diff --git a/python/paddle/__init__.py b/python/paddle/__init__.py index 0f95fccab1705..4e87dd21b16c2 100755 --- a/python/paddle/__init__.py +++ b/python/paddle/__init__.py @@ -103,8 +103,6 @@ from .tensor.logic import logical_or #DEFINE_ALIAS from .tensor.logic import logical_xor #DEFINE_ALIAS from .tensor.logic import not_equal #DEFINE_ALIAS -# from .tensor.logic import reduce_all #DEFINE_ALIAS -# from .tensor.logic import reduce_any #DEFINE_ALIAS from .tensor.logic import allclose #DEFINE_ALIAS from .tensor.logic import equal_all #DEFINE_ALIAS # from .tensor.logic import isnan #DEFINE_ALIAS @@ -161,6 +159,8 @@ # from .tensor.math import reduce_min #DEFINE_ALIAS # from .tensor.math import reduce_prod #DEFINE_ALIAS # from .tensor.math import reduce_sum #DEFINE_ALIAS +from .tensor.math import all #DEFINE_ALIAS +from .tensor.math import any #DEFINE_ALIAS from .tensor.math import round #DEFINE_ALIAS from .tensor.math import rsqrt #DEFINE_ALIAS from .tensor.math import scale #DEFINE_ALIAS diff --git a/python/paddle/fluid/layers/nn.py b/python/paddle/fluid/layers/nn.py index c2bb96ead2bf9..0842576413fbd 100755 --- a/python/paddle/fluid/layers/nn.py +++ b/python/paddle/fluid/layers/nn.py @@ -315,6 +315,8 @@ def fc(input, .. code-block:: python import paddle.fluid as fluid + import paddle + paddle.enable_static() # when input is single tensor data = fluid.data(name="data", shape=[-1, 32], dtype="float32") fc = fluid.layers.fc(input=data, size=1000, act="tanh") @@ -468,6 +470,9 @@ def embedding(input, import paddle.fluid as fluid import numpy as np + import paddle + paddle.enable_static() + data = fluid.data(name='x', shape=[None, 1], dtype='int64') # example 1 @@ -731,6 +736,8 @@ def linear_chain_crf(input, label, param_attr=None, length=None): import paddle.fluid as fluid import numpy as np + import paddle + paddle.enable_static() #define net structure, using LodTensor train_program = fluid.Program() @@ -855,6 +862,8 @@ def crf_decoding(input, param_attr, label=None, length=None): .. code-block:: python import paddle.fluid as fluid + import paddle + paddle.enable_static() # LoDTensor-based example num_labels = 10 @@ -1458,6 +1467,9 @@ def conv2d(input, .. code-block:: python import paddle.fluid as fluid + import paddle + paddle.enable_static() + data = fluid.data(name='data', shape=[None, 3, 32, 32], dtype='float32') conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu") """ @@ -1728,6 +1740,8 @@ def conv3d(input, .. code-block:: python import paddle.fluid as fluid + import paddle + paddle.enable_static() data = fluid.data(name='data', shape=[None, 3, 12, 32, 32], dtype='float32') conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu") """ @@ -2377,6 +2391,7 @@ def adaptive_pool2d(input, # output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend]) # import paddle + paddle.enable_static() data = paddle.rand(shape=[1,3,32,32]) pool_out = paddle.fluid.layers.adaptive_pool2d( input=data, @@ -2531,6 +2546,7 @@ def adaptive_pool3d(input, # import paddle + paddle.enable_static() data = paddle.rand(shape=[1,3,32,32,32]) pool_out = paddle.fluid.layers.adaptive_pool3d( input=data, @@ -2726,6 +2742,8 @@ def batch_norm(input, .. code-block:: python import paddle.fluid as fluid + import paddle + paddle.enable_static() x = fluid.data(name='x', shape=[3, 7, 3, 7], dtype='float32') hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w') hidden2 = fluid.layers.batch_norm(input=hidden1) @@ -2735,6 +2753,8 @@ def batch_norm(input, # batch_norm with momentum as Variable import paddle.fluid as fluid import paddle.fluid.layers.learning_rate_scheduler as lr_scheduler + import paddle + paddle.enable_static() def get_decay_momentum(momentum_init, decay_steps, decay_rate): global_step = lr_scheduler._decay_step_counter() @@ -3134,6 +3154,8 @@ def instance_norm(input, .. code-block:: python import paddle.fluid as fluid + import paddle + paddle.enable_static() x = fluid.data(name='x', shape=[3, 7, 3, 7], dtype='float32') hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w') hidden2 = fluid.layers.instance_norm(input=hidden1) @@ -3269,6 +3291,7 @@ def data_norm(input, .. code-block:: python import paddle + paddle.enable_static() x = paddle.randn(shape=[32,100]) hidden2 = paddle.static.nn.data_norm(input=x) @@ -3451,6 +3474,8 @@ def layer_norm(input, import paddle.fluid as fluid import numpy as np + import paddle + paddle.enable_static() x = fluid.data(name='x', shape=[-1, 32, 32], dtype='float32') hidden1 = fluid.layers.layer_norm(input=x, begin_norm_axis=1) place = fluid.CPUPlace() @@ -3566,6 +3591,9 @@ def group_norm(input, .. code-block:: python import paddle.fluid as fluid + import paddle + paddle.enable_static() + data = fluid.data(name='data', shape=[None, 8, 32, 32], dtype='float32') x = fluid.layers.group_norm(input=data, groups=4) """ @@ -3887,6 +3915,8 @@ def conv2d_transpose(input, .. code-block:: python import paddle.fluid as fluid + import paddle + paddle.enable_static() data = fluid.data(name='data', shape=[None, 3, 32, 32], dtype='float32') conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3) """ @@ -4177,6 +4207,8 @@ def conv3d_transpose(input, .. code-block:: python import paddle.fluid as fluid + import paddle + paddle.enable_static() data = fluid.data(name='data', shape=[None, 3, 12, 32, 32], dtype='float32') conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3) """ @@ -4659,7 +4691,7 @@ def reduce_all(input, dim=None, keep_dim=False, name=None): This OP computes the ``logical and`` of tensor elements over the given dimension, and output the result. Args: - input (Variable): The input variable which is a Tensor or LoDTensor, the input data type should be `bool`. + input (Tensor): the input tensor, it's data type should be `bool`. dim (list|int|optional): The dimension along which the logical and is computed. If :attr:`None`, compute the logical and over all elements of :attr:`input` and return a Tensor variable with a single element, @@ -4672,11 +4704,12 @@ def reduce_all(input, dim=None, keep_dim=False, name=None): will be named automatically. The default value is None. Returns: - Variable, the output data type is bool. : The reduced tensor variable with ``logical and`` in given dims. + Tensor, the output data type is bool. : The reduced tensor variable with ``logical and`` in given dims. Examples: .. code-block:: python + import paddle import paddle.fluid as fluid import paddle.fluid.layers as layers import numpy as np @@ -4684,15 +4717,15 @@ def reduce_all(input, dim=None, keep_dim=False, name=None): # x is a bool Tensor variable with following elements: # [[True, False] # [True, True]] - x = layers.assign(np.array([[1, 0], [1, 1]], dtype='int32')) - x = layers.cast(x, 'bool') + x = paddle.assign(np.array([[1, 0], [1, 1]], dtype='int32')) + x = paddle.cast(x, 'bool') - out = layers.reduce_all(x) # False - out = layers.reduce_all(x, dim=0) # [True, False] - out = layers.reduce_all(x, dim=-1) # [False, True] + out = paddle.reduce_all(x) # False + out = paddle.reduce_all(x, dim=0) # [True, False] + out = paddle.reduce_all(x, dim=-1) # [False, True] # keep_dim=False, x.shape=(2,2), out.shape=(2,) - out = layers.reduce_all(x, dim=1, keep_dim=True) # [[False], [True]] + out = paddle.reduce_all(x, dim=1, keep_dim=True) # [[False], [True]] # keep_dim=True, x.shape=(2,2), out.shape=(2,1) """ @@ -4719,7 +4752,7 @@ def reduce_any(input, dim=None, keep_dim=False, name=None): This OP computes the ``logical or`` of tensor elements over the given dimension, and output the result. Args: - input (Variable): The input variable which is a Tensor or LoDTensor, the input data type should be `bool`. + input (Tensor): the input tensor, it's data type should be `bool`. dim (list|int|optional): The dimension along which the logical and is computed. If :attr:`None`, compute the logical and over all elements of :attr:`input` and return a Tensor variable with a single element, @@ -4728,14 +4761,15 @@ def reduce_any(input, dim=None, keep_dim=False, name=None): keep_dim (bool): Whether to reserve the reduced dimension in the output Tensor. The result tensor will have one fewer dimension than the :attr:`input` unless :attr:`keep_dim` is true. The default value is False. - name(str|None): A name for this layer(optional). If set None, the layer + name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: - Variable, the output data type is bool. : The reduced tensor variable with ``logical or`` in given dims. + Tensor, the output data type is bool. : The reduced tensor variable with ``logical or`` in given dims. Examples: .. code-block:: python + import paddle import paddle.fluid as fluid import paddle.fluid.layers as layers import numpy as np @@ -4743,15 +4777,15 @@ def reduce_any(input, dim=None, keep_dim=False, name=None): # x is a bool Tensor variable with following elements: # [[True, False] # [False, False]] - x = layers.assign(np.array([[1, 0], [0, 0]], dtype='int32')) - x = layers.cast(x, 'bool') + x = paddle.assign(np.array([[1, 0], [0, 0]], dtype='int32')) + x = paddle.cast(x, 'bool') - out = layers.reduce_any(x) # True - out = layers.reduce_any(x, dim=0) # [True, False] - out = layers.reduce_any(x, dim=-1) # [True, False] + out = paddle.reduce_any(x) # True + out = paddle.reduce_any(x, dim=0) # [True, False] + out = paddle.reduce_any(x, dim=-1) # [True, False] # keep_dim=False, x.shape=(2,2), out.shape=(2,) - out = layers.reduce_any(x, dim=1, + out = paddle.reduce_any(x, dim=1, keep_dim=True) # [[True], [False]] # keep_dim=True, x.shape=(2,2), out.shape=(2,1) @@ -5613,6 +5647,8 @@ def im2sequence(input, .. code-block:: python import paddle.fluid as fluid + import paddle + paddle.enable_static() data = fluid.data(name='data', shape=[None, 3, 32, 32], dtype='float32') output = fluid.layers.im2sequence( @@ -5669,6 +5705,8 @@ def row_conv(input, future_context_size, param_attr=None, act=None): Examples: >>> # for LodTensor inputs >>> import paddle.fluid as fluid + >>> import paddle + >>> paddle.enable_static() >>> x = fluid.data(name='x', shape=[9, 16], >>> dtype='float32', lod_level=1) >>> out = fluid.layers.row_conv(input=x, future_context_size=2) @@ -5982,6 +6020,8 @@ def autoincreased_step_counter(counter_name=None, begin=1, step=1): .. code-block:: python import paddle.fluid as fluid + import paddle + paddle.enable_static() global_step = fluid.layers.autoincreased_step_counter( counter_name='@LR_DECAY_COUNTER@', begin=0, step=1) """ @@ -9730,6 +9770,8 @@ def prelu(x, mode, param_attr=None, name=None): .. code-block:: python import paddle.fluid as fluid + import paddle + paddle.enable_static() from paddle.fluid.param_attr import ParamAttr x = fluid.data(name="x", shape=[None,5,10,10], dtype="float32") mode = 'channel' @@ -14307,6 +14349,9 @@ def deformable_conv(input, #deformable conv v2: import paddle.fluid as fluid + import paddle + paddle.enable_static() + C_in, H_in, W_in = 3, 32, 32 filter_size, deformable_groups = 3, 1 data = fluid.data(name='data', shape=[None, C_in, H_in, W_in], dtype='float32') diff --git a/python/paddle/fluid/tests/unittests/test_reduce_op.py b/python/paddle/fluid/tests/unittests/test_reduce_op.py index 80b201d084218..e549a2eca2d7d 100644 --- a/python/paddle/fluid/tests/unittests/test_reduce_op.py +++ b/python/paddle/fluid/tests/unittests/test_reduce_op.py @@ -767,5 +767,117 @@ def test_dygraph(self): self.assertTrue((out3 == np.sum(np_x, axis=(0, 1, 2))).all()) +class TestAllAPI(unittest.TestCase): + def setUp(self): + np.random.seed(123) + paddle.enable_static() + self.places = [fluid.CPUPlace()] + if core.is_compiled_with_cuda(): + self.places.append(fluid.CUDAPlace(0)) + + def check_static_result(self, place): + with