
[LSF/MM/BPF TOPIC]
SMDK inspired MM changes for CXL

Kyungsan Kim / Samsung Electronics

2

On behalf of SMDK* team

 We appreciate LSF/MM/BPF program committee for inviting and giving us the discussion opportunity.
 Also, we sincerely appreciate all the experts here for the advices, comments, interests on this topic.

SMDK*: Scalable Memory Development Kit, Samsung CXL SW for CXL Memory

3

Agenda Today

 Background
 CXL Requirement and SMDK Proposal

4

Background - SMDK
 CXL is a promising technology that leads to fundamental changes in computing architecture.

 As CXL DRAM provider, Samsung has developed both CXL DRAM HW and SW over last couple of years.
To facilitate adoption and widespread of CXL DRAM, we have been developing a CXL SW development Kit,
SMDK[1], since 2021 March working with industry and academic partners.
Meantime, we gained some kernel requirements from the works and customized SMDK kernel.

 Also, CXL technology has been evolving thanks to many industry’s efforts.
As a result, CXL adoption stage is gradually moving forward from basic enablement to real-world memory tiering
usecases. Around the stage, we would like to discuss CXL requirements and introduce some of SMDK’s kernel
changes to kernel maintainers/contributors here.

 But, please do not get us wrong. We want to explain our thoughts and approaches, but never force the approach.
Personally, I majored OS and have experienced kernel development since v2.4 around 2004.
I respect kernel experts and strongly believe OS should be changed for a rationale reason and public use.

[1] SMDK: https://github.com/openMPDK/SMDK

5

 A system with CXL DRAM would consider a memory tiering solution.
In terms of a memory tiering solution, it is typical that the solution attempts to
locate hot data on near memory, and cold data on far memory as accurately as possible.

 The hot/coldness of data is determined by a memory consumer while near/far memory is determined by a
memory provider. Thus, memory consumer needs an identifier to determine near/far memory.

 As memory vendor, SMDK put more weight on near/far memory determinism rather than hot/cold
determinism, offering memory tiering interfaces for a memory consumer context at user/kernelspace.

 The following 5 requirements and 2 proposals are originated from the backgrounds.

Memory Tiering Abstraction

Locality
Cold
Data

Hot
Data

Latency Far
Memory

Near
Memory

Memory Provider

Memory Consumer

Background - Memory Tiering Solution

6

CXL Requirements (1)

 1. CXL DRAM identifier (API and ABI)
Issue: a user/kernel context has to use the node id of a CXL memory-node to
access CXL DRAM.
Thought: Node id would be ephemeral information that can be changed. In
addition, it does not present a near/far attribute of the node. A userspace
and kernelspace memory tiering solution need API and/or ABI to identify
near/far memory node.
A 3rd party plugin such as libmemkind, libnuma can resolve it.
However, using a plugin is not always preferred, so we propose a primitive
API from kernel.

 2. Prevention of unintended CXL page migration
Issue: In order to store swapped-out page on far memory(CXL DRAM), a page
on near memory(DIMM DRAM) is allocated while zswap works.
Thought: On the swap flow, a context that was employed a far memory
should not be promoted to employ near memory accidentally.
It would happen other page migration flows as well based on node id.

Node ID

near? far?

Could be changed during
logical memory on/offline,
physical hot add/remove

VMM

User

Kernel

CXL
Page PFRA

Zswap
(frontswap)

DDR
Page

Diskswap

CXL->DDR
promotion

7

LSF/MM – SMDK Proposal (1)

 We provide userspace/kernelspace programming interfaces to explicitly (de)allocate memory out of
DIMM DRAM and CXL DRAM.

– Syscall - mmap(MAP_NORMAL|MAP_EXMEM), mbind(), set_mempolicy()
– Kernelspace - alloc_page(GFP_NORMAL|GFP_EXMEM)

 Currently, only a userspace context is able to allocate CXL DRAM implicitly.
– Kernelspace has to request CXL memory explicitly to avoid unpluggable condition by chance.

Syscall sys_mmap
(GFP_NORMAL)

sys_mmap
(GFP_EXMEM)

Allocator, Binder
(libc, libnuma, etc)

mmap
(,,,MAP_NORMAL,,)

mmap
(,,,MAP_EXMEM,,)User

Usersapce Memory Tiering

Kernelspace
Memory Tiering

zswap pagecache TPPalloc_page
(GFP_NORMAL)

alloc_page
(GFP_EXMEM)

explicit

sys_mmap()

mmap(,,,,,)

implicit

alloc_page ()

mbind(,, MPOL_F_ZONE_NOEXMEM / EXMEM),
set_mempolicy(,, MPOL_F_ZONE_NOEXMEM /EXMEM),

mbind(,,)
set_mempolicy(,,)

... ...
Kernel

explicit

8

CXL Requirements (2)

 3. CXL DRAM pluggability
Issue: a random unmovable allocation can make a CXL DRAM unpluggable.
It happened out of kernelspace - pinning for metadata such as struct task_struct, page, zone, etc - or even rarely
userspace - pinning for DMA buffer.
By the way, we should separately think logical memory on/offline and physical memory add/remove for this issue.
Thought: a CXL DRAM should be able to be used in a selective manner, pluggable or unpluggable.
I apology for confusion while discussion. Don't get this wrong. Those are mutual-exclusive, so it cannot happen at
the same time on a single CXL DRAM channel.

