diff --git a/paddle/fluid/operators/strided_slice_op.cc b/paddle/fluid/operators/strided_slice_op.cc index f8272d550b999..d53ab914db4d7 100644 --- a/paddle/fluid/operators/strided_slice_op.cc +++ b/paddle/fluid/operators/strided_slice_op.cc @@ -31,7 +31,13 @@ class StridedSliceOp : public framework::OperatorWithKernel { void InferShape(framework::InferShapeContext *ctx) const override { OP_INOUT_CHECK(ctx->HasInput("Input"), "Input", "Input", "StridedSlice"); OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "StridedSlice"); - + auto input_var_type = ctx->GetInputsVarType("Input")[0]; + if (input_var_type == framework::proto::VarType::LOD_TENSOR_ARRAY) { + if (ctx->IsRuntime()) { + // shape is determined by Runtime. + return; + } + } auto in_dims = ctx->GetInputDim("Input"); PADDLE_ENFORCE_LT( in_dims.size(), 7, @@ -154,6 +160,27 @@ class StridedSliceOp : public framework::OperatorWithKernel { protected: framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext &ctx) const override { + auto *in_var = ctx.InputVar("Input"); + auto is_in_var_array = in_var->IsType(); + if (is_in_var_array) { + auto &tensor_array = in_var->Get(); + for (auto &tensor : tensor_array) { + if (!platform::is_cuda_pinned_place(tensor.place())) { + PADDLE_ENFORCE_EQ( + platform::is_same_place(tensor.place(), + ctx.device_context().GetPlace()), + true, + platform::errors::InvalidArgument( + "Place of context is %s. Place of input tensor is %s. They " + "are should be same, but reveived different place.", + string::to_string(ctx.device_context().GetPlace()), + string::to_string(tensor.place()))); + } + } + return framework::OpKernelType( + OperatorWithKernel::IndicateVarDataType(ctx, "Input"), + ctx.device_context()); + } // NOTE: cuda pinned tensor need to copy its data to target place auto in_tensor = ctx.Input("Input"); if (platform::is_cuda_pinned_place(in_tensor->place())) { @@ -179,6 +206,14 @@ class StridedSliceOp : public framework::OperatorWithKernel { } }; +class StridedSliceOpVarTypeInference : public framework::VarTypeInference { + public: + void operator()(framework::InferVarTypeContext *ctx) const override { + ctx->SetOutputType("Out", ctx->GetInputType("Input")); + ctx->SetOutputDataType("Out", ctx->GetInputDataType("Input")); + } +}; + class StridedSliceOpMaker : public framework::OpProtoAndCheckerMaker { public: void Make() override { @@ -259,6 +294,13 @@ class StridedSliceOpGrad : public framework::OperatorWithKernel { OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input", "Out@GRAD", "StridedSliceGrad"); + auto input_var_type = ctx->GetInputsVarType("Input")[0]; + if (input_var_type == framework::proto::VarType::LOD_TENSOR_ARRAY) { + if (ctx->IsRuntime()) { + // shape is determined by Runtime + return; + } + } auto x_dims = ctx->GetInputDim("Input"); auto x_grad_name = framework::GradVarName("Input"); if (ctx->HasOutput(x_grad_name)) { @@ -308,6 +350,16 @@ class StridedSliceOpGradMaker : public framework::SingleGradOpMaker { bind->SetType("strided_slice_grad"); } }; +class StridedSliceGradOpVarTypeInference : public framework::VarTypeInference { + public: + void operator()(framework::InferVarTypeContext *ctx) const override { + ctx->SetOutputType(framework::GradVarName("Input"), + ctx->GetInputType(framework::GradVarName("Out"))); + ctx->SetOutputDataType( + framework::GradVarName("Input"), + ctx->GetInputDataType(framework::GradVarName("Out"))); + } +}; DECLARE_NO_NEED_BUFFER_VARS_INFERER(StridedSliceOpGradNoNeedBufferVarsInferer, "Input"); @@ -318,9 +370,12 @@ DECLARE_NO_NEED_BUFFER_VARS_INFERER(StridedSliceOpGradNoNeedBufferVarsInferer, namespace ops = paddle::operators; REGISTER_OPERATOR(strided_slice, ops::StridedSliceOp, ops::StridedSliceOpMaker, ops::StridedSliceOpGradMaker, - ops::StridedSliceOpGradMaker); + ops::StridedSliceOpGradMaker, + ops::StridedSliceOpVarTypeInference); + REGISTER_OPERATOR(strided_slice_grad, ops::StridedSliceOpGrad, - ops::StridedSliceOpGradNoNeedBufferVarsInferer); + ops::StridedSliceOpGradNoNeedBufferVarsInferer, + ops::StridedSliceGradOpVarTypeInference); REGISTER_OP_CPU_KERNEL( strided_slice, diff --git a/paddle/fluid/operators/strided_slice_op.h b/paddle/fluid/operators/strided_slice_op.h index 3c5fb869f68f1..e5b808174ace4 100644 --- a/paddle/fluid/operators/strided_slice_op.h +++ b/paddle/fluid/operators/strided_slice_op.h @@ -127,6 +127,9 @@ static void StridedSliceFunctor(int64_t* starts, int64_t* ends, if (!(ends[axis_index] == -1 && strides[axis_index] < 0)) { // skip None stop condition ends[axis_index] = ends[axis_index] + axis_size; + if (ends[axis_index] < 0) { + ends[axis_index] = 0; + } } } if (decrease_axis_affect) { @@ -136,14 +139,19 @@ static void StridedSliceFunctor(int64_t* starts, int64_t* ends, ends[axis_index] = starts[axis_index] + 1; } } + + if ((starts[axis_index] < 0) && (axis_size > 0)) { + starts[axis_index] += axis_size; + starts[axis_index] = std::max(starts[axis_index], 0); + } + if (strides[axis_index] < 0) { reverse_axis[axis_index] = 1; strides[axis_index] = -strides[axis_index]; if (starts[axis_index] > ends[axis_index]) { // swap the reverse - auto end_dim = dims[axis_index] - 1 < starts[axis_index] - ? dims[axis_index] - 1 - : starts[axis_index]; + auto end_dim = axis_size - 1 < starts[axis_index] ? axis_size - 1 + : starts[axis_index]; auto offset = (end_dim - ends[axis_index]) % strides[axis_index]; offset = offset == 0 ? strides[axis_index] : offset; @@ -162,7 +170,11 @@ template class StridedSliceKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { - int rank = ctx.Input("Input")->dims().size(); + const Variable* input_var = ctx.InputVar("Input"); + bool is_tensor_array = input_var->IsType(); + int rank = is_tensor_array + ? 1 + : ctx.Input("Input")->dims().size(); switch (rank) { case 1: StridedSliceCompute<1>(ctx); @@ -190,9 +202,17 @@ class StridedSliceKernel : public framework::OpKernel { void StridedSliceCompute(const framework::ExecutionContext& context) const { auto& place = *context.template device_context().eigen_device(); - auto in = context.Input("Input"); - auto out = context.Output("Out"); - auto in_dims = in->dims(); + + framework::DDim in_dims; + auto* input_var = context.InputVar("Input"); + + bool is_input_var_array = input_var->IsType(); + if (is_input_var_array) { + const int64_t size = input_var->Get().size(); + in_dims = framework::make_ddim({size}); + } else { + in_dims = context.Input("Input")->dims(); + } auto starts_int = context.Attr>("starts"); auto ends_int = context.Attr>("ends"); @@ -295,29 +315,97 @@ class StridedSliceKernel : public framework::OpKernel { } } - out->Resize(out_dims); - out->mutable_data(context.GetPlace()); - auto in_t = - framework::EigenTensor::From( - *in); - auto out_t = - framework::EigenTensor::From( - *out, out_dims); - if (need_reverse) { - framework::Tensor tmp; - tmp.mutable_data(out_dims, context.GetPlace()); - auto tmp_t = framework::EigenTensor::From(tmp); - tmp_t.device(place) = - in_t.stridedSlice(starts_indices, ends_indices, strides_indices); - out_t.device(place) = tmp_t.reverse(reverse_axis); + if (is_input_var_array) { + PADDLE_ENFORCE_EQ( + starts_indices.size(), 1, + platform::errors::InvalidArgument( + "When the input of 'strided_slice_op' is `TensorArray`, the " + "dimension of start index should be 1, but received %d.", + starts_indices.size())); + + PADDLE_ENFORCE_EQ( + ends_indices.size(), 1, + platform::errors::InvalidArgument( + "When the input of 'strided_slice_op' is `TensorArray`, the " + "dimension of end index should be 1, but received %d.", + ends_indices.size())); + + PADDLE_ENFORCE_EQ( + strides_indices.size(), 1, + platform::errors::InvalidArgument( + "When the input of 'strided_slice_op' is `TensorArray`, the " + "dimension of stride should be 1, but received %d.", + strides_indices.size())); + + auto* output_var = context.OutputVar("Out"); + + PADDLE_ENFORCE_EQ( + output_var->IsType(), true, + platform::errors::InvalidArgument( + "When the input of `strided_slice_op` is `TensorArray`. The " + "output is excepted `TensorArray` , but received %s.", + framework::ToTypeName(output_var->Type()))); + + PADDLE_ENFORCE_EQ( + out_dims_origin.size(), 1, + platform::errors::InvalidArgument( + "When the input of 'strided_slice_op' is `TensorArray`, the " + "dimension of Output should be 1, but received %d", + out_dims_origin.size())); + + auto& in_array = input_var->Get(); + + auto* out_array = context.Output("Out"); + + out_array->resize(out_dims_origin[0]); + size_t const in_array_size = in_array.size(); + for (size_t i = 0; i < out_array->size(); i++) { + size_t in_offset = + (starts_indices[0] % in_array_size) + i * strides_indices[0]; + + int64_t out_offset = i; + if (need_reverse) { + out_offset = out_array->size() - i - 1; + } + + auto& in_tensor = in_array.at(in_offset); + PADDLE_ENFORCE_GT( + in_tensor.memory_size(), 0, + platform::errors::PreconditionNotMet( + "The input LoDTensorArray Input[%d] holds no memory.", + in_offset)); + auto* out_tensor = &out_array->at(out_offset); + + out_tensor->set_lod(in_tensor.lod()); + TensorCopy(in_tensor, context.GetPlace(), out_tensor); + } + } else { - out_t.device(place) = - in_t.stridedSlice(starts_indices, ends_indices, strides_indices); - } + auto in = context.Input("Input"); + auto out = context.Output("Out"); + out->Resize(out_dims); + out->mutable_data(context.GetPlace()); + auto in_t = framework::EigenTensor::From(*in); + auto out_t = + framework::EigenTensor::From(*out, out_dims); + if (need_reverse) { + framework::Tensor tmp; + tmp.mutable_data(out_dims, context.GetPlace()); + auto tmp_t = framework::EigenTensor::From(tmp); + tmp_t.device(place) = + in_t.stridedSlice(starts_indices, ends_indices, strides_indices); + out_t.device(place) = tmp_t.reverse(reverse_axis); + } else { + out_t.device(place) = + in_t.stridedSlice(starts_indices, ends_indices, strides_indices); + } - if (decrease_axis.size() > 0) { - out->Resize(out_dims_origin); + if (decrease_axis.size() > 0) { + out->Resize(out_dims_origin); + } } } }; @@ -326,7 +414,11 @@ template class StridedSliceGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { - size_t rank = ctx.Input("Input")->dims().size(); + const Variable* input_var = ctx.InputVar("Input"); + bool is_tensor_array = input_var->IsType(); + int rank = is_tensor_array + ? 