fluid.program_guard(fluid.Program(), fluid.Program()): + input = fluid.data(name="input", shape=[4, 4], dtype="bool") + result = paddle.all(x=input) + input_np = np.random.randint(0, 2, [4, 4]).astype("bool") + + exe = fluid.Executor(place) + fetches = exe.run(fluid.default_main_program(), + feed={"input": input_np}, + fetch_list=[result]) + self.assertTrue(np.allclose(fetches[0], np.all(input_np))) + + def test_static(self): + for place in self.places: + self.check_static_result(place=place) + + def test_dygraph(self): + paddle.disable_static() + for place in self.places: + with fluid.dygraph.guard(place): + np_x = np.random.randint(0, 2, (12, 10)).astype(np.bool) + x = fluid.layers.assign(np_x) + x = fluid.layers.cast(x, 'bool') + + out1 = paddle.all(x) + np_out1 = out1.numpy() + expect_res1 = np.all(np_x) + self.assertTrue((np_out1 == expect_res1).all()) + + out2 = paddle.all(x, axis=0) + np_out2 = out2.numpy() + expect_res2 = np.all(np_x, axis=0) + self.assertTrue((np_out2 == expect_res2).all()) + + out3 = paddle.all(x, axis=-1) + np_out3 = out3.numpy() + expect_res3 = np.all(np_x, axis=-1) + self.assertTrue((np_out3 == expect_res3).all()) + + out4 = paddle.all(x, axis=1, keepdim=True) + np_out4 = out4.numpy() + expect_res4 = np.all(np_x, axis=1, keepdims=True) + self.assertTrue((np_out4 == expect_res4).all()) + + paddle.enable_static() + + +class TestAnyAPI(unittest.TestCase): + def setUp(self): + np.random.seed(123) + paddle.enable_static() + self.places = [fluid.CPUPlace()] + if core.is_compiled_with_cuda(): + self.places.append(fluid.CUDAPlace(0)) + + def check_static_result(self, place): + with fluid.program_guard(fluid.Program(), fluid.Program()): + input = fluid.data(name="input", shape=[4, 4], dtype="bool") + result = paddle.any(x=input) + input_np = np.random.randint(0, 2, [4, 4]).astype("bool") + + exe = fluid.Executor(place) + fetches = exe.run(fluid.default_main_program(), + feed={"input": input_np}, + fetch_list=[result]) + self.assertTrue(np.allclose(fetches[0], np.any(input_np))) + + def test_static(self): + for place in self.places: + self.check_static_result(place=place) + + def test_dygraph(self): + paddle.disable_static() + for place in self.places: + with fluid.dygraph.guard(place): + np_x = np.random.randint(0, 2, (12, 10)).astype(np.bool) + x = fluid.layers.assign(np_x) + x = fluid.layers.cast(x, 'bool') + + out1 = paddle.any(x) + np_out1 = out1.numpy() + expect_res1 = np.any(np_x) + self.assertTrue((np_out1 == expect_res1).all()) + + out2 = paddle.any(x, axis=0) + np_out2 = out2.numpy() + expect_res2 = np.any(np_x, axis=0) + self.assertTrue((np_out2 == expect_res2).all()) + + out3 = paddle.any(x, axis=-1) + np_out3 = out3.numpy() + expect_res3 = np.any(np_x, axis=-1) + self.assertTrue((np_out3 == expect_res3).all()) + + out4 = paddle.any(x, axis=1, keepdim=True) + np_out4 = out4.numpy() + expect_res4 = np.any(np_x, axis=1, keepdims=True) + self.assertTrue((np_out4 == expect_res4).all()) + + paddle.enable_static() + + if __name__ == '__main__': + import paddle + paddle.enable_static() unittest.main() diff --git a/python/paddle/tensor/__init__.py b/python/paddle/tensor/__init__.py index 773e6ebc7af2e..41a78767586cc 100755 --- a/python/paddle/tensor/__init__.py +++ b/python/paddle/tensor/__init__.py @@ -66,8 +66,6 @@ from .logic import logical_or #DEFINE_ALIAS from .logic import logical_xor #DEFINE_ALIAS from .logic import not_equal #DEFINE_ALIAS -# from .logic import reduce_all #DEFINE_ALIAS -# from .logic import reduce_any #DEFINE_ALIAS from .logic import allclose #DEFINE_ALIAS from .logic import equal_all #DEFINE_ALIAS # from .logic import isnan #DEFINE_ALIAS @@ -163,6 +161,8 @@ from .math import isinf #DEFINE_ALIAS from .math import isnan #DEFINE_ALIAS from .math import prod #DEFINE_ALIAS +from .math import all #DEFINE_ALIAS +from .math import any #DEFINE_ALIAS from .random import multinomial #DEFINE_ALIAS from .random import