-
Notifications
You must be signed in to change notification settings - Fork 12
/
forallx-app-solutions.tex
928 lines (860 loc) · 30.5 KB
/
forallx-app-solutions.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
%!TEX root = forallx.tex
\chapter[Solutions to selected exercises]{Solutions to selected exercises}
\label{app.solutions}
Many of the exercises may be answered correctly in different ways. Where that is the case, the solution here represents one possible correct answer.
\solutionsection{ch.intro}{pr.MartianGiraffes}
\begin{earg}
%\nextSeq %G2, G3, and G4
\item consistent
%\noSeq %G1, G3, and G4
\item inconsistent
%\nextSeq %G1, G2, and G4
\item consistent
%\lastSeq %G1, G2, and G3
\item consistent
%are consistent.
\end{earg}
\solutionsection{ch.intro}{pr.EnglishCombinations}
%\begin{earg}
%\item A valid argument that has one false premise and one true premise
%possible
\nextSeq
%\item A valid argument that has a false conclusion
%possible
\nextSeq
%\item A valid argument, the conclusion of which is a contradiction
%possible
\nextSeq
%\item An invalid argument, the conclusion of which is a tautology
%not possible
\noSeq
%\item A tautology that is contingent
%not possible
\noSeq
%\item Two logically equivalent sentences, both of which are tautologies
%possible
\nextSeq
%\item Two logically equivalent sentences, one of which is a tautology and one of which is contingent
%not possible
\noSeq
%\item Two logically equivalent sentences that together are an inconsistent set
%possible
\nextSeq
%Consider two contradictions. As a matter of logic, they are both necessarily false. So they have the same truth value: false. This makes them logically equivalent.
%\item A consistent set of sentences that contains a contradiction
%not possible
\noSeq
%\item An inconsistent set of sentences that contains a tautology
%possible
\lastSeq
%\end{earg}
are possible.
\solutionsection{ch.SL}{pr.monkeysuits}
\begin{earg}
\item $\enot M$
\item $M \eor \enot M$
\item $G \eor C$
\item $\enot C \eand \enot G$
\item $C \eif (\enot G \eand \enot M)$
\item $M \eor (C \eor G)$
\end{earg}
\solutionsection{ch.SL}{pr.avacareer}
\begin{earg}
\item $E_1 \eand E_2$
\item $F_1 \eif S_1$
\item $F_1 \eor E_1$
\item $E_2 \eand \enot S_2$
\item $\enot E_1 \eand \enot E_2$
\item $E_1 \eand E_2 \eand \enot(S_1 \eor S_2)$
\item $S_2 \eif F_2$
\item $(\enot E_1 \eif \enot E_2) \eand (E_1 \eif E_2)$
\item $S_1 \eiff \enot S_2$
\item $(E_2 \eand F_2) \eif S_2$
\item $\enot(E_2 \eand F_2)$
\item $(F_1 \eand F_2) \eiff (\enot E_1 \eand \enot E_2)$
\end{earg}
\solutionsection{ch.SL}{pr.spies}
\begin{ekey}
\item[A:] Alice is a spy.
\item[B:] Bob is a spy.
\item[C:] The code has been broken.
\item[G:] The German embassy will be in an uproar.
\end{ekey}
\begin{earg}
\item %Alice and Bob are both spies.
$A \eand B$
\item %If either Alice or Bob is a spy, then the code has been broken.
$(A \eor B) \eif C$
\item %If neither Alice nor Bob is a spy, then the code remains unbroken.
$\enot(A \eor B) \eif \enot C$
\item %The German embassy will be in an uproar, unless someone has broken the code.
$G \eor C$
\item %Either the code has been broken or it has not, but the German embassy will be in an uproar regardless.
$(C \eor \enot C) \eand G$
\item %Either Alice or Bob is a spy, but not both.
$(A \eor B) \eand \enot(A \eand B)$
\end{earg}
\solutionsection{ch.SL}{pr.wiffSL}
\begin{earg}
\item %$(A)$
(a) no (b) no
\item %$J_{374} \eor \enot J_{374}$
(a) no (b) yes
\item %$\enot \enot \enot \enot F$
(a) yes (b) yes
\item %$\enot \eand S$
(a) no (b) no
\item %$(G \eand \enot G)$
(a) yes (b) yes
\item %$\script{A} \eif \script{A}$
(a) no (b) no
\item %$(A \eif (A \eand \enot F)) \eor (D \eiff E)$
(a) no (b) yes
\item %$[(Z \eiff S) \eif W] \eand [J \eor X]$
(a) no (b) yes
\item %$(F \eiff \enot D \eif J) \eor (C \eand D)$
(a) no (b) no
\end{earg}
\solutionsection{ch.TruthTables}{pr.TT.TTorC}
\begin{earg}
\item tautology
\item contradiction
\item contingent
\item tautology
\item tautology
\item contingent
\item tautology
\item contradiction
\item tautology
\item contradiction
\item tautology
\item contingent
\item contradiction
\item contingent
\item tautology
\item tautology
\item contingent
\item contingent
\end{earg}
\solutionsection{ch.TruthTables}{pr.TT.equiv}
%\begin{earg}
%\item not equivalent
\noSeq
%\item equivalent
\nextSeq
%\item equivalent
\nextSeq
%\item not equivalent
\noSeq
%\item equivalent
\nextSeq
%\item equivalent
\nextSeq
%\item not equivalent
\noSeq
%\item equivalent
\nextSeq
%\item equivalent
\lastSeq
%\item not equivalent
\noSeq
%\end{earg}
are logically equivalent.
