPGExgMBn7+uUGk3iSPaWnckjLzzy6MGbuGHTvPMmnyZi5e9KZ/v3rY2kZuRROj0cjUaVtZsvQAAA3qFyVHDjcSJUqAk1MCEjn9r6DDKlbU0H412rQux/kLdzl27Bo/DVjCnFldsbe3eafNsuUHmTR5MwAVyudmwM8NPvtxcnS0Y/DARpQrm4uxv67lzp2/6dRlRng+NWlcQsUdIiIiIiIiIiIiIhLlTLo+fdeuXVm0aBFLlizBwcGBBw8e8ODBAwICAgBImDAh7dq1o1evXuzZswdPT0/atGmDu7s7RYsWBaBSpUpkz56dFi1acObMGbZt28aAAQPo2rXrB1fpEBGRuOX6dR86dZ6Bl9djXFycmDGtU6SKO96ysDCnSeMSLF7Ug+LFshISEsq8+Xto0WoSx49fj4bITcNoNLJ9xxmaNJvAnLm7CQoKIX++dMyd3ZWBPzcgVarE4YUeDRr9ysJF+/D3D4zUGM+evWLUmNXAmzey8+VN94krTM/Ozpohg7+hV8+amJubsXPXWTp0mo6395MI9xEaGsav49aFF3d0/746vXrWonKlvBQulInMmVKQNGlCFXeYgLm5GUMGNcLFxQlv7yeMGLkSo9EI/FOU87a4o1HDYgwZ3ChKHqeSJbKxeGF3KlfOS1iYkVevXuPoaEuN6gW/uG8RERERERERERERkf/PpAUe06dP5/nz55QpU4bkyZOHfy1fvjy8zYQJE6hRowb169enVKlSuLq6snr16vDz5ubmbNy4EXNzc9zd3WnevDktW7Zk2LBhppiSiIhEoVOnbvJtt5k8fvKS9Old+HNGJ9KmTfZFfSZ3TcTYMS34ZWRTkiZ1xNv7Cd17zmHo8L8iXegQ21y+fI8u3/7JkKHLefToOcmTJ2LkiKZMntSeLFlSUrVqfpYs6sHAAQ1J/b9Cj+kztlG/YcQKPQIDg3n40Jexv67l2TM/0qVLRof2FWJodl/OYDDQoL47Uyd3IHFiB27efEjb9lM5dPjyJ68NCQll+IgVrF13DIPBQL8f6/JNo+IxELVElJNTAkaOaIqlpTn7D1xk8ZIDhISEMmLkShYv2Q9Al86V6f59dczMou5X4LereYwZ3YI8edLSp3ftSK8MIyIiIiIiIiIiIiISESbfouVTbGxsmDp1KlOnTv3PNmnSpGHz5s1RGZqIiJjY3n3nGTL0L4KCQsiTJy1jRrXA0dE2Svo2GAyUKZ2TQgUz8ufMHaxcdYRt205z795Tfvu1FQ4OUTNOTHny5CV//LmdTZtPYjQasbGxpGWLMjRpXOK97WcsLMypWiUfFSvkZsfOs8ybt5u73k+YPmMbS5YeoHatwpiZGXj27BXPnvnxzPd//z57hZ/fPwUg5uZmDBrYKE5ub5M7dxrmzO7KgIFLOHfOix9+XEi7tuVo3arsB9/4DwwMZtCQZRw4cAlzczMGD2pEhfK5TRC5fEr2bKno2b0GY8etY8Yf29h/4CLnz3thbm5Gvx/rUr1agWgbu2SJbJQskS3a+hcRERERERERERER0RriIiLyUQEBQbx+HUSiRPYxMl5oaBhr1x1j/IQNGI1GSpXMztAh30RLIUGCBDb07FGT8uVy0/fHBZw/70W372cxYXwbnGNovp8rLCyMM2fvsHnzSXbvOUdAQBAAlSvn5dvOlUmaNOFHr/+vQo8FC/d+8rrEiR1o3648WTKniKLZxLykSRyZMqk9EydtYvWao8yavYtLl+4xaGDDdwp8AgKC6Nd/EcdPXMfKyoKRw5tSvHhWE0Yun1K7dmHOnfdiy9ZTnD/vhbW1JSOGN6F4MT1uIiIiIiIiIiIiIhK3qcBDRET+04sXAXToOI37Ps9o/E1x2rYpH+VbD4SGhnH9ug8nT93i1KmbnD5zm1evXgNQp3Zheveqhbl59O4oljt3GqZObk+PXnO5ds2Hb7v+yaTf25Es2ceLJEzh/v2nbNl6ii1bTnLf51n48WzZUtGjew1y5XSLVH//LvTYuessR49dwz6BDYkSJSBRInucE9mTKJF9+O0ECawxGAxRPS2TsLS0oE/v2mTLlopfx63j0OHLtO8wjVG/NCd9ehdevgygzw/zOXfOC1tbK8aOaUGB/BlMHbZ8gsFgoG+f2ty//5T7Ps8YObwpOSOZFyIiIiIiIiIiIiIisZEKPERE5IPCwsIYOvwv7no/AWDxkgPs2n2OPr1rU8w9y2f3+7GCjrcSJLCmRfPStGheOsaKCTJmTM60KR3p3mM2Xl6P6dL1Tyb+3pZUKRPHyPgf4x8QyKGd59i82ZOTp26FH7ezs6Z8uVxUq5qf3LnTfNF9ZWFhTpXK+ahSOV9UhBynVK9WgAzpXen/82