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On behalf of SMDK* team

 We appreciate LSF/MM/BPF program committee for inviting and giving us the discussion opportunity.
 Also, we sincerely appreciate all the experts here for the advices, comments, interests on this topic.

SMDK*: Scalable Memory Development Kit, Samsung CXL SW for CXL Memory



3

Agenda Today

 Background
 CXL Requirement and SMDK Proposal
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Background - SMDK
 CXL is a promising technology that leads to fundamental changes in computing architecture.

 As CXL DRAM provider, Samsung has developed both CXL DRAM HW and SW over last couple of years.
To facilitate adoption and widespread of CXL DRAM, we have been developing a CXL SW development Kit, 
SMDK[1], since 2021 March working with industry and academic partners.
Meantime, we gained some kernel requirements from the works and customized SMDK kernel.

 Also, CXL technology has been evolving thanks to many industry’s efforts. 
As a result, CXL adoption stage is gradually moving forward from basic enablement to real-world memory tiering 
usecases. Around the stage, we would like to discuss CXL requirements and introduce some of SMDK’s kernel 
changes to kernel maintainers/contributors here.

 But, please do not get us wrong. We want to explain our thoughts and approaches, but never force the approach.
Personally, I majored OS and have experienced kernel development since v2.4 around 2004.
I respect kernel experts and strongly believe OS should be changed for a rationale reason and public use.

[1] SMDK: https://github.com/openMPDK/SMDK
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 A system with CXL DRAM would consider a memory tiering solution.
In terms of a memory tiering solution, it is typical that the solution attempts to 
locate hot data on near memory, and cold data on far memory as accurately as possible. 

 The hot/coldness of data is determined by a memory consumer while near/far memory is determined by a 
memory provider.  Thus, memory consumer needs an identifier to determine near/far memory.

 As memory vendor, SMDK put more weight on near/far memory determinism rather than hot/cold 
determinism, offering memory tiering interfaces for a memory consumer context at user/kernelspace. 

 The following 5 requirements and 2 proposals are originated from the backgrounds.
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CXL Requirements (1)

 1. CXL DRAM identifier (API and ABI)
Issue: a user/kernel context has to use the node id of a CXL memory-node to 
access CXL DRAM.
Thought: Node id would be ephemeral information that can be changed. In 
addition, it does not present a near/far attribute of the node.  A userspace 
and kernelspace memory tiering solution need API and/or ABI to identify 
near/far memory node.
A 3rd party plugin such as libmemkind, libnuma can resolve it. 
However, using a plugin is not always preferred, so we propose a primitive 
API from kernel.

 2. Prevention of unintended CXL page migration
Issue: In order to store swapped-out page on far memory(CXL DRAM), a page 
on near memory(DIMM DRAM) is allocated while zswap works.
Thought: On the swap flow, a context that was employed a far memory 
should not be promoted to employ near memory accidentally. 
It would happen other page migration flows as well based on node id.
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LSF/MM – SMDK Proposal (1)

 We provide userspace/kernelspace programming interfaces to explicitly (de)allocate memory out of 
DIMM DRAM and CXL DRAM.

– Syscall - mmap(MAP_NORMAL|MAP_EXMEM), mbind(), set_mempolicy()
– Kernelspace - alloc_page(GFP_NORMAL|GFP_EXMEM)

 Currently, only a userspace context is able to allocate CXL DRAM implicitly.
– Kernelspace has to request CXL memory explicitly to avoid unpluggable condition by chance.
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CXL Requirements (2)

 3. CXL DRAM pluggability
Issue: a random unmovable allocation can make a CXL DRAM unpluggable.
It happened out of kernelspace - pinning for metadata such as struct task_struct, page, zone, etc - or even rarely 
userspace - pinning for DMA buffer.
By the way, we should separately think logical memory on/offline and physical memory add/remove for this issue.
Thought: a CXL DRAM should be able to be used in a selective manner, pluggable or unpluggable.
I apology for confusion while discussion. Don't get this wrong. Those are mutual-exclusive, so it cannot happen at 
the same time on a single CXL DRAM channel.
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CXL Requirements (2)

