VYSOKE UCENI TECHNICKE V BRNE

Fakulta elektrotechniky
a komunikacnich technologii

SEMESTRALNI PRACE

Brno, 2019 Bc. Roman Ligocki

VYSOKE UCENI TECHNICKE V BRNE

BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA ELEKTROTECHNIKY
A KOMUNIKACNICH TECHNOLOGII

FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION

USTAV TELEKOMUNIKACI

DEPARTMENT OF TELECOMMUNICATIONS

ZABEZPECENA KOMUNIKACE V RAMCI PLATFORMY
PX4

SEMESTRALNI PRACE
SEMESTRAL THESIS

AUTOR PRACE Bc. Roman Ligocki
AUTHOR

VEDOUCI PRACE doc. Ing. Petr Cika, Ph.D.
SUPERVISOR

BRNO 2019

VYSOKE UCENI FAKULTA ELEKTROTECHNIKY

TECHNICKE A KOMUNIKACNICH
V BRNE TECHNOLOGII

Semestralni prace

magistersky navazujici studijni obor Informaéni bezpeénost
Ustav telekomunikaci

Student: Bc. Roman Ligocki ID: 169280
Rocénik: 2 Akademicky rok: 2019/20
NAZEV TEMATU:

Zabezpecena komunikace v ramci platformy PX4

POKYNY PRO VYPRACOVANI:

Nastudujte problematiku fizeni dronl s Uzkym zaméfenim na platformu PX4 i protokol Mavlink. Provedte
kompletni analyzu zabezpeceni komunikace spole¢né s vektorizaci utokl a navrhem zabezpeceni jednotlivych
¢asti komunikace. Navrh bude implementovan a bude otestovano zabezpeceni komunikace. Nasledné probéhne
fyzické ovéfeni bezpecénosti implementace pomoci testovacich scénaru. Vysledkem bude feSeni poskytujici
zabezpeceny pfenos mezi fidici jednotkou a dronem. Ddraz bude kladen na efektivitu, nenaro¢nost a nizkou
spotrebu.

V ramci semestralni prace probéhne potfebna analyza, dale bude vytvofena vektorizace Utokdl a navrh
zabezpeceni. Probéhne zprovoznéni komunikace PX4/Mavlink a prvotni ovéfeni funk&nosti jednotlivych prvki
a méfeni narocnosti dostupnych algoritm0 (jiz implementovanych v ramci platformy).

DOPORUCENA LITERATURA:
[1] PETROVSKY, Oleg. Attack on the drones. In: Virus Bulletin Conference. 2015.

[2] ALLOUCH, Azza, et al. MAVSec: Securing the MAVLink Protocol for Ardupilot/PX4 Unmanned Aerial
Systems. arXiv preprint arXiv:1905.00265, 2019.

Termin zadani: 23.9.2019 Termin odevzdani: 21.12.2019

Vedouci prace: doc. Ing. Petr Cika, Ph.D.
Konzultant: Ing. Radek Fujdiak, Ph.D.

prof. Ing. Jifi MiSurec, CSc.
pfedseda oborové rady

UPOZORNENI:

Autor semestralni prace nesmi pfi vytvafeni semestraini prace porusit autorska prava tretich osob, zejména nesmi zasahovat nedovolenym
zpusobem do cizich autorskych prav osobnostnich a musi si byt piné védom nasledkd poruseni ustanoveni § 11 a nasledujicich autorského
zakona €. 121/2000 Sb., v€etné moznych trestnépravnich disledkd vyplyvajicich z ustanoveni ¢asti druhé, hlavy VI. dil 4 Trestniho zakoniku
€.40/2009 Sb.

Fakulta elektrotechniky a komunika¢nich technologii, Vysoké uceni technické v Brné / Technicka 3058/10 / 616 00 / Brno

DECLARATION

| declare that | have written the semestral project titled “Zabezpecend komunikace
v ramci platformy PX4" independently, under the guidance of the advisor and using
exclusively the technical references and other sources of information cited in the project
and listed in the comprehensive bibliography at the end of the project.

As the author | furthermore declare that, with respect to the creation of this semestral
project, | have not infringed any copyright or violated anyone's personal and /or ownership
rights. In this context, | am fully aware of the consequences of breaking Regulation §11
of the Copyright Act No.121/2000 Coll. of the Czech Republic, as amended, and of
any breach of rights related to intellectual property or introduced within amendments to
relevant Acts such as the Intellectual Property Act or the Criminal Code, Act No. 40/2009
Coll., Section 2, Head VI, Part 4.

author’s signature

Contents

(Introductionl

1 PX4 Software stackl

(L1 OVerviewl. o o e e e e e e e e
(1.2 PX4 autopilot architecture|
(1.3 QGroundControl sottware,

[2.3 Hardware setups|

2.4 PX4 compatible radios| o000
[3 MAVLink protocoll

B.1 MAVLink 1.0 o0 o

.2 MAVLInk 200 o

[3.3 MAVLink 2.0 security issues|
[4 Cryptography libraries|

[4.1 LibHydrogen|

[4.2 MonoCypher|
[Random number generation on P X4 platform|

[b.1 Pseudo-random number generators|

[>.2 True-random number generators|.

b3 NIST tests of randommessl oL
6 PX4 security vulnerabilities|

[6.1 Preparations|.

[6.2 Listening to MAVLink communication (Confidential information)|

(6.3 Shutting down vehicle during flight (Destruction)|

[6.4 Changing vehicles flight mission (Theft)

[6.5 Changing vehicle parameters (Destruction)|

[6.6 Taking control over vehicle (Theft)

6.7 Conclusionl.
[r New PX4 security architecture|

[7.1 Idea of new security architecture|

[7.2 Example of security implementation|.

11
11
12
14
15

18
18
19
20

22
22
22

26
26
26
28

29
29
29
29
30
30
30
30

Conclusion|

Bibliography|

[List of appendices|

(A Example of CERTIFICATE message in XML format |

[B Plots of results based on generated numbers |

35

36

40

41

42

List of Figures

(1.1 PX4 flight stack diagram| 9
[2.1 Pixhawk 1 autopilot board| 12
[2.2 Pixhawk 2.1 autopilot board| 14
[3.1 MAVLink 2.0 packet frame|{.o 19
[4.1 Encryption performance of 87 bytes message, lett - ARM, right - X86| 24
[4.2 Other tasks performance, left - ARM, right - X86[. 25
[>.1 Diagram of TRNG on STM32F427 27
[7.1 Diagram of key generation|, 32
[7.2 Certificate broadcasting diagram| 33
[7.3 Process of key exchange and encypted communication|. 33

Introduction

At this time it is very simple to build your unmanned vehicle. Components like au-
topilot boards, RC transmitters, ESCs, motors, batteries or propellers are available
nearly for anyone. There is also a huge amount of open-source software platforms
available to control that hardware. It takes only time to learn and to get enough
information to find out which hardware you need and how to connect it. It means,
that nearly anyone can have his own unmanned vehicle. After buying and connect-
ing all hardware in a few hours it possible to have a functional unmanned vehicle.
It could be a plane, multi-copter, VTOL plane or some kind of tracked or wheel
vehicle. That means, that having drone is no longer the privilege of some research
institutions or companies and we can expect, that numbers of DIY drones will be
rising. An increasing number of flying unmanned aerial vehicles could be interesting
for hackers, that might want to get control over those vehicles. After taking control
of the aerial vehicle, it could be a potential danger to all around. Also, those vehicles
could have a very expensive or important payload, that might be stolen or destroyed.
Example of important payload could be blood packages. Nowadays Zipline company
delivers different types of blood packages in Rwanda, where blood distribution using
aerial vehicles is more secure, reliable and faster. To make those delivery systems
less possible to be hacked, unmanned systems should use communication protocol
with strong confidentiality and integrity of traffic, or at least use a secure commu-
nication channel. In this thesis, a goal is to do research of the PX4 platform and
find as many vulnerabilities as possible in telemetry communication protocol. PX4
platform uses MAVLink communication protocol, to exchange information like an
altitude, direction of flight, rotation in all axis or mission plans. This possibility
brings vulnerabilities if a communication channel is unsecured. MAVLink protocol
will be described in details and its vulnerabilities will be analyzed. At the end of
this thesis, an idea of security implementation will be shown. This design should
eliminate all possibilities, to take control of the vehicle by an unauthorized person,
get some confidential information or to make the vehicle dangerous for its surround-
ings. Final design will be implemented into MAVLink and PX4 public repositories,
to share solution with community around PX4 and make unmanned vehicles all

around the world more secure.