Luej+hQ6fpdP++OqvXHOXq1fs42Nvw27jWKhKIQ2xsrJg2tSNhYcZoLxATEREREREREREREYkpKvAQka+S0WiMcNv4slpBZM1fsBcPjytYWVnwbZcqLF12kAcPfOnTdz7lyuake/caJE3iGKG+QkPDOH7iOps2eXL02LUPFnTkzZOOfPnSkT9fejJlSm6SN2Xd3JIwfVonvu8xG2/vJ3z77Z/8PqEt6dO7xHgsT5685Ny522zacoNJk08R8PrNFiwGg4GCBTJQrVp+SpfKjo1N1K6o8rXKmjUlc2Z9y6Ahy/D0vMnoMWsASJQoAb+Pb0umTMlNHKFElsFgwNz86/z5LSIiIiIiIiIiIiLxkwo8ROSrc+DgJUaNXo2vr98n2yZIYE2d2kVo2qQEiRLZx0B0scOx49eYNXsXAH1616ZG9QLUrFGQ2XN2sfyvQ+zec56jx67RuWMl6tQp8p/FGD4+z9i02ZNNmzx5+Oh5+PHYUtDxIa6uTkyf2pHuPedw8+ZDun43kwm/tSFr1pTRNuarV6+5fNmbi5fucenSXS5dvsejf91fAKlSJaZa1fxUqZwPV1enaIvla5YokT0TfmvDH39uZ/GSAyRLlpCJv7cljVtSU4cmIiIiIiIiIiIiIiKiAg8R+bqs33Ccsb+uJSwsYit4+PkFsnjJflat9qB+vaI0aVIS53he6PHggS+DhyzHaDRSq2YhalQvAICtrRXdulalUqU8jB27louXvPltwga2bD3Fjz/UDV/hIDAwmP0HLrJxoycnPG+Er5bi4GBL5cp5qVIpL1mypIw1BR0fkjixA9OmdKBn73lcuuTNd91n8evYluTNky5K+vfzD2TrlpOcv3iXS5e88fJ6/F4bg8FA2jRJSZgQ2rerSb586b/a1WRikoWFOV2/rUr16gVImsSRBAlsTB2SiIiIiIiIiIiIiIgIoAIPEflKGI1G5s3fw8xZOwGoUb0AXTpX/uQb5hcu3GX23F1cvnyPxUsOsGr1kXhd6BEUFMKAgUt4/tyfrFlS0rNHjffaZM6Ugj9mdGbtumPM+GMbFy9507b9VBo0cCcsNIxt20/z4kVAePtCBTNSo0YBSpXMjrW1ZUxO54s4OtoxaWI7fvhhAadO36Jnr3mMHtWcIoUzfVG/Dx740ueH+dy8+fCd48mTJyJ7tlRky5qKbNlSkjlLSqwszdi8eTO5crmpuCOGpU2TzNQhiIiIiIiIiIiIiIiIvEMFHiIS74WGhjHh9w2sXnMUgFYty9CxQ8UIvWFevHhWihXLwmGPK8ye826hR726RWnaNH4VekyctImLl7xxcLBl5Iim/1mQYW5uRv16RSlVKjsTJ25k957zLF9+KPy8S7KEVK9egOrVCpA8eaKYCj/KJbCz5rdxrfh5wBI8jlzlhx8X0LtXLWrWKPhZBReXLnvzw48LefLkJUkSO1C7dmGyZ0tF1qwpP7gFUHBwcFRMQ0REREREREREREREROIBFXiISLwWGBjMsOEr2LP3PAaDgZ49atCgvnuk+jAYDBQvlpVi7lnwOHKV2XN2cemSN0uWHmD1mvhT6LFl6ynWrD2KwWBgyKBGESrMSJrEkRHDm3Lo8GWWLj2Ak1MCalQvSKFCGWP1FiyRYWNjxehRzRk67C927znP6DFr2Lv3Aj/+UAcXF6cI97Nv/0WGDF1OYGAwGTK4Mm5sy0hdLyIiIiIiIiIiIiIiIl83FXiISLz16tVrfuy3kFOnb2Fpac7ggY0oVy7XZ/dnMBgo5p4F96KZ3yv02Lb9NNOndiRVqsRROIOYc/26D2N/XQtAm9ZlcXfPEqnrixfLSvFiWaMhstjB0tKCoUMaky3bQWbO2smRo1dp3nIi339XnRrVC3x0NQ+j0cjyvw4xecoWjEYjRYtkZviwxiRIYBODMxAREREREREREREREZG4Ln58vFpE5P/5+/ELvu36J6dO38LOzprxv7X+ouKOf3tb6DHrzy6M+7UVadIk5cmTl3TvOYe//34eJWPEpFevXvPTgCUEBgZTpHAm2rQuZ+qQYiVzczOaNS3FvLndyJEjNX5+gYwavZpevefx8KHvB68JCQnlt/HrmTR5M0ajkbp1CjN2TAsVd4iIiIiIiIiIiIiIiEikqcBDROIdL6/HdOo8g+s3HpA4sQPTpnagQP4MUT7O20KPqZPbkypVYnx8ntGj51yeP/eP8rGii9FoZMTIlXh7P8HFxYkhg7+JN1urRJe0aZIxY1onun1bFSsrC44eu0azFhNZv+E4RqMxvJ2ffyA/9lvI6jVvtr3p1rUqfXrXxsLC3ITRi4iIiIiIiIiIiIiISFylLVpEIikkJJQ7d/4mJDTsk21