standard_normal from .random import normal diff --git a/python/paddle/tensor/logic.py b/python/paddle/tensor/logic.py index 1fc1c17d2edb2..44ccaffe9b9c6 100644 --- a/python/paddle/tensor/logic.py +++ b/python/paddle/tensor/logic.py @@ -27,6 +27,8 @@ from ..fluid.layers import logical_not #DEFINE_ALIAS from ..fluid.layers import logical_or #DEFINE_ALIAS from ..fluid.layers import logical_xor #DEFINE_ALIAS +from ..fluid.layers import reduce_all #DEFINE_ALIAS +from ..fluid.layers import reduce_any #DEFINE_ALIAS __all__ = [ 'equal', diff --git a/python/paddle/tensor/math.py b/python/paddle/tensor/math.py index 895d0c175905c..36793e0769672 100755 --- a/python/paddle/tensor/math.py +++ b/python/paddle/tensor/math.py @@ -21,7 +21,7 @@ from paddle.tensor import cast import paddle from ..fluid import layers -from ..fluid.framework import core, _varbase_creator, in_dygraph_mode, Variable +from ..fluid.framework import core, _varbase_creator, in_dygraph_mode, Variable, convert_np_dtype_to_dtype_ from ..fluid.layer_helper import LayerHelper from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype from ..fluid.layers.layer_function_generator import _generate_doc_string_, generate_activation_fn, generate_layer_fn @@ -46,6 +46,8 @@ from ..fluid.layers import floor #DEFINE_ALIAS from ..fluid.layers import log #DEFINE_ALIAS from ..fluid.layers import reciprocal #DEFINE_ALIAS +from ..fluid.layers import reduce_all #DEFINE_ALIAS +from ..fluid.layers import reduce_any #DEFINE_ALIAS # from ..fluid.layers import reduce_max #DEFINE_ALIAS # from ..fluid.layers import reduce_min #DEFINE_ALIAS # from ..fluid.layers import reduce_prod #DEFINE_ALIAS @@ -1933,3 +1935,201 @@ def increment(x, value=1.0, name=None): outputs={'Out': [x]}, attrs={'step': float(value)}) return x + + +def all(x, axis=None, keepdim=False, name=None): + """ + Computes the the ``logical and`` of tensor elements over the given dimension. + + Args: + x (Tensor): An N-D Tensor, the input data type should be `bool`. + axis (int|list|tuple, optional): The dimensions along which the ``logical and`` is compute. If + :attr:`None`, and all elements of :attr:`x` and return a + Tensor variable with a single element, otherwise must be in the + range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`, + the dimension to reduce is :math:`rank + axis[i]`. + keepdim (bool, optional): Whether to reserve the reduced dimension in the + output Tensor. The result Tensor will have one fewer dimension + than the :attr:`x` unless :attr:`keepdim` is true, default + value is False. + name (str, optional): The default value is None. Normally there is no need for + user to set this property. For more information, please refer to :ref:`api_guide_Name` + + Returns: + Tensor: Results the ``logical and`` on the specified axis of input Tensor `x`, it's data type is bool. + + Raises: + ValueError: If the data type of `x` is not bool. + TypeError: The type of :attr:`axis` must be int, list or tuple. + + Examples: + .. code-block:: python + + import paddle + import paddle.fluid as fluid + import paddle.fluid.layers as layers + import numpy as np + + # set as static mode + paddle.disable_static() + + # x is a bool Tensor variable with following elements: + # [[True, False] + # [True, True]] + x = layers.assign(np.array([[1, 0], [1, 1]], dtype='int32')) + print(x) + x = layers.cast(x, 'bool') + + # out1 should be [False] + out1 = paddle.all(x) # [False] + print(out1) + + # out2 should be [True, False] + out2 = paddle.all(x, axis=0) # [True, False] + print(out2) + + # keep_dim=False, out3 should be [False, True], out.shape should be (2,) + out3 = paddle.all(x, axis=-1) # [False, True] + print(out3) + + # keep_dim=True, out4 should be [[False], [True]], out.shape should be (2,1) + out4 = paddle.all(x, axis=1, keep_dim=True) + out4 = layers.cast(out4, 'int32') # [[False], [True]] + print(out4) + + """ + if axis is not None