CXL.mem

CXL Node

ZONE_NORMAL: free_pagelist

Unmovable
Page

page
allocation

fail to offline/remove

9

CXL Requirements (2)

4. Too many CXL nodes appearing in user and kernelspace
Issue: many CXL memory nodes would be appeared to user and kernelspace along with development of a CXL capable
server, switch, and fabric topology. Both need to be aware and manage the increased nodes.
To be specific, a userland need to use a 3rd party SW such as numactl, a heap allocator.
A kernelspace tiering which is node-basis would be influenced as well such as Auto-numa, TPP.
Thought:

Kernel would provide an abstraction layer of nodes to deal with the increased node seamlessly.
Traditionally a node has implied multiple memory channels from the same distance.

CXL
Node 1

CXL.mem

CXL
Node 2

CXL.mem

CXL
Node 3

CXL.mem

User

Kernel
CXL

Node N

CXL.mem

…

Userspace Tiering

HW

userspace management
kernelspace management

Kernelspace
Tiering

10

CXL Requirements (2)

 5. Flexible ways to use CXL DRAM to allow a variety of potential usecases
Issue : No one mentioned yet. a CXL system being made is

– CXL.mem interleaving, DDR/CXL.mem channel interleaving by BIOS, Switch FW

– CXL.mem grouping by BIOS, Switch FW

Thought
– 1.CXL Switch will be used at all times?

 Direct attached  (Multi) Switched  Fabric connected, aiming composable datacenter ultimately.

 IMHO those would be used in a mixed way for different purpose.
e.g) Backplaine EDSFF(e3.s/e1.s) would be better than DIMM F/F for flexibility and maintenance aspect.

– 2. BIOS setting is enough to support all real-world usecases?

– So, what if allows the interleaving and grouping in software way after OS boot

11

LSF/MM – SMDK Proposal (2)
 What ZONE_EXMEM do?
 1. CXL Identifier (Requirement 1,2)

– Beneath the Syscall and kernel allocator
– MAP_EXMEM and GFP_EXMEM flag traverse free_pagelist of ZONE_EXMEM

 2. Node Abstraction (Requirement 4,5)
– Node – Zone_EXMEM(1:CXL N) – Subzone(1:CXL 1) – Buddy list
– Aggregation/Isolation of Capacity/Bandwidth

 cxl group-add --target_node 1 --dev cxl1 cxl2
 e.g.) mdadm --create /dev/md0 --level=0 --raid-devices=2 /dev/sdb1 /dev/sdc1

 3. Pluggability (Requirement 3)
– Not confine movable or unmovable attribute

 The same of ZONE_NORMAL, but works on CXL DRAM

– ZONE_MOVABLE(ZONE_PREFERRED_MOVABLE, David) or
ZONE_NORMAL works for CXL DRAM

 4. Zone level Algorithm (would influence MM due to CXL HW)
– Performance - Link Negotiation, QoS Throttling
– Error handling - RAS, Switch/Fabric connection error
– Sharing - Security, Permission
– Async operation - Background (FW Update, Sanitize, etc)

Buddylist [CXL_DEVICE #N]Buddylist [CXL_DEVICE #2]Buddylist [CXL_DEVICE #1]

CXL sub
zone#N

…CXL sub
zone#2

……CXL sub
zone#1

Sub Zone : CXL.mem = 1:1

buddylist buddylist buddylist

..

CXL Node

CXL.mem CXL.mem CXL.mem

ZONE_EXMEM

management

User

Kernel

CXL Node

ZONE
EXMEM

ZONE_EXMEM : CXL.mem = 1 : N

Userspace Tiering

DIMM Node

ZONE_NORMAL

Kernel
space
Tiering

configurable at
OS boot and after

12

LSF/MM – SMDK Proposal (2)

 For the reasons, we propose ZONE_EXMEM as a separated logical management dimension for CXL
DRAM device.

– Historically, a new zone has been carefully added to deal with a new different HW and SW algorithm.
So, we have thought it could be a graceful way to manage CXL DRAM.

– En/disabled(default) by CONFIG_EXMEM since SMDK v1.2 release @22.3
– Testbeds verified
 CXL capable architectures, OEM servers

13

Why not a existing Zone, Node, or HW?
 Existing ZONE

– ZONE_NORMAL : Unmovable(fragmentation), for DIMM DRAM device
– ZONE_MOVABLE : Not pinning , for DIMM DRAM device
– ZONE_DEVICE: Not allow page allocation

 Node
– 1. Inherit MM hierarchy

 Background 1: Node is the topmost at MM hierarchy, Node - Zone - Memory block - Page
 Background 2: Node usually abstracts not a single memory channel, but multiple memory channels with a same distance.
 In case a CXL DRAM becomes a single node, Kernel would need to newly devise a larger level of management: [Super Node] – Node – Zone …

So, Zone unit would be better to reuse existing Node/Zone code.
 We also think a new node attribute would be needed such as Dimm, Extended, Switch N, fabric M : Ying and Dragan

– 2. Expand MM hierarchy
 Zone implements actual MM algorithms such as Compaction, Reclaim watermark, Migration, Anti-fragmentation,

which would need to be revisited due to the CXL DRAM characteristics.
– 3. Dependency and Maintenance

 Node is widely coupled with other kernel subsystems and userspace than Zone.
 Zone required much less code modification, so probably less potential side-effect and maintenance effort.

 HW (System/Switch FW)
– What if SW/HW co-exist? We know classic pros and cons

 SW - more usecases by flexibility, TCO, easy-of-use
 HW - isolated, better performance