dXZxImNAuBqKSty5d9qZ3n3n4+vqTKlVifh/fhhQpnKN1TGdnByZOaEunLn9w6/YjeveZx8SJ7UhgZx2t436O4OAQbtx4yMVLd7l06R4XL97l1u1HWFqaM3JEU32/RpC5uRlNm5akWPEs/DJqNefPezF6zBp27zlPvx/qYmZmoO8PC7h23Qdra0sGD2pImdI5TR22iIiIiIiIiIiIiIiIxGEq8BCJIKPRyGGPK0ydtoXbt/+O0DVWVhbUqlWIFs1KkTRpwmiOUC5evEv3nnPw8wska9aUjPu1Fc6J7GNk7OTJEzFxQhu6dP2Ti5e86dd/IePGtsLa2jJGxv+QsLAwvLwec+mSNxcveXPpkjfXrvsQHBz6TjtzczP69q5N9mypTBRp3JU2TTKmT+3I8r8O8efMHRw7do3mLSdia2vFkycvSZQoAb+OaUn27KlNHaqIiIiIiIiIiIiIiIjEcSrwEImAa9d8mDxlMyc8bwBga2uFvb3NR68JDQ3j6dNXrFzpwfr1x6lVsyAtmpdWoUc0+XdxR968afl1bKsYX0EjXToXxo9rzffdZ+PpeZPBQ5YzYniTGNmSw2g08vDh8/CVOS5d9uby5Xv4+we+19bBwZZs2VKRPVsqsmVLRY7sqXB2doj2GOMrc3MzmjYpSfHiWRn5yyrOn/fC3z+QdGmTMe7XViRPnsjUIYqIiIiIiIiIiIiIiEg8oAIPkY/4+/ELZs7cwabNJzEajVhamtOoYXFatSzzyQIPo9GI58mbzJ69kzNn77By1RHWrT9O7VqFvppCD6PRyOkztwkLCyNnDrdoW83iwoW79Oj1T3HHuLGtsDPR9ijZs6dm9OgW9O4zj/0HLjJ67Bp+6lcPMzOzKB3H19ePS5e8uXT5n9U5nj3ze6+djY0lWTKnIOu/CjpSpnDGYDBEaTwCadySMn1qR9auPYrX3ce0b1cBBwdbU4clIiIiIiIiIiIiIiIi8YQKPEQ+ICAgiCVLD7B4yX5evw4GoHz5XHTpVJkUKZwj1IfBYKBggQwUyJ/+TaHHnF2cOXP7qyn0ePLkJaPGrObw4SsAWFqakyNHavLnS0++fOmirOAjNhV3vFWwQAaGDW3CzwMWs3nzSRwcbPm+W7UoKaoICQll+IgV7Nh59r1z5uZmZMzgSrb/FXJky5qStGmTxcgKIvKGubkZ9eu7mzoMERERERERERERERERiYdU4CHyL6GhYWzZeoo/Z+7g8eMXAOTM6cb33aqRM6fbZ/X570KPk6duMmv2u4UetWoWok3rsvFqi4w9e88z9te1PH/uj6WlOQkd7Xj85CWnT9/m9OnbMDdqCj5iY3HHW6VLZeen/vUZMXIly5cfIqGjHa1blf2iPo1GI2N/XRte3OHmluSfrVaypiJTpuTRtkqKiIiIiIiIiIiIiIiIiJiWCjxE/uf0mVv8PnETV6/eByBF8kR826UKZcvmjJKVFwwGAwXyZyB/vjeFHrPn7OL06dusWn2E3XvOMWhgI4oUzvTF45jSq1evGT9hA1u3nQIgU6bkDBrYkPTpXPD2fsLJU7c4deomJ0/d4vHjF+8UfFhZWVC+XC4aNihG1qwpPznW+fNe9Ow9N7y447dfW2NraxXNM4ycalXz8/JlABMnbeLPmTtwcLClfr2in93frNk72bjJEzMzA6N+aU7JEtmiMFoRERERERERERERERERic1U4CGxktFoZM+e86zfeAI7OyuSuyYiefJEJHdNhGtyJ1xdE5EgilZqePjQl6nTtrJz15tVEeztbWjdqiwN6rtjZRX1KfK20KNA/gycPHmTCRM3cuPGA3r2mkuzpiXp2KEilpZxLzVPeN5g5MiVPHz0HDMzA82blaZd23Lhc0mdOgmpUyehdq1CGI3GDxZ8bNl6ii1bT5E7VxoaNnCndOkcH9xeJC4Ud7z1TaPivHwZwJy5uxk/YQMvXvjTqmUZzMzMItXP2rVHmTtvDwB9etdWcYeIiIiIiIiIiIiIiIjIVybuvYss8d7fj18w7rd1HDhw6aPtEia0Cy/4SJ/OhbJlcpI+vUuEV9sIDAxmydIDLFi4j8DAYAwGA7VrFaJD+wokSmQfFVP5pPz50zPrzy5MmbqFVauPsHjJAU6dusXQIY1JmdI5RmL4UoGBwcz4YzvL/zoEQMqUzgwa0JBcudL85zUGg+G9go8LF+6ycpUHu3af4+y5O5w9d4ekSR2pV7cotWoWDH9M/l3ckS9vOsb92irWFne81a5tefz9g1i2/CAzZ+3k8pV7DPy5Ifb2NhG6fv+Bi4wbvx6Atm3KUad24egMV0RERERERERERERERERiIRV4SKwRFhbG+g0nmDptC35