1 PX4 Software stack

1.1 Overview

PX4 is open-source community-based autopilot platform, founded by Lorenz Meier
in 2008. History of PX4 is described in [I] article. As article describes at this time
Lorenz was a master’s degree student, that wants to create Unmanned Aerial Ve-
hicle (UAV) with autonomous flight feature base on computer vision. Today PX4
is an industry-leading platform, that allows companies to create their UAVs for
commercial usage. PX4 and compatible hardware are also priced affordable for the
hobbyist. This brings a easy way to construct UAV from cheap hardware powered
by these open-source software stack. Nearly anyone with knowledge of computer
science and electronics can build quad-copter that can have any kind of payload. To
build and configure this UAV, it is possible to use PX4 user guide [2]. Inside this
documentation, there is huge amount of tutorials to configure whole UAV. Based on
user guide [2] one of the biggest advantages of this platform is that it allows develop-
ers and users to create traditional multi-copters, planes, rovers Vertical Takeoff and
Land (VTOL) planes, but also there is possible to define custom frame design using
few lines of code in actuator mixer. All these vehicles can carry lots of different
payloads where we can find for example cameras for image capture, video recording,
but also Lidars and multispectral cameras. This might create opportunities for new
businesses to use these type of drones for precise agriculture, geodesy, during search
and rescue operations or for military usage. PX4 is not the only open-source plat-
form for unmanned systems. There is also an ArduPilot project, that was created
in 2009. Today ArduPilot together with PX4 is one of most used platforms for a lot
of different types of vehicles. ArduPilot has also good user documentation [3]. As
both documentations [2][3] describes PX4 and ArduPilot and PX4 use a MAVLink
protocol to create missions or provide telemetry data to the operator. Because of
that, it is possible to plan missions or control both platforms from QGroundControl
software. At the beginning of this thesis, it is important to describe one thing. A lot
of peoples uses drone word in the wrong way. Based on article [4], all flying machines
without pilots are shortly UAVs. The only UAVs that are able to fly autonomously
can be called drones. In this thesis, I will be talking mainly about UAVs or Una-
menned Ground Vehicle (UGV), and only when a vehicle will be able to do missions
autonomously, then it will be called a drone. Whole PX4 Flight stack, that includes
autopilot firmware is licensed under BSD 3-clause licence [5]. This licence is one
of the freest licences that might be used. It allows users and programmers to copy
code with only one limitation. There is no limitation at numbers of software copies,

but also there is no limitation in future development, that includes modifying source

code. There is also no need to share source codes like with GNU General Public
License (GPL) licence. This means that this licence is very good for proprietary

forks of open-sourced software.

1.2 PX4 autopilot architecture

PX4 autopilot firmware is one of the most important parts of the whole PX4 plat-
form. This piece of software is something like a pilot, that watch all sensors values
and listen to commands. Based on that data, it generates outputs to all actuator to
control the unmanned vehicle. In developers guide [6] there is description of autopi-
lots components. Autopilot is based on two layers: Flight stack and Middleware.
Flight stack is doing all sensor and user input fusion, estimations and flight control.
Middleware creates a layer that handles all internal and external communications
but also provides drivers for supported hardware. Flight stack layer is a collection of
all estimation and control algorithms. There are controllers for all different kinds of
vehicles like rovers, multi-rotors, helicopters and VT'OL. Using these controllers, it

is possible to maintain a position and attitude of the vehicle. Flight stack diagram
is shown on fig [77]

— o

Position & Altitude Estimator Position Controller

Attitude & Rate Controller

Actuator

Fig. 1.1: PX4 flight stack diagram [6]

Middleware layer provides all drivers for supported embedded sensors and com-
munication with them. It also provides communication tools for all peripherals like
Global Position System (GPS), external magnetometer or companion computer. To
make simple communication between different parts of autopilot firmware, Middle-
ware has implemented uORB message bus, that works on the public-subscription

system. This provide solution do distribute data where they are needed.

1.3 QGroundControl software

To set up and control the unmanned system based on PX4 or ArduPilot, the user
needs to have some software, that is able to communicate with that system. These
types of software are called GCS! (GCS!). In case PX4 and ArduPilot, there is
a software called QGroundControl. It is multi-platform mission planner, that al-
lows users to set up their vehicles, change configurations and also provide a way
to plan missions. Also, it is possible to view telemetry data and the actual posi-
tion or status of the plane. All information about QQGroundControl are available
on user guide website [7]. The main advantage of QGroundControl in compari-
son to other mission planners is that it runs on nearly every modern platform like
Windows, Linux, macOS, Android but also on iOS and iPadOS. This is possible
because QGroundControl is based on the Qt framework (Qt for application devel-
opment), that brings Qt Application Programming Interface (API) and makes final
code runnable on nearly any device. Software that is build using Qt framework have
only to options in case of licence. Qt provides commercial and open-source licenses.
For example, if a company wants to develop proprietary software, it needs to pay for
every software developer, that works on that software. If the company don’t want
to pay, that it needs to provide source codes of their software because software must
be licensed under GPL or Lesser General Public License version 8 (LGPLv3).

10

2 PX4 Hardware

A main and most important part of PX4 platform is Flight controller. It is Printed
Circuit Board (PCB) with all sensors and connectors necessary to fly and con-
trol UAV. Mostly used Pixhawk 1 is based on Flight Management Unit version
2 (FMUv2) open hardware design. Next versions of FMU have newer sensors, more
storage for flight firmware, sensors redundancy and more computation performance.
All these improvements add new possibilities for hobbyist and commercial usage.
There are also different FMUs, that are supported by PX4, but their hardware de-
signs are not open-sourced. Information about all supported hardware are available
in developer guide [g].

Manufacturers of PX4 flight controllers:

« 3DR (Pixhawk 1),
mRobotics,
HobbyKing,
Holybro,
Drotek,
« Hex (Pixhawk "Cube").
To control actuators like servos or Electronic Speed Control (ESC)s, every PX4

autopilot board must have some kind of outputs. On Pixhawk board series there
are two ways to output actuators: using digital signal or over communication bus.
Mostly used digital signal is Pulse Width Modulation (PWM), that are options
like PWM signal, S.Bus or it is also possible to Universal Asynchronous Receiver-
Transmitter (UART) or Controller Area Network (CAN) buses. Most used is PWM
signal, that is very easy to use, but also there are dozens of servos or ESCs compatible
with PWM signal. There are also modified versions of PWM, that offers higher
precision and additional signal robustness. All implementations during this thesis
will be tested on Pixhawk "Cube" and Pixhawk 1 boards, that will be described in

more detail in the next section.

2.1 Pixhawk 1

Pixhawk 1 is one of the most commonly used autopilot board for PX4 or ArduPilot
platforms based on FMUv2 hardware design. With price about 129 United States
Dollar (USD) for original Pixhawk 1 manufactured in the United States of America
or one of many clones that costs about 50 USD, it is one of the most used autopilot
hardware on the market. It has all the necessary sensors, that UAV needs to control
the attitude and altitude of the vehicle. This board doesn’t have any communication

hardware or GPS receiver onboard. To connect peripherals like GPS receiver, Radio

11

Controlled (RC) links or telemetry link, there are DF13 connectors, that are widely

used in UAV industry. This board is targeted for hobby usage. It doesn’t have

features like Imertial Measurement Unit (IMU) temperature stabilization or IMU

redundancy. All provided information are based on 3DR Pixhawk hardware manual

[9].

Hardware specification:
o 32-bit STM32F427 Cortex M4 core with FPU,

168 MHz/256 KB RAM/2 MB Flash,
32-bit STM32F103 failsafe co-processor.

Pixhawk 1 IMU specification:

3-axis 16-bit gyroscope L3GD20,

3-axis 14-bit accelerometer/ magnetometer LSM303D,
Invensense MPU 6000 3-axis accelerometer/gyroscope,
MEAS MS5611 barometer.

Pixhawk 1 IO specification:

1x I2C (separate connectors),

2x CAN: CAN1 and CAN2,

5x UART: TELEM1, TELEM2, GPS, SERIAL4, SERIALS,
1x HMI: USB extender,

14xPWM output,

1x RC input,

1x RSSI input.

Fig. 2.1: Pixhawk 1 autopilot board [9]

2.2 Pixhawk 2.1 - Cube

Pixhawk 2.1 also known as “Cube” is more advanced autopilot, that is widely used

in industrial and commercial systems. Name “Cube” is based on two-part design,

where one part is carrier board, that provides all wiring for autopilot and second part

12

is CPU board with IMUs installed in small cubic shape enclosure with integrated
heater and vibration isolation. The second part with CPU and IMUs is removable.
With features like triple-redundant IMU, vibration stabilization and temperature
stabilization, this board is very good for commercial and industrial usage. This
board also provide more RAM and Flash storage, that allows creating more complex
control and estimation algorithms. This board comes with a price of 238 USD per
set. All provided information are based on Hex Pixhawk 2.1 hardware manual [10]
and [L1].

Hardware specification:

o 32bit STM32F427 Cortex-M4F® core with FPU,
168 MHz / 252 MIPS,

256 KB RAM,

2 MB Flash (fully accessible),

32 bit STM32F103 failsafe co-processor.

IMU specification:
e Onboard fixed IMU,
— 3-axis gyroscope / accelerometer MPU9250,
— barometer MS5611,
o Two vibration isolated and heated IMU.
— 3-axis accelerometer/magnetometer LSM303D,
— 3-axis gyroscope L3GD20,
— 3-axis gyroscope / accelerometer MPU9250 or ICM 20xxx,
— barometer MS5611.

1O specification:

o 2x 12C,

e 2x CAN: CANI1 and CAN2,

o 5x UART: TELEMI1, TELEM2, GPS (I12C 1 embedded), SERIAL4(I2C 2
embedded), SERTAL5,

e 1x HMI: USB extender,

e 14x PWM output,

e 1x RC input,

e 1x RSSI input.

