diff --git "a/llm/\346\234\215\345\212\241\345\214\226\351\203\250\347\275\262.md" "b/llm/\346\234\215\345\212\241\345\214\226\351\203\250\347\275\262.md"
new file mode 100644
index 0000000000..449e5aafc1
--- /dev/null
+++ "b/llm/\346\234\215\345\212\241\345\214\226\351\203\250\347\275\262.md"
@@ -0,0 +1,154 @@
+# FastDeploy服务化部署
+
+### 预安装:
+
+1.安装python3.8环境
+
+2.安装paddlepaddle
+
+```bash
+wget https://bj.bcebos.com/fastdeploy/llm/paddlepaddle_gpu-0.0.0-cp38-cp38-linux_x86_64.whl
+pip install paddlepaddle_gpu-0.0.0-cp38-cp38-linux_x86_64.whl
+```
+
+3.导入PaddleNLP仓库,并安装wheel包以及自定义算子
+
+```bash
+git clone https://github.com/PaddlePaddle/PaddleNLP.git
+cd PaddleNLP
+#注意:如果paddlenlp最新版的代码执行期间出现bug,可以执行如下命令切换到之前版本:
+#git checkout 111b381146183aa6416343685d6394ee5d126981
+python3 setup.py bdist_wheel
+cd dist
+pip install $(ls)   #  wheel包文件
+cd ..
+cd csrc
+python3 setup_cuda.py install --user #安装自定义算子
+```
+
+4.导入FastDeploy仓库,并安装wheel包
+
+```bash
+git clone -b llm https://github.com/PaddlePaddle/FastDeploy.git
+cd FastDeploy/llm
+python3 setup.py bdist_wheel
+cd dist
+pip install $(ls) #  wheel包文件
+```
+
+### **利用PaddleNLP导出推理模型**
+
+```bash
+export_model_name = "THUDM/chatglm-6b"   #这里指定导出的模型名称
+output_model_path = "chatglm-6b-fp16" #这里指定导出模型的路径
+cd PaddleNLP/llm
+python3 export_model.py --model_name_or_path ${export_model_name} --output_path ${output_model_path} --dtype float16 --inference_model
+```
+
+### 模型转换
+
+将PaddleNLP导出的模型转换为服务化部署的模型结构
+
+```bash
+wget https://bj.bcebos.com/fastdeploy/llm/gen_serving_model.sh
+serving_model_path= "chatglm-6b-fp16-serving" #这里指定服务化模型存储目录
+# 第一个参数为PaddleNLP导出模型目录,第二个参数为存储服务化模型的目录路径
+bash gen_serving_model.sh ${output_model_path} ${serving_model_path}
+```
+
+### **部署方式**
+
+```bash
+# 1、拉取docker镜像,创建docker,要求cuda驱动大于520
+docker pull registry.baidubce.com/paddlepaddle/fastdeploy-llm:0.0.9  
+# 2.创建容器,挂载模型路径到容器中,进入docker
+nvidia-docker run --name 容器名 -v $PWD:/work --network=host --privileged --shm-size=5g -it registry.baidubce.com/paddlepaddle/fastdeploy-llm:0.0.9 /bin/bash
+
+# 3、进入docker,设置如下环境变量,并且启动triton服务
+export FLAGS_cache_inference_while_scope=1
+export BATCH_SIZE=8  #指定batch_size
+export IS_PTUNING=0  #非ptuning模型
+# 配置此环境变量,会将接收到的请求dump到日志,便于后期追查问题
+export ENABLE_DEBUG_LOG=1
+
+rm -rf /dev/shm/* #清空共享内存
+ldconfig
+#启动服务端服务
+tritonserver --model-repository ${serving_model_path} --http-port 8134 --grpc-port 8135 --metrics-port 8136
+```
+
+### **客户端请求示例**
+若没安装tritonclient[grpc],请先用 pip install tritonclient[grpc] 安装
+```python
+import queue
+import json
+import sys
+from functools import partial
+
+import numpy as np
+import tritonclient.grpc as grpcclient
+from tritonclient.utils import *
+
+class UserData:
+    def __init__(self):
+        self._completed_requests = queue.Queue()
+
+def callback(user_data, result, error):
+    if error:
+        user_data._completed_requests.put(error)
+    else:
+        user_data._completed_requests.put(result)
+
+def get_completion(text, model_name, grpc_url):
+    model_name = model_name
+    in_value = {
+    "text": text,
+    "topp": 0.0,
+    "temperature": 1.0,
+    "max_dec_len": 1024,
+    "min_dec_len": 2,
+    "penalty_score": 1.0,
+    "frequency_score": 0.99,
+    "eos_token_id": 2,
+    "model_id": "test",
+    "presence_score": 0.0
+    }
+    inputs = [grpcclient.InferInput("IN", [1], np_to_triton_dtype(np.object_))]
+    outputs = [grpcclient.InferRequestedOutput("OUT")]
+    user_data = UserData()
+    completion = ""
+    
+    is_error_request = False # 判断query是否处理失败
+    
+    with grpcclient.InferenceServerClient(url=grpc_url, verbose=False) as triton_client:
+        triton_client.start_stream(callback=partial(callback, user_data))
+        in_data = np.array([json.dumps(in_value)], dtype=np.object_)
+        inputs[0].set_data_from_numpy(in_data)
+        triton_client.async_stream_infer(model_name=model_name, inputs=inputs, request_id="0", outputs=outputs)
+        while True:
+            data_item = user_data._completed_requests.get(timeout=300)
+            if type(data_item) == InferenceServerException:
+                print('Exception:', 'status', data_item.status(), 'msg', data_item.message())
+                is_error_request = True
+                break
+            else:
+                results = data_item.as_numpy("OUT")[0]
+                data = json.loads(results)
+
+                completion += data["result"]
+                if data.get("is_end", False):
+                    break
+        return completion
+   
+grpc_url = "0.0.0.0:8135"
+model_name = "model-aistudio"  # 上述服务化模型,服务都均已命名为model-aistudio
+result = get_completion("Hello, how are you", model_name, grpc_url)
+```
+
+### **结束进程**
+
+```bash
+ps aux | grep tritonserver | awk '{print $2}' | xargs kill -9
+ps aux | grep python3 | awk '{print $2}' | xargs kill -9
+rm -rf /dev/shm*
+```