+gZibm9GkcQmSJHHE58EzHvg8w+eBLz4+z3j5MoDnz/15/tyfy1fusXfvBebM3U26tMmoUCE3FcrnJnXqJB8cx2g0snffBaZM3YKPzzMA8uRJS88eNcicKUVMThkAa2tLeveqRcECGfhl9GouXvKmVZvJ/NC3DpUq5onxeCLj/Hkvfhm9itu3/wagTu3CdOtaFbtIrq5iMBjImdONnDnd6Nq1KuvWHWPN2qP8/fcL/vhzO3Pn7aZihTwUKpiBX39bF6eKO+DN/L7/rhrp0iULL15q32Eao35pRrp0Lh+99ty5OwwavIywMCM1axakXdvyMRS1iIiIiIiIiIiIiIiIiMQmKvCQWMHb+wmjx6zm5KlbAGTPlor+/eqRIYPrB9u/evWaBw/eFHzcv/+Uk6ducuTIVW7dfsTMWTuZOWsnWTKnoGKFPJQrlwtXVycAbtx4wISJGzl58iYAyZIlpFvXqpQvlyvCK39El9Klc5AlS0qGDlvOmbN3GDJ0OSdOXKdnj5qxqojBaDRy5MhVFi89EH4/Jk7sQP9+9SjmnuWL+0+axJH27SrQskUZdu0+x4oVh7l85R6bNnuyabMnQJwq7vi3mjUKkiGDKz/9vBivu49p33E6P/9Un3Jlc32w/e07j+j74wKCgkIoXiwrfXvXNvn3qYiIiIiIiIiIiIiIiIiYhgo8xKRCQkJZtvwQs2bvJCgoBBsbSzp2qEjDBsUwNzf7z+vs7W3ImDE5GTMmB+CbRsV5+TKA/QcusnPnWU543uDK1ftcuXqfKdO2kDtXGlKmdGbb9tOEhRmxsrKgWdOSNG9WOlYVCbi6OjF5Unvmzd/D3Hl72LjJk7Pn7jBsaGOTrC7yb8HBIezYeZYlSw9w8+ZDAMzNzahcOS/dvq2Kk1OCKB3PysqCqlXyUaVyXs6f9+KvlYfZu/cC+fOlZ/So5rHqcYuM7NlSMWd2VwYNXsbJkzcZMHApzZvdo1PHSu98z//9+AU9e83jxYsAcmRPzbChjbGwMDdh5CIiIiIiIiIiIiIiIiJiSirwEJMwGo1cvnKPsWPXcuXqfQAKFczIjz/UIUUK58/q08HBlurVClC9WgGePXvF3n0X2LnzLKfP3ObsuTucPXcHgDJlcvBd12okT54oyuYTlSwszGnfrgL586Vn6PC/8PJ6TIeO0/m2SxUa1Hf/aOFLRLx4EcDr10EkTuwQob5evXrN5i0e/LXiMH///QIAO1sratUqzDeNiuHi4vRF8XyKwWAgV6405MqVhtevg7C2tozzq1g4J7Ln9/FtmPHHdpYsPcCixfu5cuU+Q4d8g5NTAl69ek3v3vN4+NAXt9RJ+HVsyzhb0CIiIiIiIiIiIiIiIiIiUUMFHhIjjEYj9+8/49Spm5w8dYtTp27y8NFz4E1hxvffVaNa1fxR9sZ9okT21K1ThLp1ivD338/Zvec8N28+pGLFPBQskCFKxohu+fOnZ/7c7/hl1CoOHrrMxEmb2L7jDD/+UOezVvMICAhi/oI9LFl6kJCQUCwszHFxSUhy10QkT54IV1cnkidPFH47ODiYPXu9mDJtPH5+gQAkSexAw4bFqFO7MA4OtlE95U+ysYk/RQ4WFuZ061qVrFlT8suoVRw/cZ227acydEhj/vhzO9dvPCBxYgfG/9Y6yldHEREREREREREREREREZG4RwUeEi0+VtDxloWFOWXL5OD776qTOLFDtMWSNGlCvmlUPNr6j05OTgkYM7oFa9cdY9r0rVy65E279tNo1LAY7dqWx87O+pN9GI1G9u2/wMSJm8IfA3NzM0JCQrl37yn37j39ZB9p0yalaZNSVKqYBysr/diIShXK5yZdumT067+Ie/ee0qnzDADs7KwZ92urz17RRkRERERERERERERERETiF71TK1EqNDSMX0at4uTJDxd0ZM+Winz50pE/X3py5nTTthMRYDAYqFunCCVKZGPSpE3s2n2OpcsOsnvPefr0qkXx4ln/89q7dx8zfsIGjh67BoCrqxM9e9SkmHsWHj9+gc+DZ/j4+PLgwTN8fJ6F33740JfQ0DBSp3Lg229rUrJEdszMvmxrGPlvGdK7MmdWV4YO/4vDh69gYWHOqJHNyJI58iu1iIiIiIiIiIiIiIiIiEj8pAIPiVLm5mZcvebDw0fPVdARxZImcWT4sCZUrZqfcb+t48EDX/r+uIAyZXLQs3sNkiZNGN729esgFizcx+Il+wkODsXS0pzmzUrRonnp8G1OXFyccHFxIm+e98cKCQnlxUs/DuzfQzH3LCruiAEODraMHd2CHTvPkiKFM7lyupk6JBERERERERERERERERGJRUz6ru3+/fupWbMmKVKkwGAwsHbt2nfOG41GBg0aRPLkybG1taVChQpcu3btnTZPnz6lWbNmODo64uTkRLt27Xj16lUMzkL+v84dKzFxQlu2bRnIjOmd6NSxEoUKZVRxRxQp5p6FxQt70KxpKczNzdi79wJNmv3OipWHCQ0NY/+BizRt/jvz5u8hODiUIoUzsWhBdzq0rxhe3PEpFhbmONjbRvNM5P8zMzOjcqW8Ku4QERERERERERERERERkfeYtMDDz8+PPHnyMHXq1A+eHzt2LJMmTWLGjBkcPXqUBAkSULlyZV6/fh3eplmzZly4cIEdO3awceNG9u/fT8eOHWNqCvIBxYtnVUFHNLO1taLrt1WYO7srObKnxt8/kAm/b6RuvTH067+IBw98cXFxYtTIZoz/rTWpUycxdcgiIiIiIiIiIiIiIiIiIvIFTLpFS9WqValateoHzxmNRn7//XcGDBhA7dq1AViwYAEuLi6sXbuWxo0bc+nSJbZu3crx48cpWLAgAJMnT6ZatWqMGzeOFClSxNhcREwhY8bk/DGjE+vWH2f6jG08fvISCwtzmjYpSauWZVRkIyIiIiIiIiIiIiIiIiIST5i0wONjbt26xYMHD6hQoUL4sYQJE1KkSBE8PDxo3LgxHh4eODk5hRd3AFSoUAEzMzOOHj1K3bp1P9h3YGAggYGB4bdfvHgBQHBwMMHBwdE0I5HoU6N6ftyLZmLnrnO4F82Mm9ubFTu+5Pv57bXKCRHTUR6KxA7KRZHYQbkoEjsoF0VMT3koEjsoF0ViB+VixOk+EokfYm2Bx4MHDwBwcXF557iLi0v4uQcPHpAsWbJ3zltYWODs7Bze5kNGjRrF0KFD3zu+fft27OzsvjR0EZNxsIfz549x/nzU9bljx46o60xEPovyUCR2UC6KxA7KRZHYQbkoYnrKQ5HYQbkoEjsoFz/N39/f1CGISBSItQUe0al///706tUr/PaLFy9InTo1lSpVwtHR0YSRicQewcHB7Nixg4oVK2JpaWnqcES+SspDkdhBuSgSOygXRWIH5aKI6SkPRWIH5aJI7KBcjLi3OxqISNwWaws8XF1dAXj48CHJkycPP/7w4UPy5s0b3ubRo0fvXBcSEsLTp0/Dr/8Qa2trrK2t3ztuaWmpH/4i/4/yQsT0lIcisYNyUSR2UC6KxA7KRRHTUx6KxA7KRZHYQbn4abp/ROIHM1MH8F/SpUuHq6sru3btCj/24sULjh49iru7OwDu7u74+vri6ekZ3mb37t2EhYVRpEiRGI9ZREREREREREREREREREREJDqYdAWPV69ecf369fDbt27d4vTp0zg7O+Pm5kaPHj0YMWIEmTJlIl26dAwcOJAUKVJQp04dALJly0aVKlXo0KEDM2bMIDg4mG7dutG4cWNSpEhholmJiIiIiIiIiIiIiIiIiIiIRC2TFnicOHGCsmXLht/u1asXAK1atWLevHn88MMP+Pn50bFjR3x9fSlRogRbt27FxsYm/JrFixfTrVs3ypcvj5mZGfXr12fSpEkxPhcRERERERERERERERERERGR6GLSAo8yZcpgNBr/87zBYGDYsGEMGzbsP9s4OzuzZMmS6AhPREREREREREREREREREREJFYwM3UAIiIiIiIiIiIiIiIiIiIiIvJxKvAQERERERERERERERERERERieVU4CEiIiIiIiIiIiIiIiIiIiISy1mYOoDYwGg0AvDixQsTRyISewQHB+Pv78+LFy+wtLQ0dTgiXyXloUjsoFwUiR2UiyKxg3JRxPSUhyKxg3JRJHZQLkbc2/dB374vKiJxkwo8gJcvXwKQOnVqE0ciIiIiIiIiIiIiIiIiIhI9Xr58ScKECU0dhoh8JoNRZVqEhYVx//59HBwcMBgMpg5HJFZ48eIFqVOn5u7duzg6Opo6HJGvkvJQJHZQLorEDspFkdhBuShiespDkdhBuSgSOygXI85oNPLy5UtSpEiBmZmZqcMRkc+kFTwAMzMzUqVKZeowRGIlR0dH/VIkYmLKQ5HYQbkoEjsoF0ViB+WiiOkpD0ViB+WiSOygXIwYrdwhEvepPEtEREREREREREREREREREQkllOBh4iIiIiIiIiIiIiIiIiIiEgspwIPEfkga2trBg8ejLW1talDEflqKQ9FYgflokjsoFwUiR2UiyKmpzwUiR2UiyKxg3JRRL42BqPRaDR1ECIiIiIiIiIiIiIiIiIiIiLy37SCh4iIiIiIiIiIiIiIiIiIiEgspwIPERERERERERERERERERERkVhOBR4iIiIiIiIiIiIiIiIiIiIisZwKPERERERERERERERERERERERiORV4iMRT+/fvp2bNmqRIkQKDwcDatWvfOf/w4UNat25NihQpsLOzo0qVKly7du2dNmXKlMFgMLzz1blz53faeHl5Ub16dezs7EiWLBl9+/YlJCQkuqcnEmfERC6eOXOGJk2akDp1amxtbcmWLRsTJ06MiemJxBkx9bz41pMnT0iVKhUGgwFfX99ompVI3BOTuThv3jxy586NjY0NyZIlo2vXrtE5NZE4I6by8Pjx45QvXx4nJycSJUpE5cqVOXPmTHRPTyTOiIpcBPDw8KBcuXIkSJAAR0dHSpUqRUBAQPj5p0+f0qxZMxwdHXFycqJdu3a8evUquqcnEmfERC7evn2bdu3akS5dOmxtbcmQIQODBw8mKCgoJqYoEifE1PPiW4GBgeTNmxeDwcDp06ejaVYiItFDBR4i8ZSfnx958uRh6tSp750zGo3UqVOHmzdvsm7dOk6dOkWaNGmoUKECfn5+77Tt0KEDPj4+4V9jx44NPxcaGkr16tUJCgri8OHDzJ8/n3nz5jFo0KBon59IXBETuejp6UmyZMlYtGgRFy5c4Oeff6Z///5MmTIl2ucnElfERC7+W7t27cidO3e0zEUkLoupXBw/fjw///wz/fr148KFC+zcuZPKlStH69xE4oqYyMNXr15RpUoV3NzcOHr0KAcPHsTBwYHKlSsTHBwc7XMUiQuiIhc9PDyoUqUKlSpV4tixYxw/fpxu3bphZvbPS77NmjXjwoUL7Nixg40bN7J//346duwYI3MUiQtiIhcvX75MWFgYf/zxBxcuXGDChAnMmDGDn376KcbmKRLbxdTz4ls//PADKVKkiNY5iYhEG6OIxHuAcc2aNeG3r1y5YgSM58+fDz8WGhpqTJo0qXHmzJnhx0qXLm3s3r37f/a7efNmo5mZmfHBgwfhx6ZPn250dHQ0BgYGRukcROKD6MrFD/n222+NZcuW/dKQReKl6M7FadOmGUuXLm3ctWuXETA+e/YsCqMXiT+iKxefPn1qtLW1Ne7cuTM6whaJV6IrD48fP24EjF5eXuHHzp49awSM165di9I5iMQHn5uLRYoUMQ4YMOA/+7148aIRMB4/fjz82JYtW4wGg8F47969qJ2ESDwQXbn4IWPHjjWmS5fui2MWiY+iOxc3b95szJo1q/HChQtGwHjq1KmoDF9EJNppBQ+Rr1BgYCAANjY24cfMzMywtrbm4MGD77RdvHgxSZIkIWfOnPTv3x9/f//wcx4eHuTKlQsXF5fwY5UrV+bFixdcuHAhmmchEvdFVS5+yPPnz3F2do76oEXioajMxYsXLzJs2DAWLFjwwU+IiMh/i6pc3LFjB2FhYdy7d49s2bKRKlUqGjVqxN27d2NmIiJxWFTlYZYsWUicODGzZ88mKCiIgIAAZs+eTbZs2UibNm2MzEUkLotILj569IijR4+SLFkyihUrhouLC6VLl34nVz08PHBycqJgwYLhxypUqICZmRlHjx6NodmIxF1RlYsfotdtRCIuKnPx4cOHdOjQgYULF2JnZxdzkxARiUJ61VnkK5Q1a1bc3Nzo378/z549IygoiDFjxuDt7Y2Pj094u6ZNm7Jo0SL27NlD//79WbhwIc2bNw8//+DBg3eKO4Dw2w8ePIiZyYjEYVGVi//f4cOHWb58uZbdFYmgqMrFwMBAmjRpwq+//oqbm5sppiISp0VVLt68eZOwsDB++eUXfv/9d1auXMnTp0+pWLGi9jkX+YSoykMHBwf27t3LokWLsLW1xd7enq1bt7JlyxYsLCxMMTWROCUiuXjz5k0AhgwZQocOHdi6dSv58+enfPnyXLt2DXjz2kyyZMne6dvCwgJnZ2e9biMSAVGVi//f9evXmTx5Mp06dYqxuYjEZVGVi0ajkdatW9O5c+d3ih9FROIa/VUt8hWytLRk9erVtGvXDmdnZ8zNzalQoQJVq1bFaDSGt/v3m8O5cuUiefLklC9fnhs3bpAhQwZThC4Sr0RHLp4/f57atWszePBgKlWqFGNzEYnLoioX+/fvT7Zs2T5agCUi/y2qcjEsLIzg4GAmTZoU/ly4dOlSXF1d2bNnD5UrV47xuYnEFVGVhwEBAbRr147ixYuzdOlSQkNDGTduHNWrV+f48ePY2tqaYnoicUZEcjEsLAyATp060aZNGwDy5cvHrl27mDNnDqNGjTJZ/CLxRXTk4r1796hSpQoNGzakQ4cOMTshkTgqqnJx8uTJvHz5kv79+5tsLiIiUUEreIh8pQoUKMDp06fx9fXFx8eHrVu38uTJE9KnT/+f1xQpUgR4U2UO4OrqysOHD99p8/a2q6trNEUuEr9ERS6+dfHiRcqXL0/Hjh0ZMGBAtMYtEt9ERS7u