1 + : ctx.Input("Input")->dims().size(); switch (rank) { case 1: StridedSliceGradCompute<1>(ctx); @@ -355,17 +447,27 @@ class StridedSliceGradKernel : public framework::OpKernel { const framework::ExecutionContext& context) const { auto& place = *context.template device_context().eigen_device(); - auto* d_input = - context.Input(framework::GradVarName("Out")); - auto* d_out = - context.Output(framework::GradVarName("Input")); - d_out->mutable_data(context.GetPlace()); auto& dev_ctx = context.template device_context(); - math::SetConstant set_zero; - set_zero(dev_ctx, d_out, static_cast(0)); - auto out_dims = d_out->dims(); - auto in_dims = d_input->dims(); + + framework::DDim out_dims; + auto* out_var = context.OutputVar(framework::GradVarName("Input")); + bool is_out_var_array = out_var->IsType(); + if (is_out_var_array) { + // Note(weixin):Since the shape of `framework::GradVarName("Input")` of + // StridedSliceGrad cannot be calculated by + // `framework::GradVarName("Output")`, the dim of "Input" is used to + // calculate the output shape. when set it to inplace OP, there may be + // some problems. + const int64_t size = + context.Input("Input")->size(); + + out_dims = framework::make_ddim({size}); + } else { + out_dims = + context.Output(framework::GradVarName("Input")) + ->dims(); + } auto starts_int = context.Attr>("starts"); auto ends_int = context.Attr>("ends"); @@ -438,25 +540,121 @@ class StridedSliceGradKernel : public framework::OpKernel { break; } } - auto in_t = - framework::EigenTensor::From( - *d_input); - auto out_t = - framework::EigenTensor::From( - *d_out, out_dims); - if (need_reverse) { - framework::Tensor reverse_input; - reverse_input.mutable_data(in_dims, context.GetPlace()); - auto reverse_in_t = - framework::EigenTensor::From(reverse_input); - reverse_in_t.device(place) = in_t.reverse(reverse_axis); - out_t.stridedSlice(starts_indices, ends_indices, strides_indices) - .device(place) = reverse_in_t; + if (is_out_var_array) { + PADDLE_ENFORCE_EQ( + starts_indices.size(), 1, + platform::errors::InvalidArgument( + "When the input of 'strided_slice_grad_op' is `TensorArray`, the " + "dimension of start index should be 1, but received %d.", + starts_indices.size())); + PADDLE_ENFORCE_EQ( + ends_indices.size(), 1, + platform::errors::InvalidArgument( + "When the input of 'strided_slice_op' is `TensorArray`, the " + "dimension of end index should be 1, but received %d.", + ends_indices.size())); + PADDLE_ENFORCE_EQ( + strides_indices.size(), 1, + platform::errors::InvalidArgument( + "When the input of 'strided_slice_grad_op' is `TensorArray`, the " + "dimension of stride should be 1, but received %d.", + strides_indices.size())); + + auto* d_input_var = context.InputVar(framework::GradVarName("Out")); + + PADDLE_ENFORCE_EQ( + d_input_var->IsType(), true, + platform::errors::InvalidArgument( + "When the output of `strided_slice_grad_op` is " + "`TensorArray`, the input is excepted `TensorArray` , " + "but received %s.", + framework::ToTypeName(d_input_var->Type()))); + + PADDLE_ENFORCE_EQ( + out_dims.size(), 1, + platform::errors::InvalidArgument( + "When the output of `strided_slice_grad_op` is `TensorArray`, " + "the dimension of output should be 1, but received %d.", + out_dims.size())); + auto& d_in_array = d_input_var->Get(); + + auto* d_out_array = context.Output( + framework::GradVarName("Input")); + + d_out_array->resize(out_dims[0]); + auto const d_out_array_size = d_out_array->size(); + auto* input_tensor_array = + context.Input("Input"); + + for (size_t j = 0; j < d_out_array_size; j++) { + auto& dim = input_tensor_array->at(j).dims(); + auto* d_out_tensor = &d_out_array->at(j); + + int64_t sub = j - starts_indices[0]; + + int64_t in_offset = sub / strides_indices[0]; + + if (need_reverse) { + in_offset = d_in_array.size() - in_offset - 1; + } + + if ((sub % strides_indices[0] == 0) && (0 <= in_offset) && + (static_cast(in_offset) < d_in_array.size())) { + auto& in_tensor = d_in_array.at(in_offset); + PADDLE_ENFORCE_GT( + in_tensor.memory_size(), 0, + platform::errors::PreconditionNotMet( + "The input LoDTensorArray Input[%d] holds no memory.", + in_offset)); + + d_out_tensor->set_lod(in_tensor.lod()); + TensorCopy(in_tensor, context.GetPlace(), d_out_tensor); + + } else { + d_out_tensor->Resize(dim); + + if (!d_out_tensor->IsInitialized()) { + d_out_tensor->mutable_data(context.GetPlace()); + } + + math::SetConstant set_zero; + set_zero(dev_ctx, d_out_tensor, static_cast(0)); + } + } + } else { - out_t.stridedSlice(starts_indices, ends_indices, strides_indices) - .device(place) = in_t; + auto* d_input = + context.Input(framework::GradVarName("Out")); + auto* d_out = + context.Output(framework::GradVarName("Input")); + + d_out->mutable_data(context.GetPlace()); + + math::SetConstant set_zero; + set_zero(dev_ctx, d_out, static_cast(0)); + + auto in_dims = d_input->dims(); + + auto in_t = framework::EigenTensor::From(*d_input); + auto out_t = + framework::EigenTensor::From(*d_out, out_dims); + if (need_reverse) { + framework::Tensor reverse_input; + reverse_input.mutable_data(in_dims, context.GetPlace()); + auto reverse_in_t = + framework::EigenTensor::From(reverse_input); + + reverse_in_t.device(place) = in_t.reverse(reverse_axis); + out_t.stridedSlice(starts_indices, ends_indices, strides_indices) + .device(place) = reverse_in_t; + } else { + out_t.stridedSlice(starts_indices, ends_indices, strides_indices) + .device(place) = in_t; + } } } }; diff --git a/python/paddle/fluid/tests/unittests/dygraph_to_static/test_slice.py b/python/paddle/fluid/tests/unittests/dygraph_to_static/test_slice.py index 7b4a35a6a7898..f486cbc27dca5 100644 --- a/python/paddle/fluid/tests/unittests/dygraph_to_static/test_slice.py +++ b/python/paddle/fluid/tests/unittests/dygraph_to_static/test_slice.py @@ -18,6 +18,7 @@ import numpy as np import paddle +from paddle.static import InputSpec SEED = 2020 np.random.seed(SEED) @@ -176,6 +177,46 @@ def test_set_value_with_save(self): output_spec=None) +class TestSliceSupplementSpecialCase(unittest.TestCase): + # unittest for slice index which abs(step)>0. eg: x[::2] + def test_static_slice_step(self): + paddle.enable_static() + array = np.arange(4**3).reshape((4, 4, 4)).astype('int64') + + x = paddle.static.data(name='x', shape=[4, 4, 4], dtype='int64') + z1 = x[::2] + z2 = x[::-2] + + place = paddle.CPUPlace() + prog = paddle.static.default_main_program() + exe = paddle.static.Executor(place) + exe.run(paddle.static.default_startup_program()) + + out = exe.run(prog, feed={'x': array}, fetch_list=[z1, z2]) + + self.assertTrue(np.array_equal(out[0], array[::2])) + self.assertTrue(np.array_equal(out[1], array[::-2])) + + def test_static_slice_step_dygraph2static(self): + paddle.disable_static() + + array = np.arange(4**2 * 5).reshape((5, 4, 4)).astype('int64') + inps = paddle.to_tensor(array) + + def func(inps): + return inps[::2], inps[::-2] + + origin_result = func(inps) + sfunc = paddle.jit.to_static( + func, input_spec=[InputSpec(shape=[None, 4, 4])]) + static_result = sfunc(inps) + + self.assertTrue( + np.array_equal(origin_result[0].numpy(), static_result[0].numpy())) + self.assertTrue( + np.array_equal(origin_result[1].numpy(), static_result[1].numpy())) + + class TestPaddleStridedSlice(unittest.TestCase): def test_compare_paddle_strided_slice_with_numpy(self): paddle.disable_static() @@ -202,6 +243,20 @@ def test_compare_paddle_strided_slice_with_numpy(self): np.array_equal(sl.numpy(), array[s2[0]:e2[0]:stride2[0], s2[1]:e2[ 1]:stride2[1]])) + array = np.arange(6 * 7 * 8).reshape((6, 7, 8)) + pt = paddle.to_tensor(array) + s2 = [7, -1] + e2 = [2, -5] + stride2 = [-2, -3] + sl = paddle.strided_slice( + pt, axes=[0, 2], starts=s2, ends=e2, strides=stride2) + + array_slice = array[s2[0]:e2[0]:stride2[0], ::, s2[1]:e2[1]:stride2[1]] + self.assertTrue( + np.array_equal(sl.numpy(), array_slice), + msg="paddle.strided_slice:\n {} \n numpy slice:\n{}".format( + sl.numpy(), array_slice)) + if __name__ == '__main__': unittest.main() diff --git a/python/paddle/fluid/tests/unittests/test_strided_slice_op.py b/python/paddle/fluid/tests/unittests/test_strided_slice_op.py index ebf7c01e2cae5..3c1a2649a7dfa 100644 --- a/python/paddle/fluid/tests/unittests/test_strided_slice_op.py +++ b/python/paddle/fluid/tests/unittests/test_strided_slice_op.py @@ -588,5 +588,331 @@ def test_cuda_pinned_place(self): self.assertFalse(y.place.is_cuda_pinned_place()) +class ArrayLayer(paddle.nn.Layer): + def __init__(self, input_size=224, output_size=10, array_size=1): + super(ArrayLayer, self).__init__() + self.input_size = input_size + self.output_size = output_size + self.array_size = array_size + for i in range(self.array_size): + setattr(self, + self.create_name(i), + paddle.nn.Linear(input_size, output_size)) + + def create_name(self, index): + return 'linear_' + str(index) + + def forward(self, inps): + array = [] + for i in range(self.array_size): + linear = getattr(self, self.create_name(i)) + array.append(linear(inps)) + + tensor_array = self.create_tensor_array(array) + + tensor_array = self.array_slice(tensor_array) + + array1 = paddle.concat(tensor_array) + array2 = paddle.concat(tensor_array[::-1]) + return array1 + array2 * array2 + + def get_all_grads(self, param_name='weight'): + grads = [] + for i in range(self.array_size): + linear = getattr(self, self.create_name(i)) + param = getattr(linear, param_name) + + g = param.grad + if g is not None: + g = g.numpy() + + grads.append(g) + + return grads + + def clear_all_grad(self): + param_names = ['weight', 'bias'] + for i in range(self.array_size): + linear = getattr(self, self.create_name(i)) + for p in param_names: + param = getattr(linear, p) + param.clear_gradient() + + def array_slice(self, array): + return array + + def create_tensor_array(self, tensors): + tensor_array = None + for i, tensor in enumerate(tensors): + index = paddle.full(shape=[1], dtype='int64', fill_value=i) + if tensor_array is None: + tensor_array = paddle.tensor.array_write(tensor, i=index) + else: + paddle.tensor.array_write(tensor, i=index, array=tensor_array) + return tensor_array + + +class TestStridedSliceTensorArray(unittest.TestCase): + def setUp(self): + paddle.disable_static() + + def grad_equal(self, g1, g2): + if g1 is None: + g1 = np.zeros_like(g2) + if g2 is None: + g2 = np.zeros_like(g1) + return np.array_equal(g1, g2) + + def is_grads_equal(self, g1, g2): + for i, g in