13

Fig. 2.2: Pixhawk 2.1 autopilot board

2.3 Hardware setups

In this section there will descriptions of few hardware setups, that are used by hob-
byists or professionals. All of them contains autopilot that is necessary to run PX4,
telemetry radio set for MAVLink protocol communication and RC radio to control
rover. RC radio is commonly secured using proprietary communication system cre-
ated by manufacturer on transmitter and receiver. Because of this, I will describe
in more details only MAVLink connection systems and their security issues.
Setup #1 - Hobbyist:
o Rover hardware
— Pixhawk 2.4.8
— SiK telemetry radio - rover
— FlySky FS-iA6 - receiver
o GCS hardware
— Windows, Linux or MacOS computer
— Sik telemetry radio — ground
— FlySky FS-i6 2.4G 6CH — transmitter
Setup security issues:
o No authentication
« No encryption
» No access control
Setup #2 - Hobbyist:
o Rover hardware
— Pixhawk 2.4.8
— Wifi telemetry radio
— Frsky X8R receiver
o GCS hardware
— Android tablet

14

— Frsky Taranis X9D Plus
Setup security issues:
« Encryption is optional (WPA2)
o No authentication
» No access control
Setup #3 - Professional:
e Rover hardware
— Pixhawk 2.1 Cube
— RFD868x - air
— Frsky X8R receiver
o GCS hardware
— iPad air (3rd generation)
— Frsky Horus X10S
— RFD868 TXMOD
Setup security issues:
« Encryption is optional (WPA2)
o No authentication
e No access control
Setup #4 - Professional:
e Rover hardware
— Pixhawk 4
— Herelink - air
o GCS hardware
— Herelink — ground station
Setup security issues:

o No information are provided about security

2.4 PX4 compatible radios

At this section, radios mentioned earlier will be introduced. They are working on a
variety of frequencies. If some device will be "legal", then it is meant, that this device
is compatible with regulations only in the Czech Republic. Other countries were
not part of the research. Regulation for free frequencies are described in document
released by Czech Telecommunication Office (CTO)[12].

2.4.1 SiK telemetry radio

SiK telemetry radios are devices based on open-source SiK firmware and cheap
SiLabs S1000 System on a Chip (SoC)[13]. As an example, Holybro telemetry radio

15

V3 433MHz will describe in more details Holybro telemetry radio. This telemetry
set consists of two devices. Both of them have micro-USB connector for PC or
tablet connection and 6pin JST-GH connector to connect radio into Pixhawk 2.4.8
or another autopilot. With the included antenna and with default configuration it
is possible to control the drone at a 300m distance. With default configured output
power, that is 100mW, so it is not legal to use this device in the Czech Republic.

2.4.2 WIFI telemetry radio

This telemetry device is using Wireless Local Area Network (WLAN) to create a
network where it broadcasts MAVLink packets encapsulated into TCP /IP. Setup is
very easy because on the ground station side there is no need to have any other device
except the computer with Wi-Fi. This solution is compatible with any Mac, Linux
or Windows computer. Also, it is possible to use an Android tablet or iPad. With
output power 100mW it is legal to use this telemetry device in the Czech Republic.
If Wi-Fi Protected Access 2 (WPA2) is enabled, all telemetry is encrypted using the
pre-shared key with encryption algorithm AES-CCMP

2.4.3 RFD868 combo

RFD868 is one of the best solutions to communicate with unmanned systems[14].
It provides very reliable and long-range telemetry link. It is possible to create
telemetry link up to 80km using pitch antennas. This radios also have the feature
to passthrough Pulse Phase Modulation (PPM) signal to control the drone. All
RFDS868 radio sets allow to encrypt all MAVLink and PPM data using Advanced
Encryption Standard (AES) encryption algorithm. There is also TXMOD package,
that might be connected to JR socket in Frsky’s radios. This TXMOD package
provides Wi-Fi access point, that creates WIFI network all-around and any Wi-Fi
compatible device might connect to this network and receive MAVLink communi-
cation. In the Czech Republic is it legal to use this device with output power up to
500mW, but only on one channel (869,4 - 869,65MHz).

2.4.4 Herelink HD Video transmission system

Herelink is all-in-one solution, that provides long range link (up to 16km) for teleme-
try, PPM signal but also video link [I5]. Herelink ground station is android tablet,
that has two 2-axis joystick, wheel and six buttons to control QGroundControl soft-
ware. Radio link is integrated and there is no need to buy additional hardware to
control unmanned system. On air unit, there are two HDMI input ports, where

you can insert output from any HDMI camera. For First Person View (FPV) video

16

you need to use A/D converter. Currently QGroundControl is only GCS software,
that is available for Herelink, but there is no option to customize QGroundControl,

because modified version for Herelink is not for now open-source.

2.4.5 RFD868 in Multi-point mode

As it is described in manual [I4], RFD868 modem can create a very reliable and fast
connection between two modems. It has also feature to create a multi-point network
or asynchronous non-hopping mesh. Difference between these two modes are, that
multi-point networks allow to communicate with a node that is not in range from
the main station. In that case, communication is retransmitted using a node that is
available in a range of the main station. In asynchronous non-hopping mesh mode,
it is possible to communicate only with multiple nodes within range of the main

station.

2.4.6 Conclusion

It was described in this section, there are some setups where it is possible to en-
crypt whole communication. But some of them doesn’t provide any encryption for
MAVLink messages. So, if someone wants to have at least encrypted communica-
tion, then there are some solutions. Problem is that there is no hardware set up
where one side might authenticate if messages come from a trusted source or have
an access control system that would allow creating users with different privileges.
Because of this reason, it was decided to create in this thesis implementation of

encryption, authentication and access control.

17

3 MAVLink protocol

MAVLink (Micro Air Vehicle link) is a very lightweight communication protocol to
communicate with unmanned systems or with other devices on board. For exam-
ple, using MAVLink protocol you can upload flight mission, get all flight data or
change parameters of the unmanned system. MAVLink is based on modern hybrid
publish-subscribe or point-to-point design pattern. All data streams are sent/pub-
lished as the topic, while configuration sub-protocols such as the mission protocol or
parameter protocol are point-to-point with retransmission. As source of information
about MAVLink protocol a MAVLink website has been used [16]. This protocol is
lightweight because there is very small overhead per packet. MAVLink 1.0 has only
8 bytes of a header for every message. In MAVLink 2.0, there are 14 bytes overhead,
but provides more security and is more extensible. All messages are defined using
FExtensible Markup Language (XML) in multiple dialects, where every message has
its definition. Dialects allow creating different sets of messages for different types of
systems that use MAVLink protocol as a communication tool. Mostly used dialect
is "common.xml". Example of the message written in XML format is possible to see

in appendix [A]

3.1 MAVLink 1.0

MAVLink 1.0 was first released in 2009 by Lorenz Meier. His goal was to create
very reliable communication protocol for varied vehicles, communication environ-
ments (radios with low bandwidth or high latency/noise channels). It also provides
detection system for lost packet and corrupted packets. MAVLink 1.0 need very
small amount of management. Only 8 bytes are needed to create packet with no
payload. Nowadays MAVLink is ported for many different programming and inter-
preting languages like C, C++, Python, Java and Swift and also is running on many
platforms (ARMv7, ATMega, dsPic, STM32, Windows, MacOS, Linux).

Header description:

o STX — Start byte of value 0xFD,

o LEN — Number of bytes saved in PAYLOAD part of packet,

o SEQ - Sequence number of packet. Provides way to detect packet loss,

e SYS ID — System ID of sending device. Used to address device in network,

e COMP ID — Component ID of sending device. Indicates type of device in

network,

o MSG ID — Message ID. Needed for payload deserialization,

o PAYLOAD — Message serialized into array of bytes,

« CHECKSUM - Cyclic redundancy check. Used for corruption detection.

18

3.2 MAVLink 2.0

Compared to the older version of MAVLink, version 2.0 provides new features like
compatibility and incompatibility flags, extended message ID. These features allow
to create more types of messages and also provide flags, that indicates if packet
should be handled in different way than normal packet. Also, MAVLink 2.0 adds
packet signing, that provides basic authentication. Next feature is empty-bytes
payload truncation, that removes last zero bytes from serialized payload. Using
this technique, MAVLink 2.0 lower amount of payload bytes send over channel.
MAVLink 2.0 is still not ported into all programming languages, that has MAVLink
1.0 available.

MAVLink 2.0 packet frame (11 - 279)

STX LEN INC FLAGS | CMP FLAGS SEQ SYSID COMP ID MSG ID PAYLOAD CHECKSUM SIGNATURE

Fig. 3.1: MAVLink 2.0 packet frame [16]

Compared to MAVLink 1.0 in MAVLink 2.0 there were added new bytes into
the header to allow new features.
e STX byte was changed from 0xFD to OxFE.
INC (Incompatibility) FLAGS byte was added.
CMP (Compatibility) FLAGS byte was added.
MSG ID was enlarged from one byte into three bytes.
SIGNATURE array was added.

3.2.1 Packet signature

MAVLink 2.0 adds message signing feature, that allows authenticating if the message
comes from a reliable source. To do this SIGNATURE were added, where a sign is
stored. This creates security layers where attackers suppositious messages are not
accepted on the receiver side because there is no way to create a valid signature for

a fake message without the pre-shared secret key.