\solutionsection{ch.TruthTables}{pr.TT.consistent}
%\item $A\eif A$, $\enot A \eif \enot A$, $A\eand A$, $A\eor A$ %consistent
\nextSeq
%\item $A \eand B$, $C\eif \enot B$, $C$ %inconsistent
\noSeq
%\item $A\eor B$, $A\eif C$, $B\eif C$ %consistent
\nextSeq
%\item $A\eif B$, $B\eif C$, $A$, $\enot C$ %inconsistent
\noSeq
%\item $B\eand(C\eor A)$, $A\eif B$, $\enot(B\eor C)$ %inconsistent
\noSeq
%\item $A \eor B$, $B\eor C$, $C\eif \enot A$ %consistent
\nextSeq
%\item $A\eiff(B\eor C)$, $C\eif \enot A$, $A\eif \enot B$ %consistent
\nextSeq
%\item $A$, $B$, $C$, $\enot D$, $\enot E$, $F$ %consistent
\lastSeq
are consistent.
\solutionsection{ch.TruthTables}{pr.TT.valid}
%\item $A\eif A$, \therefore\ $A$ %invalid
\noSeq
%\item $A\eor\bigl[A\eif(A\eiff A)\bigr]$, \therefore\ A %invalid
\noSeq
%\item $A\eif(A\eand\enot A)$, \therefore\ $\enot A$ %valid
\nextSeq
%\item $A\eiff\enot(B\eiff A)$, \therefore\ $A$ %invalid
\noSeq
%\item $A\eor(B\eif A)$, \therefore\ $\enot A \eif \enot B$ %valid
\nextSeq
%\item $A\eif B$, $B$, \therefore\ $A$ %invalid
\noSeq
%\item $A\eor B$, $B\eor C$, $\enot A$, \therefore\ $B \eand C$ %invalid
\noSeq
%\item $A\eor B$, $B\eor C$, $\enot B$, \therefore\ $A \eand C$ %valid
\nextSeq
%\item $(B\eand A)\eif C$, $(C\eand A)\eif B$, \therefore\ $(C\eand B)\eif A$ %invalid
\noSeq
%\item $A\eiff B$, $B\eiff C$, \therefore\ $A\eiff C$ %valid
\lastSeq
are valid.
\solutionsection{ch.TruthTables}{pr.TT.concepts}
\begin{earg}
\item %Suppose that \script{A} and \script{B} are logically equivalent. What can you say about $\script{A}\eiff\script{B}$?
\script{A} and \script{B} have the same truth value on every line of a complete truth table, so $\script{A}\eiff\script{B}$ is true on every line. It is a tautology.
\item %Suppose that $(\script{A}\eand\script{B})\eif\script{C}$ is contingent. What can you say about the argument ``\script{A}, \script{B}, \therefore\script{C}''?
The sentence is false on some line of a complete truth table. On that line, \script{A} and \script{B} are true and \script{C} is false. So the argument is invalid.
\item %Suppose that $\{\script{A},\script{B}, \script{C}\}$ is inconsistent. What can you say about $(\script{A}\eand\script{B}\eand\script{C})$?
Since there is no line of a complete truth table on which all three sentences are true, the conjunction is false on every line. So it is a contradiction.
\item %Suppose that \script{A} is a contradiction. What can you say about the argument ``\script{A}, \script{B}, \therefore\script{C}''?
Since \script{A} is false on every line of a complete truth table, there is no line on which \script{A} and \script{B} are true and \script{C} is false. So the argument is valid.
\item %Suppose that \script{C} is a tautology. What can you say about the argument ``\script{A}, \script{B}, \therefore\script{C}''?
Since \script{C} is true on every line of a complete truth table, there is no line on which \script{A} and \script{B} are true and \script{C} is false. So the argument is valid.
\item %Suppose that \script{A} and \script{B} are logically equivalent. What can you say about $(\script{A}\eor\script{B})$?
Not much. $(\script{A}\eor\script{B})$ is a tautology if \script{A} and \script{B} are tautologies; it is a contradiction if they are contradictions; it is contingent if they are contingent.
\item %Suppose that \script{A} and \script{B} are \emph{not} logically equivalent. What can you say about $(\script{A}\eor\script{B})$?
\script{A} and \script{B} have different truth values on at least one line of a complete truth table, and $(\script{A}\eor\script{B})$ will be true on that line. On other lines, it might be true or false. So $(\script{A}\eor\script{B})$ is either a tautology or it is contingent; it is \emph{not} a contradiction.
\end{earg}
\solutionsection{ch.TruthTables}{pr.altConnectives}
\begin{earg}
\item %$A\eor B$
$\enot A \eif B$
\item %$A\eand B$
$\enot(A \eif \enot B)$
\item %$A\eiff B$
$\enot [(A\eif B) \eif \enot(B\eif A)]$
%\item %$A \eand B$
%$\enot(\enot A \eor \enot B)$
%\item %$A \eif B$
%$\enot A \eor B$
%\item %$A \eiff B$
%$\enot(\enot A \eor \enot B) \eor \enot(A \eor B)$
\end{earg}
\solutionsection{ch.QL}{pr.QLalligators}
\begin{earg}
\item %Amos, Bouncer, and Cleo all live at the zoo.
$Za \eand Zb \eand Zc$
\item %Bouncer is a reptile, but not an alligator.
$Rb \eand \enot Ab$
\item %If Cleo loves Bouncer, then Bouncer is a monkey.