4. Too many CXL nodes appearing in user and kernelspace
Issue: many CXL memory nodes would be appeared to user and kernelspace along with development of a CXL capable 
server, switch, and fabric topology. Both need to be aware and manage the increased nodes. 
To be specific, a userland need to use a 3rd party SW such as numactl, a heap allocator. 
A kernelspace tiering which is node-basis would be influenced as well such as Auto-numa, TPP.
Thought: 

Kernel would provide an abstraction layer of nodes to deal with the increased node seamlessly.
Traditionally a node has implied multiple memory channels from the same distance.
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CXL Requirements (2)

 5. Flexible ways to use CXL DRAM to allow a variety of potential usecases
Issue : No one mentioned yet. a CXL system being made is

– CXL.mem interleaving, DDR/CXL.mem channel interleaving by BIOS, Switch FW

– CXL.mem grouping by BIOS, Switch FW

Thought
– 1.CXL Switch will be used at all times?

 Direct attached  (Multi) Switched  Fabric connected, aiming composable datacenter ultimately.

 IMHO those would be used in a mixed way for different purpose.
e.g) Backplaine EDSFF(e3.s/e1.s) would be better than DIMM F/F for flexibility and maintenance aspect.

– 2. BIOS setting is enough to support all real-world usecases?

– So, what if allows the interleaving and grouping in software way after OS boot
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LSF/MM – SMDK Proposal (2)
 What ZONE_EXMEM do?
 1. CXL Identifier (Requirement 1,2)

– Beneath the Syscall and kernel allocator
– MAP_EXMEM and GFP_EXMEM flag traverse free_pagelist of ZONE_EXMEM

 2. Node Abstraction (Requirement 4,5)
– Node – Zone_EXMEM(1:CXL N) – Subzone(1:CXL 1) – Buddy list
– Aggregation/Isolation of Capacity/Bandwidth

 cxl group-add --target_node 1 --dev cxl1 cxl2
 e.g.) mdadm --create /dev/md0 --level=0 --raid-devices=2 /dev/sdb1 /dev/sdc1

 3. Pluggability (Requirement 3)
– Not confine movable or unmovable attribute

 The same of ZONE_NORMAL, but works on CXL DRAM

– ZONE_MOVABLE(ZONE_PREFERRED_MOVABLE, David) or 
ZONE_NORMAL works for CXL DRAM

 4. Zone level Algorithm (would influence MM due to CXL HW)
– Performance - Link Negotiation, QoS Throttling
– Error handling - RAS, Switch/Fabric connection error
– Sharing - Security, Permission
– Async operation - Background (FW Update, Sanitize, etc)
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LSF/MM – SMDK Proposal (2)

 For the reasons, we propose ZONE_EXMEM as a separated logical management dimension for CXL 
DRAM device.

– Historically, a new zone has been carefully added to deal with a new different HW and SW algorithm.
So, we have thought it could be a graceful way to manage CXL DRAM.

– En/disabled(default) by CONFIG_EXMEM since SMDK v1.2 release @22.3
– Testbeds verified
 CXL capable architectures, OEM servers
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Why not a existing Zone, Node, or HW? 
 Existing ZONE

– ZONE_NORMAL : Unmovable(fragmentation), for DIMM DRAM device 
– ZONE_MOVABLE :  Not pinning , for DIMM DRAM device
– ZONE_DEVICE:  Not allow page allocation 

 Node
– 1. Inherit MM hierarchy

 Background 1: Node is the topmost at MM hierarchy, Node - Zone - Memory block - Page
 Background 2: Node usually abstracts not a single memory channel, but multiple memory channels with a same distance.
 In case a CXL DRAM becomes a single node, Kernel would need to newly devise a larger level of management:  [Super Node] – Node – Zone …

So, Zone unit would be better to reuse existing Node/Zone code.
 We also think a new node attribute would be needed such as  Dimm, Extended, Switch N, fabric M : Ying and Dragan

– 2. Expand MM hierarchy
 Zone implements actual MM algorithms such as Compaction, Reclaim watermark, Migration, Anti-fragmentation, 

which would need to be revisited due to the CXL DRAM characteristics.
– 3. Dependency and Maintenance 

 Node is widely coupled with other kernel subsystems and userspace than Zone.
 Zone required much less code modification, so probably less potential side-effect and maintenance effort.

 HW (System/Switch FW)
– What if SW/HW co-exist? We know classic pros and cons 

 SW - more usecases by flexibility, TCO, easy-of-use
 HW - isolated, better performance