SIGNATURE has three parts:
o LinkID — ID of link on which message is send
o Signature — Six-byte signature computed using SHA256 algorithm

o Timestamp — Six-byte number with units of 10 microseconds since 1st January
2015 GMT

19

Signature works on Keyed-Hashing for Message Authentication (HMAC) system
and computed based on Secure Hash Algorithm (SHA)256 algorithm. Commonly
SHA256 hash algorithm return array of bits with the length of 256. To lower length
of signed message, signature of MAVLink is shorten to 48 bits. In case of security
shorter signature doesn’t lose signature strength. There is a very low probability
(1/2% bit), to find a signature that will suit some message. Formula how signature

is computed can be seen on formula

Sig = 256t048bits(S H A256(secK ey+header+payload+C RC+linkI D+timestamp))
(3.1)

Signed message is accepted only under these conditions:

e Timestamp is older than timestamp of previous received packet form same
device.

o Computed signature doesn’t match with signature from received message.

e Timestamp is older than 1 minute.

3.3 MAVLink 2.0 security issues

3.3.1 Message signing

MAVLink protocol provides a very good way to transport a huge amount of data
with very low overhead but provides only very basic security features. In current
state MAVLink only provides a simple authentication system based on HMAC. This
means that drone manager must add the same symmetric key into all devices of net-
work. This creates a security issue, that if one of the devices and its symmetric key
are compromised, the whole authentication system is not reliable. Then messages

might be suppositious and there is no way to find it out.

3.3.2 Message encryption

Next disadvantage of MAVLink protocol is lack of encryption. All data that might
be sent over radio are sent in plain text. This allows an attacker to read all messages
and to know where exactly vehicle or drone might be and what it does. Also, it
is possible to find out what plans the pilot might have. In hobby or commercial
industrial, this might not be a huge problem, but in the case of military or police
usage, mission plans and information might be classified. This brings the idea to

add encryption into MAVLink communication and provide confidentiality to all

20

classified data, but that brings new problem. Just like in the case of a signature
system, symmetric encryption needs a key, that must be distributed to all devices
in the network. This brings the same vulnerability as the signature system, where
disaffection of any device gives the key to all encrypted messages. To eliminate this
distribution problem and to create a key exchange system, there is a solution to add

private key infrastructure into the MAVLink protocol.

3.3.3 Key exchange

If there are only two devices in the MAVLink network, then encryption and signing
keys distribution are very simple. If the key is changed then, for example, there
are only two keys to change. In-ground control station and in the drone. In the
case of 100 drone fleet, the operator will need in case of key reseeding to change the
new key in all devices. This would be very time consuming and not very flexible
solution. To solve this problem there is a private key infrastructure system with
its key exchange system for all devices network. This means that every device
must have its asymmetric key pair for key exchange and its certificate, that contains
information about device, maintainer and public key. This certificate must be signed
by authority, that is trusted by all devices in the network. Using this certificate, it

is possible to verify other devices.

3.3.4 Access control

MAVLink lacks also from the access control system, that will allow creating groups
of devices with different access rights. As an example, there is a military group
of soldiers that has a fleet of drones to operate. In MAVLink network there are 5
devices: Ground control station handled by the main pilot, monitor to control and
view cameras. There are also 3 UAVs, that fly different missions. The main pilot
handles mission planning. The secondary pilot that has monitor controls cameras. In
that case, there should be an access control system to separate what each device can
do with other devices. It is undesirable to be able to control UAV from the monitor,
that is handled by the non-authorized person and vice versa It is undesirable to
control the camera and watch output video when the pilot should be focused on
UAVs control. Also, a device like UAV should not have any rights to generate any
MAVLink messages, that might change mission plans or steer other UAVs. This
example shows that MAVLink needs to be able to provide different levels of access

rights for any device in network based on operator fleet architecture.

21

4 Cryptography libraries

To add encryption, authentication and access control system, there was a need to
find C library with cryptography primitives, that will be easy to use and allow
systems with lower performance to be compatible with other devices. There is a
huge number of open-source libraries, that are designed for 32-bit processors. For
example, that library would be good for PX4 autopilot based on Pixhawk 1, that
uses a 32-bit processor. Problem is that same library will not work with 64bit Intel
or AMD processors. To remove this problem there was a need to find multi-platform
cryptography library, that would be compiled on any device used by PX4. These
types of devices must have enough performance to do all main tasks, but also, they
need to have enough performance to add security layer into communication. So,
there will be a search to find the encryption library with all necessary functions
to implement all security features described in previous chapters. Also, the library
must work on any device that might be part of the setup. In this chapter, there
will be two libraries described in more details to find out which will most suit PX4

platform.

4.1 LibHydrogen

LibHydrogen is cryptography library inspired by LibSodium library. It aims to
be easy to use and to have good performance any supported architecture. It has
implemented only two necessary cryptography primitives to have all necessary func-
tions, but also to lower its size as possible. For key exchange there is Curve25519
algorithm. For hashing and encryption there is Gimli algorithm. User manual is
available on GitHub of LibHydrogen library [17].

4.2 MonoCypher

MonoCypher is next C library, that is mainly designed to be as simple as possible
to use with very small footprint. With nearly 2500 lines of code it provides all
necessary algorithms to have authenticated encryption, key exchange and signing
system, but also hash functions. User manual is available on MonoCypher website
[18].

Both libraries are very similar, but still they have some differences. In this

section there will be in details described differences between both libraries.

22

4.2.1 Features

Both libraries implements:

o Authenticated encryption,

o Hashing,

o Password key derivation,

o Key exchange,

o Public key signature,

In additional LibHydrogen has implemented true random number generation
for many different platforms (Windows, Linux, Mac, AVR, Advanced RISC Ma-
chine (ARM)). Most important difference in both libraries in case of PX4 security
implementation is key exchange system.

LibHydrogen offers three schemes to safely exchange:

o N key exchange — At this variant, only one side needs to know the public key of
another side. The session key is generated also on one side. When the session
key is encrypted using the public key from the other side it is sent to the other
side, where it is decrypted.

o KK key exchange — At this variant, both sides need to know each other public
key. Client first sends encrypted random value to the server. The server
computes session key using decrypted received random value and then sends
it back to the client in cypher-text. After the Client receives and decrypts
session key, both sites have the same session key.

o XX key exchange — This variant is constructed for anonymous key exchange.
Both sides don’t need to know each other public keys. The first Client sends
initial random value to Server. The server receives a random number, then
it adds an additional number and sends it back to the client. The client
computes the session key, encrypts it and sends it to Server. After receiving
and decrypting session key, both sides have the same session key.

MonoCyphers key exchange system works a little bit different. It needs only
remote public key and local private key, to generate a session key. The remote public
key is meant as a public key from another device. Local s This system is completely
deterministic but could be simply upgraded to non-deterministic using both sides
agreed on nonce, that might be used to XOR session key. With knowledge of nonce,
it is not able to find out session key on which XOR operation was applied with nonce
unless session key is known. Also, the key exchange mechanism is simpler, because
there is no agreement system. That means that both sides only need to broadcast
their certificate with the public key and random nonce. The nonce agreement might
be based on the XOR operation of nonces from both sides.

There is also a difference in the size of final encrypted data in authenticated en-

23

cryption. LibHydrogen adds 36 additional bytes (random nonce and authentication
tag) to final cypher-text. That means, that if the message will have the size of 279
bytes, there will be no space in MAVLink packet in payload part, where this cypher-
text might be saved. In the LibHydrogen API, there is no way to split cypher-text,
random nonce and authentication tag.

MonoCypher also needs nonce and authentication tag (code) to encrypt message
into the payload. The difference is, that bytes, that contains nonce and authen-
tication tag must be provided. That brings new ways to make encryption system
compatible with MAVLink.

4.2.2 Performance comparison

To find out which library has better performance, an example code was created. Ev-
ery API function, that might be used in final implementation was executed on ARM
and X86 architecture. Same data were used as input for both libraries. Performance
results are based on usage of 100% of CPU performance. The main difference in
performance test was in session key exchange system. As it was described in the
previous subsection MonoCypher library generates a session key based on the remote
public key and local private key. Message encryption was benchmarked on message
with the size of 87 bytes.

ARM (STM32F427) X86 (Intel 5257U)
(more means better) (more means better)
B LibHydrogen (Gimli) [MonoCypher (XChaCha20) B LibHydrogen (Gimli) [MonoCypher (XChaCha20)
800 6000
600
4000
2 400 2
= =
= = 2000
200
0 0
Message encryption Message decryption Message encryption Message decryption

Fig. 4.1: Encryption performance of 87 bytes message, left - ARM, right - X86

4.2.3 Conclusion

Both libraries were compared in functionality and performance to find out which
will suit more into PX4 platform. Main MonoCypher is significantly faster over Lib-
Hydrogen. For some tasks, MonoCypher speed was up to seventy times faster than
LibHydrogen. Differences between those two libraries are bigger in performance on
ARM based processor. Also, key exchange system in MonoCypher is simpler because

both sides compute session key based on provided remote public keys, local private

24

ARM (STM32F427) X86 (Intel 5257U)
(less means better) (less means better)
B LibHydrogen (Curve25519) [MonoCypher (X25519) M LibHydrogen (Curve25519) [l MonoCypher (X25519)
100 2
75 1,5
— 50 —_ 1
123 [}
£ E
25 05
0 0
Session key Session key Session key Certificate Certificate Session key Session key Session key Certificate Certificate
encryption decryption generation signing validation encryption decryption generation signing validation

Fig. 4.2: Other tasks performance, left - ARM, right - X86

key and publicly agreed nonce. Based on speed and features that MonoCypher has,

it was chosen as the cryptography library for security implementation in PX4.