$Lcb \eif Mb$
\item %If both Bouncer and Cleo are alligators, then Amos loves them both.
$(Ab \eand Ac)\eif(Lab \eand Lac)$
\item %Some reptile lives at the zoo.
$\exists x(Rx \eand Zx)$
\item %Every alligator is a reptile.
$\forall x(Ax \eif Rx)$
\item %Any animal that lives at the zoo is either a monkey or an alligator.
$\forall x\bigl[Zx \eif (Mx \eor Ax)\bigr]$
\item %There are reptiles which are not alligators.
$\exists x(Rx \eand \enot Ax)$
\item %Cleo loves a reptile.
$\exists x(Rx \eand Lcx)$
\item %Bouncer loves all the monkeys that live at the zoo.
$\forall x\bigl[(Mx \eand Zx) \eif Lbx\bigr]$
\item %All the monkeys that Amos loves love him back.
$\forall x\bigl[(Mx \eand Lax) \eif Lxa\bigr]$
\item %If any animal is an reptile, then Amos is.
$\exists x Rx \eif Ra$
\item %If any animal is an alligator, then it is a reptile.
$\forall x(Ax \eif Rx)$
\item %Every monkey that Cleo loves is also loved by Amos.
$\forall x\bigl[(Mx \eand Lcx) \eif Lax\bigr]$
\item %There is a monkey that loves Bouncer, but sadly Bouncer does not reciprocate this love.
$\exists x(Mx \eand Lxb \eand \enot Lbx)$
\end{earg}
\solutionsection{ch.QL}{pr.QLcandies}
\begin{earg}
\item %Boris has never tried any candy.
$\enot\exists x Tx$
\item %Marzipan is always made with sugar.
$\forall x(Mx \eif Sx)$
\item %Some candy is sugar-free.
$\exists x \enot Sx$
\item %The very best candy is chocolate.
$\exists x[Cx \eand \enot\exists y Byx]$
\item %No candy is better than itself.
$\enot \exists x Bxx$
\item %Boris has never tried sugar-free chocolate.
$\enot \exists x(Cx \eand \enot Sx \eand Tx)$
\item %Boris has tried marzipan and chocolate, but never together.
$\exists x(Cx \eand Tx) \eand \exists x(Mx \eand Tx) \eand \enot \exists x(Cx \eand Mx \eand Tx)$
%\item Boris has tried nothing that is better than sugar-free marzipan.
%$\enot\exists x[Bx \eand \exists y(
\item %Any candy with chocolate is better than any candy without it.
$\forall x[Cx \eif \forall y(\enot Cy \eif Bxy)]$
\item %Any candy with chocolate and marzipan is better than any candy without either.
$\forall x\bigl((Cx \eand Mx) \eif \forall y[(\enot Cy \eand \enot My) \eif Bxy]\bigr)$
\end{earg}
\solutionsection{ch.QL}{pr.QLballet}
\begin{earg}
\item %All of Patrick's children are ballet dancers.
$\forall x(Cxp \eif Dx)$
\item %Jane is Patrick's daughter.
$Cjp \eand Fj$
\item %Patrick has a daughter.
$\exists x(Cxp \eand Fx)$
\item %Jane is an only child.
$\enot\exists x Sxj$
\item %All of Patrick's daughters dance ballet.
$\forall x\bigl[(Cxp \eand Fx)\eif Dx\bigr]$
\item %Patrick has no sons.
$\enot\exists x(Cxp \eand Mx)$
\item %Jane is Elmer's niece.
$\exists x(Cjx \eand Sxe \eand Fj)$
\item %Patrick is Elmer's brother.
$Spe \eand Mp$
\item %Patrick's brothers have no children.
$\forall x\bigl[(Sxp \eand Mx) \eif \enot\exists y Cyx\bigr]$
\item %Jane is an aunt.
$\exists x(Sxj \eand \exists y Cyx \eand Fj)$
\item %Everyone who dances in the ballet has a sister who also dances in the ballet.
$\forall x\bigl[Dx \eif \exists y(Sxy \eand Fy \eand Dy)\bigr]$
\item %Every man who dances in the ballet is the child of someone who dances in the ballet.
$\forall x\bigl[(Mx \eand Dx) \eif \exists y(Cxy \eand Dy)\bigr]$
\end{earg}
\solutionsection{ch.QL}{pr.QLcards}
\begin{earg}
\item %All clubs are black cards.
$\forall x(Cx \eif Bx)$
\item %There are no wild cards.
$\enot\exists x Wx$
\item %There are at least two clubs.
$\exists x \exists y(Cx \eand Cy \eand x\neq y)$
\item %There is more than one one-eyed jack.
$\exists x \exists y(Jx \eand Ox \eand Jy \eand Oy \eand x\neq y)$
\item %There are at most two one-eyed jacks.
$\forall x\forall y\forall z\bigl[(Jx \eand Ox \eand Jy \eand Oy \eand Jz \eand Oz)\eif(x=y \eor x=z \eor y=z)\bigr]$
\item %There are two black jacks.
$\exists x\exists y\bigl(Jx \eand Bx \eand Jy \eand By \eand x \neq y\eand \forall z[(Jz \eand Bz) \eif (x=z \eor y=z)]\bigr)$
\item %There are four deuces.
