SAMSUNG

[LSF/MM/BPF TOPIC]
SMDK inspired MM changes for CXL

Kyungsan Kim / Samsung Electronics

H E

On behalf of SMDK* team

= We appreciate LSF/MM/BPF program committee for inviting and giving us the discussion opportunity.
= Also, we sincerely appreciate all the experts here for the advices, comments, interests on this topic.

SMDK?*: Scalable Memory Development Kit, Samsung CXL SW for CXL Memory

SAMSUNG

Agenda Today

= Background
= CXL Requirement and SMDK Proposal

SAMSUNG

Background - SMDK

= CXLis a promising technology that leads to fundamental changes in computing architecture.

= As CXL DRAM provider, Samsung has developed both CXL DRAM HW and SW over last couple of years.
To facilitate adoption and widespread of CXL DRAM, we have been developing a CXL SW development Kit,
SMDK]1], since 2021 March working with industry and academic partners.
Meantime, we gained some kernel requirements from the works and customized SMDK kernel.

= Also, CXL technology has been evolving thanks to many industry’s efforts.
As a result, CXL adoption stage is gradually moving forward from basic enablement to real-world memory tiering
usecases. Around the stage, we would like to discuss CXL requirements and introduce some of SMDK’s kernel
changes to kernel maintainers/contributors here.

= But, please do not get us wrong. We want to explain our thoughts and approaches, but never force the approach.
Personally, | majored OS and have experienced kernel development since v2.4 around 2004.
| respect kernel experts and strongly believe OS should be changed for a rationale reason and public use.

[1] SMDK: https://github.com/openMPDK/SMDK

SAMSUNG

Background - Memory Tiering Solution

= Asystem with CXL DRAM would consider a memory tiering solution.
In terms of a memory tiering solution, it is typical that the solution attempts to
locate hot data on near memory, and cold data on far memory as accurately as possible.

= The hot/coldness of data is determined by a memory consumer while near/far memory is determined by a
memory provider. Thus, memory consumer needs an identifier to determine near/far memory.

= As memory vendor, SMDK put more weight on near/far memory determinism rather than hot/cold
determinism, offering memory tiering interfaces for a memory consumer context at user/kernelspace.

= The following 5 requirements and 2 proposals are originated from the backgrounds.

Memory Tiering Abstraction

Cold
[Data]
4

2

Locality

Memory Consumer

Memory Provider

Latency

Far
‘ *| Memory

SAMSUNG

CXL Requirements (1)

= 1. CXL DRAM identifier (APl and ABI)
Issue: a user/kernel context has to use the node id of a CXL memory-node to
access CXL DRAM.
Thought: Node id would be ephemeral information that can be changed. In
addition, it does not present a near/far attribute of the node. A userspace
and kernelspace memory tiering solution need APl and/or ABI to identify
near/far memory node.
A 3" party plugin such as libmemkind, libnuma can resolve it.
However, using a plugin is not always preferred, so we propose a primitive
API from kernel.

= 2. Prevention of unintended CXL page migration
Issue: In order to store swapped-out page on far memory(CXL DRAM), a page
on near memory(DIMM DRAM) is allocated while zswap works.
Thought: On the swap flow, a context that was employed a far memory
should not be promoted to employ near memory accidentally.
It would happen other page migration flows as well based on node id.

User near? far?
P
Kernel
Node ID
Could be changed during
logical memory on/offline,
physical hot add/remove
VMM
CXL{>DDR
promotion

CXL
Page PFRA Diskswap

SAMSUNG

LSF/MM — SMDK Proposal (1)

= We provide userspace/kernelspace programming interfaces to explicitly (de)allocate memory out of
DIMM DRAM and CXL DRAM.

— Syscall - mmap(MAP_NORMAL|MAP_EXMEM), mbind(), set_mempolicy()
— Kernelspace - alloc_page(GFP_NORMAL|GFP_EXMEM)

= Currently, only a userspace context is able to allocate CXL DRAM implicitly.

— Kernelspace has to request CXL memory explicitly to avoid unpluggable condition by chance.

Usersapce Memory Tiering

v

implici explicit
Allocator, Binder plic t. P

. . mbind(,,)

(libc, libnuma, etc) mmap(,,,,,) set_mempolicy(,,)

User = POEYL,
Kernel - = -
v
alloc_page () — -« Kernelspace |zswap ||pagecache|| TPP |

Memory Tiering

explicit

SAMSUNG

CXL Requirements (2)

= 3. CXL DRAM pluggability
Issue: a random unmovable allocation can make a CXL DRAM unpluggable.
It happened out of kernelspace - pinning for metadata such as struct task_struct, page, zone, etc - or even rarely
userspace - pinning for DMA buffer.
By the way, we should separately think logical memory on/offline and physical memory add/remove for this issue.
Thought: a CXL DRAM should be able to be used in a selective manner, pluggable or unpluggable.
| apology for confusion while discussion. Don't get this wrong. Those are mutual-exclusive, so it cannot happen at
the same time on a single CXL DRAM channel.

Unmovable CXL Node

Page

page

allocation ZONE_NORMAL: free_pagelist

CXL.mem

fail to offline/remove

SAMSUNG

CXL Requirements (2)

4. Too many CXL nodes appearing in user and kernelspace

Issue: many CXL memory nodes would be appeared to user and kernelspace along with development of a CXL capable
server, switch, and fabric topology. Both need to be aware and manage the increased nodes.