25

5 Random number generation on PX4 plat-
form

After choosing an encryption library, that would be compatible with any device that
might use MAVLink protocol, the next very important step is to create keys with
enough randomness. This means that keys must be based on the sequence of random
bits from the random generator with enough entropy. Then the attacker is not able
to guess any part of generated keys using side-channels or brute force attacks.
There are two types of random generators:
e Pseudo-random generators,

o True random generators.

5.1 Pseudo-random number generators

Pseudorandom Number Generators (PRGN) as described in paper created by Na-
tional Institute of Standards and Technology (NIST) organization [19], also known
as Daterministic Random Number Generators (DRGN) are groups of algorithms to
deterministically generate numbers with nearly random properties. Result of PRGN
is always based on input seed, that must be inserted before any other random num-
ber generation. PRGN are mostly based on hash functions, where we are no able
to find out what was input number based on output number. That means, that if
seed value has enough entropy, the no one can find out generated a random num-
ber. That doesn’t apply to devices that know seed and number of iterations. Both
libraries that were described in details in the previous chapter used this method
of pseudo-random number generation. They need only initial seed and then using
the hash function like Gimli or Blake2b, they can create a pseudo-random number.

These pseudo-random numbers are not safe for cryptography.

5.2 True-random number generators

As it was said in the previous section, both libraries need an initial random number as
a seed to create keys with enough entropy, so that attacker is not able to guess which
combination of zeros and ones were generated. To create these random numbers,
we need true-random number generators. These generators must also pass the test
of randomness. This includes tests like frequency test, where a number of zeros
and ones should be same in the block of bits or Run test, where it measures how
many bits with the same value is generated in a row. Using this test, it is possible

to determine, that the generator has enough entropy and that we can rely on it.

26

True random generators tests will be described more in the next chapters, where are

results of random generators on different platforms.

5.2.1 True number generator on Pixhawk

Pixhawk 1 and Pixhawk 2.1 has onboard STM32F427 CPU. This processor has
integrated True Random Number Generator (TRNG), that is based on an analogue
circuit and allows to generate 32-bit random numbers based on analogue noise[20].
This circuit is constructed from ring oscillators. Outputs from those oscillators
are XORed with a dedicated clock. To understand how whole TRNG works on
STM32F427 processor, it is possible to inspect figure 5.1 To enable this circuit in
NUTTX OS it is necessary to add CONFIG__STM32 RNG=y in firmware defconfig
file. After enabling TRNG it is possible to read random numbers from /dev/random.

< 32bit AHB bus >

RNG_DR

RNG_CR i |§

=
Z
‘Q
Q
T
Q
S
o
2,
Q.
2
=S.
Q
e
Y

RNG processing

A A

Health test [«

RNG_ SR

Analog seed

A

Fig. 5.1: Diagram of TRNG on STM32F427[20]

5.2.2 True number generator in QGroundControl

To generate safely random numbers in QGroundControl, Qt frameworks offer QRan-
domGenerator class. This class is documented on Qt website [21]. Using a static
public member system() it is possible to call generate() function, which accesses sys-
tems cryptographically-safe random generators. Public member system() on Unix
systems is reading from /dev/urandom or use system calls getrandom() to get a

random number.

27

5.3 NIST tests of randomness

To find out, if TRNG are truly random, NIST created a group of statistical tests.
This group of tests consists of 15 statistical tests, that each of them search different
non-random binary sequences. For each test there is statistical p-value as output.
P-value can be from 0 to 1. Parameter , that is also from 0 to 1 indicates how
many percent of sequencues can be found non-random. If generator outputs passes
all tests near value, it is considered as suitable TRNG. dependes on application.
In cryptography is about 0.01. To test huge number of zeros and ones, it needs to
be devided into smaller groups. Each of these small groups need to go through all
tests, and if results p-value of each test is bigger then , tested group is considered
as random. Also to verify if hypothesis that sequences are random, p-values needs
to be distributed from 0 to 1[19]. As it can be seen on histogram in this section,
distribution in all tests is good enough for both tested devices. Only results, that
looks suspicious are from Maurers universal tests. Visualized results of NIST tests
are avaiblable in appendix [Bl At this appendix on left side all plots are results of
random generated sequences on Pixhawk. On right side it is possible to see results

of tests based on random sequences generated on X86 processor.

28

6 PX4 security vulnerabilities

As it was described in previous chapters, PX4 has no security layers, that might
protect telemetry messages confidentiality, integrity and authenticity. That means
that information in any send telemetry message is available or might be disclosed by
an unauthorized person. Also, the message might be modified without any key and
the receiver doesn’t know, where the message comes. At this chapter, there will be
described PX4 security vulnerabilities and how MonoCypher cryptography might
fix them. As an example, there were created attacks on communication between
control station (QGroundControl, Windows) and Pixhawk 1 autopilot. Devices
communicate over SiK radios on 443MHz. The attacker (QGroundControl, macOS)

uses also SiK radio on the same frequency.

6.1 Preparations

After starting up control station and autopilot, both can communicate with each
other. From GCS it is possible to plan a mission, change parameters, arm vehicle
and change flight modes. After connecting of attacker into a network and starting
QGroundControl software, it takes a few moments to load all necessary data. Then

attackers QQGroundControl software works as the main control station.

6.2 Listening to MAVLink communication (Confiden-

tial information)

Right after connecting into the vulnerable vehicle it is possible to look into MAV Link
inspector, where are stored all newest messages. It is possible to view current posi-
tion, altitude, airspeed or altitude of the vehicle. During this connection QGround-
Control based on received messages draws vehicles flight path. From this flight path,
it is possible to guess the next route. Next data, that might be confidential is flight

mission, that after downloading parameters is drawn into QGroundControl map.

6.3 Shutting down vehicle during flight (Destruction)

When QGroundControl is connected to the vulnerable vehicle, there is a possibility
to disarm vehicle without any validation. After clicking on Arm button. The small
slider appears at bottom of QGroundControl. If UAV is landed, then there is no
warning and right after activation of the slider, vehicle disables all PWM outputs,

29

that control motors. If UAV flies, then small slider appears at bottom of QGround-
Control with a short warning. If the slider is activated PWM outputs are disabled

and motors stop to rotate.

6.4 Changing vehicles flight mission (Theft)

During the time, when QGroundControl is connected, it is possible to create a mis-
sion in mission planer tab and sent a whole mission to a connected vehicle. Attacker
QGroundControl then asks if he wants to fly a new mission. After confirming plane

flies to new waypoints.

6.5 Changing vehicle parameters (Destruction)

During a flight is it possible to change flight parameters. This vulnerability brings
big advantage for tuning PID controllers because during a few flights it is possible to
tune the whole plane or multi-copter. On the other hand, it gives the attacker a tool
to make stabilization or control very difficult. Also, this might end with a crash.
In-flight logs there is no information about changing parameters during flight, so

investigation of the crash might be difficult.

6.6 Taking control over vehicle (Theft)

In MAVLink protocol, there is message type named “RC__CHANNELS OVERRIDE”,
that overrides received PPM from RC input in autopilots rail. This message allows
controlling plane like it was RC transmitter, even when there is an active real RC
transmitter that sends PPM. After taking control, there is no way to override these

messages and attacker might fly with UAV whether he wants.

6.7 Conclusion

If anyone uses SiK radio or MAVLink Wi-Fi module or other radios without en-
cryption, then their vehicles might be hacked and stolen or might crash without any
clue. The only way to detect attacker is to watch if any malicious messages appear
in QGroundControl in MAVLink inspector tab, where all sent messages in network
are shown. To remove all these vulnerabilities, it is necessary to at least have whole
network communication encrypted using asymmetric encryption algorithm. That

solves problems, but in a bigger network, it brings additional key management.

30

7 New PX4 security architecture

7.1 Idea of new security architecture

In this subsection design of security, implementation will be described in more de-
tails. This subsection will be the conclusion of authors ideas during working on the

semestral thesis.

7.1.1 Creating and signing vehicles certificate

Before any system in the network will be able to securely communicate with other
devices, supervisor of all devices in the network must create its authority signing
keys. With these keys, it is possible to sign devices certificates, that they might be
trusted. Next step is to create certificates for all devices. Every certificate needs
to have its devices name, maintainer, privilege level, the public key and signed the
hash of all previous parts of the certificate. Certificate, key exchange key pair are
generated in GCS software then hashed and then final certificate hash is signed
by authority private key. Then certificate with authority public key and devices
exchange keys are encrypted with a secret key and saved as a file to SD card of
the device. The secret key for decryption is prebaked in source code of firmware.
Reason to make secret key fixed is that autopilot boards don’t have Trusted platform
modules to store keys safely. After inserting SD card into autopilot board with all

necessary data, autopilot is ready to be powered on. Key generation is shown on

figure [77].

7.1.2 Certificate broadcasting

After powering on, autopilots decrypt the file with certificate and key exchange
keys. To do that it has prebaked secret key in source code. Then it loads all data
from the decrypted file to ram and then starts to MAVLink module. With messages
like HEARTBEAT or RADIO STATUS, it starts to broadcast also newly designed
message CERTIFICATE. That allows another device to verify remote devices with
authority signing public key. Diagram of CERTIFICATE message broadcast is
shown on figure [7.2]

7.1.3 Validation of certificate and public key

To validate other devices certificate, every device has authority signing public key
encrypted in their certificate file on the SD card. After receiving CERTIFICATE

message from another device, verification needs to be done. To do all parts of

31

1. Authority certificate
and keys generation

GCS

2. Vehicle certificate
and keys generation +
sign

3. Copy encrypted
vehicle certificate, keys
and authority public key

to UAV SD card

Pixhawk 2.1 SD card

Fig. 7.1: Diagram of key generation

CERTIFICATE message like name, maintainer, privilege number and key exchange
public key must be hashed. Then signed hash should be decrypted and compared
with locally created hash. If they are same, then provided certificate is valid and

that means that key exchange public key could be used to generate a session key.

7.1.4 Session key agreement

In MonoCypher it is possible to generate a session key based on the public key of
the remote device and local private key. This way it is possible to generate the
same session key on both sides. For every session, this key will be the same after
generation. To make session key different, certificate message has also random nonce,
that is generated after starting of device. After both nonces are known on both sides
they need to be XORed. Then on both sides devices have the same random nonce
and they can XOR session key with the random nonce. That allows having different

session key for every session. Idea of session key agreement is visible on figure (7.3

7.1.5 Message encryption

After both sides have the same session key, it is possible to encrypt all messages.
Except for messages, that might be publicly broadcasted like HEARTBEAT or CER-
TIFICATE, every message will be encrypted using the session key. To make encryp-
tion design compatible with MAVLink 2.0, only payload part will be encrypted

without any additional bytes. Function in MonoCypher libraries for encryption and

32

Telemetry radio Drone 1

A

GCS Telemetry radio| ~ CERTIFICATE messages

\ 4

Telemetry radio Drone 1

Fig. 7.2: Certificate broadcasting diagram

GCS | Drone 1 \
A

1. CERTIFICATE message exchange

2. Session key generation

3. Encrypted communication

Fig. 7.3: Process of key exchange and encypted communication

decryption needs three parameters: key, nonce, mac. As it was already described in
the previous section, the key is agreed between both sides and then XORed with key
exchange nonces. The nonce is used to make the same messages during encryption
different. Because this nonce must be same on both sides and there is no space left in
MAVLink packet to send it to another device, some part of MAVLink header needs
to be used for this purpose. In the MAVLink packet, there is a packet sequence
number, that changes in every packet. So as nonce byte of sequence number might
be used as nonce. Mac is used to authenticating source of an encrypted message,
but because MAVLink has already 13 bytes part for the signature that could be used
for the same thing, mac could be an array of zeros for all messages in any device.
After those three parameters are prepared, the process of encryption and decryption

might start.

7.1.6 Message signing

Because MAVLink packet is missing a destination address it is not possible to find
out if the received message was encrypted using locally known session key. This
brings a problem, that it is necessary to decrypt all received messages and then

validate result if a right key was used. To solve this problem, message signing might

33

help. MAVLink currently offers a solution to sign every message. If every message
will be encrypted and then signed with the session key. It is possible to validate the
received packet by hashing it with the session key and then validating. If session
key used for encryption differs with the session key for decryption, final hashes will
differ.

7.2 Example of security implementation

To demonstrate how security implementation should works an example has been
created based on design described in previous chapter. In example there is short
code for each reviewed library, that shows how final communication system should
work. Example was designed before choosing MonoCypher as library for final im-
plementation. Example is mainly oriented to demonstrate how messages should be
encrypted and signed and how key exchange should work. Also, it is possible to
see there how certificate signing and verification should work. After looking at this
example code person with basic knowledge of cryptography should understand what
was meant and should be able to imagine how newly secured communication should
works. Example code was written for both platforms. This example code was used

to measure performance of both libraries.

34

Conclusion

In this thesis main goal was to analyse security of PX4 platform and then create idea
how to fix as many as possible of those security vulnerabilities. To do this, first hard-
ware and software of PX4 platform has been described in details. Software includes
autopilot firmware, ground control station software QQGroundControl and MAVLink
protocol. Based on deeper knowledge of PX4 platform it was possible to choose
suitable C cryptography library. As main cryptography library the MonoCypher
library has been chosen. It allows to encrypt and sign messages, but also provides
solution to exchange session keys. These features brings way to safely exchange
MAVLink messages. Part of idea was that new encryption system will be com-
patible with current MAVLink packet frame. Using only few minor changes whole
implementation will be possible. On Pixhawk hardware results of performance tests
shown, that on autopilot hardware it is possible to encrypt and decrypt messages
with speed up to 800kB per second. Another important part of thesis was to verify
if PX4 hardware has safe TRNG. To do this, tests on NIST test suit has been done
for ARM and X86 platform. Results shown, that autopilot boards based on STM32
processors generates sequences of bits with enough entropy. QGroundControl based
on Qt framework was also able to generate random numbers with enough entropy.
That means that all main parts of PX4 platform are able to safely generate keys for
encryption and decryption.

Final part was all about introducing new security implementation and how it
should work. To make it possible to implement all features into PX4 code, all parts
of new security implementation were described in details. To make it simple to

understand all ideas, descriptions includes simple diagrams.

35

Bibliography

1]

[10]

[11]

[12]

Lorenz Meier. How i accidentally created the most used standards in the drone
industry, 2019. URL: https://auterion.com/the-history-of-pixhawk/.

PX4. Px4 user guide. https://github.com/PX4/px4_user_guide, 2019.

ArduPilot Dev Team. Ardupilot documentation, 2019. URL: https://
ardupilot.org/ardupilot/index.html|

Shawn Herrick. What’s the difference between a drone, uav and uas?,
2017. URL: https://www.identifiedtech.com/blog/uav-surveying/

drone-technology-ending-the-drone-vs-uav-debate-drone-basics-101/.

o, o. Open Source Licensing, 2004. . URL: http://dl4a.org/uploads/
pdf/ebooksclub.org Open Source Licensing Software Freedom and _

Intellectual Property_Law.pdf.

DroneCode. Px4 architectural overview, 2019. URL: https://dev.px4.io/

master/en/concept/architecture.html.

mavlink. Cross-platform ground control station for drones (android, ios, mac

os, linux, windows). https://github.com/mavlink/qgroundcontrol, 2019.

DroneCode. Flight controller selection, 2019. URL: https://docs.px4.io/
v1.9.0/en/getting started/flight controller selection.html|

3D Robotics, 1608 Fourth Street Berkeley, CA 94710. PIXHAWK AU-
TOPILOT - QUICK START GUIDE, 2014. . URL: https://3dr.com/
wp-content/uploads/2017/03/pixhawk-manual-rev7-1.pdf.

Hex Technology, Hong Kong. PIXHAWK 2 AUTOPILOT - QUICK START
GUIDE, 2016. . URL: http://www.hex.aero/wp-content/uploads/2016/
09/PIXHAWK2-Assembly-Guide.pdf.

Hex Technology, Hong Kong. Pizhawk v2 Feature QOverview, 2016.
.. URL: http://www.hex.aero/wp-content/uploads/2016/07/DRS_
Pixhawk-2-17th-march-2016.pdf.

Czech Telecommunication Office, Praha. Vseobecné oprdavneni ¢. VO-
R/10/01.2019-1 k wyuZivani rddiovych kmitocti a k provozovdni zarizend
kratkého dosahu., 2019. . URL: https://www.ctu.cz/sites/default/
files/obsah/ctu/vseobecne-opravneni-c.vo-r/10/01.2019-1/obrazky/
vo-r10-012019-1.pdf.

36

https://auterion.com/the-history-of-pixhawk/
https://github.com/PX4/px4_user_guide
https://ardupilot.org/ardupilot/index.html
https://ardupilot.org/ardupilot/index.html
https://www.identifiedtech.com/blog/uav-surveying/drone-technology-ending-the-drone-vs-uav-debate-drone-basics-101/
https://www.identifiedtech.com/blog/uav-surveying/drone-technology-ending-the-drone-vs-uav-debate-drone-basics-101/
http://dl4a.org/uploads/pdf/ebooksclub.org__Open_Source_Licensing___Software_Freedom_and_Intellectual_Property_Law.pdf
http://dl4a.org/uploads/pdf/ebooksclub.org__Open_Source_Licensing___Software_Freedom_and_Intellectual_Property_Law.pdf
http://dl4a.org/uploads/pdf/ebooksclub.org__Open_Source_Licensing___Software_Freedom_and_Intellectual_Property_Law.pdf
https://dev.px4.io/master/en/concept/architecture.html
https://dev.px4.io/master/en/concept/architecture.html
https://github.com/mavlink/qgroundcontrol
https://docs.px4.io/v1.9.0/en/getting_started/flight_controller_selection.html
https://docs.px4.io/v1.9.0/en/getting_started/flight_controller_selection.html
https://3dr.com/wp-content/uploads/2017/03/pixhawk-manual-rev7-1.pdf
https://3dr.com/wp-content/uploads/2017/03/pixhawk-manual-rev7-1.pdf
http://www.hex.aero/wp-content/uploads/2016/09/PIXHAWK2-Assembly-Guide.pdf
http://www.hex.aero/wp-content/uploads/2016/09/PIXHAWK2-Assembly-Guide.pdf
http://www.hex.aero/wp-content/uploads/2016/07/DRS_Pixhawk-2-17th-march-2016.pdf
http://www.hex.aero/wp-content/uploads/2016/07/DRS_Pixhawk-2-17th-march-2016.pdf
https://www.ctu.cz/sites/default/files/obsah/ctu/vseobecne-opravneni-c.vo-r/10/01.2019-1/obrazky/vo-r10-012019-1.pdf
https://www.ctu.cz/sites/default/files/obsah/ctu/vseobecne-opravneni-c.vo-r/10/01.2019-1/obrazky/vo-r10-012019-1.pdf
https://www.ctu.cz/sites/default/files/obsah/ctu/vseobecne-opravneni-c.vo-r/10/01.2019-1/obrazky/vo-r10-012019-1.pdf

[13]

[14]

[15]

[16]

ArduPilot. Tools and firmware for the sil000. https://github.com/
ArduPilot/SiK, 2018.