$\exists x_1\exists x_2\exists x_3\exists x_4\bigl[Dx_1 \eand Dx_2 \eand Dx_3 \eand Dx_4 \eand x_1 \neq x_2 \eand x_1 \neq x_3 \eand x_1 \neq x_4 \eand x_2 \neq x_3 \eand x_2 \neq x_4 \eand x_3 \neq x_4 \eand \enot\exists y(Dy \eand y\neq x_1 \eand y\neq x_2 \eand y\neq x_3 \eand y\neq x_4)\bigr]$
\item %The deuce of clubs is a black card.
$\exists x\bigl(Dx \eand Cx \eand \forall y[(Dy\eand Cy) \eif x=y] \eand Bx\bigr)$
\item %One-eyed jacks and the man with the axe are wild.
$\forall x\bigl[(Ox \eand Jx) \eif Wx\bigr] \eand \exists x\bigl[Mx \eand \forall y(My \eif x=y) \eand Wx\bigr]$
\item %If the deuce of clubs is wild, then there is exactly one wild card.
$\exists x\bigl(Dx \eand Cx \eand \forall y[(Dy\eand Cy) \eif x=y] \eand Wx\bigr)\eif \exists x\forall y(Wx \eiff x=y)$
\item %The man with the axe is not a jack.
wide scope: $\enot \exists x\bigl[Mx \eand \forall y(My \eif x=y) \eand Jx\bigr]$\\
narrow scope: $\exists x\bigl[Mx \eand \forall y(My \eif x=y) \eand \enot Jx\bigr]$
\item %The deuce of clubs is not the man with the axe.
wide scope: $\enot \exists x\exists z\bigl(Dx \eand Cx \eand Mz \eand \forall y[(Dy\eand Cy) \eif x=y] \eand \forall y[(My \eif z=y) \eand x=z]\bigr)$\\
narrow scope: $\exists x\exists z\bigl(Dx \eand Cx \eand Mz \eand \forall y[(Dy\eand Cy) \eif x=y] \eand \forall y[(My \eif z=y) \eand x\neq z]\bigr)$
\end{earg}
\solutionsection{ch.semantics}{pr.TorF1}
%\item $Bc$
\noSeq
%\item $Ac \eiff \enot Nc$
\nextSeq
%\item $Nc \eif (Ac \eor Bc)$
\nextSeq
%\item $\forall x Ax$
\nextSeq
%\item $\forall x \enot Bx$
\noSeq
%\item $\exists x(Ax \eand Bx)$
\nextSeq
%\item $\exists x(Ax \eif Nx)$
\noSeq
%\item $\forall x(Nx \eor \enot Nx)$
\nextSeq
%\item $\exists x Bx \eif \forall x Ax$
\lastSeq
are true in the model.
\solutionsection{ch.semantics}{pr.TorF2}
\noSeq%\item $\exists x(Rxm \eand Rmx)$
\noSeq%\item $\forall x(Rxm \eor Rmx)$
\noSeq%\item $\forall x(Hx \eiff Wx)$
\nextSeq%\item $\forall x(Rxm \eif Wx)$
\nextSeq%\item $\forall x\bigl[Wx \eif(Hx \eand Wx)\bigr]$
\noSeq%\item $\exists x Rxx$
\lastSeq%\item $\exists x\exists y Rxy$
\noSeq%\item $\forall x \forall y Rxy$
\noSeq%\item $\forall x \forall y (Rxy \eor Ryx)$
\noSeq%\item $\forallx \forall y \forall z\bigl[(Rxy \eand Ryz) \eif Rxz\bigr]$
are true in the model.
\solutionsection{ch.semantics}{pr.InterpretationToModel}
\begin{partialmodel}
UD & \{10,11,12,13\}\\
\extension{O} & \{11,13\}\\
\extension{S} & $\emptyset$\\
\extension{T} & \{10,11,12,13\}\\
\extension{U} & \{13\}\\
\extension{N} & \{\ntuple{11,10},\ntuple{12,11},\ntuple{13,12}\}\\
\end{partialmodel}
\solutionsection{ch.semantics}{pr.Contingent}
\begin{earg}
\item %$Da \eand Db$
The sentence is true in this model:
\begin{partialmodel}
UD & \{Stan\}\\
\extension{D} & \{Stan\}\\
\referent{a} & Stan\\
\referent{b} & Stan
\end{partialmodel}
And it is false in this model:
\begin{partialmodel}
UD & \{Stan\}\\
\extension{D} & $\emptyset$\\
\referent{a} & Stan\\
\referent{b} & Stan
\end{partialmodel}
\item %$\exists x Txh$
The sentence is true in this model:
\begin{partialmodel}
UD & \{Stan\}\\
\extension{T} & \{\ntuple{Stan, Stan}\}\\
\referent{h} & Stan
\end{partialmodel}
And it is false in this model:
\begin{partialmodel}
UD & \{Stan\}\\
\extension{T} & $\emptyset$\\
\referent{h} & Stan
\end{partialmodel}
\item %$Pm \eand \enot\forall x Px$
The sentence is true in this model:
\begin{partialmodel}
UD & \{Stan, Ollie\}\\
\extension{P} & \{Stan\}\\
\referent{m} & Stan
\end{partialmodel}
And it is false in this model:
\begin{partialmodel}
UD & \{Stan\}\\
\extension{P} & $\emptyset$\\
\referent{m} & Stan
\end{partialmodel}
\end{earg}
\solutionsection{ch.semantics}{pr.NotEquiv}
There are many possible correct answers. Here are some:
\begin{earg}
\item %$Ja$, $Ka$
Making the first sentence true and the second false:
\begin{partialmodel}
UD & \{alpha\}\\
\extension{J} & \{alpha\}\\
\extension{K} & $\emptyset$\\
\referent{a} & alpha
\end{partialmodel}
\item %$\exists x Jx$, $Jm$
Making the first sentence true and the second false:
\begin{partialmodel}
UD & \{alpha, omega\}\\
\extension{J} & \{alpha\}\\
\referent{m} & omega
\end{partialmodel}
\item %$\forall x Rxx$, $\exists x Rxx$
Making the first sentence false and the second true:
\begin{partialmodel}
