@@ -30330,6 +30330,13 @@ paddle.nn.functional.channel_shuffle(Tensor([29826162, 4, 4, 9],"float16"), 3, "
3033030330paddle.nn.functional.channel_shuffle(Tensor([29826162, 4, 4, 9],"float16"), 3, "NHWC", None, )
3033130331paddle.nn.functional.channel_shuffle(Tensor([29826162, 9, 4, 4],"float16"), 3, "NCHW", )
3033230332paddle.nn.functional.channel_shuffle(Tensor([29826162, 9, 4, 4],"float16"), 3, "NCHW", None, )
30333+ paddle.nn.functional.class_center_sample(Tensor([356493278],"int32"), 10, 8, )
30334+ paddle.nn.functional.class_center_sample(Tensor([356493280],"int32"), 10, 8, )
30335+ paddle.nn.functional.class_center_sample(Tensor([2294967295],"int32"), 10, 8, )
30336+ paddle.nn.functional.class_center_sample(Tensor([4294967295],"int32"), 10, 8, )
30337+ paddle.nn.functional.class_center_sample(Tensor([4294967295],"int32"), 20, 6, )
30338+ paddle.nn.functional.class_center_sample(Tensor([4294967295],"int32"), 20, 8, )
30339+ paddle.nn.functional.class_center_sample(Tensor([4294967295],"int32"), num_classes=10, num_samples=6, group=None, )
3033330340paddle.nn.functional.conv1d(Tensor([1, 1024, 2228225],"float32"), Tensor([1024, 1024, 3],"float32"), bias=Tensor([1024],"float32"), padding=1, stride=list[2,], dilation=list[1,], groups=1, data_format="NCL", )
3033430341paddle.nn.functional.conv1d(Tensor([1, 128, 17825793],"float32"), Tensor([128, 128, 3],"float32"), bias=Tensor([128],"float32"), padding=1, stride=list[1,], dilation=list[1,], groups=1, data_format="NCL", )
3033530342paddle.nn.functional.conv1d(Tensor([1, 128, 17825793],"float32"), Tensor([128, 128, 3],"float32"), bias=Tensor([128],"float32"), padding=3, stride=list[1,], dilation=list[3,], groups=1, data_format="NCL", )
0 commit comments