RFDesign Pty Ltd, 6/97 Jijaws Street Sumner Park, QLD 4074. RFD900 Radio
Modem Data Sheet, 2013. «. URL: http://files.rfdesign.com.au/Files/
documents/RFD900%20DataSheet . pdf.

Hex Technology, Hong Kong. HereLink - User manual, . . URL: https:
//fccid.io/2ARLU-HA06071/User-Manual/User-Manual-4389016.pdf.

mavlink. Mavlink developer guide. https://github.com/mavlink/
mavlink-devguide, 2019.

[17] jedisctl. A lightweight, secure, easy-to-use crypto library suitable for con-

[18]

[19]

[20]

[21]

[22]

[23]

strained environments. https://github.com/jedisct1/1libhydrogen, 2019.

LoupVaillant. An easy to use, easy to deploy crypto library. https://github.
com/LoupVaillant/Monocypher, 2019.

National Institute of Standards and Technology, Gaithersburg. A Statistical
Test Suite for Random and Pseudorandom Number Generators for Crypto-
graphic Applications, 2010. . URL: https://nvlpubs.nist.gov/nistpubs/
Legacy/SP/nistspecialpublication800-22rla.pdf.

STMicroelectronics, . STMS32 microcontroller random number gener-
ation wvalidation wusing the NIST statistical test suite, 2019. . URL:
https://www.st.com/content/ccc/resource/technical/document/
application_note/4a/6a/82/05/8e/9e/4e/94/DM00073853.pdf/files/
DM00073853.pdf/jcr:content/translations/en.DMO0073853. pdf.

The Qt Company Ltd., . QRandomGenerator Class, 2019. «. URL: https:
//doc.qt.io/qt-5/qrandomgenerator.html.

GINARTeam. Nist’s statistical test suite for random number genera-
tor (rng) that apply to ginar rng. https://github.com/GINARTeam/
NIST-statistical-test, 2019.

ArduPilot. Arduplane, arducopter, ardurover source. https://github.com/
ArduPilot/ardupilot, 2019.

37

https://github.com/ArduPilot/SiK
https://github.com/ArduPilot/SiK
http://files.rfdesign.com.au/Files/documents/RFD900%20DataSheet.pdf
http://files.rfdesign.com.au/Files/documents/RFD900%20DataSheet.pdf
https://fccid.io/2ARLU-HA06071/User-Manual/User-Manual-4389016.pdf
https://fccid.io/2ARLU-HA06071/User-Manual/User-Manual-4389016.pdf
https://github.com/mavlink/mavlink-devguide
https://github.com/mavlink/mavlink-devguide
https://github.com/jedisct1/libhydrogen
https://github.com/LoupVaillant/Monocypher
https://github.com/LoupVaillant/Monocypher
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-22r1a.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-22r1a.pdf
https://www.st.com/content/ccc/resource/technical/document/application_note/4a/6a/82/05/8e/9e/4e/94/DM00073853.pdf/files/DM00073853.pdf/jcr:content/translations/en.DM00073853.pdf
https://www.st.com/content/ccc/resource/technical/document/application_note/4a/6a/82/05/8e/9e/4e/94/DM00073853.pdf/files/DM00073853.pdf/jcr:content/translations/en.DM00073853.pdf
https://www.st.com/content/ccc/resource/technical/document/application_note/4a/6a/82/05/8e/9e/4e/94/DM00073853.pdf/files/DM00073853.pdf/jcr:content/translations/en.DM00073853.pdf
https://doc.qt.io/qt-5/qrandomgenerator.html
https://doc.qt.io/qt-5/qrandomgenerator.html
https://github.com/GINARTeam/NIST-statistical-test
https://github.com/GINARTeam/NIST-statistical-test
https://github.com/ArduPilot/ardupilot
https://github.com/ArduPilot/ardupilot

List of symbols, physical constants and abbre-
viations

AES Advanced Encryption Standard

AES-CCMP Advanced Encryption Standart-Counter Cipher Mode with Block
Chaining Message Authentication Code Protocol

API Application Programming Interface

ARM Advanced RISC Machine

CAN Controller Area Network

CTO Cgzech Telecommunication Office

CPU Central Processing Unit

DIY Do It Yourself

DRGN Daterministic Random Number Generators

ESC Electronic Speed Control

FMU Flight Management Unit

FMUv2 Flight Management Unit version 2

FMUv3 Flight Management Unit version 3

FPU Floating Point Unit

FPV First Person View

GCS Ground Control Station

GMT Greenwich Mean Time

GPL General Public License

GPS Global Position System

HMAC Keyed-Hashing for Message Authentication

HMI Human Machine Interface

IEEE Institute of Electrical and Electronics Engineers

IMU Inertial Measurement Unit

IoT Internet of things

LGPLv3 Lesser General Public License version 3

MAVLink Micro Aerial Vehicle Link

MPU Magnetic Pickup Unit

MPU Magnetic Pickup Unit

NIST National Institute of Standards and Technology

OS Operation System

PCB Printed Circuit Board

PPM Pulse Phase Modulation

PRGN Pseudorandom Number Generators

PWM Pulse Width Modulation

38

PX4 Name of software flight stack, PX is shortage for Pixhawk, which was name
of development team, that created PX4. Number 4 means fourth rewrite of the
PX flight control software

RAM Random-Access-Memory

RC Radio Controlled

RSSI Received Signal Strength Indication

RTOS Real Time Operation System

SD Secure Digital

SHA Secure Hash Algorithm

SoC System on a Chip

TRNG True Random Number Generator

UART Universal Asynchronous Receiver-Transmitter

UAV Unmanned Aerial Vehicle

UGV Unamenned Ground Vehicle

USB Universal Serial Bus

USD United States Dollar

VTOL Vertical Takeoff and Land

WLAN Wireless Local Area Network

WPA2 Wi-Fi Protected Access 2

XML Extensible Markup Language

39

List of appendices

A" Example of CERTIFICATE message in XML format |

[B Plots of results based on generated numbers |

40

41

42

A Example of CERTIFICATE message in XML

format

Listing A.1: Certificate stucture in C langugage

<message 1id="1000" name="CERTIFICATE">
<description>Signed certificate by authority, that is meant to
validate another device public key and privileges. If
certificate is trusted, then it is possible to communicate
with other device</description>
<field type="uint8_t" name="System_,ID" units="">
Network address</field>
<field type="char [20]" name="Device_ name" units="">Name of
machine</field>
<field type="char [20]" name="Maintainer" units="">Name of
maintainer</field>
<field type="uint8_t" name="Privileges" units="rad">
Privilages of device</field>
<field type="uint8_t [32]" name="pubK" units="rad">Public
key of device</field>
<field type="uint8_t [32]" name="Nonce" units="rad/s">
Random nonce to generate different key each time
</field>
<field type="uint8_t [64]" name="Sign" units="rad/s">Hash
of previous fields signed by authority </field>

</message>

41

© 00 N O Ot s W N

I N R R e T T e e S S Gy T
= O © 00 N O Ot i W N = O

B Plots of results based on generated num-

bers

Result_01_monobit_test Result_01_monobit_test
5000 5000
4500 4500
., 4000 ., 4000
g 3500 g 3500
& 3000 & 3000
5 5
5 2500 p 2500
£ 2000 2 2000
3 1500 2 1500
1000 1000
soo soo
N N N N M N N N
0&0\ 010\ 0'50\ oho\ 0c,<>\ q& 0-\0\ 0.7,0 090\ 00 S 1 9 0«,0 g,ﬁ oIS > (od \bo
N e Y S RS SN R qc. QO (A0 (0T A0 pOT GO (O 40 0 o0
AR\ LN AN S\ L L N DA\ AR U AN\ A\ L L D\
P-value P-value
Result_02_frequency_within_block_test Result_02_frequency_within_block_test
4500
4000
» 3500 » 3500
8 3000 & 3000
5 2500 s 2500
3 2000 3 2000
5 1500 E 1500
z z 000
0
xc\ 1_0\ 30\ b‘o\ «,c\ & 0‘0 q,o\ 90\ [»\p\ 10\ 20 @\ (,0\ 03,0\ 10\ $<>\ 090\ x-@\
\000 \Q‘@- \“‘10. \0‘30- @P“' \Qf,o- \05,0- \e?°' \Qq,m- \ggo, \0' \Q@ \Q}o, @?e| \th \090. \03,0. \01, \03,0. \090.
P-value P-value
Result_03_runs_test Result_03_runs_test
4500 4500
4000 4000
» 3500 o 3500
8 3000 & 3000
S 2500 s 2500
S 2000 £ 2000
E 1500 g 1500
1000 Z 1000
500 500
0 0
O T P S PP SR SR O P Y I S R SR
QO 30- 10v a)Qn [\ (.,Dv [101 Q’Dv 901 o0 ,_Ov ’L . »50» pO <,Qv O 10- $0v gﬁv
3 O o 07 o N 3 o \Of O O O X O O O o O O 07
P-value P-value

42

Result_04_longest_run_ones_in_a_block_test

Result_04_longest_run_ones_in_a_block_test

7

\030 \qu @30 \0@ \050- \050 \qu \“‘%0.