UD & \{alpha, omega\}\\
\extension{R} & \{\ntuple{alpha,alpha}\}
\end{partialmodel}
\item %$\exists x Px \eif Qc$, $\exists x (Px \eif Qc)$
Making the first sentence false and the second true:
\begin{partialmodel}
UD & \{alpha, omega\}\\
\extension{P} & \{alpha\}\\
\extension{Q} & $\emptyset$\\
\referent{c} & alpha
\end{partialmodel}
\item %$\forall x(Px \eif \enot Qx)$, $\exists x(Px \eand \enot Qx)$
Making the first sentence true and the second false:
\begin{partialmodel}
UD & \{iota\}\\
\extension{P} & $\emptyset$\\
\extension{Q} & $\emptyset$
\end{partialmodel}
\item %$\exists x(Px \eand Qx)$, $\exists x(Px \eif Qx)$
Making the first sentence false and the second true:
\begin{partialmodel}
UD & \{iota\}\\
\extension{P} & $\emptyset$\\
\extension{Q} & \{iota\}
\end{partialmodel}
\item %$\forall x(Px\eif Qx)$, $\forall x(Px \eand Qx)$
Making the first sentence true and the second false:
\begin{partialmodel}
UD & \{iota\}\\
\extension{P} & $\emptyset$\\
\extension{Q} & \{iota\}
\end{partialmodel}
\item %$\forall x\exists y Rxy$, $\exists x\forall y Rxy$
Making the first sentence true and the second false:
\begin{partialmodel}
UD & \{alpha, omega\}\\
\extension{R} & \{\ntuple{alpha, omega}, \ntuple{omega, alpha}\}
\end{partialmodel}
\item %$\forall x\exists y Rxy$, $\forall x\exists y Ryx$
Making the first sentence false and the second true:
\begin{partialmodel}
UD & \{alpha, omega\}\\
\extension{R} & \{\ntuple{alpha, alpha}, \ntuple{alpha, omega}\}
\end{partialmodel}
\end{earg}
\solutionsection{ch.semantics}{pr.IdentityModels}
\begin{earg}
\item %Show that $\{{\enot}Raa, \forall x (x=a \eor Rxa)\}$ is consistent.
There are many possible answers. Here is one:
\begin{partialmodel}
UD & \{Harry, Sally\}\\
\extension{R} &\{\ntuple{Sally, Harry}\}\\
\referent{a} & Harry
\end{partialmodel}
\item %Show that $\{\forall x\forall y\forall z(x=y \eor y=z \eor x=z), \exists x\exists y\ x\neq y\}$ is consistent.
There are no predicates or constants, so we only need to give a UD.
Any UD with 2 members will do.
\item %Show that $\{\forall x\forall y\ x=y, \exists x\ x \neq a\}$ is inconsistent.
We need to show that it is impossible to construct a model in which these are both true. Suppose $\exists x\ x \neq a$ is true in a model. There is something in the universe of discourse that is \emph{not} the referent of $a$. So there are at least two things in the universe of discourse: \referent{a} and this other thing. Call this other thing $\beta$--- we know $a \neq \beta$. But if $a \neq \beta$, then $\forall x\forall y\ x=y$ is false. So the first sentence must be false if the second sentence is true. As such, there is no model in which they are both true. Therefore, they are inconsistent.
\end{earg}
\solutionsection{ch.semantics}{pr.SemanticsEssay}
\begin{earg}
\stepcounter{eargnum}
\item No, it would not make any difference. The satisfaction of a formula with one or more free variables depends on what the variable assignment does for those variables. Because a sentence has no free variables, however, its satisfaction does not depend on the variable assignment. So a sentence that is satisfied by \emph{some} variable assignment is satisfied by \emph{every} other variable assignment as well.
\end{earg}
\solutionsection{ch.proofs}{pr.justifySLproof}
\begin{multicols}{2}
\begin{proof}
\hypo{1}{W \eif \enot B}
\hypo{2}{A \eand W}
\hypo{2b}{B \eor (J \eand K)}
\have{3}{W}\ae{2}
\have{4}{\enot B} \ce{1,3}
\have{5}{J \eand K} \oe{2b,4}
\have{6}{K} \ae{5}
\end{proof}
\begin{proof}
\hypo{1}{L \eiff \enot O}
\hypo{2}{L \eor \enot O}
\open
\hypo{a1}{\enot L}
\have{a2}{\enot O}\oe{2,a1}
\have{a3}{L}\be{1,a2}
\have{a4}{\enot L}\by{R}{a1}
\close
\have{3}{L}\ne{a1-a4}
\end{proof}
\begin{proof}
\hypo{1}{Z \eif (C \eand \enot N)}
\hypo{2}{\enot Z \eif (N \eand \enot C)}
\open
\hypo{a1}{\enot(N \eor C)}
\have{a2}{\enot N \eand \enot C} \by{DeM}{a1}
\open
\hypo{b1}{Z}
\have{b2}{C \eand \enot N}\ce{1,b1}
\have{b3}{C}\ae{b2}
\have{b4}{\enot C}\ae{a2}
\close
\have{a3}{\enot Z}\ni{b1-b4}
\have{a4}{N \eand \enot C}\ce{2,a3}
\have{a5}{N}\ae{a4}
\have{a6}{\enot N}\ae{a2}
\close
\have{3}{N \eor C}\ne{a1-a6}
\end{proof}
\end{multicols}
\solutionsection{ch.proofs}{pr.solvedSLproofs}
%Give a proof for each argument in SL.