and not isinstance(axis, (list, tuple)): + axis = [axis] + + if not axis: + reduce_all_flag = True + else: + if len(axis) == len(x.shape): + reduce_all_flag = True + else: + reduce_all_flag = False + + attrs = { + 'dim': axis if axis != None and axis != [] and axis != () else [0], + 'keep_dim': keepdim, + 'reduce_all': reduce_all_flag + } + dtype_flag = False + + + if in_dygraph_mode(): + axis = axis if axis != None and axis != [] else [0] + return core.ops.reduce_all(x, 'dim', axis, 'keep_dim', keepdim, + 'reduce_all', reduce_all_flag) + check_variable_and_dtype(x, 'x', ['bool'], 'all') + + + check_type(axis, 'axis', (int, list, tuple, type(None)), 'all') + + helper = LayerHelper('all', **locals()) + out = helper.create_variable_for_type_inference(dtype=x.dtype) + helper.append_op( + type='reduce_all', + inputs={'X': x}, + outputs={'Out': out}, + attrs=attrs) + return out + + +def any(x, axis=None, keepdim=False, name=None): + """ + Computes the the ``logical or`` of tensor elements over the given dimension. + + Args: + x (Tensor): An N-D Tensor, the input data type should be `bool`. + axis (int|list|tuple, optional): The dimensions along which the ``logical or`` is compute. If + :attr:`None`, and all elements of :attr:`x` and return a + Tensor variable with a single element, otherwise must be in the + range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`, + the dimension to reduce is :math:`rank + axis[i]`. + keepdim (bool, optional): Whether to reserve the reduced dimension in the + output Tensor. The result Tensor will have one fewer dimension + than the :attr:`x` unless :attr:`keepdim` is true, default + value is False. + name (str, optional): The default value is None. Normally there is no need for + user to set this property. For more information, please refer to :ref:`api_guide_Name` + + Returns: + Tensor: Results the ``logical or`` on the specified axis of input Tensor `x`, it's data type is bool. + + Raises: + ValueError: If the data type of `x` is not bool. + TypeError: The type of :attr:`axis` must be int, list or tuple. + + Examples: + .. code-block:: python + + import paddle + import paddle.fluid as fluid + import paddle.fluid.layers as layers + import numpy as np + + # set as static mode + paddle.disable_static() + + # x is a bool Tensor variable with following elements: + # [[True, False] + # [False, False]] + x = layers.assign(np.array([[1, 0], [1, 1]], dtype='int32')) + print(x) + x = layers.cast(x, 'bool') + + # out1 should be [True] + out1 = paddle.any(x) # [True] + print(out1) + + # out2 should be [True, False] + out2 = paddle.any(x, axis=0) # [True, False] + print(out2) + + # keep_dim=False, out3 should be [True, False], out.shape should be (2,) + out3 = paddle.any(x, axis=-1) # [True, False] + print(out3) + + # keep_dim=True, result should be [[True], [False]], out.shape should be (2,1) + out4 = paddle.any(x, axis=1, keep_dim=True) + out4 = layers.cast(out4, 'int32') # [[True], [False]] + print(out4) + + """ + if axis is not None and not isinstance(axis, (list, tuple)): + axis = [axis] + + if not axis: + reduce_all_flag = True + else: + if len(axis) == len(x.shape): + reduce_all_flag = True + else: + reduce_all_flag = False + + attrs = { + 'dim': axis if axis != None and axis != [] and axis != () else [0], + 'keep_dim': keepdim, + 'reduce_all': reduce_all_flag + } + dtype_flag = False + + + if in_dygraph_mode(): + axis = axis if axis != None and axis != [] else [0] + return core.ops.reduce_any(x, 'dim', axis, 'keep_dim', keepdim, + 'reduce_all', reduce_all_flag) + check_variable_and_dtype(x, 'x', ['bool'], 'any') + + + check_type(axis, 'axis', (int, list, tuple, type(None)), 'any') + + helper = LayerHelper('any', **locals()) + out = helper.create_variable_for_type_inference(dtype=x.dtype) + helper.append_op( + type='reduce_any', + inputs={'X': x}, + outputs={'Out': out}, + attrs=attrs) + return out