3r2bFStWYGFhgYWFBeXLlwcgSZIkDB48OPonIRIPREUuJk+eHIDs2bOHt0maNClJkiTBy8srGqMXiR+iIg+XLFnC7du3mTt3LoUKFaJo0aIsWbKEW7dusW7duhiZh0hc96lc/NDzHUC2bNnCn+9cXV159OjRO+dDQkJ4+vSpXrcRiaCoyMW37t+/T9myZSlWrBh//vlnzExAJJ6IilzcvXs3Hh4eWFtbY2FhQcaMGQEoWLAgrVq1isHZiIh8GRV4iHzlEiZMSNKkSbl27RonTpygdu3a/9n29OnTwD+/LLm7u3Pu3Ll3XizYsWMHjo6O7/0iJSIf9yW5CHDhwgXKli1Lq1atGDlyZHSHKxJvfUkurlq1ijNnznD69GlOnz7NrFmzADhw4ABdu3aN9thF4pMvycXixYsDcOXKlfA2T58+5fHjx6RJkyb6ghaJZ74kD/39/TEzM8NgMIS3eXv77acrRSRi/isX06ZNS4oUKd55vgO4evVq+POdu7s7vr6+eHp6hp/fvXs3YWFh4YVZIhIxX5KL8GbljjJlylCgQAHmzp2LmZnemhH5HF+Si5MmTXrndZvNmzcDsHz5cr2eKiJxirZoEYmnXr169c6n+2/dusXp06dxdnbGzc2NFStWkDRpUtzc3Dh37hzdu3enTp064ctY37hxgyVLllCtWjUSJ07M2bNn6dmzJ6VKlSJ37twAVKpUiezZs9OiRQvGjh3LgwcPGDBgAF27dsXa2tok8xaJbWIiF8+fP0+5cuWoXLkyvXr1Ct9L2dzcnKRJk8b8pEVioZjIxf+/ZdLjx4+BN58WcXJyipmJisRyMZGLmTNnpnbt2nTv3p0///wTR0dH+vfvT9asWSlbtqxJ5i0Sm8REHlasWJG+ffvStWtXvvvuO8LCwhg9ejQWFhbKQ5H/+dJcNBgM9O3bl8GDB5MnTx7y5s3L/PnzuXz5MitXrgTe/B5apUoVOnTowIwZMwgODqZbt240btyYFClSmGTeIrFNTOTi2+KONGnSMG7cOP7+++/w8bSajsgbMZGLbm5u74xpb28PvHk9J1WqVDE0UxGRKGAUkXhpz549RuC9r1atWhmNRqNx4sSJxlSpUhktLS2Nbm5uxgEDBhgDAwPDr/fy8jKWKlXK6OzsbLS2tjZmzJjR2LdvX+Pz58/fGef27dvGqlWrGm1tbY1JkiQx9u7d2xgcHByTUxWJ1WIiFwcPHvzBMdKkSRPDsxWJvWLqefFDYz579iyaZycSd8RULj5//tzYtm1bo5OTk9HZ2dlYt25do5eXV0xOVSTWiqk83L59u7F48eLGhAkTGhMlSmQsV66c0cPDIyanKhKrfWkuvjVq1ChjqlSpjHZ2dkZ3d3fjgQMH3jn/5MkTY5MmTYz29vZGR0dHY5s2bYwvX76MiSmKxAkxkYtz58794Bh6e0bkHzH1vPhvt27dMgLGU6dORdOsRESih8FoNBqjtGJERERERERERERERERERERERKKUNnoTERERERERERERERERERERieVU4CEiIiIiIiIiIiIiIiIiIiISy6nAQ0RERERERERERERERERERCSWU4GHiIiIiIiIiIiIiIiIiIiISCynAg8RERERERERERERERERERGRWE4FHiIiIiIiIiIiIiIiIiIiIiKxnAo8RERERERERERERERERERERGI5FXiIiIiIiIhIrNa6dWvq1KkT4+POmzcPg8GAwWCgR48en2zr5OQUI3HFJWXKlAm/D0+fPm3qcERERERERERE4jQVeIiIiIiIiIjJvH3z/7++hgwZwsSJE5k3b55J4nN0dMTHx4fhw4eHH0ubNi2///77O+2++eYbrl69GsPRvSs2FpmsXr2aY8eOmToMEREREREREZF4wcLUAYiIiIiIiMjXy8fHJ/z/y5cvZ9CgQVy5ciX8mL29Pfb29qYIDXhTgOLq6vrJdra2ttja2sZARHGLs7MzL168MHUYIiIiIiIiIiLxglbwEBEREREREZNxdXUN/0qYMGF4QcXbL3t7+/e2aClTpgzfffcdPXr0IFGiRLi4uDBz5kz8/Pxo06YNDg4OZMyYkS1btrwz1vnz56latSr29va4uLjQokULHj9+HKl4y5Qpw507d+jZs2f4KiPw/uoZQ4YMIW/evMyZMwc3Nzfs7e359ttvCQ0NZezYsbi6upIsWTJGjhz5Tv++vr60b9+epEmT4ujoSLly5Thz5kz4+TNnzlC2bFkcHBxwdHSkQIECnDhxgr1799KmTRueP3/+zuonAAsXLqRgwYI4ODjg6upK06ZNefToUXife/fuxWAwsG3bNvLly4etrS3lypXj0aNHbNmyhWzZsuHo6EjTpk3x9/d/577o1q0b3bp1I2HChCRJkoSBAwdiNBojdZ+KiIiIiIiIiEjEqMBDRERERERE4pz58+eTJEkSjh07xnfffUeXLl1o2LAhxYoV4+TJk1SqVIkWLVqEFyT4+vpSrlw58uXLx4kTJ9i6dSsPHz6kUaNGkRp39erVpEqVimHDhuHj4/POCiT/340bN9iyZQtbt25l6dKlzJ49m+rVq+Pt7c2+ffsYM2YMAwYM4OjRo+HXNGzYMLywwtPTk/z581O+fHmePn0KQLNmzUiVKhXHjx/H09OTfv36YWlpSbFixfj999/Dt5Tx8fGhT58+AAQHBzN8+HDOnDnD2rVruX37Nq1bt34v3iFDhjBlyhQOHz7M3bt3adSoEb///jtLlixh06ZNbN++ncmTJ7/3OFhYWHDs2DEmTpzI+PHjmTVrVqTuUxERERERERERiRht0SIiIiIiIiJxTp48eRgwYAAA/fv3Z/To0SRJkoQOHToAMGjQIKZPn87Zs2cpWrQoU6ZMIV++fPzyyy/hfcyZM4fUqVNz9epVMmfOHKFxnZ2dMTc3D18N42PCwsKYM2cODg4OZM+enbJly3LlyhU2b96MmZkZWbJkYcyYMezZs4ciRYpw8OBBjh07xqNHj7C2tgZg3LhxrF27lpUrV9KxY0e8vLzo27cvWbNmBSBTpkzh4/17BZR/a9u2bfj/06dPz6RJkyhUqBCvXr16Z/ubESNGULx4cQDatWtH//79uXHjBunTpwegQYMG7Nmzhx9//DH8mtSpUzNhwgQMBgNZsmTh3LlzTJgwIfxxEBERERERERGRqKMVPERERERERCTOyZ07d/j/zc3NSZw4Mbly5Qo/5uLiAhC+FcmZM2fYs2cP9vb24V9viyRu3LgRLTGmTZsWBweHd2LKnj07ZmZm7xz7d4yvXr0iceLE78R569at8Bh79epF+/btqVChAqNHj45Q7J6entSsWRM3NzccHBwoXbo0AF5eXu+0+/d96uLigp2dXXhxx/+P9a2iRYuGb1MD4O7uzrVr1wgNDf1kXCIiIiIiIiIiEjlawUNERERERETiHEtLy3duGwyGd469LToICwsD4NWrV9SsWZMxY8a811fy5MlNEuPbY/+OMXny5Ozdu/e9vpycnIA326g0bdqUTZs2sWXLFgYPHsyyZcuoW7fuB2Pw8/OjcuXKVK5cmcWLF5M0aVK8vLyoXLkyQUFB/xnvp2IVEREREREREZGYpwIPERERERERiffy58/PqlWrSJs2LRYWX/ansJWVVbSsUJE/f34ePHiAhYUFadOm/c92mTNnJnPmzPTs2ZMmTZowd+5c6tat+8G4Ll++zJMnTxg9ejSpU6cG4MSJE1EW89GjR9+5feTIETJlyoS5uXmUjSEiIiIiIiIiIm9oixYRERERERGJ97p27crTp09p0qQJx48f58aNG2zbto02bdpEulgjbdq07N+/n3v37vH48eMoi7FChQq4u7tTp04dtm/fzu3btzl8+DA///wzJ06cICAggG7durF3717u3LnDoUOHOH78ONmyZQuP69WrV+zatYvHjx/j7++Pm5sbVlZWTJ48mZs3b7J+/XqGDx8eZTF7eXnRq1cvrly5wtKlS5k8eTLdu3ePsv5FREREREREROQfKvAQERERERGReC9FihQcOnSI0NBQKlWqRK5cuejRowdOTk6YmUXuT+Nhw4Zx+/ZtMmTIQNKkSaMsRoPBwObNmylVqhRt2rQhc+bMNG7cmDt37uDi4vJ/7d2hiqJRAIbhb3GiwWIVLAanmAyDwWoWtBlFMGgz20QmzAUY7F6Mt+ANCJqMbty0m4b9j8Pz5MPhvYCPc1Kr1XK9XjObzdLpdDKZTDIajbLdbpMkHx8fWSwWmU6naTab2e/3aTabOR6POZ1O6Xa72e12+fz8/Lbm2WyWx+ORfr+f5XKZ1WqV+Xz+bfcDAAAA8Mev5/P5rDoCAAAASnM8HrNer3O73apOKdJwOEyv18vX19c/z10ul7Tb7ZzP5/R6vf/SBgAAAPATecEDAAAA/uJ+v6der2ez2VSd8pJGo1He39+rzgAAAAD4Ed6qDgAAAIASjcfjDAaDJEmj0ag25kUdDoc8Ho8kSavVqrgGAAAA4LX5ogUAAAAAAAAAoHC+aAEAAAAAAAAAKJyBBwAAAAAAAABA4Qw8AAAAAAAAAAAKZ+ABAAAAAAAAAFA4Aw8AAAAAAAAAgMIZeAAAAAAAAAAAFM7AAwAAAAAAAACgcAYeAAAAAAAAAACFM/AAAAAAAAAAACjcb15GasXFOkrqAAAAAElFTkSuQmCC",
- "text/plain": [
- "