enumerate(g1): + + self.assertTrue( + self.grad_equal(g, g2[i]), + msg="gradient_1:\n{} \ngradient_2:\n{}".format(g, g2)) + + def is_grads_equal_zeros(self, grads): + for g in grads: + self.assertTrue( + self.grad_equal(np.zeros_like(g), g), + msg="The gradient should be zeros, but received \n{}".format(g)) + + def create_case(self, net): + inps1 = paddle.randn([1, net.input_size], dtype='float32') + inps2 = inps1.detach().clone() + l1 = net(inps1) + s1 = l1.numpy() + l1.sum().backward() + grads_dy = net.get_all_grads() + net.clear_all_grad() + grads_zeros = net.get_all_grads() + + self.is_grads_equal_zeros(grads_zeros) + + func = paddle.jit.to_static(net.forward) + l2 = func(inps2) + s2 = l2.numpy() + l2.sum().backward() + grads_static = net.get_all_grads() + net.clear_all_grad() + # compare result of dygraph and static + self.is_grads_equal(grads_static, grads_dy) + self.assertTrue( + np.array_equal(s1, s2), + msg="dygraph graph result:\n{} \nstatic dygraph result:\n{}".format( + l1.numpy(), l2.numpy())) + + def test_strided_slice_tensor_array_cuda_pinned_place(self): + if paddle.device.is_compiled_with_cuda(): + with paddle.fluid.dygraph.guard(): + + class Simple(paddle.nn.Layer): + def __init__(self): + super(Simple, self).__init__() + + def forward(self, inps): + tensor_array = None + for i, tensor in enumerate(inps): + index = paddle.full( + shape=[1], dtype='int64', fill_value=i) + if tensor_array is None: + tensor_array = paddle.tensor.array_write( + tensor, i=index) + else: + paddle.tensor.array_write( + tensor, i=index, array=tensor_array) + + array1 = paddle.concat(tensor_array) + array2 = paddle.concat(tensor_array[::-1]) + return array1 + array2 * array2 + + net = Simple() + func = paddle.jit.to_static(net.forward) + + inps1 = paddle.to_tensor( + np.random.randn(2, 10), + place=paddle.CUDAPinnedPlace(), + stop_gradient=False) + inps2 = paddle.to_tensor( + np.random.randn(2, 10), + place=paddle.CUDAPinnedPlace(), + stop_gradient=False) + + self.assertTrue(inps1.place.is_cuda_pinned_place()) + self.assertTrue(inps2.place.is_cuda_pinned_place()) + + result = func([inps1, inps2]) + + self.assertFalse(result.place.is_cuda_pinned_place()) + + def test_strided_slice_tensor_array(self): + class Net(ArrayLayer): + def array_slice(self, tensors): + return tensors[::-1] + + self.create_case(Net(array_size=10)) + + class Net(ArrayLayer): + def array_slice(self, tensors): + return tensors[::-2] + + self.create_case(Net(input_size=112, array_size=11)) + + class Net(ArrayLayer): + def array_slice(self, tensors): + return tensors[::-3] + + self.create_case(Net(input_size=112, array_size=9)) + + class Net(ArrayLayer): + def array_slice(self, tensors): + return tensors[1::-4] + + self.create_case(Net(input_size=112, array_size=9)) + + class Net(ArrayLayer): + def array_slice(self, tensors): + return tensors[:7:-4] + + self.create_case(Net(input_size=112, array_size=9)) + + class Net(ArrayLayer): + def array_slice(self, tensors): + return tensors[8:0:-4] + + self.create_case(Net(input_size=112, array_size=9)) + + class Net(ArrayLayer): + def array_slice(self, tensors): + return tensors[8:1:-4] + + self.create_case(Net(input_size=112, array_size=9)) + + class Net(ArrayLayer): + def array_slice(self, tensors): + return tensors[::2] + + self.create_case(Net(input_size=112, array_size=11)) + + class Net(ArrayLayer): + def array_slice(self, tensors): + return tensors[::3] + + self.create_case(Net(input_size=112, array_size=9)) + + class