\begin{earg}
\item%$K\eand L$, \therefore $K\eiff L$
\begin{solutioninlist}
\begin{proof}
\hypo{a1}{K\eand L} \want{K\eiff L}
\open
\hypo{b1}{K} \want{L}
\have{b2}{L} \ae{a1}
\close
\open
\hypo{c1}{L} \want{K}
\have{c2}{K} \ae{a1}
\close
\have{d1}{K \eiff L} \bi{b1-b2,c1-c2}
\end{proof}
\end{solutioninlist}
\item%$A\eif (B\eif C)$, \therefore $(A\eand B)\eif C$
\begin{solutioninlist}
\begin{proof}
\hypo{a1}{A\eif (B\eif C)} \want{(A\eand B)\eif C}
\open
\hypo{b1}{A\eand B} \want{C}
\have{b2}{A} \ae{b1}
\have{b3}{B\eif C} \ce{a1,b2}
\have{b4}{B} \ae{b1}
\have{b5}{C} \ce{b3, b4}
\close
\have{c}{(A\eand B)\eif C} \ci{b1-b5}
\end{proof}
\end{solutioninlist}
\item%$P \eand (Q\eor R)$, $P\eif \enot R$, \therefore $Q\eor E$
\begin{solutioninlist}
\begin{proof}
\hypo{a1}{P \eand (Q\eor R)}
\hypo{a2}{P\eif \enot R} \want{Q\eor E}
\have{a3}{P} \andE{a1}
\have{a4}{\enot R} \ifE{a2,a3}
\have{a5}{Q\eor R} \andE{a1}
\have{a6}{Q} \orE{a5,a4}
\have{c}{Q\eor E} \orI{a6}
\end{proof}
\end{solutioninlist}
\item%$(C\eand D)\eor E$, \therefore $E\eor D$
\begin{solutioninlist}
\begin{proof}
\hypo{a1}{(C\eand D)\eor E} \want{E\eor D}
\open
\hypo{b1}{\enot E} \want{D}
\have{b2}{C\eand D} \oe{a1,b1}
\have{b3}{D} \ae{b2}
\close
\have{c1}{\enot E\eif D} \ci{b1-b3}
\have{c2}{E\eor D} \by{MC}{c1}
\end{proof}
\end{solutioninlist}
\item%$\enot F\eif G$, $F\eif H$, \therefore $G\eor H$
\begin{solutioninlist}
\begin{proof}
\hypo{a1}{\enot F\eif G}
\hypo{a2}{F\eif H} \want{G\eor H}
\open
\hypo{b1}{\enot G} \want{H}
\have{b2}{\enot\enot F} \by{MT}{a1,b1}
\have{b3}{F} \by{DN}{b2}
\have{b4}{H} \ce{a2,b3}
\close
\have{c1}{\enot G \eif H} \ci{b1-b4}
\have{c2}{G\eor H} \by{MC}{c1}
\end{proof}
\end{solutioninlist}
\item%$(X\eand Y)\eor(X\eand Z)$, $\enot(X\eand D)$, $D\eor M$ \therefore $M$
\begin{solutioninlist}
\begin{proof}
\hypo{a1}{(X\eand Y)\eor(X\eand Z)}
\hypo{a2}{\enot(X\eand D)}
\hypo{a3}{D\eor M} \want{M}
\open
\hypo{b1}{\enot X} \by{for reductio}{}
\have{b2}{\enot X\eor \enot Y} \oi{b1}
\have{b3}{\enot (X \eand Y)} \by{DeM}{b2}
\have{b4}{X\eand Z} \oe{a1,b3}
\have{b5}{X} \ae{b4}
\have{b6}{\enot X} \by{R}{b1}
\close
\have{c}{X} \ne{b1-b6}
\open
\hypo{d1}{\enot M} \by{for reductio}{}
\have{d2}{D} \oe{a3,d1}
\have{d3}{X\eand D} \ai{c,d2}
\have{d4}{\enot(X\eand D)} \by{R}{a2}
\close
\have{e}{M} \ne{d1-d4}
\end{proof}
\end{solutioninlist}
\end{earg}
\solutionsection{ch.proofs}{pr.subinstanceQL}
\begin{earg}
\item $Rca$, $Rcb$, $Rcc$, and $Rcd$ are substitution instances of $\forall x Rcx$.
\item Of the expressions listed, only $\forall y Lby$ is a substitution instance of $\exists x\forall y Lxy$.