To be specific, a userland need to use a 3rd party SW such as numactl, a heap allocator.

A kernelspace tiering which is node-basis would be influenced as well such as Auto-numa, TPP.

Thought:

Kernel would provide an abstraction layer of nodes to deal with the increased node seamlessly.
Traditionally a node has implied multiple memory channels from the same distance.

User L
userspace management
kernelspace management

Kernel

HW CXL.mem CXL.mem CXL.mem CXL.mem

SAMSUNG

CXL Requirements (2)

= 5. Flexible ways to use CXL DRAM to allow a variety of potential usecases
Issue : No one mentioned yet. a CXL system being made is
— CXL.mem interleaving, DDR/CXL.mem channel interleaving by BIOS, Switch FW
— CXL.mem grouping by BIOS, Switch FW

Thought

— 1.CXL Switch will be used at all times?
v’ Direct attached = (Multi) Switched = Fabric connected, aiming composable datacenter ultimately.

v IMHO those would be used in a mixed way for different purpose.

e.g) Backplaine EDSFF(e3.s/el.s) would be better than DIMM F/F for flexibility and maintenance aspect.

— 2. BIOS setting is enough to support all real-world usecases?

— So, what if allows the interleaving and grouping in software way after OS boot

SAMSUNG

LSF/MM - SMDK Proposal (2)

What ZONE_EXMEM do?

1. CXL Identifier (Requirement 1,2)

— Beneath the Syscall and kernel allocator

— MAP_EXMEM and GFP_EXMEM flag traverse free_pagelist of ZONE_EXMEM
2. Node Abstraction (Requirement 4,5)

— Node —Zone_EXMEM(1:CXL N) — Subzone(1:CXL 1) — Buddly list

— Aggregation/Isolation of Capacity/Bandwidth

v’ cxl group-add --target_node 1 --dev cx|1 cxI2
v’ e.g.) mdadm --create /dev/md0 --level=0 --raid-devices=2 /dev/sdbl /dev/sdcl

3. Pluggability (Requirement 3)

- Not confine movable or unmovable attribute
v The same of ZONE_NORMAL, but works on CXL DRAM

— ZONE_MOVABLE(ZONE_PREFERRED_MOVABLE, David) or
ZONE_NORMAL works for CXL DRAM
4. Zone level Algorithm (would influence MM due to CXL HW)
— Performance - Link Negotiation, QoS Throttling
- Error handling - RAS, Switch/Fabric connection error

User

Kernel

mana

DIMM Node

ZONE_NORMAL

ement

A
|/Q&L.mem || CXL,mem/” CXL.mem |

configurable at

OS boot and after

CXL Node

ZONE_EXMEM : CXL.mem = 1: N

— Sharing - Security, Permission e buddylist

. buddylist
— Async operation - Background (FW Update, Sanitize, etc) CXL sub = =- CXL sub = =- | CXL sub = Ei
zone#1 — " zone#2 — zone#N [I

Buddylist [CXL_DEVICE #2] .. Buddylist [CXL_DEVICE #N]

Buddylist [CXL_DEVICE #1]

~<
~
~

b

uddylist

SAMSUNG

LSF/MM - SMDK Proposal (2)

= For the reasons, we propose ZONE_EXMEM as a separated logical management dimension for CXL
DRAM device.

— Historically, a new zone has been carefully added to deal with a new different HW and SW algorithm.
So, we have thought it could be a graceful way to manage CXL DRAM.

— En/disabled(default) by CONFIG_EXMEM since SMDK v1.2 release @22.3

— Testbeds verified
v’ CXL capable architectures, OEM servers

SAMSUNG

Why not a existing Zone, Node, or HW?

= Existing ZONE
— ZONE_NORMAL : Unmovable(fragmentation), for DIMM DRAM device
— ZONE_MOVABLE : Not pinning , for DIMM DRAM device
— ZONE_DEVICE: Not allow page allocation

— 1. Inherit MM hierarchy
v" Background 1: Node is the topmost at MM hierarchy, Node - Zone - Memory block - Page
v’ Background 2: Node usually abstracts not a single memory channel, but multiple memory channels with a same distance.
v' In case a CXL DRAM becomes a single node, Kernel would need to newly devise a larger level of management: [Super Node] — Node — Zone ...
So, Zone unit would be better to reuse existing Node/Zone code.
v" We also think a new node attribute would be needed such as Dimm, Extended, Switch N, fabric M : Ying and Dragan
— 2. Expand MM hierarchy
v Zone implements actual MM algorithms such as Compaction, Reclaim watermark, Migration, Anti-fragmentation,
which would need to be revisited due to the CXL DRAM characteristics.
— 3. Dependency and Maintenance
v Node is widely coupled with other kernel subsystems and userspace than Zone.
v’ Zone required much less code modification, so probably less potential side-effect and maintenance effort.
= HW (System/Switch FW)
— What if SW/HW co-exist? We know classic pros and cons
v" SW - more usecases by flexibility, TCO, easy-of-use
v" HW - isolated, better performance
SAMSUNG