P-value

5000 5000
4500 4500
., 4000 "
5 3500 E 3500
T 3
é 2000 é 2000
3 1500 3 1500
1000 1000
500 500
o 010\ oD o S 0 1S S o (o BN —Lo\ 030\ Qho\ Qf,o & Qq,o\ “90\ o®
007 2007 200 o <0 107 o0 7 o 007 1007 500" 007 00 0 o 7
N Y S AR S R R e N I I U
P-value P-value
Result_05_binary_matrix_rank_test Result_05_binary_matrix_rank_test
250 200
180
" ., 160
E Zﬂ: 140
« 150 « 120
5 S
E g 100
E l I I E
5 5
z z
609 “10\ 030\ [OOSR 010\ 0%0\ ogc\ o g'@ 010\ 0’50\ O A S “90\ o®
O O SN S I\ 1\) A 7 () O O) O) o 7
X @B @ o o o @1 of° X @B @ oI o o @1 0¥
P-value P-value
Result_06_dft_test Result_06_dft_test
6000 6000
5000 5000
8 4000 8 4000
5 3000 5 3000
2 2
E 2000 E 2000
z z
1000 1000
0 0
0})))) 0}))))))) 3)))))
oS S o 0(,0 o 1% (¢ o o S N S T AP L SR SR DN
QQ- _0\ 10- 30» N (jﬁv A\l 10- %0\ 90- ()Qv ’\q' "LQ' 3%v a0 %Qv 60. 101 %Q- gﬁv
A\ A\ L A U N L\ A\ U N\ A\ O\ N U N\
P-value P-value
Result_07_non_overlapping_template_matching_test Result_07_non_overlapping_template_matching_test
4500 4500
4000 4000
» 3500 » 3500
8 3000 8 3000
G 2500 G 2500
2 2000 2 2000
£ 1500 E 1500
Z 1000 = 1000
500 500
0 0
@ @ & 0@ 0& & & @ o o & & Q 0@ 0& @ @ @ o o
0 0 0 QO N Ov Q- 0- " O 0 Q O Q1 O Ov Q 0- \}} O
% M P @ e @ ef e e o OF e P P e e f o P o
P-value P-value
Result_08_overlapping_template_matching_test Result_08_overlapping_template_matching_test
16 12
14 0
g 12 2
LT 2 s
5 8 5 6
€ 6 £
g l. l l g
T ..] .
2
2
: H_ 0 L
o 0 S 0 S 0 O o 090 B Y N NPT~ S SR P

\000 \0@ \0»@ o o \0(,0, of \gﬂ"‘ @@, o

P-value

43

Result_09_maurers_universal_test

Result_09_maurers_universal_test

O o I g g8 g 8 g1

P-value

3

40 35
35 30
g % 2 2
2 2
g 5 g
s s 20
5 20 25
£ 15 £
o . o .
5 5
o —_—.. o e I [
))))) S) O}))))
e”'“o o & o"‘“ o*‘o c*‘ce o & o"‘oo Q*Q o> “\,00 0”00 0\00 0*00 o> 5 0”00 0”00 0”00 e\’og >
Qv 0‘ oV Qv oV 0' Qv o o o o o o o NS o o o N
R A O S % | S S L S GO e T g @S T o P S
P-value P-value
Result_10_linear_complexity_test Result_10_linear_complexity_test
20 25
18
g 16 ., 20
g 1 8
s 12 5 15
3 2
2 3 £ 10
2 g =
2 .
0
A O XY\ SFC S N SRN A0 1<>\ a,0\ R S S SN S o0
o &QQ' 0 30'0' 007 0% 0% 007 0 207 o0 75)' 30'°' 007 0 o 10 e ol S0
O O O O QO O O \Of QO Q" \Qr O QO O N\ \Of
P-value P-value
Result_11_serial_test Result_11_serial_test
5000 6000
4500
., 4000 L, 5000
g 3500 8 4000
5 3000 5
5 2500 5 3000
£ 2000 £ Lom
2 1500 2
lggg 1000
0
009\ QQ:LQ\ 00@0\ . oS Oec,o\ <)gg,o\ “Qqe\ 00@\ R . RO “&o\ . o 00@\ X o Qo.@\ 0010\ . RO qogo\ . R
o0 a0 2007 20 107 00 0¥ 4007 o QQ.Q}.Q}.&,Q 00 60 10 0% o0
\ N N N N O ¢ N NI ¢ N ¢ O 07 ¢ N OO
Average p-value Averagep-value
Result_12_approximate_entropy_test Result_12_approximate_entropy_test
2 2 3500
g 8 3000
5 s 2500
8 £ 2000
§ § 1500
=4 F4
0\p\ Qle\ 0-,,0\ Q@\ 0(,q\ 0‘(,0\ 07\0 qu\ Qqq\ \’go\ 00@\ 0010\ 0“4,0\ 5 Qho\ QQc,o\ qu, 0“10\ 0“?,0 5 qu\ 0'&“0
R N R N N LN o oM P e oM P e e e o
S NS IR ©7 O ¢ N S ¢ ¢ N N O ¢ N N <
P-value P-value
Result_13_cumulative_sums_test_forward Result_13_cumulative_sums_test_forward
» 3500 P 3500
8 3000 8 3000
5 2500 S 2500
& 2000 2 2000
§ 1500 E 1500
4 z
0@\ 010\ 030\ 0ht)\ 0(,0\ 05,0\ 03&3 09,0\ @\ mo\ 0»50\ pr\ 0(,0\ (,0\ Qﬂo qu\ gis\ Qc

\Q‘ \0 \010 \qu \0“0 \050. \0‘ \0:\0. \01,0. \Qgc,

P-value

Result_13_cumulative_sums_test_backward Result_13_cumulative_sums_test_backward
4500 4500
4000 4000
s 3500 «» 3500
8 3000 8 3000
G 2500 G 2500
& 2000 & 2000
E 1500 E 1500
Z 1000 Z 1000
500 500
0 0
Q‘Qxe\ QIQ@\ 0‘030\ e‘oho\ ro,o\ vab o‘cqe\ 0‘09,0\ qu&x\ Q‘\,"“\ 00 xc\ o0 mc\ 0‘“30\ o mo o) 30 ol 60\ 09‘10 0‘0?,0\ '090\ 0‘300\
O @ P @ EF e @ o e P O @M @ @ oF e ef o e o?
P-value P-value
Result_14_random_excursion_test Result_14_random_excursion_test
10 8
9 7
w 8 v
5 6 5
g 3 54
e 4 £ 3
2 3 2,
2
'm Hm m | .
0 0
5 5 Y S Y S Y S S N S .0 A OY Y 3 oS
Ao 0P W0 9% a;o“hg &00&6 ms"(’o (,ev“c’s (,5.06& @."66 b@""& Ay qp.“’b 01 > o g.“f’% 207 99,.“6 o ¢ (,95’15 19.0%
O e e P @ @ e P ef OF P @R e e T P e ofT e
Average p-value Average p-value
Result_15_random_excursion_variant_test Result_15_random_excursion_variant_test
10 7
° 6
9 8 1)
g 7 g°
5 6 5 4
b 5 2,
£ 4 £
2 3 22
1
B N SR Y - SR N f,\ 0 B e I N S LY
80T A0 07 a0 007 (607 A 07 40 (,ﬂ,- @ 507 007 00 &o“‘ 1o AT a2 el
O e eF P P @M @R e 7 o R N N
Average p-value Average p-value

45

	Introduction
	PX4 Software stack
	Overview
	PX4 autopilot architecture
	QGroundControl software

	PX4 Hardware
	Pixhawk 1
	Pixhawk 2.1 - Cube
	Hardware setups
	PX4 compatible radios

	MAVLink protocol
	MAVLink 1.0
	MAVLink 2.0
	MAVLink 2.0 security issues

	Cryptography libraries
	LibHydrogen
	MonoCypher

	Random number generation on PX4 platform
	Pseudo-random number generators
	True-random number generators
	NIST tests of randomness

	PX4 security vulnerabilities
	Preparations
	Listening to MAVLink communication (Confidential information)
	Shutting down vehicle during flight (Destruction)
	Changing vehicles flight mission (Theft)
	Changing vehicle parameters (Destruction)
	Taking control over vehicle (Theft)
	Conclusion

	New PX4 security architecture
	Idea of new security architecture
	Example of security implementation

	Conclusion
	Bibliography
	List of appendices
	Example of CERTIFICATE message in XML format
	Plots of results based on generated numbers