\end{earg}
\solutionsection{ch.proofs}{pr.justifyQLproof}
\begin{multicols}{2}
%$\{\forall x(\exists y)(Rxy \eor Ryx),\forall x\enot Rmx\}\vdash\exists xRxm$
\begin{proof}
\hypo{p1}{\forall x\exists y(Rxy \eor Ryx)}
\hypo{p2}{\forall x\enot Rmx}
\have{3}{\exists y(Rmy \eor Rym)}\Ae{p1}
\open
\hypo{a1}{Rma \eor Ram}
\have{a2}{\enot Rma}\Ae{p2}
\have{a3}{Ram}\oe{a1,a2}
\have{a4}{\exists x Rxm}\Ei{a3}
\close
\have{n}{\exists x Rxm} \Ee{3,a1-a4}
\end{proof}
%$\{\forall x(\exists yLxy \eif \forall zLzx), Lab\} \vdash \forall xLxx$
\begin{proof}
\hypo{1}{\forall x(\exists yLxy \eif \forall zLzx)}
\hypo{2}{Lab}
\have{3}{\exists y Lay \eif \forall zLza}\Ae{1}
\have{4}{\exists y Lay} \Ei{2}
\have{5}{\forall z Lza} \ce{3,4}
\have{6}{Lca}\Ae{5}
\have{7}{\exists y Lcy \eif \forall zLzc}\Ae{1}
\have{8}{\exists y Lcy}\Ei{6}
\have{9}{\forall z Lzc}\ce{7,8}
\have{10}{Lcc}\Ae{9}
\have{11}{\forall x Lxx}\Ai{10}
\end{proof}
% $\{\forall x(Jx \eif Kx), \exists x\forall y Lxy, \forall x Jx\} \vdash \exists x(Kx \eand Lxx)$
\begin{proof}
\hypo{a}{\forall x(Jx \eif Kx)}
\hypo{b}{\exists x\forall y Lxy}
\hypo{c}{\forall x Jx}
\open
\hypo{2}{\forall y Lay}
\have{d}{Ja}\Ae{c}
\have{e}{Ja \eif Ka}\Ae{a}
\have{f}{Ka}\ce{e,d}
\have{3}{Laa}\Ae{2}
\have{4}{Ka \eand Laa}\ai{f,3}
\have{5}{\exists x(Kx \eand Lxx)}\Ei{4}
\close
\have{j}{\exists x(Kx \eand Lxx)}\Ee{b,2-5}
\end{proof}
%$\vdash \exists x Mx \eor \forall x\enot Mx$
\begin{proof}
\open
\hypo{p1}{\enot (\exists x Mx \eor \forall x\enot Mx)}
\have{p2}{\enot \exists x Mx \eand \enot \forall x\enot Mx} \by{DeM}{p1}
\have{p3}{\enot \exists x Mx}\ae{p2}
\have{p4}{\forall x\enot Mx}\by{QN}{p3}
\have{p5}{\enot \forall x\enot Mx}\ae{p2}
\close
\have{n}{\exists x Mx \eor \forall x\enot Mx} \ne{p1-p5}
\end{proof}
\end{multicols}
\solutionsection{ch.proofs}{pr.someQLproofs}
\begin{earg}
\item%$\vdash \forall x Fx \eor \enot \forall x Fx$
\begin{solutioninlist}
\begin{proof}
\open
\hypo{p1}{\enot(\forall x Fx \eor \enot\forall x Fx)} \by{for reductio}{}
\have{s1}{\enot\forall x Fx \eand \enot\enot\forall x Fx} \by{DeM}{p1}
\have{s2}{\enot \forall x Fx}\ae{s1}
\have{s3}{\enot\enot\forall x Fx}\ae{s1}
\close
\have{c}{\forall x Fx \eor \enot\forall x Fx} \ne{p1-s3}
\end{proof}
\end{solutioninlist}
\item %$\{\forall x(Mx \eiff Nx), Ma\eand\exists x Rxa\}\vdash \exists x Nx$
\begin{solutioninlist}
\begin{proof}
\hypo{p1}{\forall x(Mx \eiff Nx)}
\hypo{p2}{Ma \eand \exists x Rxa} \by{want $\exists x Nx$}{}
\have{a1}{Ma \eiff Na} \Ae{p1}
\have{a2}{Ma} \ae{p2}
\have{a3}{Na} \be{a1,a2}
\have{c}{\exists x Nx} \Ei{a3}
\end{proof}
\end{solutioninlist}
\item %$\{\forall x(\enot Mx \eor Ljx), \forall x(Bx\eif Ljx), \forall x(Mx\eor Bx)\}\vdash \forall xLjx$
\begin{solutioninlist}
\begin{proof}
\hypo{a1}{\forall x(\enot Mx \eor Ljx)}
\hypo{a2}{\forall x(Bx \eif Ljx)}
\hypo{a3}{\forall x(Mx \eor Bx)} \by{want $\forall x Ljx$}{}
\have{a4}{\enot Ma \eor Lja} \Ae{a1}
\have{a5}{Ma \eif Lja} \by{MC}{a4}
\have{a6}{Ba \eif Lja} \Ae{a2}
\have{a7}{Ma \eor Ba} \Ae{a3}
\have{a8}{Lja} \by{DIL}{a7, a5, a6}
\have{a9}{\forall x Ljx} \Ai{a8}
\end{proof}
\end{solutioninlist}
\item %$\forall x(Cx \eand Dt)\vdash \forall xCx \eand Dt$
\begin{solutioninlist}
\begin{proof}
\hypo{a1}{\forall x(Cx \eand Dt)} \by{want $\forall x Cx \eand Dt$}{}
\have{a2}{Ca \eand Dt} \Ae{a1}
\have{a3}{Ca} \ae{a2}
\have{a4}{\forall x Cx} \Ai{a3}
\have{a5}{Dt} \ae{a2}
\have{a6}{\forall x Cx \eand Dt} \ai{a4, a5}
\end{proof}
\end{solutioninlist}
\item %$\exists x(Cx \eor Dt)\vdash \exists x Cx \eor Dt$
\begin{solutioninlist}
\begin{proof}
\hypo{a1}{\exists x(Cx \eor Dt)} \by{want $\exists x Cx \eor Dt$}{}
\open
\hypo{a2}{Ca \eor Dt} \by{for {$\exists$}E}{}
\open
\hypo{a3}{\enot(\exists x Cx \eor Dt)} \by{for reductio}{}
\have{a4}{\enot\exists x Cx \eand \enot Dt} \by{DeM}{a3}
\have{a5}{\enot Dt} \ae{a4}
\have{a6}{Ca} \oe{a2,a5}
\have{a7}{\exists x Cx} \Ei{a6}
\have{a8}{\enot\exists x Cx} \ae{a4}
\close
\have{a9}{\exists x Cx \eor Dt} \ne{a3-a8}
\close
\have{a10}{\exists x Cx \eor Dt} \Ee{a1,a2-a9}
\end{proof}
\end{solutioninlist}
\end{earg}
\solutionsection{ch.proofs}{pr.likes}
Regarding the translation of this argument, see p.~\pageref{likes2}.