Net(ArrayLayer): + def array_slice(self, tensors): + return tensors[1::4] + + self.create_case(Net(input_size=112, array_size=9)) + + class Net(ArrayLayer): + def array_slice(self, tensors): + return tensors[:8:4] + + self.create_case(Net(input_size=112, array_size=9)) + + class Net(ArrayLayer): + def array_slice(self, tensors): + return tensors[1:8:4] + + self.create_case(Net(input_size=112, array_size=9)) + + class Net(ArrayLayer): + def array_slice(self, tensors): + return tensors[8:10:4] + + self.create_case(Net(input_size=112, array_size=13)) + + class Net(ArrayLayer): + def array_slice(self, tensors): + return tensors[3:10:4] + + self.create_case(Net(input_size=112, array_size=13)) + + class Net(ArrayLayer): + def array_slice(self, tensors): + return tensors[2:10:4] + + self.create_case(Net(input_size=112, array_size=13)) + + class Net(ArrayLayer): + def array_slice(self, tensors): + return tensors[3:10:3] + + self.create_case(Net(input_size=112, array_size=13)) + + class Net(ArrayLayer): + def array_slice(self, tensors): + return tensors[3:15:3] + + self.create_case(Net(input_size=112, array_size=13)) + + class Net(ArrayLayer): + def array_slice(self, tensors): + return tensors[0:15:3] + + self.create_case(Net(input_size=112, array_size=13)) + + class Net(ArrayLayer): + def array_slice(self, tensors): + return tensors[-1:-5:-3] + + self.create_case(Net(input_size=112, array_size=13)) + + class Net(ArrayLayer): + def array_slice(self, tensors): + return tensors[-1:-6:-3] + + self.create_case(Net(input_size=112, array_size=13)) + + class Net(ArrayLayer): + def array_slice(self, tensors): + return tensors[-3:-6:-3] + + self.create_case(Net(input_size=112, array_size=13)) + + self.create_case(Net(input_size=112, array_size=13)) + + class Net(ArrayLayer): + def array_slice(self, tensors): + return tensors[-5:-1:3] + + self.create_case(Net(input_size=112, array_size=13)) + + class Net(ArrayLayer): + def array_slice(self, tensors): + return tensors[-6:-1:3] + + self.create_case(Net(input_size=112, array_size=13)) + + class Net(ArrayLayer): + def array_slice(self, tensors): + return tensors[-6:-3:3] + + self.create_case(Net(input_size=112, array_size=13)) + + class Net(ArrayLayer): + def array_slice(self, tensors): + return tensors[0::3] + + self.create_case(Net(input_size=112, array_size=13)) + + class Net(ArrayLayer): + def array_slice(self, tensors): + return tensors[-60:20:3] + + self.create_case(Net(input_size=112, array_size=13)) + + class Net(ArrayLayer): + def array_slice(self, tensors): + return tensors[-3:-60:-3] + + self.create_case(Net(input_size=112, array_size=13)) + + class Net(ArrayLayer): + def array_slice(self, tensors): + return tensors[-1:-60:-3] + + if __name__ == "__main__": unittest.main() diff --git a/python/paddle/fluid/variable_index.py b/python/paddle/fluid/variable_index.py index c9363dff13d81..cd3217724dd8c 100644 --- a/python/paddle/fluid/variable_index.py +++ b/python/paddle/fluid/variable_index.py @@ -144,13 +144,10 @@ def _getitem_impl_(var, item): step = 1 if step is None else step - if start is None and end is None: - assert (step == -1) - reverse_axes.append(dim) - continue - - start = 0 if start is None else start - end = MAX_INTEGER if end is None else end + if start is None: + start = 0 if step > 0 else MAX_INTEGER + if end is None: + end = MAX_INTEGER if step > 0 else -1 elif isinstance(slice_item, list): is_bool_list = False