\begin{proof}
\hypo{1}{\exists x\forall y[\forall z(Lxz \eif Lyz) \eif Lxy]}
\open
\hypo{a}{\forall y[\forall z(Laz \eif Lyz) \eif Lay]}
\have{b}{\forall z(Laz \eif Laz) \eif Laa} \Ae{a}
\open
\hypo{c1}{\enot \exists x Lxx} \by{for reductio}{}
\have{c2}{\forall x\enot Lxx} \by{QN}{c1}
\have{c3}{\enot Laa} \Ae{c2}
\have{c4}{\enot \forall z(Laz \eif Laz)} \by{MT}{c2,c3}
\open
\hypo{d1}{Lab}
\have{d2}{Lab} \by{R}{d1}
\close
\have{c5}{Lab \eif Lab} \ci{d1--d2}
\have{c6}{\forall z(Laz \eif Laz)} \Ai{c5}
\have{cn}{\enot \forall z(Laz \eif Laz)} \by{R}{c4}
\close
\have{h}{\exists x Lxx} \ne{c1--cn}
\close
\have{n}{\exists x Lxx} \Ee{1, a--h}
\end{proof}
\solutionsection{ch.proofs}{pr.QLequivornot}
%\item $\forall x Px \eif Qc$, $\forall x (Px \eif Qc)$
\noSeq
%\item $\forall x Px \eand Qc$, $\forall x (Px \eand Qc)$
\nextSeq
%\item $Qc \eor \exists x Qx$, $\exists x (Qc \eor Qx)$
\nextSeq
%\item $\forall x\forall y \forall z Bxyz$, $\forall x Bxxx$
\noSeq
%\item $\forall x\forall y Dxy$, $\forall y\forall x Dxy$
\lastSeq
%\item $\exists x\forall y Dxy$, $\forall y\exists x Dxy$
\noSeq
are logically equivalent.
\solutionsection{ch.proofs}{pr.QLvalidornot}
\noSeq%\item $\forall x\exists y Rxy$, \therefore\ $\exists y\forall x Rxy$
\nextSeq%\item $\exists y\forall x Rxy$, \therefore\ $\forall x\exists y Rxy$
\noSeq%\item $\exists x(Px \eand \enot Qx)$, \therefore\ $\forall x(Px \eif \enot Qx)$
\nextSeq%\item $\forall x(Sx \eif Ta)$, $Sd$, \therefore\ $Ta$
\nextSeq%\item $\forall x(Ax\eif Bx)$, $\forall x(Bx \eif Cx)$, \therefore\ $\forall x(Ax \eif Cx)$
\noSeq%\item $\exists x(Dx \eor Ex)$, $\forall x(Dx \eif Fx)$, \therefore\ $\exists x(Dx \eand Fx)$
\nextSeq%\item $\forall x\forall y(Rxy \eor Ryx)$, \therefore\ $Rjj$
\noSeq%\item $\exists x\exists y(Rxy \eor Ryx)$, \therefore\ $Rjj$
\noSeq%\item $\forall x Px \eif \forall x Qx$, $\exists x \enot Px$, \therefore\ $\exists x \enot Qx$
\lastSeq%\item $\exists x Mx \eif \exists x Nx$, $\enot \exists x Nx$, \therefore\ $\forall x \enot Mx$
are valid. Here are complete answers for some of them:
\begin{earg}
\item %$\forall x\exists y Rxy$, \therefore\ $\exists y\forall x Rxy$
\begin{solutioninlist}
\begin{partialmodel}
UD & \{mocha, freddo\}\\
\extension{R} & \{\ntuple{mocha, freddo}, \ntuple{freddo, mocha}\}
\end{partialmodel}
\end{solutioninlist}
\item %$\exists y\forall x Rxy$, \therefore\ $\forall x\exists y Rxy$
\begin{solutioninlist}
\begin{proof}
\hypo{p}{\exists y\forall x Rxy} \by{want $\forall x\exists y Rxy$}{}
\open
\hypo{ass}{\forall x Rxa}
\have{R}{Rba} \Ae{ass}
\have{ER}{\exists y Rby} \Ei{R}
\have{AER}{\forall x \exists y Rxy} \Ai{ER}
\close
\have{c}{\forall x\exists y Rxy} \Ee{p, ass-AER}
\end{proof}
\end{solutioninlist}
\end{earg}